
FT-PPTC: An Efficient and Fault-Tolerant Commit Protocol for Mobile
Environments∗

Brahim Ayari, Abdelmajid Khelil, Neeraj Suri
DEEDS Group

Technische Universität Darmstadt, Germany
{brahim, khelil, suri}@informatik.tu-darmstadt.de

Abstract

Transactions are required not only for wired networks
but also for the emerging wireless environments where mo-
bile and fixed hosts participate side by side in the execution
of the transaction. This heterogenous environment is char-
acterized by constraints in mobile host capabilities, net-
work connectivity and also an increasing number of possi-
ble failure modes. Classical atomic commit protocols used
in wired networks are therefore not directly suitable for this
heterogenous environment. Furthermore, the few commit
protocols designed for mobile transactions either consider
mobile hosts only as initiators though not as active partici-
pants, or show a high resource blocking time.

We present the Fault-Tolerant Pre-Phase Transaction
Commit (FT-PPTC) protocol for mobile environments. FT-
PPTC decouples the commit of mobile participants from
that of fixed participants. Consequently, the commit set can
be reduced to a set of entities in the fixed network. Thus, the
commit can easily be supported by any traditional atomic
commit protocol, such as the established 2PC protocol. We
integrate fault-tolerance as a key feature of FT-PPTC. Per-
formance evaluations confirm the efficiency, scalability and
low resource blocking time of our approach.

1 Introduction

The pervasiveness and functionality of portable devices,
equipped with wireless network interfaces, are continuously
increasing given the rapid progress in wireless technologies.
These mobile devices also interact with fixed devices in re-
alizing conventional applications such as e-mail, and also
in enabling new applications such as mobile commerce (m-
commerce), mobile inventory etc.

∗This research is supported in part by Microsoft Research, FP6 IP DE-
COS and NoE ReSIST

For distributed systems, and especially distributed data-
bases, a transaction is a set of operations that fulfills the
following condition: Either all operations are permanently
performed or none of them is visible to other operations.
This all-or-nothing feature is known as the atomicity prop-
erty. Commit protocols ensure atomicity and thus consti-
tute a key issue in the execution of transactions. A transac-
tion forms a logical unit of work, such as transfer of money
from one bank account to another. Obviously, transactions
are also required for many mobile applications such as m-
commerce where data consistency defines the applications.
Transactions may also involve multiple mobile devices, be-
sides fixed ones, as full participants such as in mobile auc-
tions and mobile inventory.

Mobile environments are characterized by a variety of
constraints such as (a) the scarcity of processing and en-
ergy resources of mobile devices, and (b) the continuously
varying properties of the wireless channel, which also leads
to network disconnections. These constraints make commit
protocols that are designed for fixed networks, such as the
traditional two-phase commit (2PC) protocol [1], unsuitable
for mobile environments. Therefore, a number of commit
protocols, such as UCM [2], TCOT [3] and M-2PC [4] have
been developed to address these constraints. Unfortunately,
existing approaches either only consider mobile hosts as ini-
tiators and not as full participants [3], or work only under
strong assumptions, such as the homogeneity of database
systems [2] or the simultaneous connectivity of all mobile
participants at the initiation of the transaction [4]. In addi-
tion, the existing protocols typically consider only a small
subset of failures in the mobile environment. These draw-
backs limit the applicability of existing approaches and pose
new challenges for the design of efficient and fault-tolerant
commit protocols for heterogeneous mobile environments.

The main contribution of this paper is an efficient, scal-
able and fault-tolerant atomic transaction commit protocol
called Fault-Tolerant Pre-Phase Transaction Commit (FT-
PPTC). The key idea is to decouple the commit of mobile
hosts from that of fixed hosts. Consequently, we split the

execution of the transaction into two phases: (1) the mo-
bile data gathering phase called pre-commit phase collect-
ing “sufficient” information from the mobile hosts to pro-
vide progress, and (2) the core 2PC phase, which involves
only fixed hosts for commit action. We also develop a
comprehensive fault model for the mobile environment and
demonstrate the resilience of the proposed FT-PPTC pro-
tocol. During the first phase no resources are blocked on
fixed hosts because only mobile hosts are involved. Only if
the first phase ends successfully the second phase can start
involving fixed hosts. It is important to mention that FT-
PPTC does not consider disconnections as exceptional but
rather as part of the normal operation of the considered sys-
tem.

The paper is organized as follows. Related work is dis-
cussed in Section 2. In Section 3, we present the different
models relevant to this work, including the system model,
the transaction model and the associated fault model. The
proposed FT-PPTC protocol is described in Section 4. The
performance evaluation of our protocol, as well as its com-
parison to related protocols, is presented in Section 5. Sec-
tion 6 concludes the paper and outlines our future work.

2 Related Work

Mobile transactions have been the focus of extensive on-
going research [5, 6, 7, 8], and some recent commit proto-
cols have been proposed in the literature [2, 3, 4].

Unilateral Commit for Mobile (UCM) [2] supports dis-
connections and off-line executions on mobile devices.
UCM is a one-phase protocol where the voting phase of
the 2PC [1] is eliminated. The coordinator acts as a “dicta-
tor” imposing its decision on all participants. UCM guaran-
tees atomicity. However due to its strict assumptions (strict
two-phase locking [9] required for all participants), the data
accessed by uncommitted local transactions remain locked
until the whole transaction is committed or aborted. In ad-
dition, the UCM assumes homogeneous database systems
that is often not viable in mobile environments.

Transaction Commit On Timeout (TCOT) [3] uses time-
outs to provide a non-blocking protocol that limits the
amount of communication between the participants in the
execution of the protocol. Instead of exchanging messages
to reach a Commit or Abort decision, the coordinator waits
for timeouts to expire. TCOT provides only semantic atom-
icity as defined in [10], which is weaker than the desired
strict atomicity [11] for transactions. This limits the ap-
plicability of TCOT. Furthermore, TCOT does not consider
mobile hosts as active participants in the execution of trans-
actions.

Mobile two Phase Commit (M-2PC) [4] considers mo-
bile hosts as active participants. A mobile participant ex-
ecutes its fragments and delegates the commitment to its

agent on a fixed host. Unfortunately, M-2PC assumes that
all mobile participants are connected at the transaction initi-
ation and that network disconnections are allowed only after
the mobile host delegates its commitment duties.

A common drawback of these protocols is that they ad-
dress only a small subset of the numerous failure types that
may occur in the mobile environment. Furthermore, these
protocols are not robust to coordinator failures. In our work,
we propose a comprehensive fault model and design our
protocol to tolerate faults resulting in enhanced transaction
resilience compared to existing protocols.

3 System and Fault Models

We first present a model of the mobile environment.
Consequently, we elaborate the system model, the transac-
tion and fault models. The fault model describes the fault
types that the FT-PPTC protocol is designed to handle.

3.1 Model of the Mobile Environment

We consider a mobile distributed environment consist-
ing of a set of mobile hosts (MH) and a set of fixed
hosts (FH). The architecture of the considered environ-
ment is based on the so-called Personal Communication
System (PCS), where the MHs intermittently connect to
the wired network through Mobile Support Stations (MSS)
via wireless channels (Figure 1). MHs can communicate
with each other or with fixed entities using only the ser-
vices provided by the MSSs. We refer to the set of MHs
as M = {MH1, . . . , MHm}, and that of FHs as S =
{FH1, . . . , FHs}, where m and s are the number of MHs
and FHs respectively.

MSS

Wireless Radio
Cell

Wireless LAN Cell
11-54 Mbps

Wireless Radio Cell
9 Kbps – 2 Mbps

High Speed Wire
Line Network

FH Fixed Host

Mobile Support
Station

Mobile HostMH

Data Management
System

Wireless
Communication
Wired
CommunicationMSS

MSS MSS

MSS

MH

FH FH

FH

MH

MH

MH

MH

MH MH

Figure 1. Architecture of Mobile Environment

We assume that each MH has a Mobile Database Server
(MDBS) installed on it, and that a Database Server (DBS)
is attached to each FH. Database servers are needed on both

fixed and mobile hosts to support basic transaction opera-
tions such as read, write, commit and abort.

3.2 System Model

We consider applications, which run on either mobile or
fixed hosts and access data located on both mobile and fixed
hosts. A transaction can originate from any host in M ∪ S,
and the participants in its execution can be any set P ⊆
M ∪S. However, most of mobile transactions involve some
FHs as participants.

The hosts in the considered mobile environment may
entail different hardware and different software, including
their database management systems. Thus, we are deal-
ing with heterogenous mobile databases. MHs are also
heterogenous and can range from mobile phones with re-
stricted storage and processing capabilities to laptops with
considerably higher capabilities.

We consider all distributed database system components
(∈ M ∪ S) to be autonomous. Autonomy means that the
components of the system are able to perform their tasks
independently from each other. With respect to the exe-
cution of transactions, this requires that every component
must take the decision to commit or abort the transaction in-
dependently from other components in the network. Com-
ponents are also able to decide which information to share
with the global system and how to manage their own data.
The data of the MH is replicated on a fixed backup database
server.

We assume the existence of a coordinator (CO), which
is responsible for coordinating the execution of the corre-
sponding transaction. For different transactions, different
nodes may play the CO role. The CO is responsible for
storing information concerning the state of the transaction
execution. Based on the information collected from the par-
ticipants of the transaction, the CO takes the decision to
commit or abort the transaction and informs all participants
about its decision.

The MH is not considered to have a physical stable stor-
age, since it is subject to loss, damage and random discon-
nections. For this reason the MH is not desired to take on
the CO role. We assume only FHs to have a stable storage.
Thus, the CO role should be performed by one or more FHs.
If a MSS has similar capabilities to that of a FH, the CO role
can also be performed by a MSS. The CO maintains infor-
mation about the connectivity of the MHs participating in
the execution of the transaction (i.e., whether they are con-
nected to the network or not).

We do not place any restrictions on the storage capabil-
ities of FHs. Further we assume that all DBSs attached to
the FHs support the prepare operation of the 2PC protocol
as a basic operation.

3.3 Transaction Model

Users issue transactions from MHs. After processing
a transaction, the system provides the result of the trans-
action on the user’s MH. The transaction may be entirely
executable at the user’s MH. In most of cases, however,
the transaction has to be fragmented and distributed among
a set of nodes P ⊆ M ∪ S. We refer to a distributed
transaction where at least one MH participates in its exe-
cution as a Mobile Transaction (MT). Similar to the con-
cept of transaction formalization presented in [12], we for-
mally define the MT Ti as a triple < Fi, Li, FLMi >,
where Fi = {ei1, ei2, . . . , ein} is a set of n “execution
fragments” [13, 14], Li = {li1, li2, . . . , lik} is a set of
k locations in M ∪ S (k ≤ m + s), and FLMi =
{flmi1, f lmi2, . . . , f lmin} is a set of fragment-location
mappings (flm’s), where ∀j, f lmij(eij) = lij , 1 ≤ j ≤ k.
Although the execution fragments of Ti are semantically re-
lated, each one of them can commit independently, given
the autonomy of their corresponding locations, leading to
the commit of Ti.

We refer to the MH, where Ti is initiated, as Home MH
(H-MH). The commit set consists of all FHs and MHs par-
ticipating in execution and commit of Ti including H-MH.
FHs and MHs in the commit set are called participant FHs
(Part-FH) and participant MHs (Part-MH) respectively.

The database system installed on MHs provides backup
facilities to assist with the recovery of the database. To
achieve a 100% recovery, all the operations completed on
the MH need to be stored on a stable and reliable storage on
a FH. Thus, the MHs are able to take part in the execution of
transactions in the considered environment independently
of other system components.

3.4 Fault Model

Designing a fault-tolerant transaction commit protocol
essentially requires the identification of constraints and fail-
ure modes that can occur in the considered environment.
The following sections enumerate these aspects.

3.4.1 Constraints

The PCS environment is constrained mainly by the charac-
teristics of MHs and wireless links. MHs intuitively possess
less computational resources such as processor speed and
storage capacity than the FHs. This increases the time MHs
need to execute transactions or may even lead to execution
failure. Furthermore, MHs are highly vulnerable to physical
loss or damage, and may run in different energy modes or
be put-off to save energy. Therefore, MHs naturally show
frequent and random network disconnections.

The effective bandwidth available for the MH over a
wireless link is highly dynamic. This depends on the wire-
less technology, access coverage, and number of MHs that
have to share the medium. These characteristics lead to an
unreliable and intermittent network connectivity of MHs.

The limitations and characteristics listed above outline
the variation of constraints for the PCS environment be-
ing different from those in fixed environments. These con-
straints also make it harder to design appropriate and effi-
cient commit protocols. A protocol that aborts the transac-
tion, each time the MH disconnects from the network, is not
suitable for mobile environments, since frequent disconnec-
tions are not exceptional but are rather part of the normal
mode of operation. Therefore, disconnections need to be
explicitly tolerated by the protocol.

3.4.2 Failure Modes

We now outline the considered failure modes classified into
primary classes of communication and node failures.

Communication Failures: These constitute the most fre-
quent failures in the mobile environment. We distinguish
between three kinds of communication failures:

- Message loss: Messages exchanged between the MH
and the MSS are highly vulnerable to loss due to the
high transmission error rate of wireless links and to
network congestion.

- Communication delay: Higher end-to-end delay is
mainly caused by network congestion.

- Network disconnection: While moving, the MH can
enter a geographical area out of coverage of any MSS
so that it loses its connection to the network.

Node Failures: We distinguish between MH, FH and CO
failures. We separate CO failures from FH failures given the
central role CO plays in commit protocols. For MHs, we
classify the failures into transient and permanent failures.

- Transient MH failures: These occur from either soft-
ware or hardware faults and usually disappear if the
MH is restarted. A further common cause of transient
failures is the lack of battery power to sustain operation
of the mobile device. Transient failures are the most
probable failures of MHs in the PCS environment. In
the case of a transient MH failure, the content of the
volatile storage of the MH and consequently the state
of its recent computations is lost.

- Permanent MH failures: These are irreparable failures
such as the loss or damage of the MH itself or its non-
volatile storage, where the data and logs are stored.
Consequently, all the data stored in the MH is lost.

- CO failures: We assume a crash-recovery model, i.e.,
if the CO crashes it stops receiving, sending and

processing messages until it recovers after a finite
amount of time. Volatile storage of the CO is check-
pointed periodically to stable storage and the CO logs
its computations and received/sent messages between
two checkpoints. Once a backup is done the log is
deleted and a fresh logging process is initiated.

- FH failures: We assume a crash-recovery model but
limit its details as our focus is on failures that are spe-
cific to the described mobile environment.

4 The FT-PPTC Protocol

We introduce FT-PPTC, a novel atomic commit protocol
for mobile transactions. First, we present a short overview
of the approach. Next, the failure-free operation of FT-
PPTC is discussed and its fault-tolerance aspects are out-
lined. Finally, the FT-PPTC’s correctness is proved.

4.1 The Proposed Approach: Overview

As key drivers, the FT-PPTC commit protocol has to en-
sure the atomicity property. It should efficiently minimize
the number of transaction aborts by tolerating the failures
described in the fault model. High efficiency is reflected
by a low message complexity, especially for wireless mes-
sages. Since some FHs participate in most of the trans-
actions, FT-PPTC should reduce the blocking time of re-
sources at the Part-FHs.

As MHs may need an arbitrary long time to execute their
fragments, and as very few assumptions can be made re-
garding the connection intervals of MHs, resources of fixed
participants may potentially be blocked for an undefined pe-
riod of time. Therefore, we suggest to decouple the commit
of mobile participants from that of fixed participants. We
split transaction execution into two phases. The first phase,
called the pre-commit phase (Figure 2), collects “sufficient”
information from mobile participants and reduces the com-
mit set to a set of entities in the fixed network. In the second
phase the commit involves only FHs and thus can be com-
pleted by any atomic commit protocol for wired networks,
such as the traditional 2PC protocol [1]. We refer to the
second phase as the core 2PC phase.

To allow for this decoupling, we assign a MH Agent
(MH-Ag) to each Part-MH. The MH-Ag is representing the
Part-MH in the fixed network. The MH-Ag is responsible
for storing all the information related to the state of all MTs
involving the MH. The MH-Ag is also responsible for exe-
cuting the 2PC protocol on the behalf of its corresponding
Part-MH. The MH-Agent can be implemented by any FH.
The CO itself is the MH-Ag of the H-MH.

Intuitively, this decoupling reduces the blocking time of
the resources at the fixed devices. It also simplifies the han-

dling of the different types of failures that arise from the
mobility of nodes as described in the fault model.

4.2 Pre-Commit Phase

The pre-commit phase only involves Part-MHs. The
MH-Ags act as intermediators between Part-MHs and the
CO. Similar to [3], we exploit a timeout-based concept to
reach a provisional Commit decision at the end of the pre-
commit phase. Each Part-MH computes an execution time-
out (Et), an upper bound for the time to complete the exe-
cution of the transaction fragment, and a shipping timeout
(St), an upper bound for the time to compose updates and to
send them to the CO. Both timeouts have to account for the
constraints of the MH and the wireless link. These timeouts
can be extended if needed. Each mobile participant sends
both timeout values Et and St to the CO via its MH-Ag.

The CO waits for the expiration of the timeouts of Part-
MHs and collects their votes along with the data logs of the
H-MH in case of successful execution. The data logs con-
tain the list of all updates made by the MT. The data logs of
other Part-MHs (in case of successful execution) are stored
by their corresponding MH-Ags. The MH-Ag should be
able to propagate the updates made by the Part-MH (in case
this has a permanent failure) to its corresponding backup
database server using the logs. The CO finalizes the pre-
commit phase by a provisional Commit decision or a final
Abort decision. The CO decides to proceed to the second
phase of FT-PPTC, only if it receives the updates from the
H-MH and a “Yes” vote from all MH-Ags (representing the
rest of Part-MHs) within the specified time-limit. The trans-
action is aborted as soon as one Part-MH aborts the trans-
action or the timeout expires at the CO without receiving
either the updates of the H-MH or a “Yes” vote from one of
the MH-Ags.

4.3 Core 2PC Phase

As a result of the pre-commit phase, the Part-MHs dele-
gate their corresponding MH-Ags to execute the 2PC proto-
col on their behalf. The second phase of the protocol begins,
when the CO sends the execution fragments of Part-FHs to
their corresponding FHs and the 2PC protocol is executed to
collect their votes. If all Part-FHs vote for committing the
MT, the CO decides to commit it, otherwise it decides to
abort. We assume that the 2PC protocol used for collecting
the votes from the Part-FHs is modified in such a way that
it is non-blocking. This can be achieved using, for example,
timeouts to detect message loss.

4.4 Operation of the FT-PPTC Protocol

Figure 2 illustrates the failure-free execution of the FT-
PPTC protocol. The activities of each participant are out-

Initiator (H-MH) Participant MH

Begin

Coordinator
Ti – ei1, Et, St

Updates

Prepare

Updates

Decision

Ack

Decision

Ack
Release

resources

: Force Write

Vote : Yes/No
Decision : Commit/Abort

Pre-com
m

it
phase

MH-agent

Vote

Decision

Ack

Participant FH

Et, StEt, St
Log

updates

Log
updates

AckC
ore 2PC

phase

Ack

Decision

eik

eil

eik

Yes

Release
resources

Release
resourcesEnd

: Mobile entity

: Fixed entity

: message sent over
a wireless link

: message sent over
a wired link

Figure 2. Failure-free execution of the MT us-
ing the FT-PPTC protocol

lined below. Specifically, we refer the activities of H-MH,
CO, MH-Ag and Part-MH to the details in Algorithm 1, Al-
gorithm 2, Algorithm 3 and Algorithm 4 respectively.

Activities of the H-MH

The H-MH initiates the mobile transaction Ti, extracts its
execution fragment ei1, computes its Et and St and sends
the rest of the MT Ti − ei1 along with Et and St to the
CO (Algorithm 1). The H-MH begins processing of ei1.
Whenever the H-MH needs to extend its Et or St, it sends a
message to the CO with the new timeout value which needs
to be extended. If the H-MH decides to abort the MT before
the expiration of its timeout Et + St, then it sends an Abort
message to the CO. If the H-MH completes successfully
the execution of its fragment, it composes its updates (the
updates are basically the logs of the MH), writes them on
its non-volatile storage (the writing of the updates has to
be finished before sending them - “force write”) and sends
them to the CO. The H-MH acknowledges the reception of
the decision by sending an Ack message to the CO.

Activities of the CO

Upon receiving Ti − ei1 from the H-MH, the CO creates a
Token for Ti, which includes one entry for each eik and con-
tains the identity of the CO and the commit set (Algorithm
2). Each entry includes the state of processing of eik. We
distinguish between the following states: (a) idle, (b) ac-
tive, (c) pre-committed (only for MHs), (d) committed and
(e) aborted. The state of ei1 is set to active and the state
of the rest of the execution fragments is set to idle. The
entries for the execution fragments of the MHs additionally
include their corresponding Et and St. Thereafter, it ex-

Algorithm 1: H-MH’s Algorithm
Initialize Ti;1
Extract its execution fragment ei1;2
Compute Et(H-MH) and St(H-MH);3
send Ti − ei1, Et(H-MH) and St(H-MH) to CO;4

while processing ei1 do5
if Et(H-MH) needs to be extended then6

Extend Et(H-MH);7
send new value of Et(H-MH) to CO;8

end9

end10

if H-MH decides to abort Ti then11
write Abort record in the local log;12
send Abort message to CO;13
return;14

else // H-MH decides to commit Ti15
while composing updates do16

if St(H-MH) needs to be extended then17
Extend St(H-MH);18
send new value of St(H-MH) to CO;19

end20

end21
force write updates to the local log;22
send updates to CO;23
wait for decision message from CO24
if decision message is Commit then25

commit Ti;26
write Commit record in the local log;27
send Ack message to CO;28
return;29

else // decision message is Abort30
abort Ti;31
write Abort record in the local log;32
send Ack message to CO;33
return;34

end35

end36

tracts the execution fragments of the Part-MHs and sends
them to their corresponding MH-Ags. After receiving Et

and St from any Part-MH, the CO sets the state of its cor-
responding fragment to active. If a new Et or St (extended
values) is received either from H-MH or from a Part-MH,
then the CO updates the Token. The CO waits for the ex-
piration of the maximum value of Et + St it has received.
If it receives the updates from the H-MH and a “Yes” vote
from each MH-Ag within this time, it stores them and sets
the state of their corresponding fragments to pre-committed.
After that the execution fragments of the Part-FHs are sent
to their corresponding FHs along with the vote request (pre-
pare message). If the CO receives an Abort message from
any of the Part-MHs before the expiration of the timeout or
if it doesn’t receive the updates from at least one MH within
this timeout, it sets the state of all fragments to aborted and
sends an Abort message to the rest of the Part-MHs and the
whole transaction is aborted. After sending the execution
fragments of the Part-FHs, the CO starts a 2PC protocol
session to collect the votes from them. If the CO receives

Algorithm 2: Coordinator’s Algorithm
wait for Ti − ei1, Et(H-MH) and St(H-MH) from H-MH;1
create a Token for Ti;2
extract execution fragments of the Part-MHs and sends them to3
their corresponding MH-Agents;
initialize all the timeouts of the Part-MHs with 0;4

let Pmp = {MH1, . . . , MHmp} the set of all the Part-MHs;5

tmi ←6
max(Et(MH1) + St(MH1), . . . , Et(MHmp) + St(MHmp));
while waiting for tmi to expire do7

if value of Et or St (initial or extended value) of one of the8
MHs in Pmp is received then

recompute tmi;9
update the Token of Ti with the received value(s);10

end11
if Abort message is received from one of the MHs in Pmp12

then
write Abort in T ′

i s Token;13
send Abort to all members of Pmp ;14

return;15

end16

end17

if updates are received from H-MH and a Yes vote from each18
MH-Ag then

write all received updates;19
start a 2PC protocol to collect the votes from all Part-FHs;20
if all votes were Yes then21

write Commit in T ′
i s Token;22

send Commit message to all members of the commit23
set;
return;24

else // at least one of the votes is No25
write Abort in T ′

i s Token;26
send Abort to all members of the commit set;27
return;28

end29

else // at least the updates of one of the30
// MHs in Pmp are not received

write Abort in T ′
i s Token;31

send Abort to all members of the commit set;32
return;33

end34

a “Yes” vote from all the Part-FHs, it decides to commit
the transaction and sends Commit decision to all the partic-
ipants. If it receives at least one “No” vote (or no reply) it
decides to abort the transaction and sends Abort decision to
all the participants.

Activities of the MH-Ag

Upon receiving the execution fragment of its correspond-
ing Part-MH, the MH-Ag creates a Token for this fragment
and stores it in stable storage (Algorithm 3). It then for-
wards the fragment to the Part-MH. After receiving Et and
St from the Part-MH, the MH-Ag adds them to the corre-
sponding Token and forwards this information to the CO.
After receiving the updates from the Part-MH, the MH-Ag
stores them in the corresponding Token and informs the CO

by sending a “Yes” vote to it. Upon receiving the decision
from the CO, the MH-Ag sends an acknowledgment to the
CO and stores the decision in the corresponding Token and
forwards it to the Part-MH as soon as it reconnects to the
network. Any information exchange between the Part-MH
and CO is stored in its corresponding Token in the stable
storage of the MH-Ag before forwarding it. The MH-Ag is
not an active participant in the execution of the MT, since
it does not have to know any information about the applica-
tion and does not need to process any part of the MT.

Algorithm 3: MH-Ag’s Algorithm
wait for receiving execution fragment eik of the corresponding1
Part-MH from CO;
create a Token for eik;2
for any received message do3

if message is sent by the CO then4
update the Token with the received message;5
send the received message to the corresponding6
Part-MH;

else if message contains the updates of the corresponding7
Part-MH then

update the Token with the received updates;8
send Yes vote to CO;9

else10
update the Token with the received message;11
send the received message to CO;12

end13

end14

Activities of the Part-MH

Upon receiving its execution fragment, the Part-MH calcu-
lates its Et and St, and sends them back to its MH-Ag (Al-
gorithm 4). It then starts processing its execution fragment.
Whenever the Part-MH needs to extend its Et or St, it in-
forms the CO (through its MH-Ag) about the new value.
If the Part-MH decides to abort the MT before the expira-
tion of its timeout, it sends an Abort message to its MH-
Ag. If the Part-MH successfully completes the execution of
its fragment, it composes its updates and sends them to its
MH-Ag. Upon the reception of the decision, the Part-MH
acknowledges it by sending an Ack message to its MH-Ag.

Algorithm 4: Part-MH’s Algorithm
wait for receiving the corresponding execution fragment;1
Compute Et(Par-MH) and St(Par-MH);2
send Et(Par-MH) and St(Par-MH) to MH-Ag;3
// continue with step 5 to step 36 of

Algorithm 1 substituting CO with MH-Ag

Activities of the Part-FH

Part-FHs behave according to the 2PC protocol [1], i.e., a
Part-FH executes its fragment, waits for the prepare mes-

sage, sends its vote and waits for the decision from the CO.

4.5 Resilience of the FT-PPTC Protocol

We now outline the fault-tolerance aspects of FT-PPTC
for its handling of communication and node failures.

4.5.1 Handling Node Failures

Fixed Participants Failures: FH failures are handled di-
rectly as in the 2PC protocol [1].

Mobile Participants Failures: If the Part-MH has a tran-
sient failure before finishing the execution of its fragment
and it recovers from it before its timeout expires, then it can
extend this timeout by sending a message to the CO (via its
MH-Ag) with the new values of Et and St. All the informa-
tion about the MT can be found in the non-volatile storage
of the MH since only the content of the volatile storage get
lost if the MH has a transient failure. If the MH recovers
from the failure after the expiration of its timeout or if it
has a permanent failure, then the transaction will be aborted
since the CO will not receive the updates in time.

Coordinator Failures: If the CO crashes before receiv-
ing the timeout values from a certain Part-MH, it asks the
MH-Ag of this participant for this information upon recov-
ery. The MH-Ag responds with the timeout values only if
the values are available otherwise it asks the Part-MH for
this information before responding. The CO initializes the
timeout values with 0 and updates them upon the reception
of these timeout values. If this information does not reach
the CO because they are lost or the Part-MH crashes be-
fore sending them, these values remain set to 0. If the CO
crashes before the expiration of the timeout Et + St, it re-
trieves the Token of the MT from its logs or backups af-
ter recovering. In this case the CO asks the Part-MHs if
anyone of them has extended its timeouts or sent its up-
dates (H-MH) or vote (MH-Ag) while the CO was down.
The updates sent by the Part-MHs are stored by their cor-
responding MH-Ags and a “Yes” vote is sent to CO after it
recovers. Since the CO has a stable storage it can read the
status of the execution of the MT and the state of each ex-
ecution fragment stored there after recovering from failures
and continues to process the MT. The CO can decide about
the information it might have lost to request this informa-
tion. As example, if the CO after recovering reads an idle
state of an execution fragment of a Part-MH in the Token
of the MT, it sends a message to the corresponding MH-Ag
asking it for the values of the timeouts. Similarly, if the CO
after recovering finds in the Token any execution fragment
having the state aborted, then it sends an Abort message to
all the participants.

4.5.2 Handling Communication Failures

Longer delays of messages can be handled by tuning the
variable St. The value of St should take into account the
current estimated values of communication delays to de-
crease the number of aborted MTs. If the available band-
width is low, the Part-MH sends a message to the CO to
extend the value of its St.

If the updates sent by a Part-MH are lost or delayed due
to network disconnection or congestion, the CO will decide
to abort the transaction after the expiration of the timeouts.

4.6 Proof of Correctness

According to [9], an atomic commit protocol has to sat-
isfy the following five atomicity conditions (AC):

- AC1: All processes that reach a decision reach the
same one.

- AC2: A process cannot reverse its decision after it has
reached one.

- AC3: The Commit decision can only be reached if all
processes voted “Yes”.

- AC4: If no failure occurs and all processes voted
“Yes”, then the final decision should be commit.

- AC5: Consider any execution containing only failures
that the protocol is designed to tolerate. At any point in
this execution, if all existing failures are repaired and
no new failures occur for sufficiently long time, then
all processes will eventually reach a decision.

To prove the correctness of the proposed FT-PPTC pro-
tocol, we have to prove that it satisfies the five conditions
listed above. It follows directly from the specification of
the protocol that the FT-PPTC protocol satisfies conditions
AC1, AC2 and AC4. Therefore, we need only to prove that
it satisfies AC3 and AC5.

[AC3 Correctness]: We assume that the CO decides to
commit the transaction when at least one of the participants
has not decided yet. If this participant is a MH then the
CO sends the rest of the transaction to the FHs before re-
ceiving a “Yes” vote from its MH-Ag or before receiving
the updates if this MH is the H-MH. Obviously this is in
contradiction with our protocol specification. If this partic-
ipant is a FH, then the 2PC protocol decides to commit the
transaction before receiving all the votes from the Part-FHs,
which again contradicts the specification of the 2PC proto-
col. In the case that at least one of the participants decides to
abort the transaction, the CO can not decide to commit the
whole transaction because this decision will violate the pro-
tocol specification. Hence, the Commit decision can only be
reached if all processes voted “Yes”, i.e., decided to commit
the transaction. �

[AC5 Correctness]: We consider any execution contain-
ing the failures listed in the fault-model detailed in Section
3.4. For this proof we need to consider two aspects. The

first aspect is, whether the protocol can block at any time
so that the participants will not be able to take a decision
anymore. Since our protocol is based on timeout for co-
ordinating the execution of the fragments of Part-MHs, the
CO can not block waiting for messages from these partic-
ipants. The participants also can not block waiting for a
message from the CO (which is the decision) since they are
required to acknowledge this message and thus the CO is
able to detect a message loss and re-sends the message. The
second aspect considers whether the participants are able to
reach any decision after recovering or not. This aspect is
handled in the failure scenarios in Section 4.5. We note that
keeping the state of the execution of MT on a stable storage
allows the continuation of the execution after recovery and
eventually reaching a decision. �

5 Performance Evaluation

To evaluate the efficiency of our approach, we first com-
pare it to the commit protocols TCOT [3], UCM [2] and M-
2PC [4], regarding their failure-tolerance. Next, we study
the message complexity in the failure-free case. Finally,
we introduce a simulation model and investigate the perfor-
mance of the FT-PPTC protocol in the failure-free case with
respect to the throughput and resource blocking time.

5.1 Comparison to Related Work

We now compare the FT-PPTC protocol to the TCOT,
UCM and M-2PC protocols regarding the failures consid-
ered in each protocol and the message complexity.

5.1.1 Failures Discussed in Different Protocols

In Table 1, we compare the FT-PPTC protocol to the M2-
PC, TCOT and UCM protocols spanning the failures de-
tailed in our fault model. FT-PPTC is the only protocol that
can handle CO failures. The comprehensive handling of
communication and node failures distinguishes FT-PPTC.

5.1.2 Message Complexity for the Failure-Free Case

We denote by e the number of timeout extensions of Part-
MHs and by eall the number of all timeout extensions. mp

represents the number of Part-MHs and sp the number of
Part-FHs.

We adopt the message complexity of TCOT, M-2PC and
UCM from [4, 2]. We refer to Figure 2 to compute the mes-
sage complexity of FT-PPTC. It follows that each Part-MH
sends two messages to the corresponding MH-Ag and re-
ceives one message from it starting from the point in time,
where the updates are shipped. Whenever a Part-MH needs

Table 1. Coverage of failures
Protocol Transient Permanent Coordinator Message Delay of Network

MH-Failure MH-Failure Failure loss messages disconnections
FT-PPTC x x x x x x
M-2PC x x x x
TCOT x x x x x
UCM x x x x

Table 2. Comparison of the protocols in failure-free case
Protocol Atomicity Phases Wireless Message Overall Message

Complexity Complexity
FT-PPTC strict 2 (2 + 1) ∗ mp + e (3mp + e) + (4sp + 2mp + e)
M-2PC strict 2 (2 + 2) ∗ mp − 1 (4mp − 1) + 4sp

TCOT semantic 1 2 ∗ mp − 1 + e (2mp − 1) + (2sp) + eall

UCM strict 1 (1 + 1) ∗ mp 2mp + 2sp

to extend its timeouts (Et and St) it sends an extra message
to the MH-Ag.

Table 2 details the efficiency of FT-PPTC compared to
other protocols, while providing strict atomicity. We em-
phasize that FT-PPTC’s efficiency is comparable to classi-
cal protocols, even though it allows for fully mobile partic-
ipants.

5.2 Simulation

We now present our simulation model and our prelimi-
nary results for the failure-free case. We compare the per-
formance of the FT-PPTC protocol to that of M-2PC [4] and
the conventional 2PC.

5.2.1 Simulation Model

For our simulation studies, we have used SimJava [15], a
discrete event-based simulator implemented in Java. Ta-
ble 3 summarizes our simulation parameters.

Table 3. Simulation settings
Parameter Value

#Part-FHs 4
#MHs ∈ [1,25]
Execution time of one fragment (MH) 5 ms
Execution time of one fragment (FH) 2 ms
Transmission delay over wireless link 10 ms
Transmission delay over wired link 5 ms
#Fragments per MT n = 5

We generate transactions as follows. We assume all
transactions are of similar length and are composed of n
fragments. We let each MH initiate one transaction at the
beginning of the simulation. Therefore, the number of initi-
ated transactions is identical to the number of MHs.

5.2.2 Simulation Results

In our simulation-based performance analysis, we focus on
two performance metrics: Throughput and resource block-
ing time. We define the throughput as the number of suc-
cessfully committed MT per time unit, and the resource
blocking time as the time interval, where the resources at
the fixed participants remain locked.

Throughput: We first compare the throughput of FT-
PPTC to M-2PC and standard 2PC. Figure 3 shows the
throughput over the number of transactions. We observe
that M-2PC shows a slightly higher throughput than FT-
PPTC, due to the fact that FT-PPTC decouples the execu-
tion of fragments of Part-MHs and Part-FHs, whereas these
fragments are executed in parallel in M-2PC. Compared to
2PC, FT-PPTC shows a higher throughput. This occurs as
2PC needs one more wireless message, which increases the
commit time.

Overall FT-PPTC shows a stable performance behavior
that is similar to the behavior of the traditional 2PC pro-
tocol for fixed devices. This is significant given that the
effect of mobile hosts is shown to be minimal for the com-
mit operations. It also validates the effectiveness of our split
two-phase approach, where the impact of the decoupling in
FT-PPTC on the performance is minimal.

0

5

01

51

02

52

03

53

0 5 01 51 02 52

Th
ro

ug
hp

ut

)sHM#(snoitcasnart#

CTPP-TF
CP2
CP2-M

Figure 3. Throughput

0

01

02

03

04

05

0 5 01 51 02 52

R
es

ou
rc

e
B

lo
ck

in
g

Ti
m

e
(m

s)

)sHM#(snoitcasnart#

CTPP-TF
CP2
CP2-M

Figure 4. Resource blocking time

Resource Blocking Time: In the following we compare
the resource blocking time of the three protocols. Fig-
ure 4 depicts the blocking time over the number of transac-
tions. FT-PPTC shows a significantly lower blocking time
of the resources due to the decoupling of the commit of
Part-MHs from that of Part-FHs. This decoupling makes
the resource blocking time in FT-PPTC only dependent on
the time needed by Part-FHs to execute their correspond-
ing fragments, which is considerably shorter than the time
needed by Part-MHs. This also demonstrates that FT-PPTC
is scalable regarding the number of MTs, since the resource
blocking time remains constant over the number of MTs.

Furthermore, we emphasize that the resource blocking
time of FT-PPTC is independent from the number of mobile
participants. This enhances the scalability of our approach.

6 Conclusion and Future Work

In this paper, we have presented the FT-PPTC approach,
a fault-tolerant atomic commit protocol for mobile trans-
actions. FT-PPTC decouples the commit of mobile par-
ticipants from that of fixed participants. This approach is
shown to reduce the blocking time of resources on the fixed
part of the network and allows a high resilience to both com-
munication and node failures. Specifically, the performance
analysis shows that FT-PPTC is efficient and also scalable
regarding the number of transactions and the number of mo-
bile participants. We consider the efficiency and scalability,
while providing for fault-tolerance, to be highly useful at-
tributes for the mobile environment.

In future work, we plan to extend the fault model and
design efficient fault-recovery mechanisms. Our long-term
goal is to consider varied communication models, such as
ad hoc communication between the mobile devices.

References

[1] Gray, J. Notes on Data Base Operating Systems. In Operat-
ing Systems, An Advanced Course, pp. 393–481. 1978.

[2] Bobineau, C. et al. A Unilateral Commit Protocol for Mobile
and Disconnected Computing. In Proc. PDCS. 2000.

[3] Kumar, V. et al. TCOT-A Timeout-Based Mobile Transaction
Commitment Protocol. IEEE Trans. on Computers, 51(10):
pp. 1212–1218, 2002.

[4] Nouali, N. et al. A Two-Phase Commit Protocol for Mobile
Wireless Environment. In Proc. 16th Australasian Database
Conference, pp. 135–143. 2005.

[5] Dunham, M. H. et al. A Mobile Transaction Model That
Captures Both the Data and Movement Behavior. Mobile
Networks and Applications, 2(2): pp. 149–162, 1997.

[6] Chrysanthis, P. K. Transaction Processing in Mobile Com-
puting Environment. In IEEE Workshop on Advances in Par-
allel and Distributed Systems, pp. 77–83. 1993.

[7] Pitoura, E. et al. Maintaining consistency of data in mobile
distributed environments. In Proc. 15th ICDCS, pp. 404–
413. 1995.

[8] Madria, S. K. et al. A Transaction Model to Improve Data
Availability in Mobile Computing. Distributed Parallel Data-
bases, 10(2): pp. 127–160, 2001.

[9] Bernstein, P. A. et al. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, 1987.

[10] Garcia-Molina, H. Using semantic knowledge for transac-
tion processing in a distributed database. ACM Transac-
tions on Database Systems, 8(2): pp. 186–213, 1983.

[11] Haerder, T. et al. Principles of transaction-oriented data-
base recovery. Morgan Kaufmann Publishers Inc., 1994.

[12] Ozsu, M. T. et al. Principles of distributed Database Sys-
tems. Prentice-Hall, Inc., 1991.

[13] Kumar, V. et al. Defining Location Data Dependency, Trans-
action Mobility and Commitment. TR 98-CSE-1, Southern
Methodist Univ., February 1998.

[14] Kumar, V. A Timeout-Based Mobile Transaction Commit-
ment Protocol. In Proceedings of the East-European Con-
ference on Advances in Databases and Information Systems,
pp. 339–345. 2000.

[15] SimJava. http://www.dcs.ed.ac.uk/home/hase/simjava.

