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Abstract: Wireless sensor networks (WSNs) are deployed to monitor physical
events such as fire, or the state of physical objects such as bridges in order
to support appropriate reaction to avoid potential damages. However, many
situations require immediate attention or long-reaction plan. Therefore, the
classical approach of just detecting the physical events may not suffice in many
cases. We present a generic WSN level event prediction framework to forecast
the physical events, such as network partitioning, well in advance to support
proactive self-actions. The framework collects the state of a specified attribute
on the sink using an efficient spatio-temporal compression technique. The future
state of the targeted attributes is then predicted using time series modelling. We
propose a generic event prediction algorithm, which is adaptable to multiple
application domains. Using simulations we show our framework’s enhanced
ability to accurately predict the network partitioning with very high accuracy and
efficiency.
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1 Introduction

Wireless sensor networks (WSNs) typically entail an aggregation of both sensing and

communicating sensor nodes to result in an ad hoc network linking them to the base station

or sink. The sensor nodes typically possess limited storage and computational capabilities

and require low-energy operations to provide longevity of operational time.

WSNs are deployed for monitoring different environmental attributes. Based on the

sensed data ranges, the corresponding reaction decisions are carried out. The decisions

to take actions are triggered by some events happening in the network. For example,

while monitoring pressure in a certain facility, an event could be triggered to indicate

either high or low pressure. Similarly, we can have many events related to numerous

attributes. In addition to the environmental events, there are also the network events to

be considered such as network partitioning. Various works exist for detecting different

discrete events (Yick et al., 2008) such as, fire detection (Yu et al., 2005) and network

partitioning (Rost and Balakrishnan, 2006; Shih et al., 2007; Shrivastava et al., 2005). Most

of these efforts develop excellent foundations, however, are tailored for specific scenarios.

Other works do consider generic scenarios (Xue et al., 2006), but they suppose the event

to take specific shapes and patterns. Also, all of these efforts focus on detecting the events

after the events have already occurred. It could be already too late to react to many events if

the traditional approach of detecting and reacting to the events is followed. Consequently,

it is either insufficient or inefficient just to react to the events. For example, if we detect

network partitioning, the repair might require a long time and the required resources may

not be available. Meanwhile, the functionality of network and hence the monitoring, which

is the main objective of deployment, will be lost. Thus, reporting of such events beyond

simple monitoring becomes highly useful if these events can be predicted in advance.

The ideological shift from detecting the events to predicting them provides enough time

window to take appropriate autonomic actions. Consequently, we could avoid or delay

events from happening. Multiple efforts also exist for predictions (Landsiedel et al., 2005;
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Mini et al., 2002; Tulone and Madden, 2006; Wang et al., 2007). However, most of them

are either limited to predict specifically a certain attribute like energy or provide only node

level short-term prediction for data compression to minimise data to be reported from the

network.

It is very useful to combine generic prediction techniques with generalised event

detection to predict the events and to carry out self* actions well in advance. To the best of

our knowledge, there exists no work that proposes generic event prediction. In this paper,

we develop a generic framework to predict the events. The framework predicts the future

states of the network for the attribute of interest, e.g. temperature or residual energy. The

developed generic event detection technique is used on ‘predicted future state of attributes’

to effectively forecast the events. We target long-term predictions that require the history

of the attribute to be long enough to contain all system dynamics. However, a sensor node

does not possess the computational resources required to model the complex dynamics in

attribute values to accurately predict the future states. Hence, we collect multiple profiles

of the considered attribute and conduct modelling on the sink. We refer to the collection

process of attribute values from network as profiling. Accordingly, a profile is the state of

the attribute in the network at a specified instance of time. We also propose data collection

techniques to efficiently and accurately collect such a history of the attribute from the

network. On this background this paper makes four specific contributions, namely:

• generalised framework design for sink-aided attribute profile prediction, allowing to

predict varied physical and network events

• efficient data collection technique based on spatio-temporal compression, minimising

both spatial and temporal data redundancies while collecting attribute profiles

• generic event detection technique to detect events from the predicted profiles

• case study of network partition as validation for our efficient predictive monitoring

framework.
This paper is organised as follows. Section 2 discusses the related work. Section 3 details

the key preliminaries for the framework. Section 4 details our approach for predictive

WSN monitoring. The case study is presented in Section 5 and its simulation evaluations

in Section 6. Section 7 presents summary conclusions and outlines future directions.

2 Related work

In WSN literature, a variety of work addresses event detection (Yick et al., 2008). The

most relevant one to our event detection strategy is Xue et al. (2006), where the authors

investigate map based event detection. The approach requires the user to

1 specify the distribution of an attribute over space

2 the variation of distribution overtime incurred by the event.

Three common types of events are defined namely pyramid, fault and island. In contrast,

our detection technique is independent of event shape thanks to our generic regioning

algorithm. Furthermore, we apply the detection technique on predicted profiles allowing to

predict events rather than just detecting them. Banerjee et al. (2008) present a technique to

detect multiple events simultaneously. They employ a polynomial-based scheme to detect

event regions with boundaries and propose a data aggregation scheme to perform function

approximation of events using multivariate polynomial regression. Our work in addition
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to the capability of detecting multiple events can predict events beforehand. Various other

works exist that address specific event scenarios such as partition detection (Shrivastava

et al., 2005) and fire detection (Yu et al., 2005). These specific solutions do not feature

portability to adapt to different application scenarios.

There is a variety of work for monitoring WSNs and prediction of certain attribute.

Landsiedel et al. (2005) predict the power consumption in WSN. Mini et al. (2002) propose

a network state model to predict the energy consumption rate and construct energy map

accordingly. In Wang et al. (2007), authors focus on predicting multimedia networks energy

efficiency. These works concentrate specifically on energy, also they do not provide any

extension to predict other attributes. Authors in Mamei and Nagpal (2007) propose inference

mechanism using Bayesian network to detect anomalies. We provide a generic framework

to predict variety of events that might happen in future.

As we present a case study for network partition prediction, we discuss the related work

in this respect. In Shrivastava et al. (2005), partition detection has been addressed for

a sub-class of linearly separable partitions, i.e. cuts. Memento (Rost and Balakrishnan,

2006) continuously collects connectivity information at the sink to be able to detect

network partitioning. The partition avoidance lazy movement protocol for mobile sensor

networks (Shih et al., 2007) is a decentralised approach, where a node periodically collects

the position of all its neighbours and checks if at least one neighbour is located in a small

angle towards the sink. If no neighbour is located in this ‘promising zone’, the node suspects

network partitioning and moves to avoid it. Based on our event prediction framework as

an example we propose a solution i.e. generalised and not dependent on the shape, size

or location of the partition. Moreover, our framework provides for prediction of network

partitioning rather than just the detection.

3 Preliminaries

We now describe the system model and the requirements driving our approach.

3.1 System model

We consider a WSN composed of N static sensor nodes and one static sink. Sensor nodes

are battery powered and usually entail limited processing and storage capabilities. Sensor

nodes are assumed to know their geographic position either using distributed localisation

methods (He et al., 2005) or GPS. A typical WSN deployment may contain hundreds or

thousands of sensor nodes with varying densities according to the coverage requirements.

We consider an arbitrary node distribution, provided the network is connected at deployment

time. We assume all sensor nodes to be homogeneous. Hence, the sensor nodes have the

same transmission range R and same initial battery capacity. We consider that nodes crash

due to energy depletion only. We assume a reliable data transport protocol, e.g. (Shaikh

et al., 2010) to transports the data from sensor node to the sink. We assume the events for

predictions to be happening over a longer period of time, e.g. events that may take hours,

days or even months to develop. We consider that events are

1 not spontaneous

2 spatially correlated

3 do not depend discretely on a single node

4 display attribute trends that can be predicted.
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3.2 Requirements on the framework

We identify the following requirements on the framework. Firstly, it should be lightweight,

i.e. its creation, management and usage require minimal resources with respect to energy.

Secondly, we desire the framework to long-term predict attribute profiles, hence the events

accurately. Depending on the context of the problem, long-term may mean hours, days or

even months that should be enough to activate a self* mechanism to support autonomic

actions. Finally, we desire the framework to be generic to adapt to prediction of varied

event types.

4 Efficient predictive monitoring

We develop the proposed framework in a modular manner for it to be generically applicable

to a variety of scenarios. The framework consists of three phases, i.e. data collection

phase, prediction phase and event detection phase. In the data collection phase, attribute

values related to an event are periodically but efficiently fetched from the network on

the sink. The prediction phase is used for predicting future states of the network for the

interested attribute using the previous history of attribute fetched from the network during

data collection phase. The main objective in event detection phase is to detect events in

the predicted state of the network, obtained in prediction phase, essentially predicting

the events. The techniques we propose in each phase are independent of the attribute to

be monitored, thus fulfilling generality requirements of our framework. It is important to

highlight that we do not limit the framework to only these techniques. Rather, for a particular

implementation, specialised additional techniques can be easily accommodated due to the

framework’s modular structure. These phases are individually detailed in the following

sections.

4.1 Data collection phase

From the nature of the problem, we can expect an efflux of data (sensed attribute values)

from the network towards the sink. A simplistic periodic approach to collect data from each

sensor node on the sink would lead to high communication and energy overhead on sensor

nodes rendering the whole framework impracticable. Our framework addresses this issue

by exploiting the inherent redundancies to reduce the amount of data to be transported to

the sink without sacrificing the accuracy of the collected data.

4.1.1 Data redundancy in WSN

We first describe the redundancies present in WSNs, and how these redundancies can be

exploited in general. Subsequently, we present our approach that efficiently utilises both

spatial and temporal redundancies for compression.

4.1.1.1 Spatial redundancy – reduction through clustering: By its basic nature,

a WSN involves redundancy in node deployment that yields redundant sampling of the

environment. Furthermore, spatial distribution of the attributes in the environment such as

temperature, pressure, etc. tends to be similar over large contiguous area than just in the

neighbourhood of redundant nodes. To avoid spatial data over-sampling, not all the nodes

need to send their samples (spatial compression). The existing approaches take into account
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spatial redundancy by forming clusters of similar valued nodes (Gedik et al., 2007). Authors

in Gedik et al. (2007) further break the clusters into sub-clusters to select fewer sampling

nodes. However, they have to again execute cluster construction algorithm repeatedly to

maintain these bigger clusters. There are also other variations like Solis and Obraczka

(2005) that form clusters and send updates to sink if there is any change on the edge of the

cluster.

Definition 1: A time series is a sequence of data points xt considered as a sample of random

variable X(t), typically measured at successive times. The time series can be modeled to

predict future values based on past data points.

Definition 2: A stationary random process exhibits similar statistics in time, characterized

as constant probability distribution in time. However, it suffices to consider the first two

moments of the random process defined as weak stationary or wide sense stationary (WSS)

as follows:

1 The expected value of the process (E[X(t)]) does not depend on time. If mx(t) is the

mean of X(t) then

E[X(t)] = mx(t) = mx(t + τ) ∀τ ∈ �
2 The autocovariance function for any lag τ is only a function of τ not time t

E[X(t1)X(t2)] = Rx(t1, t2) = Rx(τ, 0) ∀τ ∈ �
Definition 3: X(t) is an autoregressive moving average process ARMA(p, q) process of

order (p, q) p, qεℵ, if X(t) is WSS and ∀ t ,

X(t) = φ1Xt−1 + · · · + φpXt−p + θ1Zt−1 + · · · + θqZt−q (1)

where Zt is white noise with mean zero and variance σ 2, denoted as WN(0, σ 2).

4.1.1.2 Temporal redundancy – reduction through piecewise modelling: We

primarily observe for a given node the monitored attribute values are often dynamic in

nature, however, they are usually statistically correlated in time. This correlation in time can

be exploited by abstracting the attribute values as a time series (Definition 1). Consequently,

we can compress the data by modelling the raw data samples and send only the model

parameters to the sink (temporal compression).

The generic time series modelling is not possible on a node because of its limited

storage and computational capabilities. Therefore, a time series on a node is better modelled

piecewise. This also avoids having to model complex time series dynamics. Consequently,

the models are still simple enough to be evaluated on sensor nodes. As in Tulone and

Madden (2006), nodes maintain short history of data samples (sensed attribute values). A

third order autoregressive model (AR3) is fit to the data, which is only a particular case of

the ARMA(p, q) model (Definition 3), for p = 3 and q = 0. AR3 gives a good compromise

between complexity and predictability (hence compressibility). Nodes estimate next values

according to this model. If the model is no longer valid for the new data, a new model is

constructed. A few values that do not fit the model are termed as outliners. The track of

outliners to the model is kept explicitly. A minor optimisation over this basic scheme is

to group nodes in 1-hop cluster (Ci). Using this optimisation, the nodes that are in each

other’s transmission range build only one model instead of each one building its own model.
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Consequently, only cluster heads (Hci) maintain, update and send the models to the sink.

A node joins a cluster Ci if its attribute value is within the allowed maximum threshold

(�MCi) between the Hci and the cluster members (Mci). Two clusters may overlap i.e. the

members of one cluster may communicate with the Hci of the other neighbouring cluster.

Hci periodically broadcasts its attribute value to its members Mci so they ensure that they

are also within the error bounds �Mci of the value of Hci. Otherwise, they leave this cluster

and join another cluster for which error is within �Mci or build a new cluster if they do

not fall within �Mci of any of the surrounding Hci .

4.1.2 Optimised spatio-temporal compression scheme

Our main design objective is to reduce the overhead while maintaining high accuracy of

data. We propose a hybrid compression scheme to reduce the reported data by exploiting

both spatial and temporal redundancies.

The spatial and temporal compressions are complementary schemes. The current

literature optimises for one scheme (Solis and Obraczka, 2005) or the other (Tulone

and Madden, 2006). Applying both schemes together is challenging. For data reduction

cluster, algorithms group the nodes based on the similarity of values. However, value-

based spatial clustering cannot guarantee that such achieved grouping will hold for long

time. Moreover, the temporal compression is based on the assumption that the entity to be

modelled demonstrates certain behaviour in statistical terms such that it fits a certain model

for certain duration of time. Hence, a large cluster may not live long enough to be justified

to be modelled and breaks up into further clusters. Therefore, the temporal compression

schemes are very efficient on node level or in a very small neighbourhood but suffer the

scalability issues when applied to model behaviour of multiple nodes or clusters. Thus, we

conclude that the larger the cluster, the shorter the spatio-temporal correlation holds.

We propose a very efficient approach in terms of message and energy overhead. Our

approach exploits both spatial and temporal redundancies. The proposed scheme starts with

1-hop clusters ‘Ci’ based modelling (Section 4.1.1). The main advantage of 1-hop clusters

is that it is the unit of clustering i.e. all the higher level clusters can be formed from these

clusters by merging them. They are easy to construct and maintain i.e. through simple

1-hop beacons (Tulone and Madden, 2006). Moreover, if the model does not fit the new

attribute values, Ci does not break up like larger clusters, instead a new model is built to

fit to the new values. However, if the attribute values are so discretely divergent that each

node has different values within 1-hop, then it implies that there is no redundancy, which

is contradictory to inherent redundancy in WSN.

We next describe our algorithm to determine spatio-temporally correlated regions in

WSN. Subsequently, an algorithm is presented to optimally aggregate the region information

to be sent to the sink.

4.1.2.1 Distributed regioning algorithm: Data compression for 1-hop cluster-based

modelling is efficient for temporal compression but is limited to 1-hop cluster area. However,

as discussed before, the attributes tend to be similar in larger area than just 1-hop distance. To

also exploit the spatial redundancy for Ci models, a Hci sends its model to its neighbouring

clusters. The neighbours compare the received model with their local model. If the error is

under given error bounds, neighbours accept their behaviour to be represented by the same

model as Hci and forward this model to their respective neighbour clusters. This scheme

generates a region i.e. spatially correlated for the cluster head models. Consequently, we

achieve spatio-temporal compression. Now, we elaborate (distributed regioning algorithm

DRA) further in detail.
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Algorithm 1 Distributed regioning algorithm (on sensor nodes)

1: VAR: PJN=Positive Join Notification, NJN=Negative

Join Notification, Ri=Region ID, list=list of clusters,

NBN=Not border Notification

2: function growRegion()

3: me.list.addToList(me);

4: msg=["join request" model Ri];

5: for Ci ∧ ∀Ci ∈ Nci do
6: if sendMsg(msg, Ci )="PJN" then
7: me.Nci .Ci=Ri;

8: else
9: me.Nci .Ci= -Ri;

10: me.Nci .Ci .border=false;

11: end if
12: end for
13: if Ci .Ri=me.Ri∧∀Ci ∈ Nci then
14: me.border=flase;

15: msg=["NBN" list];

16: for Ci ∧ ∀Ci ∈ Nci do
17: sendMsg(msg, Ci );

18: end for
19: if me.BT T then
20: me.BTT=False;

21: msg=["BTT"];

22: sendMsg(msg, Ci ∧∀Ci ∈ Nci & minDist(Nci ));

23: end if

24: end if
25: if Ci ∧ ∀Ci ∈ Nci & Ci .Ri! = "" then
26: me.transition=false;

27: me.stable=true;

28: end if
29: function recieveMsg(msg)

30: me.Nci .Ci=msg.Ri;

31: if msg.type="join request" & me.Ri="" then
32: nbrValues=expandModel(msg.model);

33: outs=cntOuts(nbrValues,me.Values);

34: if outs < �Nci then
35: me.regionId=msg.Ri;

36: me.border=true;

37: me.transition=true;

38: scheduleMsg(call growregion());

39: return(PJN);

40: else
41: return(NJN);

42: end if
43: else if msg.type="NBN" & me.border then
44: me.Nci .border=false;

45: me.list=msg.list;

46: else if msg.type="BTT" then
47: me.BTT=True;

48: end if

During the cluster formation, each Hci exchanges its distance from the sink with its

neighbour clusters (Nci). Thus, each Hci knows about its neighbouring clusters and their

distances from the sink. Each Hci starts sampling the attribute value. The local model is

generated after collecting enough samples. The Hci waits for maximum time Tmax, inversely

proportional to its distance from the sink (Ci × distance), before initiating regioning. If

wait time is denoted by Tw, then it can be given by Tw = Tmax/Ci × distance. Tw biases

the clusters farther from the sink to initiate the regioning earlier. The cluster that initiates

the regioning has a special privilege that we refer as border traversal token (BTT). We shall

elaborate the use of BTT and biasing of DRA initiation away from sink afterwards. As

given in Algorithm 1, DRA is a three-step procedure:

• Once a cluster head, denoted as the sender cluster Cs, has fit a model to the data after

wait time Tw, it then sends its model to the heads of the neighbouring clusters Ncs

(Algorithm 1:L 4–12).

• A receiving cluster heads (Cr) finds dissimilarity between the received

model and its own model based on a dissimilarity metric to evaluate the error

between two models. This metric can be a statistical function, a signal processing

metric such as cross-correlation or time series analysis technique that we propose

here. We use time series-based technique because it is very efficient and that the

models to be compared are derived using time series analysis. Hence, we can

guarantee the accuracy level with the dissimilar error bounds parameters that we

otherwise use for in-cluster dissimilarity measures. We introduce a maximum

allowed error threshold (�Nci) between Cs and Cr for merging. We define

�Nci to be the maximum number of allowed outliners to the received model.

To compute dissimilarity, the Cr evaluates the received model (Algorithm 1:L 32).
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It counts the outliners by comparing Cs values (nbrValues), received as Cs model, to

its sampled values (Algorithm 1:L 33). If outliners, are within �Nci, Cr

acknowledges Cs by sending a ‘Positive join notification’ (PJN) to merge into the

region i.e. represented by Cs model. Otherwise, Cr sends a ‘Negative join

notification’ (NJN) (Algorithm 1 :L 34–42). The cluster issuing a PJN considers itself

on the boundary of the region (Algorithm 1:L 36) and schedules itself to further

propagate the model to its neighbours (Algorithm 1:L 37). Consequently, every

cluster head participating in the region knows its status either as the region interior or

the region boundary to keep track of region boundary.

• If all neighbouring clusters of Cs belong to the same region, this implies that Cs

is not on the region boundary (Algorithm 1:L 13–14). Cs notifies Ncs it is not on

border anymore through a ‘Not border notification’ (NBN) message and

transfers the aggregated clusters list of this part of the region to Ncs

(Algorithm 1:L 15–18). However, this information is of interest to only the clusters

on the boundary. Therefore, the list is updated by only the border clusters

(Algorithm 1:L 43–46). More than one border clusters receive the list, consequently

multiple border clusters may have duplicated information for region interior in the

end, which is then removed in the border traversal algorithm (BTA), described in

Algorithm 2. The cluster leaving the border status hands over the BTT to the cluster

head closest to the sink on the border if it possesses one

(Algorithm 1:L 19–23).

The three steps repeat until the outliners count is below �Nci for Cs and Cr . This process

creates a region i.e. spatially and temporally correlated for an attribute for the modelled

time duration. Hence, using DRA, we have just one model to be reported to the sink that

represents the behaviour of the correlated region. Figure 1 illustrates an execution example

of DRA. For illustrative purposes and simplicity, we removed the duplicated arrows and

show the clusters to be non-overlapping.

Figure 1 Execution of DRA
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The DRA may be initiated by multiple clusters simultaneously. Consequently, multiple

regions may grow and merge. However, no special consideration is needed for this situation,

as the condition still holds that if all the clusters around a cluster are part of the same

region then this cluster leaves the border cluster status. Hence, the previous border clusters

within the true border of the new bigger region will automatically annihilate and the border

clusters on the true border will still persist. However, multiple merging regions will generate

multiple clusters having BTT. We refer to this as multi-BTT problem and deal with it

in BTA.

4.1.2.2 Border traversal algorithm: the information of region constituting clusters

and the single model representing the region needs to be sent to the sink. We aggregate this

information on one cluster head that reports to sink the aggregated information, instead of

each border cluster reporting to the sink. We propose the BTA to aggregate the complete

region information (Algorithm 2). A specific probability of selection of clusters on the

boundary could be set to initiate BTA. However, it might lead to selecting either no or

multiple clusters to initiate border traversal. Only one cluster should send the model and

the region information to the sink in order to optimally reduce the data to be transported

to the sink. This cluster should preferably be the one closest to the sink to further decrease

the message overhead. This is where BTT comes into play. Only the cluster possessing

a BTT can initiate BTA. The DRA algorithm is biased to initiate away from the sink,

so there are higher chances (though not guaranteed) that it will expand in the direction

of the sink. Moreover, the BTT is transferred to the cluster closest to the sink in DRA.

Though, again it does not guarantee but biases to select cluster closest to the sink to

initiate BTA.

Once the region stops growing around a cluster having BTT, it initiates the boundary

aggregation. The initiator cluster includes its distance from the sink in the aggregation

message. It helps to eliminate the multi-BTT problem. The cluster holding the token

sends the message to aggregate the region information. The receiving cluster updates the

list by including itself and the list that it holds, collected during DRA (Algorithm 2:L

13–14). However, this list may contain duplicated cluster information, therefore a

cluster receiving the aggregation message runs a filter to remove the duplicated cluster

information (Algorithm 2:L 15). If the region has multi-BTT problem then multiple

clusters initiate traversal. However, this is not difficult to handle as the traversal

request initiator closest to the sink will suppress traversal request initiated by the

other clusters (Algorithm 2:L 5–7). It is possible that the region stops growing around

the token holding cluster, it enters into stable phase and initiates BTA. However, in

some other part, the region may still be in transition phase and growing. After the

aggregation process is triggered and reaches a cluster in transition phase, this cluster

pauses the aggregation process. This cluster state information is maintained during DRA

(Algorithm 1:L 25–28, 37). As soon as a cluster in transition phase enters into the stable

phase, it continues the aggregation process with the next border cluster (Algorithm 2:L

8–12). The pause and resume mechanisms ensure that we collect the accurate border

information.

DRA and BTA very effectively reduce the amount of data to be transported to the sink

by transporting only a few models by finding a small number of model correlated regions

for the whole network.
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Algorithm 2 Border traversal algorithm (on sensor nodes)

1: VAR: aggMsg=[initId=Iditiator cluster id, initDist=

initiator distance from sink, list=aggregator list of

border clusters], Cs=Sender Cluster

2: Function recievedMsg(aggMsg)

3: if me.Id = aggMsg.initId then
4: sendToSink(aggMsg);

5: else if me.BT T & me.distance < aggMsg.initDist

then
6: suppress(aggMsg);

7: return;

8: else if me.transition = true then
9: while me.transition do

10: pause;

11: end while
12: end if
13: aggMsg.list.addToList(me);

14: agg.list.addToList(me.list);

15: aggMsg.list=filter(aggMsg.list);

16: sendMsg(aggMsg, Ci∧∀Ci ∈ Nci & Ci .border!=false

& Ci !=Cs );

Figure 2 Temporal stack of the grid maps (see online version for colours)
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4.2 The prediction phase

The prediction phase takes place on the sink. We regenerate the profiles for the desired

attribute using the collected models of regions. Generic time series modelling techniques

are then used to model the complete history of each node to predict the future profiles.

The models received on the sink in data collection phase for each region are used

to regenerate the attribute history through reverse transformation. It is rather a simple

procedure as sink has the models for each region, so reverse transformation comprises

solving the region model equation for each node in each cluster constituting each region.

Hence, the reverse transformation generates many complete profiles of the WSN. The

reverse transformation forms a temporal stack of such profiles as shown in Figure 2. The

regenerated history of each node contains all the complex dynamics. On the sink, we can now

take the complete history of each node and model its complete behaviour using time series

analysis for predictions as opposed to on node piecewise modelling. Individual models of

each node can then be used to predict future values by fitting a prediction model, effectively

predicting future profiles. The time series can be modelled in different ways (Wang et al.,

2007). In this paper, we use the widely used time domain modelling because of its general

applicability.
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4.2.1 Modelling time series

A time series X(t) can be modelled as a process containing following components

X(t) = Tt + St + Rt (2)

where Tt is a trend, St is a function of the seasonal component with known period and Rt is

the random noise component. To keep the notion of generality valid for the framework, we

use a well-known generalised technique termed Box-Jenkins model to model a time series

containing any of these components.

4.2.2 Box-Jenkins model

Box_Jenkins (BJ) model predicts a time series by fitting it an autoregressive integrated

moving average (ARIMA) process. The term integrated here means differencing the series

to achieve stationarity (Definition 2). To fit an ARIMA process, the model and the order

of the model needs to be specified. The BJ model provides a guideline to select the

appropriate model, i.e. either autoregressive (AR, Equation (3a)) or moving average (MA,

Equation (3b))

X(t) = φ1Xt−1 + · · · + φpXt−p (3a)

X(t) = θ1Zt−1 + · · · + θpZt−q (3b)

or combination of both, i.e. ARMA process as given in Equation (1). It also gives the

guideline for the model order selection. BJ modelling is a four-step procedure:

1 Data preparation: BJ model requires a time series to be stationary (Definition 2).

Therefore, if it contains trends and seasonal components then these should be

appropriately removed. This can be achieved by either least square polynomial fitting

(LSPF) or differencing as X(t) = X(t) − X(t + u). For a simple linear trend, u is 1.

For higher order trends or seasonal component of period s, u equals s. This operation

is repeated until stationarity is achieved.

2 Model identification: At this stage, run-sequence plot or autocorrelation function

(ACF) can be used to identify the stationarity of the time series and the order of the

AR model. ACF for k lag is given by

ρk =
∑N−k

i=1

(
Xi − X̄

) (
Xi+k : X̄

)
∑i=1

N

(
Xi − X̄

)2
(4)

where X̄ is the mean value. Non-stationarity is often indicated by an ACF plot with

very slow decay. Order of the AR and MA models are determined with the help of

ACF and partial autocorrelation function (PACF) (Montgomery et al., 2008). To

automate the model selection process either Akaike’s information criterion (AIC) or

Akaika’s final prediction error (FPE) (Ljung, 1998) can be used. Various models can

be computed and compared by calculating either AIC or FPE. The least value of AIC

or FPE ensures the best fit model.

3 Parameter estimation: In this step, the values of the ARMA model coefficients that

give the best estimate of the series are determined. Iterative techniques are used for

model parameter estimation (Ljung, 1998).
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4 Prediction: Once the modelling is complete, it is simple to predict the series values

using the estimated model. It comprises calculating the future values at next time

instances and reversing all the transformations applied to the series in phase 1 for data

preparation.

4.3 The event detection phase

We now develop a generic event detection technique. Subsequently, using this technique,

we detect events in the predicted profiles of the attribute obtained in prediction phase,

effectively predicting upcoming events in the network.

The main objective of our framework is to predict events. In the system model

(Section 3.1), we have described the domain of the events that we are targeting in our work.

These can be exemplified by detection of temperature above a certain threshold in a certain

part of network i.e. indicative of fire. Similarly, there are many other events associated

with each physical attribute such as pressure, humidity, etc. Our challenge here is to design

an event detection mechanism i.e. generic and can be ported to wide range of scenarios.

To cope with this problem, we use here an abstraction of maps for WSN (Definition 4).

For a WSN, an eMap is an energy map that represents the current residual energy of the

network (Zhao, 2002), or tMap for temperature, etc. Once a WSN is converted to a map

for a certain attribute such as temperature, pressure, etc., the events appear as regions in

these maps. For example, in a tMap of WSN, the part of the network i.e. beyond the given

threshold of temperature will appear as a region in a tMap. Consequently, in our framework,

we define an event as a region of map whose values fall in the range of attribute values for

which the event is defined. Using the abstraction of maps for WSN and regions for events

we are able to keep the framework generic enough to be portable to different scenarios.

Thus, the quantification of WSN space and the conversion of a WSN to a map abstraction

is the key to detect generic events.

Definition 4: To quantify the continues space of WSN profile and construct the map a

grid is virtually placed over the WSN profile and each grid cell represents the aggregated

attribute of all the nodes located within the grid cell. We define the resultant quantification

as Grid Map or simply Map.

4.3.1 Map abstraction

To reach an acceptable spatial resolution with higher level abstraction of network as a

map, we considered virtual grids and Voronoi diagram (Aurenhammer, 1991) techniques

to segment WSN profile. Voronoi-based segmentation depends only on sensor node

distribution and is static for a given node distribution. However, we require a segmentation

strategy that allows variable spatial sampling to accommodate both the physical and network

parameters. Such variability also allows us to detect events from a single node to a region

of the network. Grid allows such flexibility, therefore, we base our map construction on

grid. The virtual grid or simply grid divides the WSN profile into fixed size squares or

grid cells as shown in Figure 2. Thus, nodes that fall within a cell are grouped. For the

grid map construction, two parameters must be specified. The first parameter is the grid

cell size γ , which is a spatial sampling or resolution parameter. The second parameter is

the aggregation value ξ that a grid cell represents. Both parameters are essential for event

detection. γ defines the geographic area covered by the grid cell. The number of nodes
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being grouped in a grid cell is dependant on γ . It can also be seen as a zooming parameter.

Hence, it can be used to decide at which level the user intends to detect the event, i.e. very

detailed (zoomed-in) level of node or an overview at the level of regions. The grid cell

value ξ is an aggregate of the attribute values of the set of nodes in a cell. The choice of

the exact function depends on the application. For example, for temperature or pressure, it

is most appropriate to average the values of the nodes in the grid cell. If ξij is the grid cell

value in the (i, j)th grid cell gij and vn represents attribute value of node n in gij then ξij

is an aggregation function such as average, min, max of vn:

ξij = f (vn) ∀ n ∈ gij (5)

We do not impose assumptions on the selection of γ and f (.), highlighting the generality

of our framework (requirement on our framework). An illustration for the selection of both

parameters is given in the case study in Section 5.

4.3.2 Centralised regioning algorithm

As the events appears as regions in a map, we propose here a centralised regioning algorithm

(CRA) that can detect the regions and their borders in WSN map, which leads to generic

event detection. CRA is conceptually the same as its distributed counterpart DRA. However,

it has been used here for entirely a different purpose of detecting events. The parallel

between the two applications of conceptually same algorithm is that in DRA, the models

build correlated regions based on similarity of models; and in CRA, the events build regions

based on similar values of attribute for an event.

The regions are formed because the attribute values fall into a certain class of values. For

example, we normally classify the temperature as freezing, low, normal, high or very high.

These classes also contain event class (range of values belonging to event, e.g. temperature

above 500 ◦C for fire). This gives us more acceptable abstraction than the exact values

themselves. Therefore, thresholding of values into classes becomes logical representation

for event detection. Thus, to detect these events, we define the class maps that thresholds

the exact values of the cells in grid map with their class denominations. If we define class

map values K as k1, k2, · · · for the range of the values of grid cell gij between (ξ2, ξ1] and

(ξ3, ξ2] · · · , respectively, then a class map value is defined by

K =

⎧⎪⎨
⎪⎩

k1 if ξ2 < ξij ≤ ξ1

k2 if ξ3 < ξij ≤ ξ2

· · ·
(6)

CRA (Algorithm 3) takes the grid map as input and determines border and regions belonging

to different classes and hence events. We refer to the resultant output as the regions map.

CRA essentially needs a class map to group all the same class cells and determine the

boundary. The process of converting to class map and determining the regions boundary

are both carried out concurrently. To merge the cells into regions, we define attribute classes

as in Equation (6). Neighbouring cells are merged to form the same region if they belong

to the same class. The definition of attribute classes and fusion of same class grid cells

make CRA independent of the shape that a region takes or the number of regions (hence

the number of events) in the map.
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Algorithm 3 Centralised regioning algorithm (on the sink)

1: Var: rB= regionBorder, mB= mapBorders, nRB=

newRegionBorder, rM= regionsMap, rId= regionId,

nL= neighborList, Gcxy= Grid cell at (x,y)

2: rM[][]=-1;

3: mB[][];

4: while rM(i, j) = −1 do
5: rB[]=(Gcij ∧ rM(i, j) = −1))

6: dilateRegion(map, rB[], rM[], rId)

7: mB[rId][]=rB;

8: rId++;

9: end while
10: Function dilateRegion(map, rB[], rM[], rId)

11: repeat
12: changeInBorder=0;nRB[]=0;

13: for Gcij ∧ ∀Gcij ∈ rB) do
14: nL[] = 8Nbrs(Gcij );

15: for Gckl ∧ ∀Gckl ∈ nL[] do
16: if (class(Gcij ) = class(Gckl ) & rM(k, l) =

−1 then
17: rM(k,l)=rId;

18: nRB.add(Gckl );

19: changeInBorder=1;

20: end if
21: end for
22: if class(Gcij ) 
= class(Gckl ) ∧ ∀Gckl ∈ nL[])

then
23: nRB.add(Gcij );

24: end if
25: end for
26: rB[]=nRB[];

27: until changeInBorder

The algorithm starts by defining all the cells as not assigned to a region by initialising the

variable rM[]=−1. Next it searches a grid cell that has not been assigned a class yet and

lists it as the border of the region, as the region itself and region border at this moment

consists of a single cell (Algorithm 3:L 5), cell with −1 in rM is not assigned a region yet.

CRA then starts expanding/dilating the region (Algorithm 3:L 6). To expand the region, the

neighbouring eight cells around this region cell are checked if they already belong to any

class (Algorithm 3:L 14–16), if not then they are also classified according to Equation (6). If

they belong to the same region, they are assigned the same region ID and the new qualifying

cells are listed as the region border, otherwise the previous cells retain their status as region

border (Algorithm 3:L 17–18). To further expand the region, neighbouring cells of each

cell in the border cells are searched iteratively until no change occurs in the border of the

region (Algorithm 3:L 11,27), which implies the completion of the construction of a single

region with its boundary. The whole process repeats again by searching a new cell that

has not been assigned a region yet. It keeps on repeating until all the cells in the map are

classified into their corresponding regions (Algorithm 3:L 4, 9).

We maintain the generality of the framework by devising a technique that does not

assume any shape, size or number of events occurring in the WSN.

5 Case study: network partition prediction

We should formulate the problem according to the abstractions (maps, classes, etc.) of the

framework, to use our framework for network partition prediction.

5.1 Problem formulation

Partition detection is a complex problem as physical and network parameters are coupled

i.e. energy level of the nodes and communication range necessary to maintain connectivity.

Given that sensor nodes are resource constrained, eventually a WSN has to consider the

depletion of node batteries leading to the partitioning of the network. The energy dissipation,

however, is generally spatially correlated. Therefore, groups of nodes form hotspots that

deplete to coverage holes. A hole can be defined as a part of the network, which due to the

energy depletion is no longer covered. These holes, when grow, can disconnect a part of
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network from accessing the sink, defined as a partition. If the network energy state can be

modelled and predicted, then we can predict the occurrence of the holes and consequently,

the partitions. The holes and partitions appear as regions in an energy map. Our framework

has all the necessary tools to profile the energy dissipation patterns, predict the network

future energy state and detect the regions formed due to partitioning. Therefore, partition

prediction becomes a natural candidate problem to be solved using our framework.

We can now define the problem according to the abstraction of our framework. A grid cell

(cell in a grid map) gets disconnected from the network if it has energy below a minimum

threshold so that it cannot communicate anymore. These depleted grid cells form a region

that represents a hole in an eMap. Partition, however, is a group of non-depleted grid cells

that cannot access sink due to the holes. It is, therefore, sufficient to profile the energy

status of the network during its lifetime by collecting the energy profiles in order to predict

network partitioning. As per definition, the adaptation of the framework to predict network

partitioning consists of three phases (Section 4) that we discuss as follows.

5.2 The data collection phase

The nodes start the formation of 1-hops clusters as in Tulone and Madden (2006). During

the 1-hop cluster formation cluster heads are selected, the cluster heads learn about their

neighbouring clusters. All cluster heads start aggregating the energy values. AR3 model is

fitted and our proposed DRA (Algorithm 1) is executed based on these models. The models

for regions are aggregated using our proposed BTA (Algorithm 2). Consequently, models

are periodically sent to the sink.

5.3 The prediction phase

The sink regenerates the time series (energy values of cluster and hence the nodes) by

applying reverse transformation. The data regeneration of the reporting nodes actually

generates the energy profiles. The energy profiles of each node are modelled and predicted

as described in Section 4.2. Energy dissipation is a decaying process so the time series

contains trends but no seasonal components. The trends are removed by fitting polynomials.

ARMA models are fitted to random components, selecting the best fit model using AIC

criteria. After completion of modelling the node energy values are predicted and hence the

future WSN energy profiles.

5.4 The event (holes and partition) detection phase

The first step towards the abstraction of the WSN profile as a grid map (eMap in this case)

is the selection of resolution i.e. grid cell size at which this event (network partitioning or

holes) is to be detected. From the formulation of the problem, we know that we have two

coupled parameters, i.e. energy and communication range. Therefore, an upper bound for γ

is the communication range (R). To accommodate a worst case scenario of two nodes lying

on opposite corners of two grid cells, γ is given by γ < R/2
√

2, as shown in Figure 3.

The lower bound can be obtained from the node density, it should be selected such that the

network area is not over sampled, as we show in simulation Section 6.2. A cell is connected

to the neighbouring cells until at least a single node has enough energy to communicate.

The node having the highest energy level is selected as reporting node and Equation (5)

becomes ξij = max(vn) ∀ n ∈ gij .
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Figure 3 Max grid size
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The predicted energy profiles are converted to the eMaps. CRA developed in Section 4.3

is used for both partition and hole detection on these eMaps. As per the given scheme, we

define two energy classes at 10% and below as the partition (or hole) class, and above 10%

as non-partition class. This definition of energy classes gives the areas that are vulnerable

to partitioning because of low energy.

6 Evaluation – viability of our approach

To evaluate how well our framework meets the design requirements, we use the problem of

partition prediction as formulated in the case study. To determine accuracy and efficiency

of the framework, we compare the modelled and then regenerated energy values with

the actual sensed energy values generated on the nodes during simulations. We predict

the future energy states of every node and hence, the future profiles of the network. The

future profiles are then converted to maps. We denote these predicted maps as future grid

maps Gf.

6.1 Evaluation metrics

The transformation of a value spatial distribution into a map is a three-stage process, i.e. a

grid map, then a class map and finally, a regions map. The regions map is physically same as

a class map with additional information of region borders. Hence, we use two error criteria

for the grid map and the class map. We use two more metrics to assess the accuracy of

regions and efficiency in terms of number of packets generated for models in the network.

Our first metric is the mean square error (Equation (7a)) between the reference grid map

Gr (the actual data generated on the nodes) and the test grid map Gf, defined as

Ge =
∑

i

∑
j (ξrij − ξfij )

2

m
(7a)

Ke =
∑

i

∑
j

count (Krij − Kfij ) (7b)

where (i, j) are grid cell coordinates, Ge is the mean square sum of error, ξrij is the grid

cell value of Gr and ξfij is the grid cell value of Gf and m is the number of occupied grid

cells. Gr is the true data generated on the nodes, while Gf is the predicted map from the

gathered data from network, which undergo local modelling and hence will deviate from

true data due to modelling. Ge determines the relative accuracy of our approach against the

ideal case.

The second metric misclassification cell count (Equation (7b)) counts the misclassified

cells between the reference and the test class map. Ke is the total count of class cells that
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differ between the reference Kr and test class map Kf. ‘count’ function returns ‘1’ if the two

cells do not belong to the same class else it returns ‘0’. Ke is the direct measure of correct

classification of the grid cells into the classes and indirect measure of the accuracy of area

and border of the detected event area. Our third metric is the misclassified cells percentage

for each region to assess the accuracy the framework on regions level that we call regional

percentile error. The fourth metric message count is the efficiency metric, where we count

the messages required to collect all the profiles of the network.

6.2 Simulation settings

As two phases of the framework are carried out on the sink, therefore we performed our

simulations in Matlab. It is a very well-known simulation tool and suits our work as it

facilitates to model energy dissipation patterns of very huge number of nodes. The network

that we used in our simulations is generated as a random non-uniform distribution of nodes.

The node distribution, as shown in Figure 4, was selected to cover many possible scenarios

in a real deployment. It contains some areas with high-node density and some with low-node

density. It also contains two narrow bridges between two parts of the network that may lead to

network partitioning. For energy dissipation modelling, the common hotspot model (Zhao,

2002) was used. The energy dissipates in a spatially correlated manner around the hotspot.

The nodes nearest to the hotspot are more active and hence dissipate more energy. The

parts of the network that act as the coverage-bridge between two parts of the network and

around the sink show relatively high-energy dissipation rates. Subsequently, these areas are

modelled as hotspots.

We used a network containing 5,000 sensor nodes that span in an area of 50 × 100 unit2,

each node having a communication range R = 2 units. For R = 2, the upper bound for

grid cell size is 0.7 units. We found 0.3 as the lower bound because if we take a grid size

smaller than 0.3 then we have more occupied grid cells than the number of nodes that over

samples the network area. We therefore selected three grid sizes between upper and lower

bounds 0.3, 0.5 and 0.7 units. Energy dissipation history of 164 profiles was collected from

all the nodes. To evaluate the statistics, we divided the history of profiles into two parts.

About 139 profiles were used for modelling purposes and 25 used for validation. About 164

profiles represent the network lifetime history. If we scale 164 lifetime profiles to 164 days

then 139 days of network operation are used to predict the next 25 days network status.

About 139 profiless of WSN were used to predict next 25 profiles. Each predicted profiles

of the network was transformed to grid map.

Figure 4 Node distribution (see online version for colours)

Bridges
High activity
     hotspotSink
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6.3 Simulation results

Figure 5(a) shows the mean square sum of error for 25 prediction steps for 3 different grid

sizes. The low values of mean square error show that the predictions are very accurate. The

increasing trend is natural, as an increasing number of prediction steps make the prediction

model less accurate.

Figure 5(b) shows the misclassified cells count. The mean square error results

(Figure 5(a)) imply that we cannot expect much inaccuracy in misclassification. The

highest count is naturally in the case of grid size 0.3, which reaches 88 at the peak.

The total number of occupied grid cells at this resolution is 4,196, so a worst case

misclassification of 88 cells accounts to around 2% of the total cells. We also see an

increasing trend in the misclassification for each prediction step because of the increasing

error between model approximation and the actual data. The oscillations in the graph

give interesting insight. We have defined two classes of energy and as soon as the grid

cells cross the class threshold (10% of energy) they are classified into the partitioned

class. The crests appear when cells in the actual data (Kr) cross the threshold of 10%

but the cells from the modelled data (Kt), due to the lag in value, do not cross the

threshold at the same time. Therefore, cells from the reference class are classified in the

partitioned class but corresponding cells in the test class are still in the non-partitioned

class, which increases the count of different cells. As soon as the modelled data crosses

the threshold, the error decreases and troughs appear but a clear trend in increase of error

continues.

Figure 6 gives account of the error in the detected regions predicted through profiles

of the WSN. To summarise the results, we have selected prediction maps separated by

five prediction steps. On first prediction step, there are only three regions with less than

2% max percentile error. With each next prediction step, the number of regions increases

and errors distribute between the different regions. In the worst case scenario, a region

has a maximum percentile error of less than 2.7%. The results, however, show that

each region is very accurately detected. Misclassification per region on the average is

less than 3% which shows the accuracy of our approach to detect the regions and their

boundaries.

Figure 5 Predictability and accuracy measures of the framework: (a) mean square error and

(b) misclassification cell count
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Figure 6 Misclassification percentile error per region
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Figure 7 Regions and outliners for data compression using DRA: (a) cumulative regions and

(b) cumulative outliners
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Now, we summarise the results with respect to efficiency metric i.e. number of packets

needed to create energy profile of the whole network. To profile the whole network of 5,000

nodes and to collect 164 profiles over the entire lifetime requires nearly 1 million data points.

This overhead is reduced dramatically with the help of our DRA. Models are constructed

for clusters and regions are formed based on the models using DRA. We fix the length of

history that can be represented by a model. We chose 8, 14 and 20 values to be modelled

by a single model. The graphs in Figure 7(a) and (b) represent cumulative sum of region

formed and outliners, respectively, that we require over the lifetime of network using DRA.

To observe the impact of �Nci (the max: outliners allowed for DRA), we chose values

from 0 to 4 to allow the clusters to form regions. As a model does not approximate 100%

accurately all the data, therefore in addition to �Nci , we allow outliners for each cluster

head to build its model and fit to its data. Therefore, we will observe outliners even when we

set �Nci = 0. From Figure 7(a), we can conclude that the number of regions being formed

decreases as we allow more outliners. Allowing more outliners relaxes the neighbouring

clusters to fit to a given model. Similarly from Figure 7(b), the number of outliners to be

reported naturally increases also. The length of data to be represented by a model also affects

the regions to be formed. The shorter length (8) forms more cumulative regions over the

lifetime as it has to report more often than the longer length models that manage to fit more

data within one model. However, shorter length model has to report very few outliners first,

but shoots immediately as shorter length has more regions. Longest length models (20) have

least regions initially again because it reports the complete data in less cycles of sending
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the models but increases to maximum as it is very hard for the neighbouring clusters to

agree for a very long length of attribute. These long length models also have the maximum

number of outliners to be reported even �Nci=0. Therefore, maximum number of regions

are formed but decreases afterwards as it has to make less updates. The data length to be

modelled is a very important factor in this whole compression scheme. We found from our

analysis that there is a compromise between the two extremes, which in our case was around

14. At this value, the number of regions formed and the number of outliners to be reported

is balanced between the two extremes.

Each region in Figure 7(a) is equivalent to send a message to the sink as a region

is represented by this model. Three outliners are grouped in one packet, the number of

packets for outliners is equivalent to 1/3 of the outliners. With the settings of modelled data

length=14 and �Nci = 1, we have to send 40,499 packets, which is 4.93% of the total raw

data to be reported otherwise. The results obtained in the evaluation are in accordance with

the design requirements of the framework. It is lightweight as DRA and BTA cumulatively

reduce the data to less than 5% of the raw data needed to profile all nodes. The achieved

predictions are long term and accurate, represented by the maximum prediction error of

approximately 3% in misclassification of the regions of the map for 25 prediction steps.

CRA detect energy holes that will partition the network in 22 days (in scaled time as

explained in Section 6.2). From Figure 6, we conclude that the partition prediction is more

than 97% reliable (because of 97% region accuracy).

7 Conclusion and future directions

We developed a generalised framework for efficient predictive monitoring to forecast events

in order to support an autonomic self* system for WSN. We demonstrated that it can

be effectively used to predict events related to different attributes. We described it as a

three-phase strategy. In the data collection phase, we proposed efficient algorithms to spatio-

temporally compress the attribute values and transport them to the sink. In the prediction

phase, we predicted the attribute states for a longer length of time. In the event detection

phase, we proposed a generalised event detection algorithm. We demonstrated the feasibility

and validity of approach by predicting the network partitioning as a case study. We were

able to predict multiple holes and the resulting partitioned area of the network; information

necessary to initiate proactive self* actions. Simulations support the practicality of our

approach by showing its high accuracy and low monitoring overhead on the network. To

further increase the efficiency, we propose to adapt the spatio-temporal data compression

to the occurrence probability of events. For instance, sensor nodes should increase data

model accuracy if they are located in areas where events frequently occur or when an event

is suspected. We also plan to extend our approach for proactive reconfiguration of network

entities to enhance functionality and dependability through the predicted events.
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