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ABSTRACT
Wireless Sensor Networks (WSN) are often deployed to sam-
ple the desired environmental attributes and deliver the ac-
quired samples to the sink for processing, analysis or simula-
tions as per the application needs. Many applications stipu-
late high granularity and data accuracy that results in high
data volumes. Sensor nodes are battery powered and send-
ing the requested large amount of data rapidly depletes their
energy. Fortunately, the environmental attributes (e.g., tem-
perature, pressure) often exhibit spatial and temporal cor-
relations. Moreover, a large class of applications such as
scientific measurement and forensics tolerate high latencies
for sensor data collection. Accordingly, we develop a fully
distributed adaptive technique for spatial and temporal in-
network data compression with accuracy guarantees. We ex-
ploit the spatio-temporal correlation of sensor readings while
benefiting from possible data delivery latency tolerance to
further minimize the amount of data to be transported to
the sink. Using real data, we demonstrate that our proposed
scheme can provide significant communication/energy sav-
ings without sacrificing the accuracy of collected data. In
our simulations, we achieved data compression of up to 95%
on the raw data requiring around 5% of the original data to
be transported to the sink.
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1. THE PROBLEM AND THE APPROACH
In WSN deployments, sensor nodes are often distributed

over the monitoring area for unattended environmental mon-
itoring or for supervisory functions. The typical WSN func-
tionality being (i) local event detection and reporting it to
the sink, and (ii) continuous data collection by sampling the
environment and sending the samples to the sink. In this pa-
per, we deal with continuous data collection. Applications
utilize continuously collected data for (a) real-time decision
making, such as surveillance, or (b) delay-tolerant process-
ing such as modeling, analysis [17] and inference [3]. In this
work, we develop adaptive modeling algorithms that exploit
the delay-tolerance of the data collection to maximize data
compression. As examples, various scientific applications,
such as, volcano monitoring [21] or eco-systems [17] [5], re-
quire detailed ambient data with high spatio-temporal sam-
pling resolution for fine-granular understanding of the phys-
ical processes. For such applications, a WSN is essentially
a spatio-temporal sampling system. High spatial resolution
is reachable if we sample at a granular node level. Simi-
larly, high temporal resolution is achieved by transmitting
the samples repeatedly. Consequently, large data volumes
need to be sent to the sink. Sending a message is a costly en-
ergy consuming operation and fetching more data from the
network results into more message transmissions and higher
energy consumption. Sensor nodes have limited computa-
tional capabilities and are powered by finite energy sources.
Accordingly, highly accurate continuous data collection is a
challenging problem in WSN given their energy, communi-
cation and computational constraints.

Fortunately, WSNs exhibit naturally high redundancy in
spatial sampling due to the redundant sensor node deploy-
ment for connectivity and failure tolerance. Often, the sam-
pled attributes are also temporally compressible due to tem-
poral correlation [18]. Redundant deployment and tempo-
ral correlation allow a significant reduction of communica-
tion overhead through spatio-temporal compression. Vari-
ous WSNs deployed for scientific monitoring [21], [5], [17]
continuously harvest data for modeling, analysis and sim-
ulations. They generally tolerate a certain data collection
latency. Hence, for such applications real-time data acquisi-
tion does not have precedence over the quality and quantity
of the data. This latency-tolerance in reporting the data
to the sink opens up fundamental design flexibility in data
collection to significantly improve WSN energy efficiency.
We propose a scheme to exploit the redundancies present
in WSN along with the data collection delay-tolerance to
maximize spatio-temporal data compression.



Our Contributions: A number of varied attempts such
as aggregation, temporal compression [10] [8] [24] and spa-
tial compression [6] [18] [23] have been proposed to reduce
data volume to be transported to the sink. However, only a
few composite spatio-temporal approaches, such as [18] [22]
exist. These approaches exploit both spatial and tempo-
ral correlation in data, thus reaching higher data traffic re-
duction. However, the existing approaches are (a) partially
centralized limiting local decision making for adaptability,
(b) tailored to specific attribute dynamics providing no self-
adaptability or (c) limited in their scope of exploiting either
spatial or temporal correlation reducing compressibility.

Based on this background, we summarize our contribu-
tions as follows:

• A fully decentralized Adaptive and Composite Spatio-
Temporal Compression (ASTC) technique.

• First exploitation of latency tolerance in reporting for
maximal spatio-temporal compression.

• A novel model-based hierarchical clustering that adapts
to attribute dynamics for spatio-temporal compression.

• Mechanisms to guarantee attribute value accuracy to be
within defined bound and ensure the sample granularity
to be on node level.

The paper is structured as follows. We present the sys-
tem model and design requirements in Section 2. The pro-
posed composite ASTC compression is presented in Section
3. Section 4 details the analysis and evaluation of ASTC
with related work discussed in 5.

2. PRELIMINARIES

2.1 System Model
We consider a WSN composed of N static sensor nodes

S = {s1, s2, . . . , sN} and a static sink. Each sensor node
periodically samples the environment attribute values every
T time units. The nodes are battery powered with limited
processing and storage capabilities. The WSN deployment
consists of arbitrary node distributions with varying spatial
node densities as per coverage requirements. We consider
the clocks of nodes to be synchronized [7]. A reliable end-
to-end data transport service, such as [15], to transport mes-
sages from sensor nodes to the sink and acknowledgement
schemes to ensure inter-node message delivery are utilized.

Notation Description
Ci ith Cluster
Si ith Sensor node
V Sample Value Queue
φ Model Parameters
Φi ith Model
Ψ Model Cache
m# Models in Ψ
ǫ Error Threshold
O#max Maximum Outliers
Wp Prediction Window

Table 1: Notations

2.2 Design Requirements
Our objective is to maximize the spatio-temporal data

compression with accuracy guarantees for continuously mon-
itored phenomenon. Conceptually, our requirements are:

1) The sink should be able to reconstruct the signal (sample
values) of each node from collected compressed data.

2) The accuracy of the reconstructed signal should be within
the application-driven error bound.

3) The number of messages to report data to the sink should
be minimal.

4) The algorithms should adapt to evolving attribute dynam-
ics and be independent of network properties such as node
distribution, topology and routing protocols.

5) The data compression models should be efficiently com-
putable on resource-limited sensor nodes.

3. THE PROPOSED ADAPTIVE SPATIO-
TEMPORAL COMPRESSION (ASTC)

We propose a decentralized adaptive composite compres-
sion technique while exploiting application latency toler-
ance. Before discussing ASTC in detail, we first describe
the redundancies in sampled values and how we can concep-
tually exploit them for data compression.

3.1 Redundancies and Correlations in a WSN
WSN generally exhibit both spatial and temporal redun-

dancies due to redundant node deployment and spatial and
temporal correlations between the sampled values. It is also
substantiated by our observation of real world data [11]
where we noticed that the trends/patterns are similar for
a large number of nodes in each other’s physical neighbor-
hood, as shown in Fig. 1 by gray shaded regions. This key
observation suggests that we can construct a single model for
the nodes (spread over a large area) that exhibit similarity
in sampled values. The redundant deployment and dynamic
phenomenon highlight two key aspects of correlations be-
tween nodes as (1) the nodes in closest neighborhood (1-hop
distance) have the highest spatio-temporal correlation and
the correlation within 1-hope cluster is fairly persistent, and
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Figure 1: Phenomenon Distribution

(2) correlations be-
tween 1-hop clus-
ters change over
time due to chang-
ing phenomenon dis-
tribution over nodes.
Hence, a certain
group of 1-hop clus-
ters may be corre-
lated for a certain
time duration and
after some time, when the phenomenon has changed, an-
other group of 1-hop clusters may be correlated, as shown
in Fig. 1 at time t +∆t the clusters belong to different re-
gions. Hence, we propose to exploit the spatial redundancy
in two stages, i.e., proactive 1-hop cluster formation that
are highly correlated and then merging the 1-hop clusters to
larger regions/clusters. Spatial compression in our approach
differs from contemporary approaches, such as [8] [22], that
form large monolithic clusters. ASTC exploits temporal re-
dundancy by constructing simple models on 1-hop clusters.

The asymmetry in correlations between the nodes in close
proximity and the nodes farther away makes the spatio-
temporal compression a challenging problem. The nodes
in close proximity of 1-hop distance generally exhibit per-
sistently high correlations in sample values. However, the
correlations between the 1-hop clusters are generally non-



persistent and dynamic when observed over a long time win-
dow. The existing literature addresses this asymmetry by
limiting the modeling to just 1-hop clusters [18], assuming
the attribute dynamics to be constant [4], requiring assis-
tance from the sink [27], [28] or by clustering based on the
instantaneous values rather than models [29], [30], [8].

3.2 A Guide through the ASTC Approach
Given the nature of sensor redundancies and sensed at-

tributes correlations in WSN, the proposed ASTC approach
performs spatio-temporal compression in three stages:

• Stage 1: 1-hop cluster formation.

• Stage 2: Temporal modeling on clusters.

• Stage 3: Merging 1-hop clusters.

In Stage 1, correlated sensor nodes form small 1-hop clus-
ters based on a short history of the attribute values to ex-
ploit strong local correlation. In Stage 2, we exploit the
temporal correlations by constructing the models on a small
number of clusters, referred to as master clusters (depicted
in Fig. 1 bearing crown). Each constructed model is lim-
ited to the respective master clusters and approximates the
sampled values of all the member sensor nodes of the master
cluster.

In Stage 3, we propose schemes to utilize the models con-
structed on the master clusters to also approximate the sam-
pled values of nodes in surrounding 1-hop clusters. The mas-
ter cluster sends the model to its neighboring clusters. The
cluster members fit the received model to their sampled val-
ues and accordingly either accept the model or reject the
model. The clusters accepting the model merge to form a
correlated region or larger clusters and further propagate the
model to their neighboring clusters. Following this scheme,
only a small set of the models constructed on master clus-
ters can approximate the entire network both in space and
time. The spatial compression in ASTC is a two level hier-
archical clustering. The first and second hierarchy levels are
formed during Stages 1 and 3 of ASTC. Stage 1 is executed
only once, while Stages 2 and 3 are repeated to continuously
model the sampled value and adapt to the changing dynam-
ics. In the following sections, we detail the ASTC stages.

3.3 Stage 1: 1-hop Cluster Formation
In contrast to existing approaches, we initially construct

small 1-hop clusters, instead of large monolithic clusters,
to exploit local spatial correlations. The 1-hop clusters are
later (Stage 3) merged to form larger clusters to model the
dynamic correlations between the 1-hop clusters. Construct-
ing and maintaining large monolithic clusters, in compari-
son to smaller 1-hop clusters, would incur high maintenance
costs as we will elaborate in Section 3.5. As 1-hop cluster
formation and inter-cluster routing is a well explored area in
WSN [1], we only briefly describe them here. 1-hop clusters
are formed based on the similarity of short history of the val-
ues that are transmitted by the nodes that candidate to be
the cluster head. All nodes are initially eligible to be a clus-
ter head candidate until some surrounding node announces
its intent to be a cluster head as triggered by random timer.
The candidate cluster head transmits a short history of the
sampled values. The sensor nodes join the cluster for which
the the difference between their sampled values and received
sample values is within the accuracy requirement set by the
application. The nodes unable to join a cluster, initiate

their own cluster formation requests. Hence, a 1-hop clus-
ter (Ci) is a set of one cluster head node (SCH) and ’r’
member nodes (Si) such that they are 1-hop away from
the cluster head, i.e., Ci = {SCH , S1, S2, . . . , Sr},∧∀Si ∈
Ci hopdist(SCH , Si) = 1. Members of one cluster might be
able to listen to more than one cluster heads but exclusively
belong to one cluster, i.e., Ci ∩ Cj = ∅, i 6= j. Each 1-hop
cluster head discovers immediate 1-hop neighboring clusters
(CN) around it. In the discovery process they exchange the
cluster Ids (same as cluster head Id) and hop distances of
cluster head from the sink. They also fix the gateway nodes
that are used to communicate between the two neighboring
cluster heads. The 1-hop cluster formation process is per-
formed only once. We do not explicitly refresh 1-hop clus-
ters to maintain the correlations between the nodes within
these clusters. Rather, we design Stages 2 and 3 of ASTC in
an adaptive manner such that 1-hop cluster rearrangement
takes place dynamically in response to the changes in the
physical phenomenon, as detailed further in Section 3.5.5.

3.4 Stage 2: Temporal Modeling on Clusters
Next, we elaborate a temporal compression scheme to

model the sampled values of all the member nodes within the
1-hop cluster. We emphasize that the model construction
is carried out only by master clusters (selection of master
clusters is explained in Section 3.5.1), while the rest of the
clusters use the models constructed by the master clusters
to approximate their sampled values.

Definition 1. x(t) is an Autoregressive Moving Average
Process ARMA(p, q) of order (p, q) p, q ∈ N and ∀ t,

x(t) = Φ(φ, θ, x(t)) =
φ1x(t− 1) + · · ·+ φpx(t − p)+
θ1z(t− 1) + · · ·+ θqz(t − q)

(1)

where φ and θ are model coefficients, z(t) is white noise
with mean zero and variance σ2, denoted as WN(0, σ2) and
Φ(φ, θ, x(t)) (or in short Φ) denotes a model.

The use of computationally complex models to approximate
generic patterns, typically observed in sampled attributes, is
often not achievable on a sensor node due to (a) the limited
nodes resources and (b) the unknown attribute dynamics.
However, sampled values can be decomposed into short du-
ration segments. Each segment can be dynamically modeled
as µ + x(t) (where µ is the mean or linear component and
x(t) is the random component), allowing the nodes to adapt
to unforeseen changes in the attribute dynamics without re-
quiring prior knowledge of dynamics. Random component
can be modeled by simple Autoregressive Moving Average
(ARMA) models (Def. 1) or even simpler variants, i.e., Au-
toregressive (AR) and Moving Average (MA) models [3].
These models allow adaptability but are simple enough to
be evaluated on common sensor nodes. We next describe
how a master cluster constructs the model.

3.4.1 Master Cluster Model Construction
While all the sensor nodes sample the desired attribute,

only the master clusters construct the models. The master
cluster head maintains a queue V of n sample values to train
the model. We set q = 0 and p = 3 in Eq. (1) to reduce the
complexity of the model further. Eq. (1) reduces to

x(t) =

3
∑

p=1

φpx(t− p) (2)



to construct a third order AR (AR3) model. The sampled
queue is broken into mean and random components, i.e.,
µ+x(t). The AR3 model fitting error is minimized in mean-
square error sense for the random component (V −µ) in the
training queue as given by the following equation

∂

∂φp

E(t) =
∂

∂φp

(
n
∑

i=1

(x(t)−
3

∑

p=1

φpx(t− p)) = 0 (3)

The predicted value based on model parameters is given by

V̂ (t) = µ+
3

∑

p=1

φp × (V (t− p)− µ) (4)

A model can predict only a certain number of sample values
within accuracy bound referred to as the prediction window.
Beyond the prediction window the model is rendered invalid.
In order to adapt to the changing attribute dynamics a new
model is constructed in the same fashion using the new sam-
pled values in the sample queue.

Naturally, the sampled values may contain spurious and
noisy values that result in modeling errors. However, ac-
curacy of the model is important as it is used to approx-
imate not only the master cluster member nodes sampled
values but also the surrounding clusters. Hence, the clus-
ter head involves the cluster members in model building by
requesting the member nodes also to build the model. A
few nodes are randomly selected to send their models to the
cluster head. The cluster head broadcasts the models to the
member nodes. Each member node fits each model to their
sampled values and report back error for each model. The
model with the minimum error is selected. The final ASTC
scheme constructs a batch of models, referred to as model
cache, instead of one model. This is detailed in Section 3.4.4.

3.4.2 Guaranteed Accuracy
We define two parameters to ensure the data reproduced

from models on the sink to be within tolerable error bound,
(1) an error upper bound (ǫ), and (2) the allowed maximum
number of outliers O#max that a node can tolerate to accept
a model. ǫ is the maximum allowed error between the value
predicted by the model and the actual sampled value.

x̂(t) =

{

x(t), if |x̂(t)− x(t)| > ǫ;
x̂(t), otherwise

(5)

If the model estimated value differs from the sampled
value by ǫ, the sampled value is classified as an outlier (Eq.
(5)). The cluster head gathers and reports the outliers to
the sink to maintain accuracy within ǫ. Accordingly, O#max

is directly proportional to the desired accuracy level (ǫ).

3.4.3 Cluster Synchronization
We use the model constructed on the master cluster to

also approximate the sampled values of surrounding cluster
nodes. Though, the attribute dynamics are generally sim-
ilar over a large area but change slightly from one cluster
to another. Hence, when the model constructed on a mas-
ter cluster is used to approximate the sample values in other
clusters, the prediction window of the model can be different
in different clusters. Different lengths of the prediction win-
dow results into approximating different number of samples
with the same model in different clusters. This results into
desynchronization of the clusters in terms of the approxi-
mated sample values. Once the clusters are desynchronized

one cluster can not use the model of an other cluster (master
cluster), as nodes in surrounding clusters could be approxi-
mating sample values ahead or behind the values for which
the model was constructed. Hence, to avoid such desyn-
chronization we restrict the prediction window length to a
fixed value of Wp. Even if a model approximates the val-
ues within ǫ beyond Wp, the next values are considered to
be in the next segment and are approximated by the next
model. If the prediction window is shorter than Wp, the
nodes compensate it with the outliers. If the model can not
approximate the values even after allowing O#max outliers,
the model is rejected by the neighboring cluster node.

Training Queue … 

Ψ

Φ1
… Φm#

WpL1

L2

Figure 2: Model Caching

3.4.4 Model Caching
As per our design requirements (Section 2.2) we use sim-

ple models. Consequently, the prediction window is also
expected to be short (in comparison to more complex mod-
els that may not be computable on sensor nodes) reducing
the temporal compressibility. We assume tolerance in re-
porting latency. Hence, in order to increase the temporal
compressibility, the master cluster heads construct a con-
secutive batch of models referred to as model cache. We
denote the model cache by Ψ, which is a set of m# mod-
els Ψ = {Φ1,Φ2, . . .Φm#}. The model cache is constructed
in the same fashion as a single model as explained in Sec-
tion 3.4.1 but m# models are constructed at the same time
instead of just one as shown in Fig. 2. Each model in
the model cache has a prediction window of Wp. Hence, to
model m# models the cluster head waits until (m#−1)×Wp

values are sampled in addition to the initial training queue.
The first model Φ1 is constructed from the sampled queue
equal to the training length (Fig. 2, L1). The next model
Φ2 is constructed from the next sampled attribute values
(Fig. 2, L2). It is repeated until the complete model cache
Ψ has been constructed. To construct the next Ψ, additional
(m# − 1) ×Wp values are sampled and similarly modeled.

3.5 Stage 3: Merging 1-hop Clusters
In Stage 1, we exploited limited but strong spatial corre-

lations to form 1-hop clusters. In Stage 2, we constructed
the model caches to exploit the temporal correlation on
the master clusters, achieving spatio-temporal compression.
Now, we detail our scheme to extend the spatio-temporal
compression beyond the master clusters. Various existing
techniques use instantaneous value based monolithic clus-
tering [1] [8] [22] to exploit the spatial correlation. They
generally are very costly as they incur continuous mainte-
nance cost. We on the other hand use models instead of in-
stantaneous values while exploiting the spatial correlation.
Large monolithic clusters based on models require tracking
of all the sensor nodes that fit the entire model cache length.
Moreover, the attribute dynamics may often change beyond
the 1-hop cluster range. Hence, active tracking of the sensor
nodes to form and maintain large clusters can require contin-
uous message exchanges resulting in high energy consump-
tion. Therefore, instead of forming large monolithic clusters
we use a two level hierarchical clustering. The first level is
1-hop clusters (Stage 1), where generally nodes are highly



correlated. The second hierarchical clustering level is con-
structed by the merging the 1-hop clusters that can be ap-
proximated by the same model cache to form larger clusters
referred to as model cache cliques or simply cliques (Def. 2).
The schemes described next (including the schemes in Stage
1 and 2) are executed on sensor nodes without assistance
from the sink highlighting the fully decentralized nature of
ASTC. Before we describe clique formation we discuss how
the master clusters are selected and how a model cache con-
structed on the master cluster can be used to approximate
the sampled values of the surrounding clusters nodes.

3.5.1 Master Cluster Head Selection
The master cluster merges with the surrounding clusters

based on its model cache to form cliques or correlated re-
gions. We are interested in determining the smallest num-
ber of correlated regions in the network or the smallest set
of model caches that best approximates the largest network
parts in order to transport maximum data in least number
of messages to the sink. We formulate the problem of defin-
ing the minimum number of spatio-temporally correlated
regions in terms of cliques in a network graph.

Definition 2. We define a clique as a network subgraph
QC , a subset of the cluster heads, such that each cluster head
in QC satisfies the model cache Ψ.

Finding the master clusters that can construct the best
model caches that form largest coverage clique is NP com-
plete [2]. Hence, we utilize a heuristic based on the require-
ment of minimizing the message overhead. As the informa-
tion flow direction is from the network to the sink, hence
we propose the farthest cluster to be selected as the master
cluster to initiate the clique formation and expand the clique
in the direction of the sink by sending the model cache to the
neighboring clusters. If we allow otherwise, i.e., the clusters
nearer to the sink initiates the clique formation, the clique
might expand in the direction away from the sink. We will
have to spend additional messages to transport the accumu-
lated information back to the sink. Hence, the heuristic bi-
ased to expand in the direction of the sink generally reduces
the message cost to transport the information to the sink.
Each cluster head knows its hop distance and the neighbor-
ing cluster heads hop distance from the sink as explained
in Section 3.3. The cluster heads use this information to
figure out the farthest cluster and hence the master cluster
locally. In case of cluster heads having same number of hops,
the cluster head with higher Id has the precedence. Next,
we describe how a model cache constructed on master clus-
ter (Section 3.4.4) can be used to approximate the sampled
values of the nodes in the surrounding 1-hop clusters.

3.5.2 Model Cache Acceptance by 1-hop Clusters
The master cluster constructs the model cache as described

in Section 3.4 and sends it to the neighboring clusters. A
model cache received by a neighboring cluster must approx-
imate the values of its member nodes within the defined
error bounds (Section 3.4.2). To evaluate whether the re-
ceived model cache approximates the sampled values, each
member node predicts the values as:

V̂ (t) = µlocal +

3
∑

p=1

φp × (V (t− p)− µlocal) (6)

where V are the sample values of the node, µlocal is the
sample mean of the local cluster head and model parameters
are as receiving from the master cluster. Each cluster uses
µlocal as we observed µ changes very quickly from one cluster
to the other, while model parameters remain similar. The
nodes predict the values using received model parameters
using Eq. (6) and the error, V̂ (t) − V (t), is calculated and
the outliers are counted. Total count of the outliers for each
model Φ in the model cache Ψ for the prediction length Wp

should be less than the maximum number of allowed outliers
(O#MAX) for model acceptance (Section 3.4.2). Hence, for
each model in the model cache to be accepted, the node
counts the outliers for each model as:

count |xi(t)− x̂i(t) > ε| ≤ O#max, x̂i ∈ Φ, j = 1...Wp (7)

If all the models in the model cache satisfy the criteria in
Eq. (7) the model cache is accepted by the node.

Algorithm 1 Model Cache Acceptance

1: msg.type=’Ψfit’;
2: msg.Ψ = Ψ;
3: timer.start();
4: broadcast(msg)
5: function msgReceive(msg)
6: add Ψ to Ψ List;
7: function timer.expired()
8: Ψ.accepted=(Ψ List total accepts> %r, r ∈ C)
9: broascast(Ψ.acceptance);
10: if Ψ.accepted then

11: remove member that rejected Ψ & add the new requesting
member

12: end if

In Alg. 1 and Alg. 2 we describe the model cache accep-
tance by the cluster head and model cache evaluation by the
sensor nodes in a neighboring cluster. When a neighboring
cluster head receives the model cache from the master clus-
ter, it broadcasts the model cache (with locally calculated
means) to the cluster members (Alg. 1, L. 1-4). The cluster
head starts a timer to wait for the responses to be collected
(Alg. 1, L. 3). Each cluster member prepares a vote, using
Eq. (7), by counting outliers to either reject or accept the
model cache (Alg. 2, L. 3). Each node must accept all the
models in the model cache to accept the model cache. The
cluster head is not notified of the acceptance of the model
cache (positive vote), rather when the timer expires on the
cluster head it assumes the model cache to be accepted by
the particular node. The negative votes are, however, ex-
plicitly reported along with the outliers to be reported to
the sink (Alg. 2, L. 5). Withholding report for positive
votes saves messages because most of the nodes in the 1-hop
cluster accept the model cache. The members nodes send
outliers to the cluster head instead of sending them to the
sink (Alg. 2, L. 6). The cluster heads reports the outliers
efficiently to the sink by sending multiple outliers in one
message. The cluster head counts the votes for model cache
once the timer has expired (Alg. 1, L. 7-8). A model cache
is accepted as a model cache for the cluster if it received
acceptance from at least k% member nodes (Alg. 1, L. 8).

3.5.3 Self-Adaptive Clique Formation
So far, we have described the formation of the 1-hop clus-

ters (Section 3.3), the model cache construction on the mas-
ter clusters (Section 3.4.1) and how a model cache con-
structed on the master cluster can be used to approximate
the values of sensors in the surrounding clusters (Section



Algorithm 2 Model Cache Evaluation

1: function msgReceive(msg)
2: if msg.type==’Ψfit’ then
3: vote=(solve Eq. (7) for Φ, Φ ∈ Ψ)?reject:accept
4: if vote == reject then

5: unicast(vote,outliers[],CH);
6: else if count(outliers > 0) then

7: unicast(outliers[],CH);
8: end if

9: end if

3.5.2). Here, we describe the clique formation based on the
model caches constructed on the master clusters. For clique
formation the master cluster sends its model cache to its im-
mediate neighboring 1-hop clusters. Each neighboring clus-
ter evaluates the model cache for acceptance (Section 3.5.2).
If the neighboring cluster head accepts the model cache it
joins the clique and sends the model cache to its neighboring
clusters and the process repeats. Hence, the clique forma-
tion is essentially controlled flooding of model cache over the
cluster heads around the master cluster. The flooding stops
once the model cache is rejected by the cluster heads. Next,
we describe this scheme in detail.

Alg. 3 describes the expansion of the clique and the func-
tionality of the clusters that constitute the clique and send
the model caches to their neighboring clusters to further ex-
pand the clique. Initially only master cluster constitutes the
clique as it initiates the clique. Alg. 4 describes the func-
tionality of a neighboring cluster receiving the clique ’join’
request to merge into the clique.
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Figure 3: Join Message Payload Format

The master cluster initiates the clique formation by con-
structing the model cache (Section 3.4.4). Fig. 3 shows the
format of the ’join’ message payload that is used by the clus-
ter heads to propagate the list of constituting clusters and
the model cache. The master cluster head adds its cluster
Id, the model parameters and the sample mean values for
each model in the model cache to the message payload. It
sends the ’join’ message to all the neighboring clusters (CN)
through the gateway sensor nodes (SG) (Alg. 3, L. 1). Each
neighboring cluster head executes the 1-hop cluster model
acceptance algorithm (Alg. 4, L. 4). If the model cache is
accepted, the cluster joins the clique by appending its cluster
Id and the sample mean values to the message payload. The
cluster joining the clique considers itself on the boundary of
the clique and executes Alg. 3 to further propagate the ’join’
message to its neighboring clusters, hence expand the clique
(Alg. 4, L. 8-9). The neighboring clusters receiving ’join’
message always notify the requesting cluster whether it is
joining the clique (Alg. 4, L. 11). Each cluster head main-
tains a local record of its neighboring cluster with respect
to their status regarding the clique. The receiving cluster
heads update their local record regarding the neighboring
cluster status from the clique ’join’ messages during each
message exchange (Alg. 4, L. 7). Once the responses from
all the neighboring cluster CN are received by the request-
ing clusters, it uses its local record to check if all CN around
it belong to the same clique. If all the surrounding clusters
belong to the same clique, it implies that this cluster is not
on the clique boundary. It notifies all cluster heads in CN

that it is not on boundary anymore through a ”Not Bound-
ary Cluster”message (NBCMsg) and transfers it local list of
clusters in the clique to the neighboring clusters (Alg. 3, L.
6-9). Each cluster head knows the status of each neighbor-
ing cluster whether it has joined the clique and whether it
is on the clique boundary by continuously maintaining the
local record and forwarding it to its neighbors.

Algorithm 3 Clique Expansion

1: 1HSend(JoinMsg, Ci ∧ ∀CiǫCN )
2: function receive(msg)
3: if msg.type=’RespMsg’ then
4: clique.add(msg.accepted,msg.CHR); R#++;
5: if R#==CN# then

6: if ∀clique.acctance then

7: NBCMsg.clique=clique;
8: 1HSend(NBCMsg, Ci ∧ ∀Ci ∈ CN )
9: end if

10: end if

11: else if msg.type==’NBCMsg’ then
12: clique.CHi.boundary = false ∧ CHi = msg.CH ;
13: clique.remove((NBCMsg.clique);
14: end if

The clique expansion continues until Alg. 2 returns pos-
itive join responses for the new clusters. A cluster head
knows the clique expansion has stopped locally around it if
it received the responses from all the neighboring clusters
and one or more responses are negative. This cluster now
stays on the clique boundary. The join message is flooded
from the master cluster till the final boundary of the clique.
Hence, each boundary cluster possesses the partial list of
clusters forwarded during clique expansion by the clusters
from the clique body. The border is traversed to accumu-
late the clusters list. The border traversal is initiated by
a cluster possessing special token termed as the boundary
traversal token (BTT). The master cluster initially assigns
itself the BTT. The BTT possessing cluster forwards it to
its neighboring cluster with least hops from sink if the BTT
possessing cluster is no longer on the boundary.

Algorithm 4 Clique Joining by Neighboring Cluster

1: function receive(msg)
2: if msg.type=’Join’ then
3: RespMsg .accept=’false;
4: Call Alg. 1 to evaluate msg.Ψ
5: if msg.Ψ.accepted then

6: RespMsg .accept=’true’;
7: clique.add(msg.CRequestCH);
8: me.Boundary=true;
9: Execute Alg. 3
10: end if

11: 1HSend(RespMsg, CHR)
12: end if

The clusters beyond the clique boundary follow the nor-
mal procedure of determining the farthest cluster to initiate
and form a new clique. The cluster adjacent to the bound-
ary of the clique exclude their neighbors that are already
part of an other clique in determining the farthest cluster.
Using our proposed scheme the nodes dynamically group to
create a region that is spatially and temporally correlated
for a given attribute for the modeled time duration. Hence,
we have one model cache to be reported to the sink that
represents the behavior of the spatio-temporally correlated
region. During the clique formation each node in each clus-
ter takes part in model cache acceptance, hence the data
regenerated from the model caches on the sink are accurate



to the level of single node. The particular discrepancies are
corrected through the outliers sent by the clusters head for
their respective members. We do not assume any particu-
lar distribution of the sensor nodes; therefore there can be
multiple 1-hop clusters in different parts of the network that
may have the maximum number of hops in the local neigh-
borhood. We also set an upper bound on the time (Tmax)
that a cluster head can wait for the larger hop number clus-
ter (clusters farther from sink) to initiate the clique forma-
tion. On the expiration of the wait time period the cluster
head initiates clique formation. Hence, there can be multi-
ple instances of clique formation executing in parallel. Two
or more cliques formations execute mutually exclusively, i.e.,
a growing clique stops at the boundary of the other growing
clique. We put such a restriction because the two cliques
are growing based on two different model caches.

3.5.4 ASTC Iterations and Dynamic Adaptability
The second level of cluster hierarchy or the clique is a

temporary entity to determine the correlated region based
on the model cache and is not strictly a larger cluster in con-
ventional sense. It does not have a cluster head and we do
not maintain it. Maintaining such large cluster body will be
very costly, because it is built using the model cache, which
requires the clusters to agree on a sequence of values over
time. Hence, cliques are reconstructed rather than being
maintained. We show in Section 4.1 that the cost to con-
struct a clique is very low. The reconstruction of the cliques
allows to continuously adapt to the changing dynamics. The
1-hop cluster that were part of one clique may be part of
another clique or even make their own clique in the next it-
eration of clique formation depending on the changes in the
phenomenon. After reporting the model caches the cluster
heads wait for enough data to be collected to construct the
next model cache as explained in Section 3.4.4. The process
of the model cache construction and the clique formation is
repeated and the sink receives accurate continuous data.

3.5.5 1-hop Cluster Dynamic Rearrangement
The 1-hop cluster members usually stay correlated. How-

ever, due to changes in physical phenomenon, the correla-
tions even at the 1-hop cluster level change and the clusters
require rearrangement. We do not implement an explicit
mechanism to detect such changes as it would require fur-
ther message overhead. We determine such changes in the
node correlations in Section 3.5.2 when k% of nodes agree
with the model cache and the model cache is accepted by
the cluster head due to majority vote. The cluster head
evicts the remaining r − k% nodes that send the negative
votes (reject the model cache). Using overlapping nature
of the clusters the evicted sensor nodes wait and snoop the
model caches sent by rest of the surrounding clusters. The
evicted sensor node checks the model cache as if it were part
of this cluster and updates the cluster head accordingly. If
the model cache is accepted by the cluster head, the evicted
sensor node joins the cluster. If the evicted node can not join
any surrounding cluster it forms a new cluster and becomes
the cluster head. Such a rare condition arises due to a new
phenomenon developing in this region. The sensor nodes in
this region (around the evicted sensor node) will start leav-
ing their current cluster (as the evicted sensor node did) and
will eventually form a cluster with the evicted sensor node.
Consequently, the sensor nodes rearrange the 1-hop cluster
to self-adapt to the environmental changes.

4. EXPERIMENTS AND DISCUSSION
We now evaluate the proposed spatio-temporal compres-

sion technique both analytically and via simulations.

4.1 Complexity and Compressibility Analysis
Our main objective is to perform maximal spatio-temporal

compression with minimal number of messages without sac-
rificing data accuracy. The message overhead of our pro-
posed scheme is very low. The maximum number of mes-
sages that a 1-hop cluster must exchange to process a model
cache can be given by Msgs = 2×ΨMsg +

∑

Sk∈Cj,SkO#
>0

OutMsg + RespMsg + NBCMsg. The first message is the
broadcast message (ΨMsg) to the member nodes to evalu-
ate the model. The member nodes respond only if there is
an outlier to be reported (OutMsg). The cluster head re-
ports to the requesting cluster head (through the gateway
nodes) whether it accepted the model cache (RespMsg). If
the model cache is accepted the cluster head broadcasts the
model cache message again (ΨMsg) to the neighboring clus-
ters (through gateway nodes). If the cluster is no longer
on the boundary, it broadcasts the ’not-boundary-cluster
message’ (NBCMsg) to the neighboring cluster through the
gateway nodes. Hence, in the worst case the maximum num-
ber of messages a cluster head has to transmit are four. For
a member node that is not the gateway node it is only one
(OutMsg , if there are outliers). For a member node that is
also a gateway node it transmits four messages (OutMsg +
ΨMsg + RespMsg + NBCMsg). The master cluster has an
additional round of one message to construct a model cache.

The compression achieved within 1-hop cluster can be cal-
culated as Totalbytes = S#∈Ci

× Wp × m#. If there are
S#∈Ci

= 7 sensor nodes in a 1-hop cluster, the prediction
window is Wp = 15, the number of models in Ψ are m# = 3,
then one model cache is able to compress 315 sample val-
ues within one 1-hop cluster. For each 1-hop cluster joining
the clique we achieve similar compression rate. Practically
achieved compression is slightly lower due to a few outlier
values (which is also bounded by the maximum number of
allowed outliers O#max).

The computation overhead to achieve the compression
is minimal. Only the master clusters construct the model
cache, hence the master cluster heads have to compute ma-
trices A and B for 3 unknowns of a linear system AX = B.
The other nodes (either in the master cluster or the clusters
joining the clique) need to solve a third order linear equation
(AR3) and compare it with the sampled values.

The collection of data to construct Ψ introduces latency,
which can be calculated as Latency = m# ×Wp ×T , where
T is sampling period. Hence, Ψ and Wp are selected while
keeping in consideration the maximum desired latency.

4.2 Experimental Performance Evaluation
ASTC Simulation Settings: We use a publicly avail-

able real-world data set [11], containing traces for tempera-
ture, humidity, light and voltage. We selected the tempera-
ture readings for four continuous days because, as compared
to the other attributes, the temperature readings are not
monotonic. The temperature continuously changes during
day and night and hence provides a good opportunity to
test the adaptability to the changing dynamics. The net-
work simulations were performed in TOSSIM. The signal
reconstruction at the sink is conducted using MATLAB. The
main overhead of our scheme is to transport themodel caches



and the outliers values. Hence, we measure the efficiency by
counting the total number of messages required to transport
the model caches and the outliers. The network consists of
51 nodes with a data set of more than half-million data sam-
ples with the sampling period of 31 sec. We selected the AR3
model, set the training history length to 100, O#max = 5,
Wp = 20, m# = 3 and ε = 0.2 (less than 1% mean error).
In the following evaluation studies, one parameter is varied
at a time and the others are fixed to the default values. To
cover the complete spectrum for spatial and temporal com-
pressions, we compare ASTC to its two variants. The first
variant is the temporally limited case when the model cache
is limited to one model only to compare to the temporally
limited schemes. The second variant is the spatially limited
schemes when spatial compression is limited to 1-hop clus-
ter only. We also compare ASTC to PAQ [18] for PAQ’s
ability to dynamically adapt to unknown attribute dynam-
ics. In order to compare to the schemes using no models we
simulated for instantaneous value based clustering and fur-
ther compare to continuous raw data collection to establish
a baseline to measure the compressibility.
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Figure 4: Message Cost for Varying Wp and m#

Spatio-Temporal Compression in Terms of ASTC

Parameters: In order to elaborate the results we explain
the spatio-temporal relations, as introduced in Section 3.1,
in terms of parameters introduced in our scheme. The tem-
poral compressibility can be controlled by changing both
model cache size (m#) and prediction window (Wp). With
each increment in m# we increase one model in the model
cache that compresses Wp additional samples as explained
in Section 3.4.4. By increasing Wp we approximate more
samples with the same model, which may not be efficient
if Wp is too long and hence could result in more outliers.
Hence, increasing Wp in comparison to m# is not as effi-
cient because for m# we construct an additional model that
approximates the new dynamics. The temporal compression
for the given parameters is given by m# ×Wp as shown in
Section 3.4.4. The temporal compression scope influences
the achievable spatial compression (hence the clique size).
The short temporal compression implies the clusters have
to agree for a short duration of time, which is highly likely.
However, we will require more model caches to compress
the complete sampled history. Long temporal compression
scope can compress the whole history in fewer iterations but
requires clusters to agree for a long duration of time, which
results in smaller cliques. Hence, we have to find the com-
promise between the temporal and spatial compression to
optimize the message cost. Our simulations provide a guide
to choose the parameters for the optimal results.
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ASTC Efficiency and Compressibility: Fig. 4 de-
picts the message cost for m# varied from 1 to 5 models
per model cache and Wp varied from 10 to 30 approximated
samples per model. Fig. 5 helps us understand the reason
for changes in message cost as it depicts the generated model
caches and the outliers with varying m# and Wp. In Fig. 4
we initially observe a clear drop in the number of messages
required to transport the data as we increase the models
in m#, because each additional model compresses Wp more
sample values. Fig. 5 confirms this by showing a clear drop
in the model caches with increasing m# and initial drop in
the outliers for the short prediction window.

The number of messages, after the initial drop, start to
increase in Fig. 4 for the shorter prediction window (Wp =
10 to 20) and model cache with the large number of models
(m# = 4 to 5). This is due to (a) the limited size of 28
bytes for the message payload in TOSSIM, as we increase
models we require more parameters and more messages to
transmit all the parameters as shown in Section 3.5.3 (b)
larger m# and Wp increase the temporal compression mak-
ing it difficult to approximate the cluster farther away from
master cluster. Hence, it results in more outliers and smaller
cliques. This is also evident for the long prediction window
(30), where the message cost starts increasing very early on.
Fig. 5 confirms the increase in the message cost by showing
a clear increase in outliers for the large Wp and m#.

In Fig. 4 (Label A) we also illustrate the spatially limited
case when the spatial compression is limited to only 1-hop
cluster. The message cost is so high that we had to reduce
the scale to show ASTC optimized results. PAQ [18] costs
also lie on this line when m# = 1, however it is still high
enough (47,215 messages) that it can not be displayed in the
graph. The simulation results for instantaneous value based
clustering required 109,862 messages. The continuous raw
data collection resulted in 39,33,345 messages.

Fig. 4 (Label B) can also be used to study the temporally-
limited case when we limit m# = 1 and allow clique forma-
tion. We can again see the same trend, i.e., the message
cost decreases with increasing Wp as more clusters accept
the model cache and increase only when the Wp gets too
long (30) as it results in increased outliers and decreased
spatial compression scope, resulting in smaller cliques.

ASTC has low overhead of outliers and low message cost
(high compressibility). For example, in Fig. 5 for m# = 3
and Wmax = 20 outliers on the cluster heads amount to
roughly 5% of the raw data. Taking continuous raw data



collection as a baseline to measure the message cost, ASTC
requires around 0.6% of the messages required to transport
the complete sampled history.

Parameter Selection: From the results in Fig. 4 and
Fig. 5 we learn that the upper bound for m# is dictated by
the implementation platform as more models may require
more messages due to limited payload size (in TOSSIM the
maximum payload size is 28). However, Wp depends on the
phenomenon. In our simulations m# of size 4 and 5 and Wp

15 and 20 yielded the best results (Fig. 4, Label C).
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ASTC Accuracy: Fig. 6 shows the effect of changing
the error tolerance (ε) and maximum, minimum and aver-
age error induced after reconstruction. It further asserts
that ASTC fulfills the accuracy requirements imposed by
the user. Increasing the error threshold naturally results in
less number of outliers and more spatio-temporal compress-
ibility, hence the messages count decreases. Setting ǫ to 0.2
generates maximum 1.18%, minimum 0.53% and average er-
ror of 0.87%.
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For maximum al-
lowed outliers (O#max)
neither large nor small
values are beneficial
as shown in Fig. 7.
Too small O#max re-
quires strict match-
ing of model to the
sampled value, hence
spatial compression is
limited and smaller
cliques are formed lim-
ited spatio-temporal
compressibility. Allowing O#max to be too large generates
too many outliers requiring more messages to transport the
outliers. In our simulations O#max = 5 yielded the best
results.

ASTC Latency: Given the sampling time of 31 sec the
latency of constructing model cache in each ASTC round
ranged from 310 sec for m# = 1 and Wp = 10, to the
medium case of 1860 sec for m# = 3 and Wp = 20, to
the extreme case of 4650 sec for m# = 5 and Wp = 30.

5. RELATED WORK
This paper focused on continuous data collection rather

than event-based WSN design. Our primary objective is to
spatio-temporally compress the data for continuous data col-
lection with sensor-node granularity while exploiting delay-
tolerance in data collection. There is wide range of research

work in WSN for data compression, simple aggregation, sup-
pression, filtering such as TinyDB [12] and Cougar [9], to
name a few. However, there is very limited work in the
area of spatio-temporal compression. We summarize some
of the important research work regarding spatial and tem-
poral compression and discuss in detail the existing spatio-
temporal techniques.

Spatial Compression: The objective of spatial sam-
pling is to collect interested attribute snapshots. The key
idea behind spatial compression is to constrain neighboring
sensor nodes with similar senor readings from transmitting
redundant data. [13] [10] [16] [24] are a few of many spa-
tial compression techniques relying on compressive sensing,
spatially correlated models, filtering and aggregation.

Temporal Compression: The driver of temporal com-
pression is to exploit temporal correlation present in the
attribute values. The key idea in these approaches is to
let every sensor node create a prediction model for its sen-
sor readings and send the model to the sink. The sensor
node should send an updated model only if the model is not
valid due to changes in the signal dynamics. The approaches
in [14] and [23] construct models based on Markov-chains
and time series, respectively.

Spatio-Temporal Compression There is very limited
research in the area of spatio-temporal compression. We
have attempted to give an exhaustive account of the state
of the art in the field. In [19], the authors developed a
theoretical framework to model the spatial and temporal
correlations in WSN. This framework enables the develop-
ment of efficient medium access and reliable event transport
in WSN, which exploits these advantageous intrinsic fea-
tures of the WSN paradigm. This work does not focus on
continuous data collection contrary to our target applica-
tions. [29], [30] and [8] form large monolithic clusters based
on instantaneous values or aggregates of the values. Hence,
they continuously collect data from the member nodes to
check for consistency and maintain these clusters by break-
ing up and merging them. We on the other hand use hierar-
chical clustering, i.e., (1) 1-hop cluster requiring rare mainte-
nance and (2) clique that are not maintained rather recon-
structed at a minimal message cost. Additionally, cliques
(clusters) in our work are formed based on models rather
than instantaneous values. [18] proposes realtime data col-
lection through continuous modeling. It is closest to our
proposed scheme in terms of adaptability to changing dy-
namics. Hence, we have included it for comparison in simu-
lations. However, it is limited both in spatial and temporal
compressibility. The focus of our proposed scheme, in con-
trast to [18], are the applications that are delay-tolerant in
data collection. [25] uses Kalman filter for modeling within
1-hop clusters, which incurs heavy computational cost. [26]
proposes to reduce energy consumption through hierarchical
aggregation. Both [25] and [26] require the node location in-
formation, which could be prohibitively expensive. Our pro-
posed scheme works independent of the location information
and uses simple models that are easily computable on a sen-
sor node. [27] and [28] use centralized heuristics for cluster
formation and nodes correlation determination. Our pro-
posed scheme is completely distributed and does not require
any information from the sink other than a few parameters
initially required to setup the proposed distributed scheme
as per the user requirements. [22] has two modes of opera-
tion, i.e., interactive mode is limited to spatial compression



only and streaming mode performs both spatial and tempo-
ral compression. Streaming mode of [22], [20] and [4] con-
struct probability density function (pdf) for modeling the
attribute. These schemes construct pdf by collecting sam-
ples values of sensors on the sink once and are not updated
afterwards. Hence, correctness of such schemes can not be
guaranteed as the pdf constructed in a certain time window
can not be guaranteed to be valid after attribute dynamics
change limiting the use of such schemes in long term contin-
uous monitoring. They also require expensive long training
time (e.g., 15 days for [20]). We do not assume the system
dynamics to be constant and construct the model dynam-
ically based on the changes in the dynamics. Therefore,
our technique can not only track the evolving attribute dy-
namic but also adapts in case of unexpected or unpredictable
changes in the dynamics.

The existing composite approaches require the signal and
its statistical properties to be constant, require location in-
formation, are partially centralized or use instantaneous val-
ues instead of models for clustering. The common factor
among all the schemes is that they target real-time or im-
mediate data collection. None of existing works exploits
the latency-tolerance of many applications, thus, loose ef-
ficiency potentials. In contrast, our approach is adaptive,
does not require location information, is fully decentralized,
uses simple easily computable models and exploits the delay
tolerance to maximize the data collection.

6. CONCLUSION AND FUTURE WORK
We have developed ASTC, a fully distributed spatio tem-

poral data compression technique for accurate sensor data
collection in WSN. ASTC dynamically adapts to approxi-
mate the monitored attribute both in space and time. The
use of ’simple models batches’ instead of complex monolithic
models was the key idea to design a technique that adapts to
the dynamic changes of the attribute. Simple model batches
combined with the first exploitation of data collection delay
tolerated by the application is used to maximize compression
ratio and significantly reduce the message cost.

In our simulations, we were able to reconstruct the signal
from spatio-temporally compressed data on the sink with
granularity of a single node, mean error less than 1% and
data compression to 95% of the raw data samples. In our
future work, we aim to (a) tolerate node crashes and spurious
data and (b) extend to multi-variate compression.
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