
FTDE: Distributed Fault Tolerance for WSN Data
Collection and Compression Schemes

Azad Ali, Abdelmajid Khelil, Neeraj Suri
TU Darmstadt, Germany

{azad,khelil,suri}@deeds.informatik.tu-darmstadt.de

Abstract—Wireless Sensor Networks (WSNs), being power
and communication capacity constrained, often employ data
compression schemes to reduce the data volumes. However,
various factors, such as low node reliability and communication
faults, can compromise the core objective of accurate collection
and delivery of the sensor data. However, contemporary com-
pression schemes often fail to consider operational faults, and
the resulting data errors arising from low node reliability (node
crashes), and communication faults (data and links corruption)
result in erroneous data being collected. This paper proposes a
novel model-based fault-tolerance technique applicable to varied
compression schemes. Being fully distributed, our scheme corrects
data errors at the point of origin (faulty sensor nodes), and thus
avoids costly transmissions of corrupt data, decreasing message
cost, and enhances compression effectiveness by correcting the
erroneous samples.

I. INTRODUCTION AND CONTRIBUTIONS

Wireless Sensor Networks (WSNs), typically built of low-
cost, unreliable components and often deployed in harsh
environments, encounter a wide variety of operational and
environmental faults. The faults can be hardware, memory,
sensor or transceiver defects that result in errors such as node
crashes, message corruption, sampling errors, or communica-
tion failures such as message losses or network partitioning
[1][2]. As the core objective of a WSN is to collect data of
usable fidelity, hence effective fault handling needs address
the issue of erroneous/corrupt data. Existing works have doc-
umented that a substantial portion of aggregated data (up to
49%) collected in actual WSN deployments can be faulty, with
up to 3-60% incorrect data for a single sensor [3]. Such high
corruption rates undermine the usefulness of the data, thus
motivating our approach to address data corruption.

A major challenge for battery-powered finite energy WSN
deployments (and for recovery solutions) is the high cost of
communication operations. Accordingly, our work proposes
a communication-efficient distributed approach to (a) handle
data errors close to the data source, and to (b) use repre-
sentative data models instead of multiple instantaneous sensor
readings. This not only helps us reduce the message costs but
also allows to detect and repair data errors more efficiently.
We highlight the direct adaptability of our approach to various
existing data collection schemes. We also demonstrate how
existing data compression schemes [4] can easily be extended
to become fault tolerant using our proposed approach.

Our approach implicitly addresses a large number of po-
tential faults by constructing an abstract/composite data error
class that takes advantage of observing (and making a model

Research Supported in part by TUD GRK 1362, CASED & EC-SPRIDE.

of) data patterns of recently sensed data, either locally or in
the immediate proximity. Our proposed model-based Fault-
Tolerance for Data Errors (FTDE) scheme allows us to detect
errors with minimal additional communication and computa-
tion overhead. The effective message cost is often negative
as (i) the message cost incurred by the proposed scheme is
almost negligible, and (ii) our scheme detects the erroneous
samples and discards them which would otherwise would have
been classified as outliers and need to be transported to the
sink incurring considerable message costs. This reduction in
message cost is validated by simulation results.

II. RELATED WORK

Fault handling in WSNs, i.e., detection, prevention, iso-
lation, identification and recovery, has been extensively tar-
geted given they being built using low-cost failure-prone
components. WSN relevant faults1 are typically classified into
two broad classes: Functional faults and data errors, where
functional faults eventually lead to data errors. We present a
brief synopsis to highlight the needed research gaps and refer
the reader to [1][2] for detailed exposition.

a) Functional Faults in WSNs: Functional faults span
hardware faults (sensor, memory), software faults [5] (bit flips,
buffer overflows), which may lead to compromised (transient
or permanent) functionality of nodes, communication failures,
packet loss or link breakage. A common feature of the tech-
niques addressing functional faults is that they are often driven
by the network topology and less by sensed data content and
semantics. Accordingly, they focus on topology anomalies such
as corrupt packets [6], node crashes, faulty links. Most of
approaches either fail to be effective across varied functionality
or across the varied classes of failures. Hence, our focus is on
data errors that we discuss next.

b) Handling Data Errors in WSNs: Data errors result
from internal (functional faults) and external influences, e.g.,
environmental interference and noise. There are four primary
classes of sensor data errors: Sporadic irregularities/spikes,
noisy values, constant/stuck values and constant drifts from
the phenomena value. Most of data error detection schemes
rely on a basic assumption that the sensor readings from the
same region should have similar values [7]. FIND [8] ranks
event suspecting nodes based on their sensor readings as well
as their physical distances from the event. Consensus-based
approaches [9] abstract the fault pattern by achieving a data-
based agreement among the nodes that have detected a sudden

1A fault represents an anomalous condition; error is the observable deviance
resulting from the activation of the fault, and failure represents loss of service.

reading change in order to detect an event on consensus basis.
Some work propose to solve constant drifts through online
calibration using a correction function [10][11][12]. Outlier
detection [13] is an approach related to data error handling.

The Novelty of our Proposed Data Errors Approach: We
focus on detection of data errors, implicitly accounting for the
root causes as the correctness of the delivered/processed data is
imperative than ascertaining the root cause. We use selective
sampling from constructed data models, which help to filter
the fluctuations and the model output can be reliably used
to detect individual data errors. Our approach considers both
event-based and continuous data collection designs to cover a
wide spectrum of WSN applications.

III. FAULT ABSTRACTION AND DATA ERRORS

We refer to the environmental data that needs to be col-
lected (e.g., temperature, pressure) as reference data. The data
actually collected by the sensor nodes is the sampled data and
may differ from the reference data based on sampling fidelity
and from faults causing data errors. Thus, the sampled data
is often not good enough to be used as the reference data.
Moreover, the instantaneous (sampled) values are not suitable
for fault detection because of the erroneous samples. Hence,
we need a data approximating mechanism to approximate the
reference data. Accordingly, we propose a scheme where we
first construct a model out of the sampled data and use the
model output to represent the reference data. The model output
in conjunction with the sampled data is then used to detect and
correct the erroneous samples. The model does not depend on
a single instantaneous value, hence it is relatively less prone to
the the faults and the resulting data errors. Hence, the model
provides a good approximation of the reference data.

1) The Fault Abstraction: Various functional faults result
into data errors. Examples include sensor faults generating
wrong readings, bit flips in memory affecting the sensor data,
non-recommended deployment conditions resulting in wrong
calibrations. However, we do not detect the faults explicitly,
rather we focus on the detection and correction of erroneous
data produced by the underlying faults. Consequently, we do
not require any specific knowledge of a given fault but still
implicitly correct it by correcting sampling errors. Hence, in
the rest of manuscript, we will be dealing with data errors
instead of faults directly. We define an erroneous sample as:

Definition 1: An erroneous sample ve(t) deviates at least
ξ units from the reference value v(t), i.e., |ve(t)− v(t)| > ξ.

In the absence of reference values, erroneous samples devi-
ating less than ξ from the reference values are not discernible
from the non-erroneous sampled data (elaborated in Sec. IV-B).

2) Data Error Types: Data error types in sampled data
from WSNs has been extensively studied in [14]. Please note
the term “data errors” in current work and “data faults” in
[14] are equivalent. Authors in [14] classify the data errors
as short duration high variation sample values (NOISE), sharp
suddenly momentary changes between normal sampled values
(SHORT), long duration beyond expected sample values and
uncorrelated to the underlying physical phenomenon (CON-
STANT or “Stuck-at”). SHORT are the transient errors, CON-
STANT are the permanent errors and NOISE can be either a
transient or permanent depending on their duration.

IV. MODEL-BASED DATA-FAULT-TOLERANCE

We now detail the proposed scheme.

A. Data Error Detection and Approximation Models

In the absence of reference data, sensor nodes cannot
differentiate a correctly sampled value from a noisy sample.
Hence, we use data modeling to approximate the sampled data,
which in turn is used to generate reference data. The AR
(Auto-regressive) model acts as low-pass filter and removes
noisy samples. The filtered output from the model is used
in conjunction with sampled data to detect data errors. The
AR model serves dual purpose of approximating the sampled
values for data compression and filtering by removing the noisy
samples. For details on model construction please refer [15].

B. Sporadic Data Errors

Sporadic data errors refer to SHORT data errors and also
NOISE when it lasts for less than one fourth the training
queue length (T). For sporadic data errors we first propose
a mechanism to detect the anomalies in the sampled data and
then describe a mechanism to correct these anomalies. The
detection process is divided into two stages, (a) local node
level detection, and (b) cluster level detection. Most of the
time series schemes such as PAQ [16] and ASTC [15] already
have a clustering scheme implemented. Hence, for FTDE we
do not have to additionally implement any clustering scheme
and can directly utilize available clustering.

1) Node Level Detection: Each node initially detects spo-
radic data errors. However, as shown later, individual nodes can
misclassify some legitimate samples as data errors. Hence, a
second cluster-level stage is needed to scrutinize the classifica-
tion in the first stage (node level) and make final classification.

Adaptive Modeling (AM) through Outlier Detection: Sensor
nodes first construct a model out of the sampled data. Using
the constructed model, the estimated reference data is calcu-
lated. The sampled values not appropriately approximated by
the model within the user defined accuracy bounds (ϵ) are
termed as outliers. Accordingly, if the difference between the
sampled value and the model estimated value exceeds ϵ, it is
generally classified as outlier. Non-erroneous samples do not
significantly vary around mean, hence the outliers are expected
to be within a specified valid range. Hence, as described in
Def. 1, we have a threshold ξ to detect data errors, and if the
approximation error is beyond ξ, it is classified as a data error
instead of outlier. Nodes can determine an estimated value to
be an outlier or error (e(t) = v̂(t)− v(t)) using Eq. (1):

v̂(t) =

{
v̂(t), |e(t)| < ϵ;
v(t), |e(t)| ≥ ϵ and |e(t)| < ξ;
v̂(t), |e(t)| ≥ ξ

(1)

Algorithm 1 describes the process, on a sensor node, for the
classification of sampled values into outliers and data errors.
The set V refers to the approximated reference values v̂(t) as
estimated by the model. Alg. 1 tracks data errors and outliers
by constructing two sets, namely O(t), set of samples classified
as outliers and E(t), set of sampled classified as data errors.
Based on the outlier and data error threshold (ϵ and ξ), the
estimated value is classified either as an outlier (Alg. 1, Line

5), or as a data error (Alg. 1, Line 7), or it is correctly estimated
by the compression scheme. The lists of outliers (the set O)
and preliminary errors set (data errors, set E) are then sent
to the cluster head for further processing. The data errors are
processed to identify if any sample values originating from an
event were incorrectly classified as data errors.

Algorithm 1 Error and Outliers Detection Algorithm
1: for v̂(t)inV(t) do
2: e := |v̂(t)− v(t)|
3: if e > ϵ and e < ξ then
4: v̂(t)← v(t);
5: Append v(t) to O(t);
6: else if e ≥ ξ then
7: Append v(t) to E(t);
8: end if
9: end for

2) Cluster Level Detection: A physical event, i.e., sudden
change in physical attribute such as temperature, pressure,
may also exhibit behavior similar to sporadic errors and
consequently be misclassified as a data error during stage 1.
Hence, we consider the node level sporadic data error detection
only as an initial/temporary classification, because a single
node does not have enough information to determine if the
classification of the sample as a data error is due to corruption
of the sample by an underlying functional fault or it is a
result of a physical event. Hence, we have devised a second
stage cluster-level sporadic data error detection mechanism that
can reclassify the sample values classified as data errors in
the first stage to either data errors or events. FTDE requires
simple 1-hop clusters that are typically available in different
compression schemes [15] [16]. The cluster head collects the
data errors from all the member nodes in the cluster, hence
it can use this information to verify if the initial classification
by a node was incorrect and then reclassify the incorrectly
classified samples as an outliers

In order to differentiate a data error from a physical event,
we develop a formal notation for data errors and then develop
a logical basis for differentiating the data errors from physical
events. We now define the terms related to the probabilistic
random error events and physical events. The classification of
a sample value as an error (hence, detection of a sporadic fault
or an event) is a random event.

Definition 2: The random event the model approximated
value is classified, using Alg. 1, as data error due to corruption
by an underlying functional fault is defined as data error event.

Definition 3: The random the model approximated value is
classified as an event arising due to a change (sudden, extreme)
change in the phenomenon is defined as a phenomenon event.

Next, we discuss both events and analyze how they can be
differentiated using the error set (E(t)), obtained using Alg. 1,
from multiple sensor nodes in the cluster.

Distinguishing Data Error Events from Phenomenon
Events: We now develop the basis to differentiate the two
events and then use it to classify them on the cluster head.

Axiom 1: Data error events taking place on two separate
sensor nodes are independent.

Based on the discussion in Sec. IV-B, the underlying
cause of the data errors are predominantly random hardware
faults resulting in random data errors. These factors affect
each sensor node independently. Moreover, faults of one
node cannot cause errors on another node. Hence, a faulty
sensor on Node 1 will not corrupt the samples of Node 2.
Accordingly, if sporadic data errors on Nodes 1 and 2 are
given by E1(t) and E2(t), then data error events occurring
on two different nodes are independent from each other, i.e.,
P (E1(t) ∧ E2(t)) = P (E1(t))P (E2(t)).

As data error events are random events (Def. 2):

Theorem 1: Data error events occurring on two different
sensor nodes are independent random variables.

Proof: A data error event detected on a sensor node is a random
stochastic event. Accordingly, we assume R1 and R2 represent
random variables for data error events on sensor node S1 and
S2. For R1 and R2 to be independent, each data error event
(random event) of R1 must be independent of data error events
of R2 and vice versa. From Axiom 1, each data error event
E1(t) and E2(t) belonging to random variables R1 and R2 is
independent because of physically independent hardware faults
that cannot influence the other sensor node, hence R1 and R2

are also independent random variables.

Corollary 1: The random variables for data error events
on a set of n sensor nodes are independent.

Using Theorem 1, each pair of data error event random
variables Ri and Rj belonging to sensor pair Si and Sj , i ̸= j
is independent. Hence, all data error event random variables
for n sensor nodes are independent of each other.

Axiom 2: An environmental event detected separately
by two sensor nodes at time t is not independent.

Unlike data error events, where each event is generated by a
separate stochastic process (hardware fault), the environmental
events are essentially replication of the same random variable,
generated by a single stochastic process (e.g., suddenly change
in temperature/pressure) that is sampled by multiple sensor
nodes. Hence, an environmental event happening on two sensor
nodes at time t is not independent.

Axiom 2 can be extended, similar to Axiom 1, to show that
the environmental random variables (random variables related
to environmental events) are not independent.

Corollary 1 and Axiom 2 set the foundation for differenti-
ating data error events from environment events. Accordingly,
the cluster head can determine if event random variables
(initially reported by all the sensors as data error events, E(t),
classified using Alg. 1) of two sensor nodes are independent
then these are due to data error events, otherwise they are
cause by environment events. However, cluster head needs to
know the joint probabilities and the probabilities of the events
to determine independence of the events, as given in Axiom
1. Moreover, sensor nodes have very limited computational,
memory and energy resources. Given that we have shown that
(a) the error events are independent, while (b) phenomenon
events are not independent, and (c) the evaluation on the
sensor nodes is not computationally feasible, we have devised
a simpler measure to infer the independence of the events to
detect the data error events.

Detection of Data Error and Phenomenon Events: The
cluster head possesses a broader localized view on the events
using the preliminary error sets collected from all the member
nodes. The cluster head uses the results from Corollary 1
to detect data error events. However, as discussed earlier,
using Corollary 1 is not practically feasible, as the cluster
heads do not have the joint probabilities. Hence, we propose a
simple two stage mechanism to detect data error events. The
cluster head (SH) constructs a cumulative preliminary error
set (ESH

(t), Alg. 2, Line 1) by merging preliminary error sets
of its member nodes (ESi(t), where ESi(t) is the preliminary
error set from sensor node Si belonging to the cluster Cj).
The cluster head detects the error events in two stages using
the cumulative preliminary errors set.

In the first stage, the cluster head determines if more than
one sensor node detected a data error event for a given time
index (Alg. 2, Line 3). As the data error events are independent
(Axiom 1), it is highly unlikely that more than one node will
detect the data error events at the same time index. Even if they
do detect data error events at the same time, they will still be
independent. Whereas, for a phenomenon event we can easily
observe more than one nodes reporting a data error event (due
to mis-classifiction during in the preliminary error set), which
actually will be indicative of a phenomenon event, rather than
a data error. However, we cannot fully rule out the possibility
of data error events taking place at more than one nodes at a
given time index as a coincidence, depending on the cluster
size and node density. Hence, if the cluster head detects a data
error on more than one sensor node, it needs to process further
to verify and finally classify the concerned sample either as a
data error event or a phenomenon event.

In the second stage, the cluster head processes the values
detected as data error events in the first stage. It computes
the standard deviation of these error values for all cluster
member nodes that reported these data error events (Alg. 2,
Line 4). If the error values were generated by a phenomenon
event, the sampled values collected by various nodes will be
highly correlated (as they are not independent) and the standard
deviation is expected to be low. Whereas, for error events,
even if they happen to occur at the same time index, it is
highly unlikely that the values sampled due to the data errors
are correlated. Hence, we define a tolerance threshold for the
standard deviation around the mean for the errors (ρ) to qualify
as phenomenon event, i.e., if the standard deviation of the
error values are beyond the defined threshold then they are
classified as data error events (Alg. 2, Line 5), otherwise, they
are classified as the phenomenon event (Alg. 2, Line 6-8). In
Alg. 2, I(t), P(t) refer to finally classified data error events
and phenomenon events sets respectively. The sample values
related to final phenomenon event set P(t) are passed to the
sink as outliers, so that the sink may appropriately approximate
the phenomenon anomalies, whereas, the data errors classified
as data error events are suppressed and not sent to the sink.
Instead model is used for sample estimation .

V. PERFORMANCE EVALUATION

We now discuss the simulation results for proosed scheme.

Algorithm 2 Classification of preliminarily faults into fault
and phenomenon events

1: Construct ESH from ESi for Si ∈ Cj

2: for ti ∈ T do
3: if COUNTSj∈Ck

(ESH
(Sj , ti)) > 1 then

4: if SDSj∈Ck
(ESH

(Sj , ti)) > ρ then
5: I(t)← I(t) ∪

(∪
Sj∈Ck

ESH
(Sj , ti)

)
;

6: else
7: P(t)← P(t) ∪

(∪
Sj∈Ck

ESH
(Sj , ti)

)
;

8: end if
9: else

10: I(t)← I(t) ∪
(∪

Sj∈Ck
ESH

(Sj , ti)
)

;
11: end if
12: end for

A. Simulation Settings

In order to conduct comprehensive evaluation simulations,
we used the publicly available real-world data set [17] as
reference data. We use TOSSIM to perform network simu-
lations and MATLAB to reconstruct the signal at the sink. We
implemented FTDE for PAQ and ASTC to evaluate the FTDE’s
adaptability to different schemes. We conduct simulations on
humidity data as it varies steadily over time to further evaluate
the adaptability of the proposed scheme to changing dynamics.

We selected third order AR models with user defined
approximation threshold for compression scheme ϵ = 0.1,
inter-node error threshold ρ = 0.5, data error threshold ξ = 4
and a training length of 75. In order to intensively evaluate
FTDE, we performed controlled corruption of the original data
set at the rate of 5%, 10%, 20%, 30%, 40%, 50%, 60%, and
70% by adding noise. As discussed earlier, we know from
the literature that the aggregated data in WSN can be corrupt
up to 49% and up to 60% for an individual node [3]. We
increased the corruption rate even further to 70%, as it allows
us to evaluate the behavior of the proposed scheme when the
amount of corrupt data is more than the real data. FTDE
starts to degrade for error rates beyond 50%, as the models
constructed out of majority of corrupted samples actually
match closely to the corrupted samples than the reference data.
The added data errors are the combination of SHORT, NOISE
and CONSTANT at varying degrees, as various real world data
from sensor nodes contain these data errors at varying degrees
[3]. ξ is selected to be twice the standard deviation, which
causes some of outliers to be misclassified as errors in stage 1
(Sec. IV-B1). However, it reduces the chances of the erroneous
samples to be classified as outliers. Due to our multistage error
classification mechanism the misclassified outliers samples in
stage 1 (Sec. IV-B1) are later correctly classified back to
outliers in stage 2 (Sec. IV-B2). Interestingly, we do not have
to explicitly adapt to the rate of data corruption to detect the
faults. If the faults rate is low and there are predominantly
SHORT or short duration NOISE data errors, they are corrected
by the transient error detection mechanism. However, if the
transient error detection fails, the permanent error detection
mechanisms runs in parallel to detect the CONSTANT and
long duration NOISE data errors.

1) Methodology and Performance Metrics: Our perfor-
mance evaluation is based on two key metrics: Accuracy of

collected data and message efficiency as an implied measure
of the energy consumption. The humidity data set [17] is
considered as the reference. The corrupted data set is used
in the simulations. Please note that in reality we will not have
the reference data, rather only the sampled data. The corrupted
data used for the simulations is equivalent to the sampled
data. We collect the data models and outliers at the sink
through PAQ and ASTC, both enhanced by FTDE to detect and
correct the sample errors in the network. The collected data
(approximations using the received models and outliers) is then
compared with the reference data to evaluate the effectiveness
of FTDE. We define accuracy as the mean square error (MSE)
between the data collected assuming corrupted data and the
reference data. The plots depict the aggregated MSE of all
the sensor nodes over the complete duration of approximated
data as accuracy measure. We measure the message efficiency
as the message overhead created by the selected enhanced
compression scheme, i.e., either PAQ with FTDE or ASTC
with FTDE. The message cost accounts for all the stages of
both compression scheme and FTDE, i.e., modeling, outliers,
errors and events detection, reporting to the cluster head and
finally transporting the models and the outliers to the sink.
In the first simulation study, we compare the performances
of PAQ, FTDE-PAQ (PAQ enhanced with FTDE) and FTDE-
PAQ-CHEF (PAQ enhanced with FTDE and where the data
collected by the cluster head (CH) data is Error Free (EF)).
In a second study, we compare the performance of ASTC to
FTDE-ASTC (ASTC enhanced with FTDE).

B. Results

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70

C
um

ul
at

iv
e

M
ea

n
Sq

ua
re

 E
rr

or

Sampled Data Error Percentage

PAQ

FTDE-PAQ ε = 0.1

FTDE-PAQ ε = 0.3

FTDE-PAQ ε = 0.5

FTDE-PAQEF

Fig. 1. Mean Approximation Error Relative to Reference Data

Fig. 1 depicts the approximation error relative to the
reference data for PAQ, FTDE-PAQ and FTDE-PAQ-CHEF .
We can observe that PAQ cannot detect erroneous samples and
blindly tries to fit to the corrupted data. Hence, relative to the
reference data the resulting error is considerably larger than
the error threshold ϵ = 0.1. Whereas, FTDE can easily detect
the erroneous samples and stays close to the user defined error
threshold up to 10% of data corruption. The impact of error
threshold is negligible on FTDE in terms of achieved cumula-
tive MSE, hence the results for various error thresholds overlap
indistinguishably on the graph However, FTDE performance

degrades with increasing data corruptions. As the sampled data
(here the corrupted data) is used for constructing the models,
hence the models also get corrupted. Still, FTDE performance
is consistently better than standard PAQ scheme. FTDE-PAQ-
CHEF depicts a hypothetical scenario, where cluster head data
is error free resulting into error free model. Accordingly, FTDE
can easily detect the erroneous samples and the resulting error
is considerably reduced. Thus, the performance of FTDE can
be significantly improved by constructing the model on nodes
that have least corrupted data. This can be achieved either by
exploiting an adaptive compression scheme like ASTC or a
few high quality sensor nodes.

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 10 20 30 40 50 60 70

M
es

sa
ge

 C
os

t

Sampled Data Error Percentage

PAQ

FTDE-PAQ ε = 0.1

FTDE-PAQ ε = 0.3

FTDE-PAQ ε = 0.5

FTDE-PAQ CHEF

Fig. 2. FTDE-PAQ Message Cost

Fig. 2 depicts the message cost incurred by PAQ, FTDE-
PAQ and FTDE-PAQ-CHEF . As the errors and outliers are
indifferent to PAQ, hence it classifies all as outliers and
accordingly transport them to the sink to maintain the accuracy.
The large number of outliers entail a high message cost.
In contrast, FTDE-PAQ can detect the erroneous samples
and discard them using the proposed two-stage model-based
scheme. Due to true distributed nature of the scheme, we
are able to detect and discard the erroneous sample at the
origin. Eliminating erroneous samples reduces the number of
outliers to be reported, considerably reducing the message
cost. We also observe that more the data is corrupted, more
the samples are classified as erroneous and discarded and not
transported to the sink, instead they are approximated through
compression scheme models. This results in steady decline in
message cost. Further simulations at ϵ = 0.3 and ϵ = 0.5
show that we do actually observe a slight increase in message
cost initially when the data corruption is increased from 5%
to 10% and then dropping until 50%. It is noteworthy that
ϵ = 0.1 represents a very high level of accuracy requirement
for the given data set, as it requires the model approximation
to be within 0.2% of the original data. Hence, (a) there are
many outliers produced due to high accuracy requirement, and
(b) the model is not accurate, as it was constructed from the
corrupted data. However, as we increase the data corruption
rate, it reduces outliers and instead introduces more erroneous
samples (as more outlier samples are also replaced by the er-
roneous samples). Once, data corruption rate crosses 50%, the
corrupted samples become more abundant than the actual data.

The constructed model built from these corrupted sampled
and tries to approximate the corrupted samples instead, which
results in mis-classification of errors as outliers increasing
message cost. Fig. 2 also depicts an interesting result. As
the cost includes all the message exchanges, including the
message overhead of FTDE, hence we can observe that the
the effective message cost of FTDE is negative in comparison
to the standard compression scheme. This is because the
overhead introduced by the FTDE is negligible in comparison
to the message overhead it reduces by detecting the erroneous
samples and avoid to report them to the sink as outliers.
Hence, FTDE not only increases the approximation accuracy
but additionally reduces the message cost.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6 7 8
 6000

 7000

 8000

 9000

 10000

C
um

ul
at

iv
e

M
ea

n
Sq

ua
re

 E
rr

or

M
es

sa
ge

 C
os

t

Corrupted Data Sets
TDFT-ASTC Accuracy

ASTC Accuracy
TDFT-ASTC Msg Cost

ASTC Msg Cost

Fig. 3. FTDE-ASTC Accuracy and Message Cost

In order to test capability of FTDE to take advantage of
ASTC’s adaptive mechanism, the data corruption was carried
out at different rates for different nodes, ranging from 10%
to 50%, which corresponds to the natural distribution of data
errors better in contrast to uniform error rate. In Fig. 3,
we illustrate the performance results for FTDE-ASTC and
ASTC w.r.t. accuracy and message efficiency. ASTC fairs
better than PAQ and maintains low MSE as it can adaptively
select the best model. However, it can not distinguish an
outlier from erroneous sample, hence FTDE-ASTC achieves
far better MSE results. Accordingly, we observe that FTDE-
ASTC mostly maintains a MSE of maximum 0.4 in Fig. 3,
because it can exploit ASTC adaptive model selection scheme
to detect the erroneous values and discard them. Similarly,
in Fig. 3 the message cost for ASTC is very high because it
classifies all the errors as outliers and reports them to the sink.
Whereas, FTDE-ASTC discards the erroneous sample avoiding
unnecessary message transmissions. The aggressive message
drop for data set 4 in Fig. 3 is achieved because one of the
nodes participating in modeling construction had particularly
low corruption rate, and FTDE-ASTC exploited the adaptive
modeling to identify and select the specific node and used its
model to discard the erroneous samples.

VI. CONCLUSION

We proposed FTDE, a fully distributed, fault-agnostic data
error detection and correction scheme. Following the design
objective, the proposed scheme is very lightweight in terms of

memory, computation and message cost. The simulation results
demonstrated that established time-series based compression
schemes, when enhanced by FTDE, are able to isolate erro-
neous data and maintain high approximation accuracy relative
to the non-enhanced schemes. In addition, FTDE actually
reduced the message overhead since it allows to suppress the
transmission of erroneous data. We demonstrated through the
simulations that FTDE can adapt to different time-series based
schemes and accordingly further improves its own performance
by exploiting the specific enhancement of a given scheme. In
future, we plan to port the proposed FTDE to other time-
series based WSN operations such as data aggregation and
data prediction with the aim of designing a generalized data
fault tolerance scheme.

REFERENCES

[1] M. Cinque et al., “A survey on resiliency assessment techniques for
wireless sensor networks,” in Proc. of MOBIWAC’13, 2013, pp. 73–80.

[2] H. Liu, A. Nayak, and I. Stojmenovic, “Fault-tolerant algo-
rithms/protocols in wireless sensor networks,” in Guide to Wireless
Sensor Networks, 2009, pp. 261–291.

[3] A. B. Sharma et al., “Sensor faults: Detection methods and prevalence
in real-world datasets,” ACM TOSN, vol. 6, no. 3, pp. 23:1–23:39, Jun.
2010.

[4] M. A. Razzaque, C. Bleakley, and S. Dobson, “Compression in wireless
sensor networks: A survey and comparative evaluation,” ACM TOSN,
vol. 10, no. 1, pp. 5:1–5:44, Dec. 2013.

[5] M. M. H. Khan, H. K. Le, H. Ahmadi, T. F. Abdelzaher, and J. Han,
“Troubleshooting interactive complexity bugs in wireless sensor net-
works using data mining techniques,” ACM TOSN, vol. 10, no. 2, pp.
31:1–31:35, Jan. 2014.

[6] A. R. M. Kamal, C. Bleakley, and S. Dobson, “Packet-level attestation
(pla): A framework for in-network sensor data reliability,” ACM TOSN,
vol. 9, no. 2, pp. 19:1–19:28, Apr. 2013.

[7] M. C. Vuran, O. B. Akan, and I. F. Akyildiz, “Spatio-temporal corre-
lation: Theory and applications for wireless sensor networks,” Comput.
Netw., vol. 45, no. 3, pp. 245–259, Jun. 2004.

[8] S. Guo, H. Zhang, Z. Zhong, J. Chen, Q. Cao, and T. He, “Detecting
faulty nodes with data errors for wireless sensor networks,” ACM TOSN,
vol. 10, no. 3, pp. 40:1–40:27, May 2014.

[9] T. Clouqueur, K. Saluja, and P. Ramanathan, “Fault tolerance in
collaborative sensor networks for target detection,” IEEE ToC, vol. 53,
no. 3, pp. 320–333, Mar 2004.

[10] Bychkovskiy et al., “A collaborative approach to in-place sensor cali-
bration,” in Proc. of ACM/IEEE IPSN’03, 2003, pp. 301–316.

[11] E. Miluzzo et al., “CaliBree: A self-calibration system for mobile sensor
networks,” in Proc. of IEEE DCOSS’08, 2008, pp. 314–331.

[12] N. Ramanathan et al., “Rapid Deployment with Confidence: Calibration
and Fault Detection in Environmental Sensor Networks,” in Technical
Report CENS-TR-62, Center for Embedded Networked Sensing, 2006.

[13] Y. Zhang et al., “Outlier detection techniques for wireless sensor net-
works: A survey,” IEEE Communications Surveys & Tutorials, vol. 12,
no. 2, pp. 159–170, Feb. 2010.

[14] K. Ni et al., “Sensor network data fault types,” ACM TOSN, vol. 5,
no. 3, pp. 25:1–25:29, Jun. 2009.

[15] A. Ali et al., “An adaptive and composite spatio-temporal data com-
pression approach for wireless sensor networks,” in Proc. of ACM
MSWiM’11, 2011, pp. 67–76.

[16] D. Tulone and S. Madden, “PAQ: Time series forecasting for approx-
imate query answering in sensor networks,” in EWSN’06, 2006, pp.
21–37.

[17] S. Madden, “Intel lab data,” http://db.cscail.mit.edu/labdata/
labdata.html, 2003.

