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Abstract: Wireless sensor networks (WSNs) are deployed to monitor physical
events such as fire, or the state of physical objects such as bridges in order
to support appropriate reaction to avoid potential damages. However, many
situations require immediate attention or long-reaction plan. Therefore, the
classical approach of just detecting the physical events may not suffice in many
cases. We present a generic WSN level event prediction framework to forecast
the physical events, such as network partitioning, well in advance to support
proactive self-actions. The framework collects the state of a specified attribute
on the sink using an efficient spatio-temporal compression technique. The future
state of the targeted attributes is then predicted using time series modelling. We
propose a generic event prediction algorithm, which is adaptable to multiple
application domains. Using simulations we show our framework’s enhanced
ability to accurately predict the network partitioning with very high accuracy and
efficiency.
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1 Introduction

Wireless sensor networks (WSNs) typically entail an aggregation of both sensing and
communicating sensor nodes to result in an ad hoc network linking them to the base station
or sink. The sensor nodes typically possess limited storage and computational capabilities
and require low-energy operations to provide longevity of operational time.

WSNs are deployed for monitoring different environmental attributes. Based on the
sensed data ranges, the corresponding reaction decisions are carried out. The decisions
to take actions are triggered by some events happening in the network. For example,
while monitoring pressure in a certain facility, an event could be triggered to indicate
either high or low pressure. Similarly, we can have many events related to numerous
attributes. In addition to the environmental events, there are also the network events to
be considered such as network partitioning. Various works exist for detecting different
discrete events (Yick et al., 2008) such as, fire detection (Yu et al., 2005) and network
partitioning (Rost and Balakrishnan, 2006; Shih et al., 2007; Shrivastava et al., 2005). Most
of these efforts develop excellent foundations, however, are tailored for specific scenarios.
Other works do consider generic scenarios (Xue et al., 2006), but they suppose the event
to take specific shapes and patterns. Also, all of these efforts focus on detecting the events
after the events have already occurred. It could be already too late to react to many events if
the traditional approach of detecting and reacting to the events is followed. Consequently,
it is either insufficient or inefficient just to react to the events. For example, if we detect
network partitioning, the repair might require a long time and the required resources may
not be available. Meanwhile, the functionality of network and hence the monitoring, which
is the main objective of deployment, will be lost. Thus, reporting of such events beyond
simple monitoring becomes highly useful if these events can be predicted in advance.
The ideological shift from detecting the events to predicting them provides enough time
window to take appropriate autonomic actions. Consequently, we could avoid or delay
events from happening. Multiple efforts also exist for predictions (Landsiedel et al., 2005;
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Mini et al., 2002; Tulone and Madden, 2006; Wang et al., 2007). However, most of them
are either limited to predict specifically a certain attribute like energy or provide only node
level short-term prediction for data compression to minimise data to be reported from the
network.

It is very useful to combine generic prediction techniques with generalised event
detection to predict the events and to carry out self* actions well in advance. To the best of
our knowledge, there exists no work that proposes generic event prediction. In this paper,
we develop a generic framework to predict the events. The framework predicts the future
states of the network for the attribute of interest, e.g. temperature or residual energy. The
developed generic event detection technique is used on ‘predicted future state of attributes’
to effectively forecast the events. We target long-term predictions that require the history
of the attribute to be long enough to contain all system dynamics. However, a sensor node
does not possess the computational resources required to model the complex dynamics in
attribute values to accurately predict the future states. Hence, we collect multiple profiles
of the considered attribute and conduct modelling on the sink. We refer to the collection
process of attribute values from network as profiling. Accordingly, a profile is the state of
the attribute in the network at a specified instance of time. We also propose data collection
techniques to efficiently and accurately collect such a history of the attribute from the
network. On this background this paper makes four specific contributions, namely:

e generalised framework design for sink-aided attribute profile prediction, allowing to
predict varied physical and network events

o cfficient data collection technique based on spatio-temporal compression, minimising
both spatial and temporal data redundancies while collecting attribute profiles

e generic event detection technique to detect events from the predicted profiles

e case study of network partition as validation for our efficient predictive monitoring
framework.

This paper is organised as follows. Section 2 discusses the related work. Section 3 details

the key preliminaries for the framework. Section 4 details our approach for predictive

WSN monitoring. The case study is presented in Section 5 and its simulation evaluations

in Section 6. Section 7 presents summary conclusions and outlines future directions.

2 Related work

In WSN literature, a variety of work addresses event detection (Yick et al., 2008). The
most relevant one to our event detection strategy is Xue et al. (2006), where the authors
investigate map based event detection. The approach requires the user to

1 specify the distribution of an attribute over space

2 the variation of distribution overtime incurred by the event.

Three common types of events are defined namely pyramid, fault and island. In contrast,
our detection technique is independent of event shape thanks to our generic regioning
algorithm. Furthermore, we apply the detection technique on predicted profiles allowing to
predict events rather than just detecting them. Banerjee et al. (2008) present a technique to
detect multiple events simultaneously. They employ a polynomial-based scheme to detect
event regions with boundaries and propose a data aggregation scheme to perform function
approximation of events using multivariate polynomial regression. Our work in addition
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to the capability of detecting multiple events can predict events beforehand. Various other
works exist that address specific event scenarios such as partition detection (Shrivastava
et al., 2005) and fire detection (Yu et al., 2005). These specific solutions do not feature
portability to adapt to different application scenarios.

There is a variety of work for monitoring WSNs and prediction of certain attribute.
Landsiedel et al. (2005) predict the power consumption in WSN. Mini et al. (2002) propose
a network state model to predict the energy consumption rate and construct energy map
accordingly. In Wang et al. (2007), authors focus on predicting multimedia networks energy
efficiency. These works concentrate specifically on energy, also they do not provide any
extension to predict other attributes. Authors in Mamei and Nagpal (2007) propose inference
mechanism using Bayesian network to detect anomalies. We provide a generic framework
to predict variety of events that might happen in future.

As we present a case study for network partition prediction, we discuss the related work
in this respect. In Shrivastava et al. (2005), partition detection has been addressed for
a sub-class of linearly separable partitions, i.e. cuts. Memento (Rost and Balakrishnan,
2006) continuously collects connectivity information at the sink to be able to detect
network partitioning. The partition avoidance lazy movement protocol for mobile sensor
networks (Shih et al., 2007) is a decentralised approach, where a node periodically collects
the position of all its neighbours and checks if at least one neighbour is located in a small
angle towards the sink. If no neighbour is located in this ‘promising zone’, the node suspects
network partitioning and moves to avoid it. Based on our event prediction framework as
an example we propose a solution i.e. generalised and not dependent on the shape, size
or location of the partition. Moreover, our framework provides for prediction of network
partitioning rather than just the detection.

3 Preliminaries
We now describe the system model and the requirements driving our approach.

3.1 System model

We consider a WSN composed of N static sensor nodes and one static sink. Sensor nodes
are battery powered and usually entail limited processing and storage capabilities. Sensor
nodes are assumed to know their geographic position either using distributed localisation
methods (He et al., 2005) or GPS. A typical WSN deployment may contain hundreds or
thousands of sensor nodes with varying densities according to the coverage requirements.
We consider an arbitrary node distribution, provided the network is connected at deployment
time. We assume all sensor nodes to be homogeneous. Hence, the sensor nodes have the
same transmission range R and same initial battery capacity. We consider that nodes crash
due to energy depletion only. We assume a reliable data transport protocol, e.g. (Shaikh
et al., 2010) to transports the data from sensor node to the sink. We assume the events for
predictions to be happening over a longer period of time, e.g. events that may take hours,
days or even months to develop. We consider that events are

1 not spontaneous

2 spatially correlated

3 do not depend discretely on a single node
4

display attribute trends that can be predicted.
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3.2 Requirements on the framework

We identify the following requirements on the framework. Firstly, it should be lightweight,
i.e. its creation, management and usage require minimal resources with respect to energy.
Secondly, we desire the framework to long-term predict attribute profiles, hence the events
accurately. Depending on the context of the problem, long-term may mean hours, days or
even months that should be enough to activate a self* mechanism to support autonomic
actions. Finally, we desire the framework to be generic to adapt to prediction of varied
event types.

4 Efficient predictive monitoring

We develop the proposed framework in a modular manner for it to be generically applicable
to a variety of scenarios. The framework consists of three phases, i.e. data collection
phase, prediction phase and event detection phase. In the data collection phase, attribute
values related to an event are periodically but efficiently fetched from the network on
the sink. The prediction phase is used for predicting future states of the network for the
interested attribute using the previous history of attribute fetched from the network during
data collection phase. The main objective in event detection phase is to detect events in
the predicted state of the network, obtained in prediction phase, essentially predicting
the events. The techniques we propose in each phase are independent of the attribute to
be monitored, thus fulfilling generality requirements of our framework. It is important to
highlight that we do not limit the framework to only these techniques. Rather, for a particular
implementation, specialised additional techniques can be easily accommodated due to the
framework’s modular structure. These phases are individually detailed in the following
sections.

4.1 Data collection phase

From the nature of the problem, we can expect an efflux of data (sensed attribute values)
from the network towards the sink. A simplistic periodic approach to collect data from each
sensor node on the sink would lead to high communication and energy overhead on sensor
nodes rendering the whole framework impracticable. Our framework addresses this issue
by exploiting the inherent redundancies to reduce the amount of data to be transported to
the sink without sacrificing the accuracy of the collected data.

4.1.1 Data redundancy in WSN

We first describe the redundancies present in WSNs, and how these redundancies can be
exploited in general. Subsequently, we present our approach that efficiently utilises both
spatial and temporal redundancies for compression.

4.1.1.1 Spatial redundancy — reduction through clustering: By its basic nature,
a WSN involves redundancy in node deployment that yields redundant sampling of the
environment. Furthermore, spatial distribution of the attributes in the environment such as
temperature, pressure, etc. tends to be similar over large contiguous area than just in the
neighbourhood of redundant nodes. To avoid spatial data over-sampling, not all the nodes
need to send their samples (spatial compression). The existing approaches take into account
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spatial redundancy by forming clusters of similar valued nodes (Gedik et al., 2007). Authors
in Gedik et al. (2007) further break the clusters into sub-clusters to select fewer sampling
nodes. However, they have to again execute cluster construction algorithm repeatedly to
maintain these bigger clusters. There are also other variations like Solis and Obraczka
(2005) that form clusters and send updates to sink if there is any change on the edge of the
cluster.

Definition 1: A time series is a sequence of data points x, considered as a sample of random
variable X (t), typically measured at successive times. The time series can be modeled to
predict future values based on past data points.

Definition 2: A stationary random process exhibits similar statistics in time, characterized
as constant probability distribution in time. However, it suffices to consider the first two
moments of the random process defined as weak stationary or wide sense stationary (WSS)
as follows:

1 The expected value of the process (E[X (t)]) does not depend on time. If m,(t) is the
mean of X (t) then

EIX®)]=m(t) =m,(t +1)VT €N
2 The autocovariance function for any lag t is only a function of T not time t
E[X (1) X ()] = R (t1, 1) = Ry (1,0) VT € N

Definition 3: X (¢) is an autoregressive moving average process ARMA(p, q) process of
order (p, q) p, qeR, if X(t) is WSS and V' t,

X)) = ¢1Xt71 + - +¢17Xt7p +O0Zig+ - +9thfq (1)

where Z, is white noise with mean zero and variance o2, denoted as WN (0, 52).

4.1.1.2 Temporal redundancy — reduction through piecewise modelling: We
primarily observe for a given node the monitored attribute values are often dynamic in
nature, however, they are usually statistically correlated in time. This correlation in time can
be exploited by abstracting the attribute values as a time series (Definition 1). Consequently,
we can compress the data by modelling the raw data samples and send only the model
parameters to the sink (temporal compression).

The generic time series modelling is not possible on a node because of its limited
storage and computational capabilities. Therefore, a time series on a node is better modelled
piecewise. This also avoids having to model complex time series dynamics. Consequently,
the models are still simple enough to be evaluated on sensor nodes. As in Tulone and
Madden (2006), nodes maintain short history of data samples (sensed attribute values). A
third order autoregressive model (AR3) is fit to the data, which is only a particular case of
the ARMA(p, ¢) model (Definition 3), for p = 3 and g = 0. AR3 gives a good compromise
between complexity and predictability (hence compressibility). Nodes estimate next values
according to this model. If the model is no longer valid for the new data, a new model is
constructed. A few values that do not fit the model are termed as outliners. The track of
outliners to the model is kept explicitly. A minor optimisation over this basic scheme is
to group nodes in 1-hop cluster (Cj). Using this optimisation, the nodes that are in each
other’s transmission range build only one model instead of each one building its own model.
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Consequently, only cluster heads (H ¢;) maintain, update and send the models to the sink.
A node joins a cluster C;j if its attribute value is within the allowed maximum threshold
(AMC;) between the H c; and the cluster members (M c¢;). Two clusters may overlap i.e. the
members of one cluster may communicate with the H¢; of the other neighbouring cluster.
H ¢; periodically broadcasts its attribute value to its members M¢; so they ensure that they
are also within the error bounds A M ¢; of the value of H c¢;. Otherwise, they leave this cluster
and join another cluster for which error is within AMc¢; or build a new cluster if they do
not fall within AM¢; of any of the surrounding Hc;.

4.1.2 Optimised spatio-temporal compression scheme

Our main design objective is to reduce the overhead while maintaining high accuracy of
data. We propose a hybrid compression scheme to reduce the reported data by exploiting
both spatial and temporal redundancies.

The spatial and temporal compressions are complementary schemes. The current
literature optimises for one scheme (Solis and Obraczka, 2005) or the other (Tulone
and Madden, 2006). Applying both schemes together is challenging. For data reduction
cluster, algorithms group the nodes based on the similarity of values. However, value-
based spatial clustering cannot guarantee that such achieved grouping will hold for long
time. Moreover, the temporal compression is based on the assumption that the entity to be
modelled demonstrates certain behaviour in statistical terms such that it fits a certain model
for certain duration of time. Hence, a large cluster may not live long enough to be justified
to be modelled and breaks up into further clusters. Therefore, the temporal compression
schemes are very efficient on node level or in a very small neighbourhood but suffer the
scalability issues when applied to model behaviour of multiple nodes or clusters. Thus, we
conclude that the larger the cluster, the shorter the spatio-temporal correlation holds.

We propose a very efficient approach in terms of message and energy overhead. Our
approach exploits both spatial and temporal redundancies. The proposed scheme starts with
1-hop clusters ‘C;’ based modelling (Section 4.1.1). The main advantage of 1-hop clusters
is that it is the unit of clustering i.e. all the higher level clusters can be formed from these
clusters by merging them. They are easy to construct and maintain i.e. through simple
1-hop beacons (Tulone and Madden, 2006). Moreover, if the model does not fit the new
attribute values, C; does not break up like larger clusters, instead a new model is built to
fit to the new values. However, if the attribute values are so discretely divergent that each
node has different values within 1-hop, then it implies that there is no redundancy, which
is contradictory to inherent redundancy in WSN.

We next describe our algorithm to determine spatio-temporally correlated regions in
WSN. Subsequently, an algorithm is presented to optimally aggregate the region information
to be sent to the sink.

4.1.2.1 Distributed regioning algorithm: Data compression for 1-hop cluster-based
modelling is efficient for temporal compression but is limited to 1-hop cluster area. However,
as discussed before, the attributes tend to be similar in larger area than just 1-hop distance. To
also exploit the spatial redundancy for C; models, a H ¢; sends its model to its neighbouring
clusters. The neighbours compare the received model with their local model. If the error is
under given error bounds, neighbours accept their behaviour to be represented by the same
model as Hc; and forward this model to their respective neighbour clusters. This scheme
generates a region i.e. spatially correlated for the cluster head models. Consequently, we
achieve spatio-temporal compression. Now, we elaborate (distributed regioning algorithm
DRA) further in detail.
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Algorithm 1 Distributed regioning algorithm (on sensor nodes)

1:

VAR: PJN=Positive Join Notification, NJN=Negative 24: end if

Join Notification, Ri=Region ID, list=list of clusters, 25: if C; AVC; € N¢; & C;.Ri! ="" then
NBN=Not border Notification 26:  me.transition=false;

function growRegion() 27: me.stable=true;
me.list.addToList(me); 28: endif

msg=["join request" model Ri]; 29: function recieveMsg(msg)

for C; AVC; € Nc¢; do

: me.Nc¢;.C;=msg.Ri;

if sendMsg(msg, C;)="PJN" then 31: if msg.type="join request" & me.Ri="" then
me.N¢;.C;=Ri; 32:  nbrValues=expandModel(msg.model);
else 33:  outs=cntOuts(nbrValues,me.Values);
me.N¢;.C;=-Ri; 34:  if outs < ANc; then
me.N¢;.C; .border=false; 35: me.regionld=msg.Ri;
end if 36: me.border=true;
end for 37: me.transition=true;
if C; Ri=me.RiAVC; € N¢; then 38: scheduleMsg(call growregion());
me.border=flase; 39: return(PJN);
msg=["NBN" list]; 40:  else
for C; AYC; € Nc; do 41: return(NJN);
sendMsg(msg, C;); 42:  endif
end for 43: else if msg.type="NBN" & me.border then
if me.BTT then 44:  me.Nc; .border=false;
me.BTT=False; 45:  me.list=msg.list;
msg=["BTT"]; 46: else if msg.type="BTT" then
sendMsg(msg, C; AVC; € Nc¢; & minDist(N¢;)); 47: me.BTT=True;
end if 48: end if

During the cluster formation, each Hc; exchanges its distance from the sink with its
neighbour clusters (N¢;). Thus, each H¢; knows about its neighbouring clusters and their
distances from the sink. Each H¢; starts sampling the attribute value. The local model is
generated after collecting enough samples. The H ¢; waits for maximum time 7p,, inversely
proportional to its distance from the sink (C; x distance), before initiating regioning. If
wait time is denoted by Ty, then it can be given by Ty, =
the clusters farther from the sink to initiate the regioning earlier. The cluster that initiates
the regioning has a special privilege that we refer as border traversal token (BTT). We shall
elaborate the use of BTT and biasing of DRA initiation away from sink afterwards. As

given in Algorithm 1, DRA is a three-step procedure:

Once a cluster head, denoted as the sender cluster Cs, has fit a model to the data after
wait time 7Ty, it then sends its model to the heads of the neighbouring clusters N¢;

(Algorithm 1:L 4-12).

A receiving cluster heads (C;) finds dissimilarity between the received

max/Cji x distance. Ty, biases

model and its own model based on a dissimilarity metric to evaluate the error
between two models. This metric can be a statistical function, a signal processing
metric such as cross-correlation or time series analysis technique that we propose
here. We use time series-based technique because it is very efficient and that the
models to be compared are derived using time series analysis. Hence, we can
guarantee the accuracy level with the dissimilar error bounds parameters that we
otherwise use for in-cluster dissimilarity measures. We introduce a maximum
allowed error threshold (A N¢;) between Cs and C; for merging. We define

A N¢; to be the maximum number of allowed outliners to the received model.

To compute dissimilarity, the C, evaluates the received model (Algorithm 1:L 32).
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It counts the outliners by comparing C, values (nbrValues), received as C; model, to
its sampled values (Algorithm 1:L 33). If outliners, are within ANc¢;, C;
acknowledges C, by sending a ‘Positive join notification’ (PJN) to merge into the
region i.e. represented by Cy; model. Otherwise, C, sends a ‘Negative join
notification’ (NJN) (Algorithm 1 :L 34-42). The cluster issuing a PJN considers itself
on the boundary of the region (Algorithm 1:L 36) and schedules itself to further
propagate the model to its neighbours (Algorithm 1:L 37). Consequently, every
cluster head participating in the region knows its status either as the region interior or
the region boundary to keep track of region boundary.

e Ifall neighbouring clusters of Cs belong to the same region, this implies that C;
is not on the region boundary (Algorithm 1:L 13—14). C; notifies N¢; it is not on
border anymore through a ‘Not border notification” (NBN) message and
transfers the aggregated clusters list of this part of the region to Nc¢;
(Algorithm 1:L 15-18). However, this information is of interest to only the clusters
on the boundary. Therefore, the list is updated by only the border clusters
(Algorithm 1:L 43—46). More than one border clusters receive the list, consequently
multiple border clusters may have duplicated information for region interior in the
end, which is then removed in the border traversal algorithm (BTA), described in
Algorithm 2. The cluster leaving the border status hands over the BTT to the cluster
head closest to the sink on the border if it possesses one
(Algorithm 1:L 19-23).

The three steps repeat until the outliners count is below AN¢; for C; and C,. This process
creates a region i.e. spatially and temporally correlated for an attribute for the modelled
time duration. Hence, using DRA, we have just one model to be reported to the sink that
represents the behaviour of the correlated region. Figure 1 illustrates an execution example
of DRA. For illustrative purposes and simplicity, we removed the duplicated arrows and
show the clusters to be non-overlapping.

Figure 1  Execution of DRA

)00 00
2000

®
)

000
005"




242 A. Ali et al.

The DRA may be initiated by multiple clusters simultaneously. Consequently, multiple
regions may grow and merge. However, no special consideration is needed for this situation,
as the condition still holds that if all the clusters around a cluster are part of the same
region then this cluster leaves the border cluster status. Hence, the previous border clusters
within the true border of the new bigger region will automatically annihilate and the border
clusters on the true border will still persist. However, multiple merging regions will generate
multiple clusters having BTT. We refer to this as multi-BTT problem and deal with it
in BTA.

4.1.2.2 Border traversal algorithm: the information of region constituting clusters
and the single model representing the region needs to be sent to the sink. We aggregate this
information on one cluster head that reports to sink the aggregated information, instead of
each border cluster reporting to the sink. We propose the BTA to aggregate the complete
region information (Algorithm 2). A specific probability of selection of clusters on the
boundary could be set to initiate BTA. However, it might lead to selecting either no or
multiple clusters to initiate border traversal. Only one cluster should send the model and
the region information to the sink in order to optimally reduce the data to be transported
to the sink. This cluster should preferably be the one closest to the sink to further decrease
the message overhead. This is where BTT comes into play. Only the cluster possessing
a BTT can initiate BTA. The DRA algorithm is biased to initiate away from the sink,
so there are higher chances (though not guaranteed) that it will expand in the direction
of the sink. Moreover, the BTT is transferred to the cluster closest to the sink in DRA.
Though, again it does not guarantee but biases to select cluster closest to the sink to
initiate BTA.

Once the region stops growing around a cluster having BTT, it initiates the boundary
aggregation. The initiator cluster includes its distance from the sink in the aggregation
message. It helps to eliminate the multi-BTT problem. The cluster holding the token
sends the message to aggregate the region information. The receiving cluster updates the
list by including itself and the list that it holds, collected during DRA (Algorithm 2:L
13—14). However, this list may contain duplicated cluster information, therefore a
cluster receiving the aggregation message runs a filter to remove the duplicated cluster
information (Algorithm 2:L 15). If the region has multi-BTT problem then multiple
clusters initiate traversal. However, this is not difficult to handle as the traversal
request initiator closest to the sink will suppress traversal request initiated by the
other clusters (Algorithm 2:L 5-7). It is possible that the region stops growing around
the token holding cluster, it enters into stable phase and initiates BTA. However, in
some other part, the region may still be in transition phase and growing. After the
aggregation process is triggered and reaches a cluster in transition phase, this cluster
pauses the aggregation process. This cluster state information is maintained during DRA
(Algorithm 1:L 25-28, 37). As soon as a cluster in transition phase enters into the stable
phase, it continues the aggregation process with the next border cluster (Algorithm 2:L
8—12). The pause and resume mechanisms ensure that we collect the accurate border
information.

DRA and BTA very effectively reduce the amount of data to be transported to the sink
by transporting only a few models by finding a small number of model correlated regions
for the whole network.
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Algorithm 2 Border traversal algorithm (on sensor nodes)

1: VAR: aggMsg=[initld=Iditiator cluster id, initDist= 8: else if me.transition = true then
initiator distance from sink, list=aggregator list of 9: while me.transition do
border clusters], Cs=Sender Cluster 10: pause;
2: Function recievedMsg(aggMsg) 11:  end while
3: if me.ld = aggMsg.initld then 12: endif
4:  sendToSink(aggMsg); 13: aggMsg.list.addToList(me);
5: else if me.BTT & me.distance < aggMsg.init Dist 14: agg list.addToList(me.list);
then 15: aggMsg list=filter(aggMsg.list);
6:  suppress(aggMsg); 16: sendMsg(aggMsg, C; AYC; € Nc¢; & C;.border!=false
7: return; & C;i!=Cy);

Figure 2  Temporal stack of the grid maps (see online version for colours)
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4.2 The prediction phase

The prediction phase takes place on the sink. We regenerate the profiles for the desired
attribute using the collected models of regions. Generic time series modelling techniques
are then used to model the complete history of each node to predict the future profiles.

The models received on the sink in data collection phase for each region are used
to regenerate the attribute history through reverse transformation. It is rather a simple
procedure as sink has the models for each region, so reverse transformation comprises
solving the region model equation for each node in each cluster constituting each region.
Hence, the reverse transformation generates many complete profiles of the WSN. The
reverse transformation forms a temporal stack of such profiles as shown in Figure 2. The
regenerated history of each node contains all the complex dynamics. On the sink, we can now
take the complete history of each node and model its complete behaviour using time series
analysis for predictions as opposed to on node piecewise modelling. Individual models of
each node can then be used to predict future values by fitting a prediction model, effectively
predicting future profiles. The time series can be modelled in different ways (Wang et al.,
2007). In this paper, we use the widely used time domain modelling because of its general
applicability.
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4.2.1 Modelling time series

A time series X (¢) can be modelled as a process containing following components
XO)=T+S$ + R (2)

where T; is a trend, S; is a function of the seasonal component with known period and R; is
the random noise component. To keep the notion of generality valid for the framework, we
use a well-known generalised technique termed Box-Jenkins model to model a time series
containing any of these components.

4.2.2 Box-Jenkins model

Box_Jenkins (BJ) model predicts a time series by fitting it an autoregressive integrated
moving average (ARIMA) process. The term integrated here means differencing the series
to achieve stationarity (Definition 2). To fit an ARIMA process, the model and the order
of the model needs to be specified. The BJ model provides a guideline to select the
appropriate model, i.e. either autoregressive (AR, Equation (3a)) or moving average (MA,
Equation (3b))

X=X+ + ¢, X (3a)
X(t) =81Z,,1 +"'+8pZt7q (3b)

or combination of both, i.e. ARMA process as given in Equation (1). It also gives the
guideline for the model order selection. BJ modelling is a four-step procedure:

1 Data preparation: BJ model requires a time series to be stationary (Definition 2).
Therefore, if it contains trends and seasonal components then these should be
appropriately removed. This can be achieved by either least square polynomial fitting
(LSPF) or differencing as X (t) = X () — X (¢t + u). For a simple linear trend, u is 1.
For higher order trends or seasonal component of period s, u equals s. This operation
is repeated until stationarity is achieved.

2 Model identification: At this stage, run-sequence plot or autocorrelation function
(ACF) can be used to identify the stationarity of the time series and the order of the
AR model. ACF for k lag is given by

Y (Xi = X) (Xige : X)
v (X - X)’

px = )

where X is the mean value. Non-stationarity is often indicated by an ACF plot with
very slow decay. Order of the AR and MA models are determined with the help of
ACF and partial autocorrelation function (PACF) (Montgomery et al., 2008). To
automate the model selection process either Akaike’s information criterion (AIC) or
Akaika’s final prediction error (FPE) (Ljung, 1998) can be used. Various models can
be computed and compared by calculating either AIC or FPE. The least value of AIC
or FPE ensures the best fit model.

3 Parameter estimation: In this step, the values of the ARMA model coefficients that
give the best estimate of the series are determined. Iterative techniques are used for
model parameter estimation (Ljung, 1998).
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4 Prediction: Once the modelling is complete, it is simple to predict the series values
using the estimated model. It comprises calculating the future values at next time
instances and reversing all the transformations applied to the series in phase 1 for data
preparation.

4.3  The event detection phase

We now develop a generic event detection technique. Subsequently, using this technique,
we detect events in the predicted profiles of the attribute obtained in prediction phase,
effectively predicting upcoming events in the network.

The main objective of our framework is to predict events. In the system model
(Section 3.1), we have described the domain of the events that we are targeting in our work.
These can be exemplified by detection of temperature above a certain threshold in a certain
part of network i.e. indicative of fire. Similarly, there are many other events associated
with each physical attribute such as pressure, humidity, etc. Our challenge here is to design
an event detection mechanism i.e. generic and can be ported to wide range of scenarios.
To cope with this problem, we use here an abstraction of maps for WSN (Definition 4).
For a WSN, an eMap is an energy map that represents the current residual energy of the
network (Zhao, 2002), or tMap for temperature, etc. Once a WSN is converted to a map
for a certain attribute such as temperature, pressure, etc., the events appear as regions in
these maps. For example, in a tMap of WSN, the part of the network i.e. beyond the given
threshold of temperature will appear as a region in a tMap. Consequently, in our framework,
we define an event as a region of map whose values fall in the range of attribute values for
which the event is defined. Using the abstraction of maps for WSN and regions for events
we are able to keep the framework generic enough to be portable to different scenarios.
Thus, the quantification of WSN space and the conversion of a WSN to a map abstraction
is the key to detect generic events.

Definition 4: To quantify the continues space of WSN profile and construct the map a
grid is virtually placed over the WSN profile and each grid cell represents the aggregated
attribute of all the nodes located within the grid cell. We define the resultant quantification
as Grid Map or simply Map.

4.3.1 Map abstraction

To reach an acceptable spatial resolution with higher level abstraction of network as a
map, we considered virtual grids and Voronoi diagram (Aurenhammer, 1991) techniques
to segment WSN profile. Voronoi-based segmentation depends only on sensor node
distribution and is static for a given node distribution. However, we require a segmentation
strategy that allows variable spatial sampling to accommodate both the physical and network
parameters. Such variability also allows us to detect events from a single node to a region
of the network. Grid allows such flexibility, therefore, we base our map construction on
grid. The virtual grid or simply grid divides the WSN profile into fixed size squares or
grid cells as shown in Figure 2. Thus, nodes that fall within a cell are grouped. For the
grid map construction, two parameters must be specified. The first parameter is the grid
cell size y, which is a spatial sampling or resolution parameter. The second parameter is
the aggregation value £ that a grid cell represents. Both parameters are essential for event
detection. y defines the geographic area covered by the grid cell. The number of nodes
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being grouped in a grid cell is dependant on y. It can also be seen as a zooming parameter.
Hence, it can be used to decide at which level the user intends to detect the event, i.e. very
detailed (zoomed-in) level of node or an overview at the level of regions. The grid cell
value £ is an aggregate of the attribute values of the set of nodes in a cell. The choice of
the exact function depends on the application. For example, for temperature or pressure, it
is most appropriate to average the values of the nodes in the grid cell. If &;; is the grid cell
value in the (i, j)th grid cell g;; and v, represents attribute value of node # in g;; then §&;
is an aggregation function such as average, min, max of v,:

&= f(u)Vneg; (%)

We do not impose assumptions on the selection of y and f(.), highlighting the generality
of our framework (requirement on our framework). An illustration for the selection of both
parameters is given in the case study in Section 5.

4.3.2  Centralised regioning algorithm

As the events appears as regions in a map, we propose here a centralised regioning algorithm
(CRA) that can detect the regions and their borders in WSN map, which leads to generic
event detection. CRA is conceptually the same as its distributed counterpart DRA. However,
it has been used here for entirely a different purpose of detecting events. The parallel
between the two applications of conceptually same algorithm is that in DRA, the models
build correlated regions based on similarity of models; and in CRA, the events build regions
based on similar values of attribute for an event.

The regions are formed because the attribute values fall into a certain class of values. For
example, we normally classify the temperature as freezing, low, normal, high or very high.
These classes also contain event class (range of values belonging to event, e.g. temperature
above 500°C for fire). This gives us more acceptable abstraction than the exact values
themselves. Therefore, thresholding of values into classes becomes logical representation
for event detection. Thus, to detect these events, we define the class maps that thresholds
the exact values of the cells in grid map with their class denominations. If we define class
map values K as ki, k, - - - for the range of the values of grid cell g;; between (&, §;] and
(&3, &] - - -, respectively, then a class map value is defined by

ky if& <& <&
K=k if§<§;<& (6)

CRA (Algorithm 3) takes the grid map as input and determines border and regions belonging
to different classes and hence events. We refer to the resultant output as the regions map.
CRA essentially needs a class map to group all the same class cells and determine the
boundary. The process of converting to class map and determining the regions boundary
are both carried out concurrently. To merge the cells into regions, we define attribute classes
as in Equation (6). Neighbouring cells are merged to form the same region if they belong
to the same class. The definition of attribute classes and fusion of same class grid cells
make CRA independent of the shape that a region takes or the number of regions (hence
the number of events) in the map.
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Algorithm 3 Centralised regioning algorithm (on the sink)

1: Var: rB= regionBorder, mB= mapBorders, nRB= 15: for Geyy AVGeyy € nL[] do
newRegionBorder, rM= regionsMap, rld= regionld, 16: if (class(Gejj) = class(Gegy) & rM (k1) =
nL=neighborList, Gcxy= Grid cell at (x,y) —1 then
2: tM[][=1; 17: rM(k,1)=rld;
3: mB[][]; 18: nRB.add(Geyy);
4: while rM(i, j) = —1do 19: changeInBorder=1;
5: BII=(Geij ArM, j) = —1) 20: end if
6 dilateRegion(map, rB[], rM[], rId) 21: end for
7 mB[rld][]=rB; 22: if class(Ge;j) # class(Gegy) AVGey € nLl])
8:  rld++ then
9: end while 23: nRB.add(Ge;;);
10: Function dilateRegion(map, rB[], rtM[], rId) 24: end if
11: repeat 25:  end for
12 changeInBorder=0;nRB[]=0; 26:  rB[]=nRB[];
13 for Gcij AVGejj € rB) do 27: until changeInBorder
14 nL[] = 8Nbrs(Ge;;);

The algorithm starts by defining all the cells as not assigned to a region by initialising the
variable rM[]=—1. Next it searches a grid cell that has not been assigned a class yet and
lists it as the border of the region, as the region itself and region border at this moment
consists of a single cell (Algorithm 3:L 5), cell with —1 in rM is not assigned a region yet.
CRA then starts expanding/dilating the region (Algorithm 3:L 6). To expand the region, the
neighbouring eight cells around this region cell are checked if they already belong to any
class (Algorithm 3:L 14—16), if not then they are also classified according to Equation (6). If
they belong to the same region, they are assigned the same region ID and the new qualifying
cells are listed as the region border, otherwise the previous cells retain their status as region
border (Algorithm 3:L 17—18). To further expand the region, neighbouring cells of each
cell in the border cells are searched iteratively until no change occurs in the border of the
region (Algorithm 3:L 11,27), which implies the completion of the construction of a single
region with its boundary. The whole process repeats again by searching a new cell that
has not been assigned a region yet. It keeps on repeating until all the cells in the map are
classified into their corresponding regions (Algorithm 3:L 4, 9).

We maintain the generality of the framework by devising a technique that does not
assume any shape, size or number of events occurring in the WSN.

5 Case study: network partition prediction

We should formulate the problem according to the abstractions (maps, classes, etc.) of the
framework, to use our framework for network partition prediction.

5.1 Problem formulation

Partition detection is a complex problem as physical and network parameters are coupled
i.e. energy level of the nodes and communication range necessary to maintain connectivity.
Given that sensor nodes are resource constrained, eventually a WSN has to consider the
depletion of node batteries leading to the partitioning of the network. The energy dissipation,
however, is generally spatially correlated. Therefore, groups of nodes form hotspots that
deplete to coverage holes. A hole can be defined as a part of the network, which due to the
energy depletion is no longer covered. These holes, when grow, can disconnect a part of
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network from accessing the sink, defined as a partition. If the network energy state can be
modelled and predicted, then we can predict the occurrence of the holes and consequently,
the partitions. The holes and partitions appear as regions in an energy map. Our framework
has all the necessary tools to profile the energy dissipation patterns, predict the network
future energy state and detect the regions formed due to partitioning. Therefore, partition
prediction becomes a natural candidate problem to be solved using our framework.

We can now define the problem according to the abstraction of our framework. A grid cell
(cell in a grid map) gets disconnected from the network if it has energy below a minimum
threshold so that it cannot communicate anymore. These depleted grid cells form a region
that represents a hole in an eMap. Partition, however, is a group of non-depleted grid cells
that cannot access sink due to the holes. It is, therefore, sufficient to profile the energy
status of the network during its lifetime by collecting the energy profiles in order to predict
network partitioning. As per definition, the adaptation of the framework to predict network
partitioning consists of three phases (Section 4) that we discuss as follows.

5.2 The data collection phase

The nodes start the formation of 1-hops clusters as in Tulone and Madden (2006). During
the 1-hop cluster formation cluster heads are selected, the cluster heads learn about their
neighbouring clusters. All cluster heads start aggregating the energy values. AR3 model is
fitted and our proposed DRA (Algorithm 1) is executed based on these models. The models
for regions are aggregated using our proposed BTA (Algorithm 2). Consequently, models
are periodically sent to the sink.

5.3 The prediction phase

The sink regenerates the time series (energy values of cluster and hence the nodes) by
applying reverse transformation. The data regeneration of the reporting nodes actually
generates the energy profiles. The energy profiles of each node are modelled and predicted
as described in Section 4.2. Energy dissipation is a decaying process so the time series
contains trends but no seasonal components. The trends are removed by fitting polynomials.
ARMA models are fitted to random components, selecting the best fit model using AIC
criteria. After completion of modelling the node energy values are predicted and hence the
future WSN energy profiles.

5.4 The event (holes and partition) detection phase

The first step towards the abstraction of the WSN profile as a grid map (eMap in this case)
is the selection of resolution i.e. grid cell size at which this event (network partitioning or
holes) is to be detected. From the formulation of the problem, we know that we have two
coupled parameters, i.e. energy and communication range. Therefore, an upper bound for y
is the communication range (R). To accommodate a worst case scenario of two nodes lying
on opposite corners of two grid cells, y is given by y < R/2+/2, as shown in Figure 3.
The lower bound can be obtained from the node density, it should be selected such that the
network area is not over sampled, as we show in simulation Section 6.2. A cell is connected
to the neighbouring cells until at least a single node has enough energy to communicate.
The node having the highest energy level is selected as reporting node and Equation (5)
becomes &;; = max(v,) ¥V n € gi;.
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Figure3 Max grid size

The predicted energy profiles are converted to the eMaps. CRA developed in Section 4.3
is used for both partition and hole detection on these eMaps. As per the given scheme, we
define two energy classes at 10% and below as the partition (or hole) class, and above 10%
as non-partition class. This definition of energy classes gives the areas that are vulnerable
to partitioning because of low energy.

6 Evaluation — viability of our approach

To evaluate how well our framework meets the design requirements, we use the problem of
partition prediction as formulated in the case study. To determine accuracy and efficiency
of the framework, we compare the modelled and then regenerated energy values with
the actual sensed energy values generated on the nodes during simulations. We predict
the future energy states of every node and hence, the future profiles of the network. The
future profiles are then converted to maps. We denote these predicted maps as future grid
maps Gf.

6.1 Evaluation metrics

The transformation of a value spatial distribution into a map is a three-stage process, i.c. a
grid map, then a class map and finally, a regions map. The regions map is physically same as
a class map with additional information of region borders. Hence, we use two error criteria
for the grid map and the class map. We use two more metrics to assess the accuracy of
regions and efficiency in terms of number of packets generated for models in the network.
Our first metric is the mean square error (Equation (7a)) between the reference grid map
Gr (the actual data generated on the nodes) and the test grid map Gf, defined as

. > Zj@rij - éfij)z

Ge (7a)

m
Ke = "> count (Kr;; — Kf;;) (7b)
i

where (i, j) are grid cell coordinates, Ge is the mean square sum of error, £r;; is the grid
cell value of Gr and & f;; is the grid cell value of Gf and m is the number of occupied grid
cells. Gr is the true data generated on the nodes, while Gf is the predicted map from the
gathered data from network, which undergo local modelling and hence will deviate from
true data due to modelling. Ge determines the relative accuracy of our approach against the
ideal case.

The second metric misclassification cell count (Equation (7b)) counts the misclassified
cells between the reference and the test class map. Ke is the total count of class cells that
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differ between the reference Kr and test class map Kf. ‘count’ function returns ‘1’ if the two
cells do not belong to the same class else it returns ‘0’. Ke is the direct measure of correct
classification of the grid cells into the classes and indirect measure of the accuracy of area
and border of the detected event area. Our third metric is the misclassified cells percentage
for each region to assess the accuracy the framework on regions level that we call regional
percentile error. The fourth metric message count is the efficiency metric, where we count
the messages required to collect all the profiles of the network.

6.2 Simulation settings

As two phases of the framework are carried out on the sink, therefore we performed our
simulations in Matlab. It is a very well-known simulation tool and suits our work as it
facilitates to model energy dissipation patterns of very huge number of nodes. The network
that we used in our simulations is generated as a random non-uniform distribution of nodes.
The node distribution, as shown in Figure 4, was selected to cover many possible scenarios
in areal deployment. It contains some areas with high-node density and some with low-node
density. Italso contains two narrow bridges between two parts of the network that may lead to
network partitioning. For energy dissipation modelling, the common hotspot model (Zhao,
2002) was used. The energy dissipates in a spatially correlated manner around the hotspot.
The nodes nearest to the hotspot are more active and hence dissipate more energy. The
parts of the network that act as the coverage-bridge between two parts of the network and
around the sink show relatively high-energy dissipation rates. Subsequently, these areas are
modelled as hotspots.

We used a network containing 5,000 sensor nodes that span in an area of 50 x 100 unit,
each node having a communication range R = 2units. For R = 2, the upper bound for
grid cell size is 0.7 units. We found 0.3 as the lower bound because if we take a grid size
smaller than 0.3 then we have more occupied grid cells than the number of nodes that over
samples the network area. We therefore selected three grid sizes between upper and lower
bounds 0.3, 0.5 and 0.7 units. Energy dissipation history of 164 profiles was collected from
all the nodes. To evaluate the statistics, we divided the history of profiles into two parts.
About 139 profiles were used for modelling purposes and 25 used for validation. About 164
profiles represent the network lifetime history. If we scale 164 lifetime profiles to 164 days
then 139 days of network operation are used to predict the next 25 days network status.
About 139 profiless of WSN were used to predict next 25 profiles. Each predicted profiles
of the network was transformed to grid map.

Figure 4 Node distribution (see online version for colours)
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6.3 Simulation results

Figure 5(a) shows the mean square sum of error for 25 prediction steps for 3 different grid
sizes. The low values of mean square error show that the predictions are very accurate. The
increasing trend is natural, as an increasing number of prediction steps make the prediction
model less accurate.

Figure 5(b) shows the misclassified cells count. The mean square error results
(Figure 5(a)) imply that we cannot expect much inaccuracy in misclassification. The
highest count is naturally in the case of grid size 0.3, which reaches 88 at the peak.
The total number of occupied grid cells at this resolution is 4,196, so a worst case
misclassification of 88 cells accounts to around 2% of the total cells. We also see an
increasing trend in the misclassification for each prediction step because of the increasing
error between model approximation and the actual data. The oscillations in the graph
give interesting insight. We have defined two classes of energy and as soon as the grid
cells cross the class threshold (10% of energy) they are classified into the partitioned
class. The crests appear when cells in the actual data (Kr) cross the threshold of 10%
but the cells from the modelled data (Kt), due to the lag in value, do not cross the
threshold at the same time. Therefore, cells from the reference class are classified in the
partitioned class but corresponding cells in the test class are still in the non-partitioned
class, which increases the count of different cells. As soon as the modelled data crosses
the threshold, the error decreases and troughs appear but a clear trend in increase of error
continues.

Figure 6 gives account of the error in the detected regions predicted through profiles
of the WSN. To summarise the results, we have selected prediction maps separated by
five prediction steps. On first prediction step, there are only three regions with less than
2% max percentile error. With each next prediction step, the number of regions increases
and errors distribute between the different regions. In the worst case scenario, a region
has a maximum percentile error of less than 2.7%. The results, however, show that
each region is very accurately detected. Misclassification per region on the average is
less than 3% which shows the accuracy of our approach to detect the regions and their
boundaries.

Figure 5 Predictability and accuracy measures of the framework: (a) mean square error and
(b) misclassification cell count
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Figure 6 Misclassification percentile error per region
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Figure 7 Regions and outliners for data compression using DRA: (a) cumulative regions and
(b) cumulative outliners

40000 Modeled Length8 —F— 300000 Modeled Length8 —F—
Modeled Length 14 ---3¢--- Modeled Length 14 ---<---
P 35000 Modeled Length 20 -3~ | Modeled Length 20 ---3K--- |
-2 30000 g 250000
L £
e =
g 2500 3 200000
E 20000 g
:é 15000 ‘& 150000
S >
U 10000 IS RS
3 100000 -
5000 Ky X
o
L : 4 ] 2 50000 : 3 3 2
Allowed Outliners for Distributed Regioning Allowed Outliners for Distributed Regioning
(a) (b)

Now, we summarise the results with respect to efficiency metric i.e. number of packets
needed to create energy profile of the whole network. To profile the whole network of 5,000
nodes and to collect 164 profiles over the entire lifetime requires nearly 1 million data points.
This overhead is reduced dramatically with the help of our DRA. Models are constructed
for clusters and regions are formed based on the models using DRA. We fix the length of
history that can be represented by a model. We chose 8, 14 and 20 values to be modelled
by a single model. The graphs in Figure 7(a) and (b) represent cumulative sum of region
formed and outliners, respectively, that we require over the lifetime of network using DRA.
To observe the impact of AN¢; (the max: outliners allowed for DRA), we chose values
from 0 to 4 to allow the clusters to form regions. As a model does not approximate 100%
accurately all the data, therefore in addition to ANc;, we allow outliners for each cluster
head to build its model and fit to its data. Therefore, we will observe outliners even when we
set AN¢; = 0. From Figure 7(a), we can conclude that the number of regions being formed
decreases as we allow more outliners. Allowing more outliners relaxes the neighbouring
clusters to fit to a given model. Similarly from Figure 7(b), the number of outliners to be
reported naturally increases also. The length of data to be represented by a model also affects
the regions to be formed. The shorter length (8) forms more cumulative regions over the
lifetime as it has to report more often than the longer length models that manage to fit more
data within one model. However, shorter length model has to report very few outliners first,
but shoots immediately as shorter length has more regions. Longest length models (20) have
least regions initially again because it reports the complete data in less cycles of sending
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the models but increases to maximum as it is very hard for the neighbouring clusters to
agree for a very long length of attribute. These long length models also have the maximum
number of outliners to be reported even A N¢;=0. Therefore, maximum number of regions
are formed but decreases afterwards as it has to make less updates. The data length to be
modelled is a very important factor in this whole compression scheme. We found from our
analysis that there is a compromise between the two extremes, which in our case was around
14. At this value, the number of regions formed and the number of outliners to be reported
is balanced between the two extremes.

Each region in Figure 7(a) is equivalent to send a message to the sink as a region
is represented by this model. Three outliners are grouped in one packet, the number of
packets for outliners is equivalent to 1/3 of the outliners. With the settings of modelled data
length=14 and AN¢; = 1, we have to send 40,499 packets, which is 4.93% of the total raw
data to be reported otherwise. The results obtained in the evaluation are in accordance with
the design requirements of the framework. It is lightweight as DRA and BTA cumulatively
reduce the data to less than 5% of the raw data needed to profile all nodes. The achieved
predictions are long term and accurate, represented by the maximum prediction error of
approximately 3% in misclassification of the regions of the map for 25 prediction steps.
CRA detect energy holes that will partition the network in 22 days (in scaled time as
explained in Section 6.2). From Figure 6, we conclude that the partition prediction is more
than 97% reliable (because of 97% region accuracy).

7 Conclusion and future directions

We developed a generalised framework for efficient predictive monitoring to forecast events
in order to support an autonomic self* system for WSN. We demonstrated that it can
be effectively used to predict events related to different attributes. We described it as a
three-phase strategy. In the data collection phase, we proposed efficient algorithms to spatio-
temporally compress the attribute values and transport them to the sink. In the prediction
phase, we predicted the attribute states for a longer length of time. In the event detection
phase, we proposed a generalised event detection algorithm. We demonstrated the feasibility
and validity of approach by predicting the network partitioning as a case study. We were
able to predict multiple holes and the resulting partitioned area of the network; information
necessary to initiate proactive self* actions. Simulations support the practicality of our
approach by showing its high accuracy and low monitoring overhead on the network. To
further increase the efficiency, we propose to adapt the spatio-temporal data compression
to the occurrence probability of events. For instance, sensor nodes should increase data
model accuracy if they are located in areas where events frequently occur or when an event
is suspected. We also plan to extend our approach for proactive reconfiguration of network
entities to enhance functionality and dependability through the predicted events.
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