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Abstract. In the expanding e-society, mobile embedded systems are increasingly
used to support transactions such as for banking, stock or database applications.
Such systems entail a range of heterogeneous entities - both the embedded de-
vices and the networks connecting them. While these systems are exposed to
frequent and varied perturbations, the support of atomic distributed transactions
is still a fundamental requirement to achieve consistent decisions. Guarantee-
ing atomicity and high performance in traditional fixed wired networks is based
on the assumption that faults like node and link failures occur rarely. This as-
sumption is not supported in current and future mobile embedded systems where
the heterogeneity and mobility often result in link and node failures as a domi-
nant operational scenario. In order to continue guaranteeing strict atomicity while
providing for high efficiency (low resource blocking time and message overhead)
and acceptable commit rate, transactional fault-tolerance techniques need to be
revisited perhaps at the cost of transaction execution time. In this paper, a com-
prehensive classification of perturbations and their impact on the design of mobile
transactions is provided. In particular we argue for the delay-awareness of mo-
bile transactions to allow for the fault-tolerance mechanisms to ensure resilience
to the various and frequent perturbations.
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1 Introduction

Future mobile embedded systems are increasingly characterized by frequent and var-
ied perturbations. These are directly apparent to the delivery of services as constraints
and failures. Mobile systems are also constrained by the scarcity of processing, stor-
age and energy resources of mobile devices, and the continuously varying properties
of wireless channels. Most of the failures which can occur in such systems are caused
by node (given the mobility and size of these nodes) or communication failures. These
failures can last from seconds, minutes or even hours e.g., network partitioning. Increas-
ingly, the mobile environments are supporting applications that require strict atomicity
like health-care home systems, coordination across autonomous networked vehicles,
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m-commerce etc. Atomic commit protocols ensure strict atomicity of database transac-
tions and play therefore a major role for the design of these applications. Most existing
atomic protocols show a restricted perturbation-tolerance leading to either poor trans-
action commit rate or to high resource blocking time which consequently deceases the
efficiency of the mobile system. In our previous work [1], we showed that sacrificing la-
tency (time needed to decide about the outcome of the transaction) is necessary to cope
with frequent and enduring perturbations without sacrificing performance in terms of
efficiency and commit success rate.

In the literature computer transactions are usually delay-sensitive. A limited body of
research exists for real-time transactions [2, 3]. However, to the best of our knowledge,
delay-aware (i.e. also delay-tolerant) transactions have not yet been addressed. In this
paper we argue for the necessity of delay-awareness of mobile transactions [4] in net-
worked embedded systems. Our work in [1] investigated primarily infrastructure-based
system models. We extend this base model here to cope with a more generalized mobile
system that also involves ad-hoc communication scenarios.

The remainder of this paper is organized as follows. In Section 2, the system model
is described along with a set of application scenarios and a classification of perturba-
tions in mobile environments. The design requirements for mobile transaction protocols
and systems are presented in Section 3. In Section 4, delay-aware mobile transactions
are introduced along with a discussion of the main challenges of introducing delay-
awareness in mobile systems. Section 5 concludes the paper and briefly outlines the
future work.

2 System Model, Perturbations and Scenarios

2.1 System Model

In order to consider a broad class of mobile and networked embedded systems, we de-
velop a generalized mobile distributed environment consisting of a set of mobile hosts
(MH), a set of fixed hosts (FH) and a set of Wireless Sensor Networks (WSNs) com-
posed of a number of sensor nodes (SN) and a sink. The sink collects data from SNs
about a monitored area or goods etc. The architecture of the environment considered is
illustrated in Fig. 1. The coverage of MSSs is much higher than the transmission area of
ad-hoc communication technologies (e.g., if we compare GSM to bluetooth). The MHs
intermittently connect to the wired network through Mobile Support Stations (MSS)
via wireless channels (Fig. 1). The MHs can communicate directly with each other in
an ad-hoc manner using Bluetooth or WLAN. Some MHs can also communicate with
the sink(s) of involved WSNs. This generalized mobile distributed environment mainly
consists of three basis system models which are usually tackled separately by commit
protocol developers. In this work we will progressively tackle the complexity of the
generalized system model by stepwise considering these sub-systems and finally com-
bining them to our generalized system model:

1. Infrastructure-based scenarios involve only FHs, MSSs and a subset of MHs of the
model of Fig. 1. This subset of MHs can only communicate with each other or with
FHs using the services of MSSs.
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2. Ad-hoc scenarios involve only a subset of MHs of the model of Fig. 1 and WSNs.
These MHs can communicate with each other or with mobile sinks of WSNs only
in ad-hoc manner.

3. Hybrid scenarios are a combination of both the infrastructure-based and the ad-hoc
scenarios representing our generalized mobile distributed model.

We refer to a distributed transaction where at least one MH participates in its ex-
ecution as a Mobile Transaction (MT). Commit protocols are generally based on the
existence of at least one coordinator (CO), which is responsible for coordinating the
execution of the corresponding transaction. For different transactions and mobile sys-
tem models, different nodes may play the CO role. The CO is responsible for storing
information concerning the state of the transaction execution. Based on the information
collected from and about the participants of the transaction, the CO takes the decision
to commit or abort the transaction and informs all participants about its decision.
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Fig. 1: Architecture of environment

2.2 Application Scenarios

In this section we classify the main applications scenarios for future embedded and
ubiquitous systems, where strict atomic mobile transactions are required.

Bank/stock transactions: This type of application scenarios include mobile commerce
(m-commerce) applications where users can buy or sell goods using their mobile de-



4 B. Ayari, A. Khelil and N. Suri

vices and involving bank servers in fixed networks to accomplish their transactions.
This is an example of application for infrastructure-based scenarios.

Coordination between autonomous networked vehicles: In such an application scenario
(which is a pure ad-hoc scenario) we present a potential future application where mobile
transactions are needed for the purpose of coordination for safe navigation of unmanned
autonomous networked vehicles. Like black boxes for airplanes, autonomous vehicles
can be equipped with such black boxes which are basically mobile databases. Fig. 2
shows a scenario of four unmanned vehicles at a crossing. These vehicles need to agree
on an order how they will pass the crossing. Prior to their actual passing this information
needs to be agreed upon and recorded atomically to their corresponding black boxes.
This information is needed e.g., afterwards by assurance companies in case an accident
happens between these vehicles to determine which vehicle was responsible for the
accident.

Fig. 2: Coordination between networked autonomous vehicles (livelock scenario)

Health-care ubiquitous systems: For insurance purposes, in order to monitor old people
living alone in their homes a set of WSNs should be deployed in these houses and
transactions are needed to react to certain situations where some actuators e.g. need
to be activated together either all of them or none and this data should also be written
somewhere on MHs or on FHs belonging to hospitals or police etc. This application
scenario is an example of the hybrid scenarios defined in the system model.

2.3 Classification of Perturbations

Within these networked embedded systems supporting such transactional applications,
we now consider two main classes of perturbations: operational constraints (power,
computing, connectivity etc.) and failures. We classify the environmental constraints
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relevant to mobile transactions into heterogeneity (of nodes and links), unstable storage
and energy constraints. Failures of the mobile environment are classified into commu-
nication and node failures.

Constraints The considered mobile environment is constrained mainly by the char-
acteristics of MHs and wireless links. MHs intuitively possess less computational re-
sources than FHs, such as processor speed and storage capacity. Especially some MHs
possess limited disk space which restricts the amount of data to store on them. These re-
source constraints increase the time MHs need to execute transaction fragments or may
even lead to execution failures. Furthermore, as MHs are carried by users, they incur op-
erational wear and tear and can also be easily lost or stolen. MHs are often powered by
batteries. Two of the most important sources of power consumption are transmissions
and disk accesses [5]. We note that transmitting data consumes around three times as
much energy as receiving the same amount of data by a MH. Furthermore, MHs may
run in different energy modes or be put-off to save energy.

Wireless network characteristics are changing more frequently than those of wired
links. For example, the effective bandwidth available for MHs over a wireless link is
highly dynamic. This depends on the wireless technology (like GSM, GPRS, UMTS,
WLAN, Satellite, . . . ), access coverage, and number of MHs that have to share the
wireless medium. Other key characteristics of the wireless links are higher latency
and communication charges. These characteristics lead to considerably varied relia-
bility/availability and connectivity of MHs.

Mobile nodes are considered to have unstable storage due to high vulnerability
of these entities to catastrophic failures, e.g., loss, theft or physical damage and the
immature replication strategies used in the mobile environment to replicate data like
in [6]. Due to these issues the disk storage on a MH can not be considered as a stable
storage.

The limitations and characteristics listed above outline the variation of constraints
for the mobile environment being different from those in fixed networks. These con-
straints also complicate the design of appropriate mobile transaction protocols. For ex-
ample, to abort a MT because of one slow participant is not a suitable design choice in
mobile environments.

Failures We now outline the common failure modes which we classify into primary
classes of communication and node failures.

Communication Failures: These constitute the majority of failures in the mobile envi-
ronment. We distinguish between two types of communication failures:

Message loss: Especially, messages exchanged between MHs themselves or between
MHs and MSSs are highly vulnerable to loss due to the high bit error rate of wireless
links and to network congestion and collisions. Message loss is much more probable
to occur in mobile environments than fixed ones and need to be explicitly taken into
consideration in the design of mobile systems.

Network partitioning: While moving, the MH can enter a geographical area out of
coverage of any MSS or any other MH (to communicate in ad-hoc manner) so that it
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loses its connection to the network. While partitioned from the network, the MH is not
able to send or receive messages. As network partitioning is not exceptional but rather
part of the normal mode of operation, it needs to be explicitly considered in the system
design.

Node Failures: We distinguish between MH, FH and CO failures. For MHs, we identify
two main failures classes, i.e., transient and permanent failures. The CO can theoreti-
cally be either implemented on a MH or FH, and correspondingly exhibits either MH or
FH failure modes. However, we separate CO failures from MH and FH failures given
the central role the CO plays in commit protocols. In Section 4, we will fix the entity
implementing the CO role and subsequently discuss the CO failures in detail. We do not
consider deliberate failures such as Byzantine faults or intrusions, but in future work we
want to extend the fault model incorporating deliberate faults.

Transient MH failures: These occur mainly due to either software or hardware faults
and usually disappear if the MH reboots. A further common cause of transient failures
is the lack of battery power to sustain operation of the mobile device. Transient failures
are the most probable failures of MHs in the mobile environment. Opposite to network
partitioning, in the case of a transient MH failure the content of the volatile storage of
the MH and consequently the state of its recent computations is lost. in this work we
concentrate only on network partitioning.

Permanent MH failures: These are irreparable failures such as loss, theft or physical
damage of the MH itself or its non-volatile storage, where the data and logs are stored
(media failure). Consequently, all the data stored in the MH is lost.

FH failures: We assume a crash-recovery model, i.e., if the FH crashes it stops re-
ceiving, sending and processing messages until it recovers after a finite amount of time.
Volatile storage of the FH is checkpointed periodically to stable storage and the FH logs
its computations and received/sent messages between two checkpoints. Once a backup
is done the log is deleted and a fresh logging process is initiated. The FH corresponding
DBMS takes care about the recovery from transaction and media failures. The recovery
includes also all logging operations which need to be done when the FH is executing a
transaction.

3 Design Requirements for Mobile Transactions Protocols

We now present the design requirements of transactions in the considered generalized
mobile environment. A basic issue is on the need for new design requirements for mo-
bile transactions in mobile environments? Is it not sufficient to abort a mobile trans-
action when a perturbation or anomaly appears and then restart it later? The problem
with this methodology is that perturbations in mobile environments are increasingly
the normal case than an exceptional situation. Another important argument is the fact
that restarting the transaction involves other costs in term of energy consumption and
charges for using the wireless links, which are not always tolerable in mobile environ-
ments. For this reasons we need to clearly define the boundaries in terms of design
requirements. We identify the following main requirements and design issues:

Efficiency: The efficiency of mobile transaction protocols is measured in terms of
messages and blocking time. The classical approach to improve the efficiency of such
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protocols is to reduce the communication overhead (message number and size) and to
minimize the blocking time. The reason behind minimizing blocking time is that trans-
actions, especially executing on FHs, often lock expensive resources. These resources
can not be accessed by other transactions as long as they are locked by an uncommitted
one. This transaction is isolated from the rest of the transactions by locking all rele-
vant data needed by it. As long as the locks are held, no other transaction can access
the same data. This data or resources are blocked. The more transactions per second an
application can process, the better its scalability and throughput are. If resources are
blocked, transactions using them are delayed waiting for the resources to be unlocked.
The throughput of the system then suffers. For this reason blocking time, especially of
FH resources (because they are frequently much more loaded than MHs), should be
minimized.

Scalability: Transaction protocols are said to be scalable if they support growing
number of participants without sacrificing efficiency. The resource blocking time as
well as the capabilities of the CO are the main factors that determine the scalability of
commit protocols.

Resilience to perturbations: (Fault-tolerance and recovery) To build resilient mo-
bile transaction protocols, defining a comprehensive set of perturbations (constraints
and failures) and a set of techniques to cope with constraints and recover from failures
is mandatory. The categorization of perturbations assists the protocol designer in identi-
fying the main concerns and developing appropriate solutions. The overall objective for
fault-tolerance is to maximize the number of committed mobile transactions. A naive
approach to provide for fault-tolerance is to abort the MT each time a failure occurs
and to restart it (e.g., after a back-off time or after the failure disappears). However,
this simplistic approach introduces a large overhead for the successful participants (due
to frequent re-execution of the fragments) and requires some external intelligence (ei-
ther from the user or from the ability of the system to detect failures). Therefore, we
introduce the delay-tolerance design requirement for MT.

Delay-tolerance and -awareness: Masking latent faults such as long disconnec-
tions imposes that the MT execution time can be delayed till local Commit/Abort de-
cisions can be collected. This implies that MT can last for minutes or even hours. We
are dealing then with transactions that we refer to as delay-tolerant transactions. We
believe that users can sacrifice latency for atomicity. In this paper, we expect that the
application/user is able to specify an appropriate (tolerable) lifetime for each initiated
MT. The delay-tolerance design requirement is orthogonal to the efficiency requirement
and implies a real challenge for our framework.

4 Delay-Aware Mobile Transactions: Overview of the Basic
Approach

In the considered generalized mobile environment, network partitioning (due to either
node or link failures) is the most important and frequent failure that needs to be taken
particularly into consideration. We investigate the impact of this failure on mobile trans-
actions especially with respect to their delay-awareness and the challenges of the de-
sign of commit protocols resilience to such type of failures. We proceed progressively
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in this section. First we consider the existence of powerful fixed participants besides
mobile participants (Infrastructure-based scenario). Then we consider only mobile par-
ticipants that use ad-hoc wireless communication to communicate multi-hop with each
other (Ad-hoc scenario). Finally, we consider a generalized MT, where both mobile
and fixed participants are involved and some Mobile participants can communicate in
ad-hoc manner with each other while being partitioned from the rest of the network
(Hybrid scenario).

4.1 Infrastructure-based Scenarios

For infrastructure-based scenarios, we investigated the problem of network partitioning
and heterogeneity in nodes and links in [1] and developed a set of efficient and generic
techniques to provide MT’s resilience to these fundamental perturbations. In the follow-
ing we briefly summarize these techniques. First we start with decoupling the commit
of MHs from that of FHs. The execution of the transaction is then split into two phases:
(1) a mobile data gathering phase called pre-commit phase where the votes (either to
Commit or Abort the MT) and the logs of the MHs (containing all operations done by
the MH during the execution of its part of the MT) are collected to provide progress,
and (2) a core Two-Phase-Commit [7] (2PC) phase, which involves only FHs for the
commit action as we represent MHs by agents (which are proxy entities) in the fixed
part of the network. As shown in Fig. 3, these agents representing MHs in the fixed
network store messages sent the MHs participating in the MT and forward them to their
corresponding MHs when they reconnect to the network. Decoupling prohibits network
partitioning of MHs to affect FHs especially their resource blocking times.

As network partitioning in this class of scenarios usually leads to the isolation of
some MHs from the rest of the participants, the CO is chosen to run on one FH in the
fixed part of the network. This is not the only reason why the CO is chosen to run on
a FH, stable storage and energy overhead are also further reasons which consolidate
this choice. So the CO is always able to take a decision about the outcome of the MT
and inform all participants which are connected to the network. The CO usually waits
for a specified time (TOCO) to receive the vote from each MH participating in the MT.
Obviously this time depends on the slowest mobile participant. In oder to have a good
estimation of TOCO, everyone of these participants is requested to send an estimation
of the time it needs to execute its part of the MT and send its vote and its logs to the CO.
This estimation can also be updated when needed. This strategy allows the CO to easily
cope with both heterogeneity of participants and their network partitioning by waiting
for the maximum of received timeouts.

The timeout concept described above introduces delay-awareness to mobile trans-
actions. This awareness is driven by the heterogeneity of the MT participants and their
connectivity. Some applications may impose a certain maximum execution time of the
initiated MT. This models the time the user can sacrifice to receive the MT result. The
initiator of the MT then estimates a lifetime for the MT and hand it to the CO. The CO
aborts the MT when the lifetime expired. The optimal lifetime value should account for
how long disconnections of the participants can last (see Fig. 3). This value is not triv-
ial for a generalized system model, however easier for certain systems such as closed
systems. The optimal lifetime value depends on the heterogeneity of participants and
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the duration of their disconnections. Since the user can only decide about his desired
waiting time, recommendations may support the user deciding for an appropriate life-
time value. In order to allow for recommendations, the system should keep a history of
system properties such as the average disconnection time of mobile participants. The
application can also be given the possibility to extent this lifetime if needed.
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Fig. 3: Infrastructure-based scenario

4.2 Ad-hoc Scenarios

For ad-hoc scenarios only MHs are participants in the MT and can only communicate
in ad-hoc manner building a mobile ad-hoc network (MANET). Since the MHs are not
connected to the fixed part of the network, the CO of the MT can not be chosen to be
a FH. A MH is also not assumed to have a stable storage and therefore can not play
the CO role alone. Failures of the CO in this case will also lead to the blocking of all
participants. As shown in [8], there exists no non-blocking atomic commit protocol if
network partitioning may occur. [9] proposes to use a cluster of coordinators preferably
in single-hop distance from each other to avoid blocking of mobile participants in case
one CO fails. The cluster of CO is represented by one member called main coordinator.
The cluster of COs use 3PC protocol [10] to agree on a single decision either to commit
or abort the MT. If the cluster of COs is partitioned or the main CO fails the authors use
a termination protocol based on the Paxos Consensus protocol [11]. Two extreme cases
that need to be considered are whether only one CO can be defined in these ad-hoc
scenarios e.g. introducing a more powerful MH (with additional assumptions on it like
stable storage) or the other extreme is whether it is possible to consider every single
participant in the MT as a CO. In the following we illustrate the challenges network
partitioning introduces in the case of ad-hoc scenarios.

Fig. 4 shows that estimating the lifetime of a MT in ad-hoc scenarios mainly de-
pends on network connectivity, which in turn depends on different parameters like speed
of the MHs, their communication range and obstacles in their vicinity. This makes esti-
mating lifetime in ad-hoc scenarios a real challenge taking into consideration all these
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parameters. Another challenge for ad-hoc scenarios is the dissemination of parts of the
MT to their corresponding MHs. For this partition-aware broadcast/multicast protocols
can be used such as Hypergossiping [12].

Assuming that every MH in a partition knows all the members of the partition it
is belonging to like in [13], then the members of every partition can exchange their
votes (either to commit or abort the MT) and take a pre-decision on the outcome of
the MT (Fig. 5 (a)). The pre-decision can be different from the final decision and is
only a temporary decision inside one partition which is communicated to every mem-
ber of the partition. If the pre-decision is to abort the MT, then every MH participant
can safely abort the MT. If the pre-decision is to commit the MT, every member should
wait until all participants are in the same partition. Alternatively, when two partitions
merge or join (Fig. 5 (b)) then the pre-decisions are exchanged and if no further parti-
tion exists the outcome of the MT can be safely decided and all the MH participants can
be informed about this outcome which is challenging as partition-aware protocols are
required. The assumption that every MH in a partition knows all the members of the par-
tition it is belonging to is a real challenge especially in the considered ad-hoc scenarios.
Some works addressed the problem of group membership in MANETs like [14,15],but
a customized solution to mobile transactions remains a challenge. The real challenge
is to guarantee atomicity even if this knowledge is not available in the scenario under
consideration.

4.3 Hybrid Scenarios

As a combination of both the infrastructure-based and the ad-hoc scenarios, hybrid
scenarios can use the advantage of infrastructure-based scenarios when possible for
example choosing the CO to run on a FH or defining agents as representatives for some
of MH participants which can connect to fixed networks using the services of MSSs.
When it is impossible to take some of these advantages the system will behave like
in ad-hoc scenarios. Mobile initiators that are partitioned can also exploit multi-hop
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(a) Take a decision inside each partition

(b) Exchange decisions when partitions join

Fig. 5: Network partitioning in ad-hoc scenarios

communication in order to reach a pre-decision. This is particulary helpful if one (or
more) participant in the same partition as the initiator aborts the MT.

It is also important in hybrid scenarios to investigate the suitability of ad-hoc so-
lutions involving all MH participants before involving new entities from the fixed net-
work like the CO and agents of MH participants. For example a MH which initiates a
MT should be given the possibility to check whether all other MH participants are in the
same partition or not. If it is the case the initiator can accomplish the pre-phase of [1]
in ad-hoc mode before involving other FH entities in the MT.

5 Conclusion and Future Work

In this work we have introduced the notion of delay-aware mobile transactions. We
have shown how delay-awareness can help in reducing the costs of mobile transactions
and in deceasing the number of aborted transactions in mobile environments. Delay-
awareness can also help in providing perturbation resilience in generalized mobile em-
bedded systems. We have presented the main challenges atomic transaction protocols
face in such mobile systems and also divided the generalized mobile embedded system
into sub-classes.

In our future work, we plan to address the spectrum of mobile ad-hoc scenarios and
find solutions that can be aggregated to present a generalized solution for the mobile
embedded environment introduced in this work.
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