IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 12, DECEMBER 2013

GMTC: A Generalized Commit Approach
for Hybrid Mobile Environments

Brahim Ayari, Abdelmajid Khelil, and Neeraj Suri

Abstract—Mobile environments increasingly require distributed atomic transactions to support the growing diversity of financial,
gaming, social networking and many other applications. The underlying mobile infrastructure is correspondingly evolving with
increasingly diverse wired and wireless elements and also with increasing exposure to a variety of operational perturbations at the
mobile elements and communication levels. Consequently, the challenge is not only in providing efficient nonblocking mobile commit
(as a fundamental basis behind consistent mobile transactions) but to also provide efficient perturbation-resilient atomic commit in the
heterogeneous mobile space. The contribution of this paper is in developing a perturbation-resilient mobile commit protocol that
efficiently provides for and preserves strict atomicity for transactional applications. The protocol does not necessarily require access to
the powerful communication/computation elements of the wired infrastructure during transaction execution. However, in case access to
a wired network becomes possible, it then adapts to utilize this to 1) increase the resilience to network perturbations achieving higher
commit rates, and 2) reduce the wireless message overhead and the blocking of transaction participants leading to higher transactions
throughput. In contrast, existing solutions are often tailored either for 1) infrastructure-based mobile environments, or 2) infrastructure-
less ad hoc networks. To our knowledge, there is no existing commit protocol that can adapt across diverse infrastructure
communication modes. The proposed perturbation-resilient generalized mobile transaction commit (GMTC) protocol represents the
first atomic commit protocol for hybrid mobile environments which 1) takes advantage of accessing infrastructures, by choosing reliable
infrastructure nodes for coordination of transactions and for replication of commit data of mobile participants to tolerate network
disconnections, and 2) tolerates network partitioning and delivers best-effort results—in terms of transaction commit rate, message
complexity, and commit/abort decision time (latency)—if the access to wired infrastructure is unavailable. The protocol performance
simulations (covering transaction commit rate, message complexity, and commit/abort decision time) demonstrate the effectiveness of

2399

the developed protocol in generalized mobile environments.

Index Terms—Mobile computing, mobile databases, distributed mobile transactions, atomic commit, fault tolerance

1 INTRODUCTION

THE increasingly pervasive mobile computing ecosystem
spans a diverse variety of e-commerce, medical,
infotainment, social networking, monitoring, tracking,
notification, etc., applications. While the nature of applica-
tion specific data is naturally diverse spanning require-
ments on granularity, timeliness and reliable delivery, a
core need across the broad applications space is to
guarantee the consistency of data.

The linkage of mobile devices to hybrid—composite of
wired and wireless—infrastructures raises basic database
issues. Typically, data is stored and managed in hybrid
mobile environments by databases installed on both mobile
and stationary devices, and accessed through interlinked
wired and wireless systems. Accordingly, hybrid mobile
environments are increasingly supporting applications that
require data consistency which is then guaranteed by the
atomicity property of database transactions [16]. However,
as applications, such as online purchases, involve both a
wired infrastructure (servers) and wireless infrastructure-
less (mobile devices) components with potential for ad hoc

o B. Ayari is with the Information Systems Department, ABB AG, Reuteralle
22, Darmstadt 64297, Germany. E-mail: br.ayari@googlemail.com.

o A. Khelil and N. Suri are with the Department of Computer Science,
Technische Universitat Darmstadt, Hochschulstr. 10, Darmstadt 64289,
Germany. E-mail: {khelil, suri}@cs.tu-darmstadt.de.

Manuscript received 18 Mar. 2011; revised 9 Feb. 2012; accepted 22 Sept.
2012; published online 1 Oct. 2012.

For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-2011-03-0148.
Digital Object Identifier no. 10.1109/TMC.2012.203.

1536-1233/13/$31.00 © 2013 IEEE

networking across mobile devices, data consistency is
required on all participating wired and wireless resident
databases. Similar coordination, computation and commu-
nication couplings across infrastructure and infrastructure-
less elements exist for examples such as platoon driving,
intervehicle communication or coordinated wireless control
elements in a smart factory.

1.1 Communication Modes and Perturbations

Characteristic for the underlying mobile environments is an
evolving heterogeneous communication mode spanning ad
hoc infrastructure-less modes, infrastructure-based modes
and their combination. Also the connectivity to a wired
network is often sporadic either due to lack of infrastruc-
ture or due to high costs/expenses. Mixing communication
modes also results in a wider range of failure modes
covering both standard disruptions (device, host or base
station failures, energy depletion, etc.) and new ones at
mode interfaces. For instance, hybrid mobile environments
usually suffer from frequent network disconnections and
partitions due to the natural constraints of wireless
networks and the mobile devices forming them. Mobile
atomic commit protocols need to consider the new
composed perturbation model to maintain the required
service availability and data consistency [13].

1.2 From a Dedicated Single Communication Mode

to an Adaptive Multimode Commit Solution

Commit protocols are typically tailored, for performance or
efficiency, for a dedicated communication mode within the

Published by the IEEE CS, CASS, ComSoc, IES, & SPS

2400

wide range of generalized infrastructure/infrastructure-less
mobile scenarios. Naturally, they are not expected to
perform efficiently in the other modes they are not designed
for. For instance, commit protocols that are designed for
wired networks, such as the traditional two-phase commit
(2PC) protocol [15] and its optimizations such as [25] rely on
reliable communication between the transaction partici-
pants, rendering their applicability in a generic (typically
hybrid) mobile environment limited as network disconnec-
tions and partitions prevent such reliable communication.

Consequently, and to gradually cope with the design
complexity, most research efforts target efficient perturba-
tion-resilient commit for a specific grouping of related
communication modes. Some commit protocols are devel-
oped for transactions involving fixed and mobile partici-
pants with infrastructure access [5] such as FI-PPTC [1].
These approaches explicitly require some nodes in the
wired network to coordinate mobile transactions. Therefore,
these protocols are customized for the infrastructure-based
communication mode with its specific perturbation model.
Accordingly, this class of commit techniques is not directly
adoptable for the mixed mode environments because it
does not cover its larger set of commit perturbations as the
connectivity to the infrastructure is only occasional. Other
efforts address transactions for participants that are inter-
connected through ad hoc communication mode only.
These commit protocols developed for infrastructure-less
mobile environments such as ParTAC [4] tend not to be
efficient in hybrid mobile environments as ignoring the
available infrastructure unnecessarily increases the transac-
tion abort rate, wireless messages overhead and latency.
The main achievements of current research efforts are
discrete solutions that are customized for specific commu-
nication modes and in covering the corresponding subset of
commit perturbations.

The diverse and evolving nature of a generalized mobile
environment obviously makes it challenging to predict the
future class of communication mode(s) connecting the
transaction participants. A typical approach is to select (in
a static manner) a suitable commit strategy for each mobile
transaction at its initialization and then conduct (an often
complex) mode switch as the communication environment
changes. Hence, the approach taken in this paper is that of
an adaptive and composite protocol that 1) concatenates
known efficient solutions from each dedicated communica-
tion mode (fixed, mobile infrastructure-based, or mobile
infrastructure-less modes) and 2) provides an intermode
adaptation strategy to efficiently switch to the current
applicable communication mode or their combination as
needed. To meaningfully conduct a comparison with
existing specific mode solutions, we provide this discussion
of related work at the paper end in Section 7.

1.3 Summary of Paper Contributions

We propose generalized mobile transaction commit (GMTC),
the first perturbation-resilient atomic commit protocol for
hybrid mobile environments that combines the advantages of
fixed, infrastructure-based and infrastructure-less solutions.

e GMTC takes the advantage of infrastructure-based
protocols, if an infrastructure is available, by choos-
ing the more reliable and available static fixed nodes
to coordinate mobile transactions and to replicate

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 12, DECEMBER 2013

commit data needed to tolerate network and mobile
node perturbations.

e GMTC delivers best effort transactional service
availability in case no infrastructure is accessible. In
Section 3.2, we summarize the main advantages and
contributions of GMTC compared to the two most
recent representatives of existing related work: FT-
PPTC [1] as a representative of perturbation-resilient
solutions for infrastructure-based environments
and ParTAC [4] as a representative of perturbation-
resilient solutions for mobile ad hoc networks.

Our approach is to interoperate three protocols each
representing efficient solutions for their dedicated commu-
nication modes, namely 2PC, FT-PPTC, and ParTAC
approaches, and then an adaptation strategy to switch
between them depending on the dynamic mixture of
communication modes and their resulting perturbations.
The integration requires efforts to efficiently detect avail-
able communication modes and their perturbations and to
accordingly tune the parameters of the superimposed
commit building blocks. The key challenges we address to
design GMTC are as follows:

I. An intelligent strategy to select the transaction
coordinator(s) among heterogeneous participants
with different resource allocation requirements.

2. The efficient collection of commit votes from these
mixed participants.

Whereas FT-PPTC uses a single coordinator schema and
ParTAC uses a multiple coordinator schema which con-
verges at the end of the transaction to a single mobile
coordinator in case of successful transaction execution, we
present in this paper an integrated approach. We follow a
shrinking-based scheme (similar to ParTAC) starting from a
certain number of coordinators. However, besides reducing
the number of coordinators the new shrinkage strategy
pushes the coordinator role into the infrastructure if
available. We design new mechanisms that realize the vote
collection while following two simultaneous goals: Push the
votes to any reachable coordinator and/or to an available
infrastructure. The challenge that we address in this paper
is to provide an efficient and seamless integration of
commit “modes” to perturbation modes without the global
knowledge of the evolving mixed communication modes.
We will show, that our integrated approach allows covering
the generalized mobile environment while converging to
2PC for transactions in wired environments, to FT-PPTC
commit in infrastructure-based mobile environments and
converging to ParTAC transaction commit if the hybrid
environment degenerates to a pure ad hoc environment.

1.4 Paper Organization

Section 2 details the system model along with a compre-
hensive classification of perturbations. The overall protocol
design requirements and objectives are discussed in
Section 3. In Section 4, we detail the GMTC protocol. The
protocol is evaluated in generalized mobile environment
settings in Section 6. Related work is described in Section 7.

2 SyYSTEM MODEL AND PERTURBATIONS

We first detail the system model of the hybrid mobile
environment, where strict atomicity is essentially required

AYARI ET AL.: GMTC: A GENERALIZED COMMIT APPROACH FOR HYBRID MOBILE ENVIRONMENTS

@ Comm. with BSs possible @Aa’-hoc comm. possible @Acﬁhoc & BS comm. possible

O FN /\ BS Wireless communication Wired communication
E M

-)
7] J

7] \ 2

e
teg S 0 M
£ T T -

<

: g—g—g
el

5]

(a) Infrastructure-based (b) Ad-hoc (c) Hybrid

Fig. 1. Hybrid versus infrastructure-based and ad hoc mobile

environments.

by applications. Next, we identify the relevant perturba-
tions, i.e., constraints and failure modes that can occur in
the considered environment to affect atomic commit
functionality.

2.1 System Model

To consider and support a broad class of mobile applica-
tions, we develop a hybrid mobile distributed environment
consisting of a set of mobile nodes (MN) and a set of static
fixed nodes (FN). We assume that every node in this
environment has a unique ID. The architecture of the
environment considered is illustrated in Fig. 1c. Some MNs
are equipped with appropriate wireless interfaces and can
intermittently connect to the wired network through base
stations (BS) via unreliable wireless channels (see Fig. 1). A
subset of the MNs can communicate directly or multihop
with each other in an ad hoc manner for instance using
Bluetooth, WLAN ad hoc mode and so on. Every MN
has at least one wireless interface and is able either to
communicate only with BS or only ad hoc with other MNs
or with both. When the communication between MNs is
only infrastructure-based (i.e., through BSs’ communica-
tion services), the environment is called infrastructure-based
mobile environment (see Fig. 1a). In ad hoc mobile environ-
ments, MNs can communicate with each other only in ad
hoc mode (see Fig. 1b). If both communication modes are
supported by MNs, we are dealing with a hybrid mobile
environment (see Fig. 1c).

We consider applications, which run on either MNs or
FNs and access data located on mobile and/or fixed nodes.
We focus on distributed transactions issued by either MNs
or FNs and involving other MNs and/or FNs as partici-
pants. We refer to a distributed transaction where at least
one MN participates in its execution as a mobile transaction
(MT). Commonly, an MT 7; is defined as a set F =
{ei1,...,ein} of n “execution fragments” distributed among
a set of locations (also sites) either mobile or fixed [20]. The
node, where T; is initiated, is termed as MT initiator. The
commit set consists of all FNs and MNs participating in
execution and commit of 7; including the initiator. FNs and
MNs in the commit set are called participant FNs (P-FNs)
and participant MNs (P-MNs), respectively.

The transaction coordinator (CO) is responsible for storing
information concerning the state of the transaction execu-
tion. Based on the information collected from and about the
transaction participants, the CO takes the decision to either
commit or abort the transaction and shares this decision
with all participants. In this paper, we consider that the

2401

application/user is able to specify an appropriate (tolerable)
lifetime for each initiated MT. The lifetime of an MT is
defined as the maximal timeout the CO should wait (as long
as there is no final decision) before deciding about the
outcome of the MT.

We do not assume bounds on message transmission
times between communicating nodes and also on data
processing times on a node. We consider nodes to have
accurate (not necessarily synchronized) clocks.

2.2 Perturbations

For mobile systems supporting transactional applications,
we consider two main classes of perturbations: operational
constraints (battery power, computing, connectivity, etc.)
and failures.

2.2.1 Operational Constraints

The mobile environment is constrained by the character-
istics of both MNs and wireless links. MNs inherently possess
restricted computational capabilities such as computational
and storage capacity. These resource constraints may lead
to execution failures. MNs may also run in different energy
modes or might be turned-off to save energy. Additionally,
wireless links are characterized by high latency and
restricted bandwidth. These characteristics lead to unreli-
able wireless links and thus considerably varied reliability /
availability and connectivity of MNs.

2.2.2 Failures

We now outline the common failure modes and classify
them into classes of communication and node failures.

Communication failures. These constitute the majority of
failures in mobile environments. We consider three types of
communication failures: Message loss, network disconnection
and network partitioning. Messages exchanged across MNs
are highly vulnerable to loss due to the high bit error rate of
wireless links and possible network congestion and colli-
sions. Also high node mobility often disrupts routes and
causes message loss. Given its mobile nature, an MN can
enter a geographical area out of coverage of any BS so that it
loses its connection to the network. Network disconnections
are specific to infrastructure-based environments and
consequently a common communication failure in hybrid
environments. The MN is said to be disconnected from the
corresponding BS and hence from rest of the network.
While disconnected from the network, the MN is not able to
send or receive messages. Network partitioning occurs only
in mobile ad hoc environments. Therefore, network
partitioning represents a common occurrence in hybrid
mobile environments. Due to the inherent node mobility
and autonomicity, the hybrid mobile environment can
easily get partitioned and reconnected. As network parti-
tioning is the norm rather than the exception in a hybrid
mobile environment, it needs to be explicitly considered in
the design of atomic commit protocols.

MN failures. We consider only transient MN failures as
permanent MN failures can be interpreted as a permanent
network disconnection or partitioning. Transient MN
failures occur from either software or hardware faults
and usually disappear if the MN reboots. A common cause
of transient failures is the lack of battery power to sustain

2402
5 ParTAC arTAC)
T&) FT-PPTC (ﬂﬂﬂ)@ {]ﬂﬂ) (ﬂ]]]) ([W)([HD @
T A (Sym\ -
= = '
(a) Infrastructure-based (b) Ad-hoc (c) Hybrid

Fig. 2. Objectives of the proposed approach.

operation of the mobile device. Transient failures are the
most probable failures of MNs. Transient MN failures can
manifest for the transaction commit problem as a transient
network partitioning, i.e.,, the MN disconnects from the
network if a transient failure occurs and reconnects once
this failure disappears and the MN recovers.

FN failures. We assume that if an FN crashes it stops
receiving, sending, and processing messages until it re-
covers after a finite amount of time (crash-recovery model).

3 REQUIREMENTS AND OBJECTIVES

We briefly summarize the design requirements for a
generalized integrated commit approach for hybrid mobile
environments. A primitive requirement analysis on such
generalized commit without providing a concrete solution
has been conducted in [2] and [3]. Next, and starting from
the limitations of the infrastructure-based FT-PPTC and the
infrastructure-less ParTAC approaches, we present the
design objectives for our integrated approach.

3.1 Design Requirements on Generalized Commit

Overall, a generalized commit should efficiently integrate
the benefits of existing commit island solutions. In
particular, a generalized commit solution should show
comparable performance to established commit protocols
such as 2PC, FT-PPTC, and ParTAC in wired networks,
infrastructure-based mobile environments, and infrastruc-
ture-less ad hoc environments, respectively. We identify the
following main requirements and design issues on our
integrated generalized commit approach.

Resilience to perturbations. To build resilient mobile
transaction protocols, the first requirement is to define a
comprehensive set of perturbations (constraints and failures)
and a set of techniques to cope with constraints and recover
from failures. The overall objective for perturbation-toler-
ance is to maximize the number of committed MTs.

Delay-tolerance and -awareness. Masking latent faults such
as long disconnections imposes that the MT execution time
can be delayed till local commit/abort decisions can be
collected. This implies that MT can last for minutes or even
hours. We are dealing then with transactions that we refer
to as delay-tolerant transactions. We believe that users can
sacrifice latency for atomicity. The delay-tolerance design
requirement is orthogonal to the efficiency requirement and
implies a real challenge for the design of MTs.

Efficiency. The efficiency of MT protocols is measured in
terms of message complexity and resource blocking time.
The classical approach to improve the efficiency of such
protocols is to reduce the communication overhead (mes-
sage number and size) and to minimize the resource

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 12, DECEMBER 2013

g Pre-Commit Phase | Core Phase
a_‘ |
P-MN_3 !
% P-MN_2 %lmhanon f : 4
© &co 4 ! 4
B 2 lecti otel I
B P-MN_1 @se ection collection | 4
~ (Initiator) = from P-MNs _| _ __ Decision
only | Start forwarding
MN-Ag_1 ‘%’ ! | to P-MNs
5 (€O ' ad a o
A MN-Ag2 /\ 3 v R}
o] |
O MN-aAg3/\ Y L \|
o=
= p-rN_1|() Y A
|

Fig. 3. FT-PPTC flow diagram.

blocking time. The reason behind minimizing resource
blocking time is that transactions, especially executing on
FNs, often lock expensive resources. The more transactions
per second an application can process, the better its
scalability and throughput. If resources are blocked,
transactions using them are delayed waiting for the
resources to be unlocked. The throughput of the system
then suffers. For this reason, resource blocking time,
especially of FN resources (because they are frequently
much more loaded than MNs), should be minimized.

3.2 Obijectives: Integrated Generalized Commit
Our primarily goal is to offer efficient perturbation-
resilience to atomic commit protocols in hybrid mobile
environments. We start with analyzing the building blocks
of our prior island commit solutions (FT-PPTC and
ParTAC) to identify their limitation in providing a
perturbation-resilient commit solution in hybrid mobile
environments. The FT-PPTC transaction atomic protocol [1]
developed for infrastructure-based mobile environments

1. fulfills our efficiency requirements with respect to

reduction of blocking time of FN resources,

2. copes with a wide range of perturbations encoun-

tered in mobile environments,

3. is delay-aware, and

4. transforms into 2PC in pure wired environments.
ParTAC is an atomic commit solution for mobile ad hoc
environments which is designed to tolerate network
partitioning in an efficient manner compared to other
existing solutions [4].

Accordingly, it is natural to integrate these two ap-
proaches to build a perturbation-resilient, delay-aware and
efficient solution for hybrid mobile environments. Fig. 2
(with the same legend as Fig. 1) visualizes our objective. The
shaded area in Fig. 2c which is not covered by any protocol
represents the gap/challenge for integrating FT-PPTC and
ParTAC. The figure shows that the integration of these two
protocols is not trivial lack of global view concerning the
evolving mixture of communication modes in the network
environment. We briefly describe the strength of FT-PPTC
and ParTAC in infrastructure-based and infrastructure-less
environments respectively, along with their limitations in
generalized network settings.

As illustrated in Fig. 3, FT-PPTC decouples the commit of
P-MNs from that of P-FNs. The execution of the transaction
is therefore split in two phases. In the precommit phase,

AYARI ET AL.: GMTC: A GENERALIZED COMMIT APPROACH FOR HYBRID MOBILE ENVIRONMENTS

r-uns ()4 v = |

Final decision
P-MN_4 <! dissemination
(COrole) I I A

b=
p? Vote { On
/ collection encounter;
A P-MN_3 ([- 2 cois 4
% | de-electel
£ P-MN2 a%ﬁ R R \
B (CO role) 4 4/
(P-MN
P-MIN_1 \ role only) v
(Initiator) né"égn
- “selection - - -

Wired Part
Fig. 4. ParTAC flow diagram.

“sufficient” information from mobile participants is col-
lected to reduce the set of nodes participating in the MT
execution to a set of FNs. In the second phase, called core
phase, the commit involves only FNs and thus can be simply
completed by any atomic commit protocol from wired
networks, such as the established 2PC protocol. To allow
for this decoupling, each P-MN should rely on a representant
in the infrastructure that we refer to as mobile node agent
(MN-Ag). An MN-Ag is a logical entity (proxy, private
cloud, etc.) representing the P-MN in the wired network. The
MN-Ag is responsible for storing all the information related
to the state of MTs involving the MN and is also responsible
for executing the 2PC protocol on behalf of its corresponding
P-MN. As shown in [1], decoupling reduces the blocking
time of the resources at the FNs. It also simplifies the
handling of the different kinds of failures that raise from the
mobility of P-MNs. For readability purposes, Fig. 3 illus-
trates only the failure-free execution of FT-PPTC. The critical
commit perturbation is the disconnection of P-MNs, which
can be easily addressed by a coordination scheme between
the P-MN and its MN-Ag. To this end, we assume that a P-
MN can inform its agent about the estimated time to execute
its transaction fragments (£;) and the time to ship the results
to the agent (5)).

Fig. 4 shows the main building blocks of the ParTAC
protocol. In ParTAC, a set of coordinators is preselected
among the P-MNs (the preselection of COs out of the P-MNs
can be either random or based on node properties such as
IDs, mobility, connectivity, storage capabilities, etc.). Every
preselected CO can safely abort the MT upon expiration of
the MT lifetime if no decision is reached by then. The
preselected COs collect votes from P-MNs. When two COs
encounter each other, they exchange their collected votes

2403

and elect a single active CO among themselves. The other
CO immediately stops playing an active CO role and
continues behaving like a P-MN. As a result, if all COs
transitively encounter each other before the expiration of the
MT lifetime, only one active CO remains which will take the
final decision for the MT.

Table 1 summarizes why FT-PPTC and ParTAC fail in
delivering a solution for hybrid environments and briefly
highlights our requirements on the new GMTC approach.
Transaction commit protocols developed for infrastructure-
based mobile environments in general (and FT-PPTC in
particular) consider only the choice of mobile transaction
COs as ENs because of the availability and perturbation-
resilience of these nodes compared to MNs. These studies
do not consider at all the choice of MNs as transaction COs
because of the nature of the mobile environment. To apply
these approaches in mobile ad hoc environments as a
special case of hybrid environments, the choice of the CO
becomes a challenge. Not only MNs are not having stable
storages to rely on them for the complete time of transaction
execution but also their availability and reachability is not
guaranteed even for small periods of time as opposed to
FNs. Subsequently, these developed solutions simply fail in
ad hoc environments mainly because they do not define
how to choose the MT CO in this environment. In hybrid
mobile environments, these approaches might work pro-
vided the MT initiator is able to connect to the infra-
structure to select an FN there to play the CO role.
Unfortunately, this solution is in many scenarios inefficient
since all the traffic between the CO and P-MNs will flow in
this case through the MT initiator.

If we now consider the transaction commit protocols
developed for mobile ad hoc environments (e.g., ParTAC),
we observe that COs can only be chosen among MNs as no
FN is available. These approaches rely on choosing more
than one P-MN to play the CO role, and thus overcoming the
vulnerabilities of the P-MNs by replicating the CO role.
Though these commit protocols can be deployed in infra-
structure-based environments as a special case of hybrid
environments, they are inefficient due to an unnecessary
overhead caused by the replication of the CO role and also
long blocking time of FNs participating in the MT execution.
It is noteworthy that the mobile ad hoc approaches do not
explicitly consider the existence of P-FNs and therefore do
not provide required mechanisms to minimize their block-
ing times. In hybrid mobile environments, these protocols
might be inefficient especially when some transaction
participants are FNs or in case all participants are MNs but
the access to the infrastructure is available.

TABLE 1
Requirements on the Proposed GMTC Approach

Infrastructure-based mobile

Ad-hoc mobile Hybrid mobile

environment (possibly P-FNs) environment environment (possibly P-FNs)
FI-PPTC Perturbation-resilient and Fails due to lack of Works only if the MT initiator can
[1] efficient solution infrastructure connect to an infrastructure

Ignoring the decoupling of P-MN commit
ParTAC and P-FN commit, extra overhead and long
[4] blocking time of P-FNs frequently occur,

rendering ParTAC extremely inefficient

Perturbation-resilient and

Wastes valuable resources on MNs
(energy, bandwidth) as it ignores
communication shortcuts
through the infrastructure

efficient solution

Perturbation-resilient solution,

GMTC requires additional message overhead

and efficient solution
(no extra message overhead)

Perturbation-resilient First perturbation-resilient and

efficient solution

2404
Pre-Commit Phase ! Core Phase
]
P ([i y
4 ; |
wy | [\ Vote i |
P-MN_4 i collection
b= y ﬁ Y T4 oW 4
Q‘:’ (COole) [l | T (P-MN role I
1) P'MNJ@) 1 :‘ on o 4
3 Nvy \ M encounter: ! /
o P-MN2 % (R v/ aCOis de-| | /]
.= (COrole) | \ 1“ Flected : *
= pMNA Al L1 4/ I‘(P-Mll\’ ole | ! |/
(Initiator) ’Ig"g‘c';?" | b | | :
¥7*1&WA#¥_“_“*‘—*9—*14 I
[A | I isi
el
| | | 2P V- e
% MN-ag2 /YA Y A B | v i S {mx.onAA
(CO role) o [f 1\
L mNags NT T [
| |)| |
g ! | Iy
P (O

1 |
\ A v
e

Fig. 5. GMTC flow diagram.

4 THE ProroseD GMTC APPROACH

We describe GMTC, our solution towards a perturbation-
resilient transaction atomic commit protocol for hybrid
mobile environments. GMTC is an efficient integration of
the ParTAC and FT-PPTC approaches. GMTC converges to
the FT-PPTC approach if deployed in an infrastructure-
based mobile environment with an additional message
overhead over FT-PPTC needed to elect one single CO
among the preselected ones (FT-PPTC selects upfront a
single CO). GMTC converges to the ParTAC approach if
deployed in ad hoc mobile environments without any
additional message overhead. The GMTC approach intro-
duces a modified CO election strategy that takes into
consideration a prioritization scheme between the prese-
lected COs as will be explained in the following. Note
that in hybrid environments, the CO role can be played by
P-MNs and/or their corresponding MN-Ags if the P-MNs
can communicate with the available infrastructure.

4.1 Overview

Targeting an atomic transaction solution which covers all
three main classes of environments as illustrated in Table 1,
we propose the GMTC protocol as a solution for hybrid
mobile environments. This solution delivers the same
perturbation tolerance of ParTAC and FT-PPTC in ad hoc
and infrastructure-based mobile environments, respec-
tively. GMTC adds a tolerable performance overhead if
deployed in infrastructure-based mobile environments due
to the new modified election strategy used in GMTC.

Fig. 5 shows that the GMTC protocol inherits from the
FT-PPTC (see Fig. 3) its two phases, i.e., the precommit
phase and the core phase. In the first precommit phase,
GMTC follows the multiple CO strategy of ParTAC (see
Fig. 4) with one main difference: The multiple CO strategy
in GMTC favors P-MNs which can connect to the infra-
structure while electing a new CO on encounter. If two COs,
which are only able to communicate in ad hoc mode,
encounter each other then the election is done like described
in ParTAC, for example, the one having the highest ID is
elected. If one CO, which is able to access the infrastructure,
encounters a CO which is able only to communicate in ad
hoc mode, the former is elected and its MN-Ag becomes one
CO of the MT in the wired part of the environment. In case
two MN-Ags are selected in the above described way to be
COs, then any election algorithm for wired networks is

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 12, DECEMBER 2013

convenient. We detail in the following the protocol opera-
tions of GMTC that describe the activities of P-MNs, COs
and MN-Ags, respectively, in Algorithms 1, 2, and 4. P-FNs
activities are described in Section 4.5. We distinguish
between the activities performed during the precommit
phase and the ones performed during the core phase.

4.2 Protocol Operations: Activities of P-MNs
Precommit phase. Algorithm 1 mainly describes how a P-MN
sends its vote to its MN-Ag or to an encountered CO. Upon
receiving its execution fragment, the P-MN begins the
processing of its execution fragment e;(P-MN). If the P-MN
cancommunicate witha BS, it sends a “No” vote toits MN-Ag
whenever it decides to abort the MT and its updates if it
successfully completes the execution of its fragment. In case
the P-MN is not able to access the infrastructure, it sends its
vote to each CO it encounters as long as no ACK is received
from that CO and there is no final decision (Algorithm 1, L 17
and L 19-24). P-MNs know that they are encountering a CO
when they receive a beacon from that CO as described in
Section 4.3. Hence even if one CO was not aware about
the P-MN’s vote, for example, due to message loss, then
the vote information is not lost, but communicated to the next
encountered CO. It is noteworthy that a P-MN is not
allowed to change its vote once it is sent to a CO.

Alg. 1: P-MN'’s Activities in GMTC

1 wait for receiving a mobile transaction 75;
2 extract the corresponding execution fragment e; (P-MN) and
the set of preselected COs;

3 start executing the received execution fragment;
4 if P-MN decides to abort T; then
5 abort T;;
6 if P-MN has MN-Ag then
7 | send “No” vote to corresponding MN-Ag
8 else
9 send “No” vote to all COs in C)y;
10 exit;
1 end
12 else /% P-MN decides to commit T; x/
13 write updates to the local log;
14 if P-MN has MN-Ag then
15 | send updates to the corresponding MN-Ag;
16 else
17 send “Yes” vote to all preselected COs;
18 while waiting for the final decision about the outcome
of T; do
19 if beacon is received from a CO then
20 send “Yes” vote to the CO from which the
‘ beacon was received;
21 end
2 if Ack is received from a CO then
23 stop reacting on beacons received from
‘ that CO;
24 end
25 end
26 end
27 if final decision is Commit then
28 commit 75;
29 exit;
30 else /* decision is Abort x/
31 abort T;;
32 exit;
33 end
34 end

4.3 Protocol Operations: Activities of COs

Precommit phase. Algorithm 2 details how a GMTC CO
1) manages the state of an MT depending on received votes

AYARI ET AL.: GMTC: A GENERALIZED COMMIT APPROACH FOR HYBRID MOBILE ENVIRONMENTS 2405

and the MT lifetime, 2) discovers surrounding P-MNs, and

Alg. 2: CO’s Activities in GMTC
3) may turn to a simple P-MN if it encounters another CO. 5 S o I

wait for receiving a mobile transaction 7;;

-

Upon receiving an MT T;, a CO creates a Token for the
received MT, which includes all information about the
participants and COs of the MT and the state of execution.
The possible execution states are: Idle, active, precom-
mitted, committed or aborted. The state of T; is set to
“active.” If a CO is a P-MN in the MT, it starts executing its
execution fragment upon receiving the MT T;. Every CO

N}

NG oe W

extract the corresponding execution fragment if the CO is a
P-MN or the fragment of its corresponding P-MN if it is a
MN-Ag, the lifetime of the MT, the set of P-MNs and
preselected COs;

create a Token for T; ;

set the state of the MT to “active” in T;’s Token;

let P, = {P-MN,...,P-MN,,} the set of all P-MNs;

let Cp = {COx, ..

.,COm } the set of all preselected COs;

let L = () the ID list of all P-MNs which sent “Yes” vote to

starts a timer to detect/watch the expiration of the lifetime ti‘e tCO? ine th ved don f L CO
of the MT (Algorithm 2, L 9). If a CO receives initial or ; i’)j\r/ﬂ\?’.xecu g The fecetved exection Tagment 1 e

updated E; and/or S; from one P-MN, the lifetime of the
MT is updated if mandatory, i.e., if the lifetime needs to be
increased. The updated information is stored in the Token
of the CO which received that information. If a CO decides
to vote for aborting the MT and it is a P-MN or receives a

©

10
11
12
13

14

while waiting for lifetime to expire do
if CO is a P-MN then

else

broadcast periodically own ID;

/* The CO is a MN-Ag =/
if value of Ey and/or Sy (initial or extended values) of
one of the P-MNss is received then

update lifetime value only if it needs to be

“No” vote, it sends an Abort decision to all P-MNs of the increased;
MT. The COs periodically send presence beacons to allow 15 upldate the Token of T; with the received
other P-MNs and COs in their partition to discover their 16 end value(s);

presence (Algorithm 2, L 11). These beacons are those
already being sent by the underlying ad hoc routing
protocol to avoid additional wireless messages. Every
preselected CO maintains a commit-list L of all P-MNs
from which it has received a “Yes” vote. If the CO is a P-MN
and decides to vote for committing the MT or if it is an MN-
Ag and receives the updates of its corresponding P-MN, it
adds also its ID to its own commit-list (Algorithm 2, L 24).
As soon as a CO receives a “No” vote it decides to abort the
MT and sends an Abort decision to all P-MN:ss. If the lifetime
of the MT expires on a CO before receiving a final decision,
the CO decides also to abort the MT (Algorithm 2, L 59-60).

If two COs encounter each other (e.g., if the correspond-
ing network partitions join) these two COs exchange their
commit-lists (Algorithm 2, L 33-43 and 46-47) and elect one
CO among themselves, for example, based on highest ID
(Algorithm 2). The other CO becomes either a normal P-MN
or an MN-Ag (Algorithm 2, L 44) and behaves from this
point in time and onwards according to Algorithms 1 or 4,
respectively. If one of the COs is an MN-Ag, it is elected
automatically and if both are MN-Ags the highest ID
schema or another election algorithm can be used. COs are
allowed to give their list of votes only to other COs and only
after they complete the election process. The nonelected CO
sends its commit-list to the elected one that merges it with
its own list. Thus, the lists are merged only if the election
succeeds. If the list does not reach the elected CO, for
example, due to message loss, it is still possible that GMTC
commits the MT since the nonelected CO will behave as a
normal P-MN and sends its commit-list L to every CO it
encounters or it will send the commit-list to the elected FN
CO if it is an MN-Ag.

The election process as described above guarantees the

24

25
26
27
28
29
30
31
32
33
34
35

36

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

end

end

end

if CO decides to abort T; or receives “No” vote then

abort Tj;
send Abort decision to all P-MNs in P,;
exit;

if CO decides to commit T; or receives updates from
corresponding P-MN then

add own ID to L if CO is a P-MN or add ID of
corresponding P-MN if CO is a MN-Ag;
checkList(L);

switch message M is received do

case M is a “Yes” vote from a P-MN
send Ack to P-MN;
add ID of sending P-MN to L;
checkList(L);
endsw
case M is a beacon from another CO
compare the received ID with the own ID;
if (both COs are either P-MNs or MN-Ags and
Own ID > received ID) or (CO is MN-Ag and
other CO — from which the beacon is received — is
a P-MN) then

‘ send request to CO asking for list L

(include own list L in the request);
else
send own list L;

‘ change role to normal P-MN or MN-Ag;
end
endsw
case M is a request to send list L
send own list L;
change role to normal P-MN;
endsw
case M contains a list L from another CO
send own list L if not already done;
add all IDs of received L to own list;
checkList(L);
endsw
case M is @ Commit decision

| commit T5; exit;
endsw
case M is an Abort decision

| abort T;; exit;

uniqueness of the decision. We note that the votes of COs % endsw
. . 57 endsw
can only be given to other COs after the election process. s end
Using this schema for the election of a new and single CO 59 abort T}; /% T; is aborted if lifetime expires

guarantees that no two or more COs have the complete
knowledge about which P-MNs voted to commit the MT.
In the latter case, these COs could take different decisions
about the outcome of the MT which violates the correctness
of the proposed solution.

60

before reaching a decision =/

send Abort decision to all P-MNs in P,;

2406

Core phase. Each time a CO election is performed, the new
elected CO checks whether its list contains all P-MNss of the
MT (Algorithm 3). If this is the case, it sets the state of the
MT to “precommitted” and starts a 2PC session to collect
the votes from P-FNs if any. If the CO receives a “Yes” vote
from all the P-FNs, it decides to commit the transaction and
sends Commit decision to all the participants. If it receives
at least one “No” vote (or no reply) it aborts the transaction
and sends Abort decision to all participants. Recall here that
our CO selection and election strategies result in that the
remaining final CO has access to the infrastructure (if at
least one P-MN has access to the infrastructure which is a
condition to initiate a meaningful generic transaction). If all
P-MNs voted for committing the MT and only one CO
remains for the MT, then this unique remaining CO might
have a list that does not contain the IDs of all P-MNs
because some votes were lost or the corresponding P-MN
did not send any vote due to a transient MN failure or
communication failure. If the CO does not collect all
required votes before the transaction lifetime expires, the
MT is aborted and the core phase is subsequently not
started at all. P-MNs share the final decisions on encounter.
The final decision is inherently replicated onto the CO that
turned to either a P-MN or MN-Ag since the lists of the COs
are exchanged (Algorithm 2, L 36 and 47) before electing a
new CO among them. This replication is needed to recover
from a failure of the last remaining CO.

Alg. 3: CheckList Procedure

1 procedure checkList(L)
2 if (L contains the IDs of all P-MNs) and (commit set
contains P-FNs) then

3 set the state of the MT to “pre-committed” in T}'s
Token;
/+ Starting of the Core Phase x/
4 start a 2PC protocol to collect the votes from all
P-FNs;

5 if all votes were “Yes” then

6 commit 7T5;

7 set the state of the MT to “committed” in T}’s
Token;

8 send Commit message to all members of the
commit set;

9 return;

10 else /* at least one of the votes is No =/

11 abort T;;

12 set the state of the MT to “aborted” in T;’s
Token;

13 send Abort to all members of the commit set;

14 return;

15 end

16 else if (L contains the IDs of all P-MNs) then

17 commit T7;;

18 send Commit decision to all P-MNs in P,;

19 exit;

20 end

21 return;

Our proposed approach reduces the transaction decision
time. Consequently, the resource blocking time of partici-
pants is reduced as the COs have bounded waiting time
given by the transaction lifetime for the MT outcome. If the
transaction lifetime expires at one CO before reaching a
final decision, the MT is aborted. This is not viable in any
existing solution as P-MNs should be able to asynchro-
nously reach a final decision or proceed with the core phase
if P-FNs exist.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 12, DECEMBER 2013

4.4 Protocol Operations: Activities of MN-Ags
Precommit phase. Algorithm 4 describes how an MN-Ag
interacts with the corresponding P-MN to 1) cope with its
disconnections, and 2) to manage its commit state. Upon
receiving the execution fragment of its corresponding P-MN
from a CO, the MN-Ag forwards it to the corresponding
P-MN. After receiving E; and S; from the P-MN, the MN-Ag
forwards this information to the CO. After receiving a “Yes”
or “No” vote from the P-MN, the MN-Ag forwards the vote
to the CO. Upon receiving the decision from the CO, the
MN-Ag forwards it to the P-MN as soon as it is available
(connected to the network). After receiving the Ack for
decision reception from the P-MN, the MN-Ag acknowl-
edges the CO. It is key to mention that the MN-Ag is not
an active participant in the execution of the MT, since
it does not have to know any information about the
application and does not need to process any part or
fragment of the MT.

Alg. 4: MN-Ag’s Activities in GMTC

1 wait for receiving execution fragment e;(P-MN) of the
corresponding P-MN from CO;

2 create a Token for e;(P-MN);

3 set the state of e;(P-MN) to “idle” in T;’s Token;

4 send an estimation of the timeouts of corresponding P-MN

to the CO;

5 for any received message do

6 if message contains the timeouts of the P-MN then

7 update T;’s Token with the received timeouts;

8 set the state of the e;(P-MN) to “active” in T;’s
Token;

9 forward the timeouts to the CO;

10 else if message contains the updates of the corresponding

P-MN then

1 update the Token with the received updates;

12 send “Yes” vote to CO;

13 else if message contains possible disconnection of the

corresponding P-MN and its reasons then

14 recompute the timeouts based on disconnection
reasons;

15 update the token with this information;

16 send extended timeouts to the CO;

17 else if message is sent by the CO then

18 update the Token with the received message;

19 send the received message to the corresponding
P-MN as soon as it is available;

20 else if message is sent by P-MN then

21 update the Token with the received message;

22 send the received message to CO;

23

24 end

The MN-Ag can take some decisions on behalf of its
corresponding P-MN. These decisions include the extension
of the timeouts of the P-MN in case of a transient
disconnection. The MN-Ag is also given the responsibility
to send an estimation of the timeouts of the corresponding
P-MN direct after receiving the execution fragment of this
P-MN (L 4). This estimation can be corrected after receiving
new timeout values (E; and S;) from the P-MN.

4.5 Protocol Operations: Activities of P-FNs

Core phase. P-FNs behave as per the established 2PC
protocol, i.e., a P-FN executes its fragment, waits for the
Prepare message, sends its vote and waits for the decision.
Upon receiving the decision, the P-FN acknowledges the
CO. Note that any existing protocol like 3PC or Paxos
Commit can be used here.

AYARI ET AL.: GMTC: A GENERALIZED COMMIT APPROACH FOR HYBRID MOBILE ENVIRONMENTS

5 CORRECTNESS BAsIS

To show the correctness of the proposed GMTC protocol
composed of Algorithm 1, 2, 3, and 4, we demonstrate that it
satisfies the required five atomicity properties [6]:

1. Stability. A participant cannot reverse its decision
after it has reached one.

2. Consistency. All participants that reach a decision
reach the same one.

3. Validity. The “Commit” decision can only be reached
if all participants voted “Yes.”

4. Nontriviality. If no failure occurs and all participants
voted “Yes,” then the final decision should be
“Commit.”

5. Termination. At any point in execution, if all existing
failures are repaired and no new failures occur for
sufficiently long time, then all participants will
eventually reach a decision.

While the properties of stability and nontriviality
naturally follow from the GMTC protocol description in
Section 4, we now show that it also satisfies the consistency,
validity and termination properties.

Consistency. This is satisfied as only the last active CO
decides the outcome of the transaction in case the final
decision is “Commit” and distributes the final decision to
every participant. Hence, the last remaining CO is the
single one which can have the final eventual complete list
of P-MNs since at least its vote was not communicated to
any other CO or P-MN according to the specification of the
GMTC protocol. This CO is the single one able to start the
core phase. If more than one CO are still remaining in
the system, they can only take an “Abort” decision and no
“Commit” since no one of them can have a full list of
participating nodes (see detailed description of GMTC
protocol). Thus, the consistency property is guaranteed by
our protocol.

Validity. We assume that one of the preselected COs
decides to commit the transaction when at least one
participant has not decided yet. If this participant is a P-
MN then its ID cannot appear in any list L (Algorithm 2,
line 7) of the preselected COs according to the specification
of the GMTC protocol. Obviously, no preselected CO can
then take the decision to precommit the MT since this
contradicts with the protocol specification (Algorithm 3,
lines 1-21). In the case that at least one of the P-MNs decides
to abort the transaction, the preselected COs cannot decide
to precommit the transaction because this decision will
violate the protocol specification (Algorithm 2, lines 18-22).
If this participant is a P-FN, then the 2PC protocol decides
to commit the transaction before receiving all the votes from
the P-FNs, which again contradicts the specification of the
2PC protocol. In the case that at least one of the P-FNs
decides to abort the transaction, the CO cannot decide to
commit the whole transaction because this decision will also
violate the 2PC protocol specification. Hence, the commit
decision can only be reached if all P-MNs voted “Yes,” i.e.,
decided to commit the transaction.

Termination. We consider any execution containing the
failures listed in the perturbation model detailed in
Section 2.2. From the GMTC protocol specification, we can

2407

observe that because we are using a timeout concept the
protocol cannot block forever (the blocking of the protocol
forever leads to a nontermination of the protocol). If at any
point in execution all existing failures are repaired and no
new failures occur for sufficiently long time, then all
participants will eventually reach a decision. Especially in
this situation all P-MNs (including COs) can meet each
other eventually and progressively the lists of COs are filled
and the number of COs is reduced until only one CO
remains having a list L containing the IDs of all P-MNs.
This complete list allows this CO to take a precommit
decision (Algorithm 3, lines 1-21) and to start the core phase
which is executed only on the wired part of the environ-
ment. The protocol terminates as soon as 2PC reaches a final
decision (2PC also implements a timeout strategy to avoid
blocking). If the lifetime expires at any CO before reaching
the final decision, the MT is aborted (Algorithm 2, lines 59-
60) leading also to the termination of the protocol.

6 PERFORMANCE EVALUATION

We use simulations to validate our approach. We present
the used performance metrics, the simulation model and
our results on the high commit rate, the bounded decision
time and the efficiency of GMTC. Our simulation studies
show the feasibility of our approach and concentrate on
investigating the benefit of accessing the infrastructure in
MT, where only MNs are participating in their execution.

6.1 Methodology and Simulation Settings

For the evaluation of the GMTC protocol, we focus on three
major performance metrics: 1) Commit rate as it determines
the service availability, 2) commit latency or transaction
decision time as it determines the service response time, and
3) message complexity as it determines the scalability and
efficiency of our approach. We measure the commit rate as
the ratio of number of successfully committed MTs to total
number of initiated MTs. The transaction decision time is
the time needed to take a decision about the outcome of the
initiated MT, i.e., the time between the initiation of the MT
and the time, when the final decision is reached at the CO.
The blocking time of P-MNs is majorally determined by the
transaction decision time. However, the time needed for
the final decision to reach the P-MNs plays a role especially
in mobile ad hoc and hybrid environments (blocking time =
decision time + time needed to disseminate the final
decision). This time depends on the partitioning degree
and the implementation of the message dissemination
protocols used to disseminate the final decision [19], and
therefore will not be further investigated in our performance
evaluation. The message complexity of GMTC is defined as
the number of wireless messages sent and received in
average by each P-MN during the execution of the MT.
The performance of the GMTC approach is evaluated in
this work based on the service delivery level assured by the
protocol and defined basically by the commit rate and
the decision time. The costs of assuring a certain service
delivery level are measured in terms of message complex-
ity. We focus in our performance evaluation on the impact
of BS coverage and network partitioning degree of MNs

2408

TABLE 2
Simulation Settings

Parameter [Value(s) |

2km x 2km
250m
Random Waypoint (RWP)

Geographical area
Communication range
Mobility model

Node speed uniform in [0.5, 1.5] m/s
Nodes € [20,200]

Pre-selected COs € {3,510}

>-MNs 10

Lifetime € {60s,1205,3005}

that can only communicate in ad hoc manner on the
identified performance metrics.

For our simulation studies we have used J-Sim [18], a
component-based, compositional simulation environment
that is developed in Java. For the performance evaluation of
the GMTC protocol, we consider a representative range of
parameter values. Table 2 summarizes our simulation
settings. We selected the commonly used Random Way-
point mobility model [12] (node speed uniform in
[0.5, 1.5] m/s). We fix the mobility area (2 km x 2 km)
and the communication range (250 m). We generate the
mobility scenarios using the BonnMotion mobility simula-
tor [8]. Given its importance, for all our simulation studies
we vary the partitioning degree through varying the
number of nodes. The partitioning degree or degree of
separation is provided by BonnMotion and reflects how
likely it is that two randomly chosen nodes are not within
the same partition at a randomly chosen point in time.

BSs have in our simulations the same communication
range as the MNs. We place the BSs uniformly in the
simulated area and vary the number of deployed BSs to
vary the coverage area of these BSs. For 4, 9, 16, 25, and
36 deployed BSs the percent of the simulated area covered
by these BSs is 19.63, 44.17, 78.53, 98.2, and 100 percent,
respectively.

We consider that all deployed MNs in the simulation
area can communicate with the BSs and also with other
MNs (in ad hoc mode) if they are in their communication
range. We generate transactions of similar number and size
of execution fragments. We initiate one transaction at the
beginning of each simulation. We fix the number of P-MNs
to 10 and vary the number of preselected COs, the
transaction lifetime and the number of BSs to study the
impact of these parameters on the performance of GMTC.

#COs=3, Lifetime=300s

#COs=3, Lifetime=300s

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 12, DECEMBER 2013

Each simulation is repeated 200 times for statistical
significance of the results.

Besides the detailed qualitative comparison of GMTC to
FT-PPTC and ParTAC throughout the paper, we show the
best case performances of these protocols in our simulation
results. For this, we note that in case the coverage of BSs is
0 percent, the GMTC protocol converges to the behavior of
ParTAC, and the performance of GMTC and ParTAC are
identical. When the coverage of BSs is 100 percent, the
behavior of GMTC converges to that of FT-PPTC with a
more than preselected coordinator, which can immediately
agree with negligible delay and message overhead on one
single coordinator. Accordingly, we consider that the
performance of GMTC is almost the same as the of FT-PPTC
for full base station coverage. In [1], a comprehensive
comparison of FT-PPTC to 2PC has been provided, which
we skip due to space limitation.

6.2 Simulation Results

Now, we present the results of our conducted simulation
studies for the defined performance metrics. As mentioned
before, we simulate GMTC under different network condi-
tions and vary important protocol parameters to study the
behavior of our approach in a wide range of possible
deployment scenarios. Overall, we split the statistics for
“Abort” and “Commit” cases to have better insights to
GMTC performance.

6.2.1 Impact of BSs’ Coverage and Node Density

We arbitrarily use in this study three preselected COs and a
transaction lifetime of 300 s. To assess the influence of the BSs’
coverage area on the GMTC protocol, we vary the number of
the BSs deployed in the simulation area (i.e., we vary the
percentage of the simulated area covered by these BSs).

Fig. 6a shows that GMTC benefits from accessing BSs to
increase the number of committed transactions compared to
ParTAC. The infrastructure indeed allows to bridge parti-
tions. For 36 BSs no transaction is aborted. Accordingly, we
focus on statistics for the “Commit” case in the remainder of
this section.

In Fig. 6b, we observe also that accessing the infrastruc-
ture reduces the decision time, especially in sparse deploy-
ments (less than 100 MNs in our settings). This is due to the
fact that bridging partitions through the infrastructure is
much faster than bridging partitions through node mobility
like it is the case in ParTAC. For dense node deployments

#COs=3, Lifetime=300s

1 1 g 35 T T T T 1
. T partioning degree —+—
) paf"°”'”9 degree o % 30 - commit, 0 BSs, ParTAC --->%-- o
0.8 — 250 commit, 0 BSs, ParTAC --->--- -4 0.8 4 08
I % 4 o abort, 0 BSs, ParTAC ---3K--- o
o 5 i) abort, 0 BSs, ParTAC ---3K--- a a 5 | it 9 BS: & S
- 8 g 200 |- commit, 9 BSs {1 8 2 CO;TJ?:(VQBSZ o m- 8
« 06 - /' partitioning degree —+— | 06 o = X abg‘rt,zz gzs j,‘@ii 06 o 220 commit, 25 BSs --O-- | 06 =
€ 05 f 0BSs, ParTAC -~ £ S10F oo C";TJ”;:" % Bs: e - ” abort, 25 BSs - -@- - £
O o \ 3 | L n) g |
£ o4l e TR \ colymit, 36 8Ss, FT-PPTC —-4—-7 04 & % n S g qmit 36 BSs FIPPIC =4 1 04 g
k=1] - \ = ~ k=1
O 03 . 36 BSs, FT-PPTC — 1 — = 100 S <] g 10f By Bo A o B Fog L
o2p * o2& s & Bl Aped o s Qoélu§~~ ; ‘i' e Hergg K 02 &
o1y X . ,g‘ ;#’8 &Y g —t—
0 L " o 0 =B = —X==X o = o0 L L 0
0 40 80 120 160 200 0 40 80 120 160 200 0 40 80 120 160 200

#Mobile Nodes

(a) Commit rate

#Mobile Nodes

(b) Decision time

#Mobile Nodes

(c) Message complexity

Fig. 6. Impact of BSs’ coverage on (a) commit rate, (b) decision time, and (c) message complexity.

AYARI ET AL.: GMTC: A GENERALIZED COMMIT APPROACH FOR HYBRID MOBILE ENVIRONMENTS 2409
#COs=3, BSs coverage is 78,53% #COs=3, BSs coverage is 78,53% #COs=3, BSs coverage is 78,53%
1 TR 1 S T T T 1 Z 40 T T T T 1
09 | ,u/}%/}s’é ss* . 300 ¢-5-9 partioning degree —+— E, partioning degree —+—
§ * ,/X KoK commit, lifetime=60s --->¢-- a 35 commit, lifetime=60s --->¢--
08 - Xy’ X ¥ 408 @ - 250 - abort, lifetime=60s --—-%---- 08 3 o abort, lifetime=60s -4 08 3
w o7 F X~ > o commit, lifetime=120s &3 5 o 30r commit, lifetime=120s -3 5
5 X X & gowof abort, lifetime=120s ——l-— g Tl abort, lifetime=120s -~ 8
< 06 “F0 T B commit, lifetime=300s --©--1 %6 5 D commit, lifetime=300s -0 -7 06
€ 05 partitioning degree —+— c < 150 abort, lifetime=300s -- -@- -- c < 20 ° abort, lifetime=300s - -@- - c
lifetime=60s --->¢-- c o c S _ A 'c
E 04r lifetime=120s -] %% S @ - E\E-8-0-8-E-8W04 0 X 5t ‘H-g 1049
S e £ G 100 | E=R k.- =
O 03 lifetime=300s £ i 7] i © 10 %é kS
02 & 2 | KRR F02 & B =Rl), ©
0.1 F a.) ﬁ 5 |
0 | | | F o 0 =) = o0 0]
0 40 80 120 160 200 0 40 80 120 160 200 0 40 80 120 160 200

#Mobile Nodes

(a) Commit rate

#Mobile Nodes

(b) Decision time

#Mobile Nodes

(c) Message complexity

Fig. 7. Impact of transaction lifetime on (a) commit rate, (b) decision time, and (c) message complexity.

(more than 100 MNs), the commit decision time surprisingly
increases. We explain this behavior as follows: If the number
of MNs increases, the number of MNs sharing the access to a
BS also increases. Consequently, the infrastructure-based
communication suffers from higher latencies.

Apart from a few “Abort” cases when the partitioning
degree is very high and resulting in exchanging more
messages, the overhead of the MTs in term of exchanged
wireless messages remains more or less constant in our
simulations (see Fig. 6¢).

The curves “abort, 0 BSs,” “abort 9 BSs,” and “abort
25 BSs” in Figs. 6b and 6c have less measurement points
than the others. This is due to the fact that when commit
rate as shown in Fig. 7a becomes 100 percent, the number of
aborted transactions is 0, which translates in 0 s decision
time and 0 exchanged messages per P-MN. For these cases,
we do not plot the values for readability reasons.

6.2.2 Impact of Transaction Lifetime

We arbitrarily fix in this scenario the number of preselected
COs to 3 and number of deployed BSs to 16 (i.e., 78.53 percent
of the simulated area is covered by the BSs). To assess the
impact of the lifetime on the GMTC performance, we select
the following lifetime values: 60 s, 120 s, and 300 s.

Fig. 7a shows that also in the case of GMTC, the commit
rate depends on the MT lifetime. The commit rate increases
with the lifetime value. If the number of deployed MNs in
the simulated area is larger than 100, the commit rate starts
even to decrease because the decision time starts to
increase as illustrated in Fig. 7b and as explained before
in Section 6.2.1.

Lifetime=300s, BSs coverage is 44,17%

Lifetime=300s, BSs coverage is 44,17%

Fig. 7c highlights that the number of exchanged
messages in the “Abort” case increases if the lifetime
increases since an increase in the lifetime implies an
increase in the number of exchanged messages (more votes
and lists can be sent to encountered COs if lifetime
increases). For the “Commit” case the message complexity
does not change if the lifetime is changed.

Similar to Fig. 6, the curves “abort, lifetime = 300 s” in
Figs. 7b and 7c do not show measurement points for the
cases, where all transaction are committed.

6.2.3 Impact of Number of Preselected COs

We arbitrarily fix in this scenario the lifetime to 300 s and
the number of deployed BSs to 9 (i.e., 44.17 percent of the
simulated area is covered by the BSs) and vary the number
of preselected COs.

The number of preselected COs does not impact the
commit rate of GMTC as illustrated in Fig. 8a. This is due to
the fact that as soon as two COs encounter each other only
one of them remains active and the other one becomes a
normal P-MN. After a certain point in time only a few (2 to
3) COs remain and all the simulated scenarios behave from
this instant onwards similarly. This point in time is closer to
the initiation time of the MT in the “Commit” case as from
all the COs present in one partition only one remains active
as soon as they receive beacons from each other. Fig. 8b
shows that the number of preselected COs does have only a
slight impact on the decision time also because of the same
reasons given above.

However, the number of preselected COs has a minor
impact on the efficiency of the GMTC protocol as shown in
Fig. 8c. The slight increase of the number of messages

Lifetime=300s, BSs coverage is 44,17%

=
! 1 = T T T 1
0.9 T 45 partioning degree —+—
' /» o partioning degree —+—) <+ 40 commit, 3COs --->¢-- o
08 - 4 1089 w commit, 3C0s —-x—7 08 © @ abort, 3COs -1 08 O
Lo7p # [abort, 3COs -~ 2 oFr commit, 5 COs -3 >
& o6 | X partitioning degree —+— | 06 O £ 200 - commit, 5COs 3 | ¢ QO 930 abort, 5 COs — -~ 06 O
= % 3COs - o abort, 5 COs — - o 2l commit, 10COs -0~ - o
g 05 7 5C0s K- £ c 150 commit, 10COs --O--- £ B abort, 10COs — -@- - <
E o4 10C0s 1 04 § 2 N abort, 10COs ~-@- -+ 04 § g2 04 §
Sost @ E 90 o) E= E=
’ 4 g . £ v £
% 5 4 R 3
02 02 8 50 | =8 02 8 ol %02 8
01]
: w
0 L L L 0] 0 L ro % 0
0 40 80 120 160 200 0 40 80 120 160 200 0 40 80 120 160 200

#Mobile Nodes

(a) Commit rate

Fig. 8.

#Mobile Nodes

(b) Decision time

#Mobile Nodes
(c) Message complexity

Impact of number of preselected COs on (a) commit rate, (b) decision time, and (c) message complexity.

2410

exchanged per node is due to the fact that every P-MN needs
tosend its vote to more COs as the number of COs increases. It
isnoteworthy to mention that selecting higher number COs is
primarily to tolerate CO failures during the MT execution.
Our simulations show that a higher CO failure-tolerance does
only slightly impact the message efficiency.

6.3 Discussion

Our simulation studies show that the GMTC approach
takes advantage of the access to the infrastructure whenever
possible to achieve better performance especially w.r.t. the
transactional service availability by increasing the commit
rate of initiated MTs and w.r.t. commit latency by reducing
the commit decision time of these transactions. Similar to
FT-PPTC and ParTAC, GMTC takes also into consideration
application requirements by defining an appropriate life-
time for each initiated MT. Our evaluation studies has
shown the existence of a tradeoff between the chosen
lifetime and the performance of GMTC in terms of commit
rate, decision time and message complexity. By defining an
appropriate lifetime, the application also limits and controls
the cost of the initiated MTs. To choose the appropriate
lifetime, the application should consider 1) the user
tolerable transaction decision delay, and 2) the time scale
to transitively full-connect the network mainly determined
by the partitioning degree and the mobility of nodes. The
time scale factor can for instance be estimated from the
experienced decision time of prior transactions.

7 RELATED WORK

Given the need for correct data management in mobile
environments, MTs have increasingly become the focus of
extensive ongoing research. Some existing atomic commit
protocols are designed for infrastructure-based mobile
environments [7], [20], [26], [22], [1]. Unilateral commit for
mobile (UCM) [7] provides support for disconnections and
offline executions on mobile devices. UCM is a one-phase
protocol where the voting phase of 2PC is eliminated to
reduce the wireless message complexity. The single CO acts
as a “dictator” imposing its decision on all participants.
UCM guarantees atomicity. However, UCM is based on
strict and hard assumptions of local pessimistic concur-
rency control such as strict two-phase locking [6] which is
required for all participants, as well as immediate integrity
control and homogeneity of participating database systems.
Transaction commit on timeout (TCOT) [20] uses timeouts
to provide a nonblocking protocol that limits the amount of
communication between the participants during the execu-
tion of the protocol. Instead of exchanging messages to
reach a final decision, the single CO waits for timeouts to
expire. Overall, TCOT provides only semantic atomicity as
defined in [14]. Semantic atomicity requires the existence of
a compensating transaction for every initiated mobile
transaction which is not possible for every transaction.
Compensating transactions undo semantically the transac-
tion effects. This type of atomicity is weaker than the strict
atomicity [17] needed for transactions in general, which
limits the applicability of TCOT to a limited class of
applications. The CO2PC protocol [27], [26] combines an
optimistic approach with 2PC. Like TCOT, the CO2PC

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 12, DECEMBER 2013

protocol provides only semantic atomicity limiting the
applicability of the protocol only for a restricted set of
applications. In mobile two-phase commit (M-2PC) [22], a
P-MN delegates its commit duties to its agent on an FN,
which is the BS the P-MN is connected to. Unfortunately,
M-2PC assumes that all P-MNs are connected at transaction
initiation and that network disconnections are allowed only
after the mobile node delegates its commitment duties.
Similar to our discussion of the fault-tolerant prephase
transaction commit (FT-PPTC) protocol [1] in Section 3.2, all
these infrastructure-based protocols are based on single CO
in the wired network, which makes them unsuitable for ad
hoc environments and therefore for hybrid environments.

Other works address the atomic transaction commit
problem in mobile ad hoc networks [29], [9], [10], [23]. In
[23], a cross layer commit protocol for mobile ad hoc
networks (CLCP) is presented. This protocol employs all
participants as COs and uses consensus to ensure failure
tolerance. CLCP is directly instantiated from the application
layer, but operates on both network and application layers.
Consensus introduces a considerable message overhead
which makes it undesirable especially on mobile devices.
Bose et al. [9] and Bottcher et al. [10] propose the use of a
cluster of COs preferably in single-hop distance from each
other to avoid blocking of mobile nodes in case one CO
fails. The cluster of COs elects a single main CO and uses
the 3PC protocol [28] to agree on a consistent decision either
to commit or abort the MT. If the cluster of COs is
partitioned or the main CO fails the authors use a
termination protocol based on the Paxos Consensus proto-
col [21] to elect a new main CO. The assumption in [9] and
[10] that the COs are moving together in a group (forming a
one hop cluster) is not valid in most of mobile scenarios. In
[29], a commit solution is presented which assumes that
every mobile node in a partition knows all the members of
the partition it belongs to. However, this solution is briefly
sketched and lacks a detailed description of the proposed
group based commit protocol. Given the partition member-
ship information, every partition elects a leader and uses
the 2PC protocol inside the partition to decide whether the
transaction should be tentatively committed or aborted.
This temporary decision is communicated to all mobile
nodes within the partition. When a mobile node joins a new
partition, the tentative decision (obtained in its original
partition) is communicated to the new partition. As
described in [29], the correctness of the proposed solution
is assured by the partition membership assumption, i.e., the
fact that partitions can be detected. The assumption that
every MN in a partition knows all the members of its
partition is crucial for mobile environments. Some works
[24], [11] addressed the problem of group membership in ad
hoc environments, however, a generic solution remains a
challenge. We showed in Section 3.2 the unsuitability of the
partition-tolerant atomic commit (ParTAC) protocol [4] for
hybrid environments. Similarly, all the above discussed
infrastructure-less protocols are inefficient (extra overhead
and long blocking time of FNs) in infrastructure-based
environments and therefore fail in delivering a solution for
hybrid environments.

AYARI ET AL.: GMTC: A GENERALIZED COMMIT APPROACH FOR HYBRID MOBILE ENVIRONMENTS

8 CONCLUSION

As the evolving mobile environments necessitate new
commit constraints, the current approaches geared toward
dedicated scenarios, often do not provide comprehensive
and generic commit capabilities. Thus, our developed
generic and evolvable atomic commit solution benefits from
the presence of an infrastructure, if available, and delivers
best effort results in its absence. We have introduced the
main challenges for designing atomic commit protocols
faced in hybrid mobile environments. GMTC is developed as
an efficient perturbation-resilient commit protocol that
provides strict atomicity in spite of frequent mobile
environment perturbations. GMTC especially fills the gap
between solutions provided for infrastructure-based and
infrastructure-less mobile environments.

REFERENCES

[1] B. Ayari et al., “FT-PPTC: An Efficient and Fault-Tolerant Commit
Protocol for Mobile Environments,” Proc. IEEE 25th Symp. Reliable
Distributed Systems (SRDS), pp. 96-105, 2006.

[2] B. Ayari et al.,, “Delay-Aware Mobile Transactions,” Proc. Sixth
IFIP WG 10.2 Int’l Workshop Software Technologies for Embedded and
Ubiquitous Systems (SEUS), pp. 280-291, 2008.

[3] B. Ayari et al.,, “Exploring Delay-Aware Transactions in Hetero-
genous Mobile Environments,” |. Software, vol. 4, no. 7, pp. 634-
643, 2009.

[4] B. Ayari et al,, “ParTAC: A Partition-Tolerant Atomic Commit
Protocol for MANETSs,” Proc. 11th Int’l Conf. Mobile Data Manage-
ment (MDM), pp. 135-144, 2010.

[5S] B. Ayari et al., “On the Design of Perturbation-Resilient Atomic
Commit Protocols for Mobile Transactions,” ACM Trans. Computer
Systems, vol. 29, no. 3, pp. 7:1-7:36, 2011.

[6] P.A. Bernstein et al., Control and Recovery in Database Systems.
Addison-Wesley, 1987.

[71 C. Bobineau et al., “A Unilateral Commit Protocol for Mobile and
Disconnected Computing,” Proc. 12th Int’l Conf. Parallel and
Distributed Computing Systems (PDCS), 2000.

[8] BonnMotion, http://iv.cs.uni-bonn.de/wg/cs/applications/
bonnmotion/, 2013.

[9]].Bose etal., “An Integrated Commit Protocol for Mobile Network
Databases,” Proc. Ninth Int’l Database Eng. and Application Symp.
(IDEAS), pp. 244-250, 2005.

[10] S. Bottcher et al., “A Failure Tolerating Atomic Commit Protocol
for Mobile Environments,” Proc. Int’l Conf. Mobile Data Manage-
ment (MDM), pp. 158-165, 2007.

[11] L. Briesemeister and G. Hommel, “Localized Group Membership
Service for Ad Hoc Networks,” Proc. Int’l Workshop Ad Hoc
Networking (IWAHN), pp. 94-100, 2002.

[12] J. Broch et al., “A Performance Comparison of Multi-Hop Wireless
Ad Hoc Network Routing Protocols,” Proc. ACM MobiCom, pp. 85-
97, 1998.

[13] S.B. Davidson et al., “Consistency in a Partitioned Network: A
Survey,” ACM Computing Surveys, vol. 17, no. 3, pp. 341-370, 1985.

[14] H. Garcia-Molina, “Using Semantic Knowledge for Transaction
Processing in a Distributed Database,” ACM Trans. Database
Systems, vol. 8, no. 2, pp. 186-213, 1983.

[15] J. Gray, “Notes on Data Base Operating Systems,” Proc. Operating
Systems, An Advanced Course, pp. 393-481, 1978.

[16] T. Harder and A. Reuter, “Principles of Transaction-Oriented
Database Recovery,” ACM Computing Surveys, vol. 15, no. 4,
pp. 287-317, 1983.

[17] T.Harder and A. Reuter, Principles of Transaction-Oriented Database
Recovery. Morgan Kaufmann, 1994.

[18] “The J-Sim Website,” J-Sim, http://www j-sim.org/, 2013.

[19] A. Khelil, “A Generalised Broadcasting Technique for Mobile Ad
Hoc Networks,” PhD thesis, Univ. of Stuttgart, 2007.

[20] V. Kumar et al., “TCOT-A Timeout-Based Mobile Transaction
Commitment Protocol,” IEEE Trans. Computers, vol. 51, no. 10,
pp- 1212-1218, Oct. 2002.

[21] L. Lamport, “The Part-Time Parliament,” ACM Trans. Computer
Systems, vol. 16, no. 2, pp. 133-169, 1998.

2411

[22] N. Nouali et al., “A Two-Phase Commit Protocol for Mobile
Wireless Environment,” Proc. 16th Australasian Database Conf.
(ADC), pp. 135-143, 2005.

[23] S. Obermeier et al., “CLCP-A Distributed Cross-Layer Commit
Protocol for Mobile Ad Hoc Networks,” Proc. IEEE Int'l Symp.
Parallel and Distributed Processing with Applications (ISPA), pp. 361-
370, 2008.

[24] G.C. Roman et al.,, “Consistent Group Membership in Ad Hoc
Networks,” Proc. 23rd Int’l Conf. Software Eng. (ICSE), pp. 381-388,
2001.

[25] G. Samaras et al, “Two-Phase Commit Optimizations in a
Commercial Distributed Environment,” Distributed Parallel Data-
bases, vol. 3, no. 4, pp. 325-360, 1995.

[26] P. Serrano-Alvarado, “Transactions Adaptables Pour Les Envir-
onments Mobiles,” PhD thesis, Université J. Fourier, 2004.

[27] P. Serrano-Alvarado et al., “Context Aware Mobile Transaction,”
Proc. IEEE Int’l Conf. Mobile Data Management (MDM), p. 167, 2004.

[28] D. Skeen and M. Stonebraker, “A Formal Model of Crash

Recovery in a Distributed System,” IEEE Trans. Software Eng.,
vol. 9, no. 3, pp. 219-228, May 1983.

[29] W. Xie, “Supporting Distributed Transaction Processing Over
Mobile and Heterogeneous Platforms,” PhD thesis, Georgia Inst.
of Tech., 2005.

Brahim Ayari received the PhD degree in
computer science from Technische Universitat
Darmstadt, Germany. He is currently with the
Information Systems Department at ABB.

Abdelmajid Khelil is a research team leader in
the Department of Computer Science, Tech-
nische Universitat Darmstadt. He has recently
joined the Huawei European Research Center
as a senior researcher.

Neeraj Suri is a professor it the Department
of Computer Science, Technische Universitat
Darmstadt. His professional details can be found
at http://www.deeds.informatik.tu-darmstadt.de.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

