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Abstract— In the expanding e-society, mobile embedded
systems are increasingly used to support transactions such
as for banking or database applications. Such systems entail
a range of heterogeneous entities - both the devices and the
networks connecting them. While these systems are exposed
to frequent and varied perturbations, the support of atomic
distributed transactions is still a fundamental requirement
to achieve consistent decisions. Guaranteeing atomicity and
high performance in traditional fixed wired networks is
based on the assumption that node and link failures occur
rarely. This assumption is often not supported in current and
upcoming mobile environments where the heterogeneity and
mobility often result in link and node failures as a dominant
operational scenario.

In order to continue guaranteeing strict atomicity while
providing for high efficiency (low resource blocking time of
transaction participants and message overhead) and accept-
able commit rate, transactional fault-tolerance techniques
need to be revisited perhaps at the cost of transaction
execution time. In this paper, we provide a comprehensive
classification of perturbations for a wide range of mobile
environments including infrastructure-based, ad-hoc, and
hybrid environments. We also investigate the impact of
these perturbations on the design of mobile transactions.
In particular we argue for the delay-awareness of mobile
transactions to allow for the fault-tolerance mechanisms to
ensure resilience to the various and frequent perturbations.

Index Terms— Transactions, mobile database systems, de-
pendability

I. INTRODUCTION

Mobile embedded systems are increasingly character-
ized by frequent and varied perturbations in the mobile
devices and the networks linking them. These are directly
apparent as resource constraints and operational failures
over the delivery of mobile services. Mobile systems are
constrained by the processing, storage and energy capac-
ity of mobile devices, and also the continuously varying
properties of wireless channels. Most of the failures which
occur in such systems manifest at the nodes (given their
mobility and size) or as communication failures. These
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failures can last for seconds, minutes or even hours
e.g., network partitioning. Increasingly, the mobile envi-
ronments are supporting applications that require strict
atomicity. A typical example being banking/stock trans-
actions in the m-commerce applications. Atomic commit
protocols ensure strict atomicity of database transactions
and consequently play a major role for the design of these
applications. Most existing atomic commit protocols show
a restricted perturbation-tolerance resulting in either poor
transaction commit rate or high resource blocking time
which consequently decreases the efficiency of the mobile
system. In [1], we showed that sacrificing latency (time
needed to decide about the outcome of the transaction)
is necessary to cope with frequent perturbations without
sacrificing performance in terms of efficiency and commit
success rate.

Our Contributions and Paper Organization

Mobile transactions are increasingly the focus of ex-
tensive ongoing research. A variety of transaction models
have been proposed such as [2]–[10] with an excel-
lent survey appearing in [11]. In the literature database
transactions are usually delay-sensitive. A limited body
of research exists for real-time transactions [12], [13].
However, to the best of our knowledge, delay-aware
(i.e. also delay-tolerant) transactions have not yet been
addressed.

In this paper we argue for the necessity of delay-
awareness of mobile transactions in networked embed-
ded systems. Our work in [1] investigated primarily
infrastructure-based system models. In this paper, we
extend this core model to cope with a more generalized
mobile system that also involves ad-hoc communication
scenarios. Ad-hoc mobile environments are mainly de-
ployed when an infrastructure is unavailable. For instance
ad-hoc networks are used to support crisis management
applications, such as in disaster recovery, where the
entire network is destroyed and communication between
different entities should be set up within few hours.
Increasingly ad-hoc communication is used to supplement
an existing infrastructure for example to reduce commu-
nication expenses. In this paper we briefly summarize
our previous work tailored for infrastructure-based mobile
environments. Next we present a framework to support
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strict atomicity in pure ad-hoc scenarios. Finally we pro-
vide preliminary integration efforts for providing atomic
transactions in generalized mobile environments.

The remainder of this paper is organized as follows. In
Section II, the system model is described along with a
set of application scenarios and a classification of pertur-
bations. The design requirements for mobile transaction
protocols and systems are presented in Section III. In
Section IV, delay-aware mobile transactions are intro-
duced along with a discussion of the main challenges of
introducing delay-awareness in mobile systems. Section V
concludes the paper and briefly outlines future issues.

II. SYSTEM MODEL, SCENARIOS AND
PERTURBATIONS

We first present the system model of the generalized
mobile distributed environment. Next we describe appli-
cation scenarios for upcoming embedded and ubiquitous
systems where strict atomicity is essentially desired. Fi-
nally, we identify the relevant perturbations, i.e., con-
straints and failure modes that can occur in the considered
environment to affect commit functionality.

A. System Model

In order to consider a broad class of mobile and
networked embedded systems, we develop a generalized
mobile distributed environment consisting of a set of
battery-powered mobile hosts (MH), a set of fixed hosts
(FH) and a set of Wireless Sensor Networks (WSNs)
composed of a number of sensor nodes (SN) and mobile
sink(s). The mobile sink collects data from SNs about a
monitored area or goods etc. We assume that every host
in this environment has a unique ID. The architecture of
the environment considered is illustrated in Fig. 1. The
MHs intermittently connect to the wired network through
Mobile Support Stations (MSS) via wireless channels
(Fig. 1). The MHs can communicate directly with each
other in an ad-hoc manner for instance using Bluetooth or
WLAN. The coverage of MSSs is much higher than the
transmission area of ad-hoc communication technologies
(e.g., if we compare GSM to Bluetooth). A subset of MHs
can also communicate with mobile sink(s) of involved
WSNs. This generalized mobile distributed environment
mainly consists of three basic system models which are
often considered discretely by commit protocol develop-
ers. In this work we progressively tackle the complexity
of the generalized system model by stepwise considering
these sub-systems and subsequently consolidating them
into the proposed generalized system model:

1) Infrastructure-based scenarios involve only FHs,
MSSs and a subset of MHs of the model of Fig. 1.
This subset of MHs can only communicate with
each other or with FHs using the services of MSSs.
They are also not able to communicate with each
other in an ad-hoc fashion.

2) Ad-hoc scenarios involve only a subset of MHs
of Fig. 1 and mobile sinks of WSNs. These MHs

can communicate with each other or with mobile
sinks of WSNs only in ad-hoc manner, i.e. they
can not communicate with MSS or other FHs. In
this scenario, mobile sinks construct a gateway for
communication with WSNs but only mobile sinks
(not SNs) can be participants in transactions.

3) Hybrid scenarios are a combination of both the
infrastructure-based and the ad-hoc scenarios rep-
resenting our generalized mobile distributed model.
In these scenarios, MHs can ad-hoc communicate
with each other and also with MSS to reach other
MHs or FHs.

We refer to a distributed transaction where at least
one MH participates in its execution as a Mobile Trans-
action (MT). Commit protocols are generally based on
the existence of at least one coordinator (CO), which is
responsible for coordinating the execution of the corre-
sponding transaction. For different transaction and mobile
system models, different nodes may play the CO role. One
CO for each transaction in infrastructure-based scenarios
may be sufficient and more than one CO in ad-hoc or
hybrid scenarios may be needed. This key issue of CO
selection will be discussed in more detail in Section IV.
The CO is responsible for storing information concerning
the state of the transaction execution. Based on the
information collected from and about the participants of
the transaction, the CO takes the decision to commit or
abort the transaction and informs all participants about its
decision.
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Figure 1. Architecture of environment

B. Application Scenarios
We now classify the main application scenarios for

embedded and ubiquitous systems, where strict atomicity
for mobile transactions is desired.

a) Bank/Stock Transactions: This type of applica-
tion scenarios includes mobile commerce (m-commerce)
applications where users can buy or sell goods using
their mobile devices and involving bank servers in fixed
networks to accomplish their transactions. These appli-
cations usually run in infrastructure-based scenarios and
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increasingly in hybrid scenarios involving some WSNs
checking the availability of goods. The role of WSNs in
this scenario is to keep track on availability of certain type
of goods and their corresponding quantity. Transactions
can be in this case processed automatically without human
intervention but using an on-demand availability check.

b) Coordination across Autonomous Networked Ve-
hicles: In such an application scenario (representing ad-
hoc networks) we present a potential application where
mobile transactions are needed for the purpose of co-
ordination for safe navigation of unmanned autonomous
networked vehicles. Similar to black boxes for airplanes,
autonomous vehicles can be equipped with black boxes
which are basically mobile databases. The following
example describes a scenario where these black boxes
can be useful to deploy in cars also and more precisely
in unmanned vehicles. Fig. 2 shows a scenario of four
unmanned vehicles at a crossing. These vehicles need to
agree on an order how they will pass the crossing. Prior
to their actual passing, this order information needs to
be agreed upon and recorded atomically to their corre-
sponding black boxes. This information may be needed by
insurance companies or police in case an accident occurs.

Communication 

range
Unmanned

vehicles

Direction of 

motion

Figure 2. Coordination across autonomous vehicles (livelock scenario)

Other scenarios for ad-hoc environments include pay-
ment and mobile commerce services. A detailed descrip-
tion of a commercial mobile ad-hoc application which
represents a radio dispatch system between taxis can be
found in [14]. The radio dispatch system is described as
a novel and plausibly realistic application scenario for
mobile ad hoc networks. The proposed system is then
evaluated from both financial and technical perspectives
to provide a complete picture of its feasibility.

c) Health-Care Ubiquitous Systems: For insurance
purposes, in order to monitor old people living alone in
their homes a set of WSNs could be deployed in their
homes and transactions are needed to react to certain situ-
ations where some actuators need to be activated together
either all of them or none and this data should also be
written somewhere on MHs and/or on FHs belonging to
hospitals or police etc. This illustrates a hybrid scenario
as defined in our system model.

C. Classification of Perturbations

Within these networked embedded systems supporting
such transactional applications, we now consider two

main classes of perturbations: Operational constraints
(battery power, computing, connectivity etc.) and failures
(Fig. 3). We classify the environmental constraints rele-
vant to mobile transactions as heterogeneity (of nodes and
links), unstable storage and energy constraints. Failures of
the mobile environment are classified into communication
and node failures.

Commit Perturbations

FailuresOperational constraints

Communication NodeHeterogeneity Unstable storage Energy

Disconnections and 

network partitioning
Message loss MH FHNode Link

Transient Permanent

SW, HW 

faults
Physical 

damage

Figure 3. Classification of MT commit perturbations

1) Constraints: The considered mobile environment is
constrained mainly by the characteristics of MHs and
wireless links. MHs intuitively possess less computa-
tional resources than FHs, such as processor speed and
storage capacity. Especially some MHs possess limited
disk space which restricts the amount of storable data.
These resource constraints increase the time MHs need
to execute transaction fragments or may even lead to
execution failures. Furthermore, as MHs are carried by
users, they incur operational wear and tear, and can also
be easily lost or stolen. Two of the most important sources
of power consumption for MHs are transmissions and disk
accesses [15]. We note that transmitting data consumes
around three times as much energy as receiving the same
amount of data by a MH. Furthermore, MHs may run in
different energy modes or be turned-off to save energy.

Wireless network characteristics are changing more
frequently than those of wired links. For example, the
effective bandwidth available for MHs over a wireless
link is highly dynamic. This depends on the wireless
technology (like GSM, GPRS, UMTS, WLAN, and Satel-
lite), access coverage, and number of MHs that have to
share the wireless medium. Other key characteristics of
the wireless links are higher latency and communication
charges. These characteristics lead to considerably varied
reliability/availability and connectivity of MHs.

Mobile nodes are considered to have unstable storage
due to high vulnerability of these entities to catastrophic
failures, e.g., loss, theft or physical damage and the imma-
ture replication strategies used in the mobile environment
to replicate data like in [16].

The limitations and characteristics listed above outline
the variation of constraints for the mobile environment
as being different from those in fixed networks. These
constraints also complicate the design of mobile transac-
tion protocols. For example, aborting a MT because of a
slow participant is not a suitable design choice in mobile
environments.
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2) Failures: We now outline the common failure
modes which we classify into primary classes of com-
munication and node failures.

a) Communication Failures: These constitute the
majority of failures in the mobile environment. We dis-
tinguish between two types of communication failures:

Message Loss: Messages exchanged across MHs or
between MHs and MSSs are highly vulnerable to loss
due to the high bit error rate of wireless links and from
network congestion and collisions. Message loss is much
more probable to occur in mobile environments than fixed
ones. This needs to be explicitly taken into consideration
in the design of mobile systems.

Disconnections and Network Partitioning: While moving,
the MH can enter a geographical area out of coverage
of any MSS or any other MH (to communicate in ad-
hoc manner) so that it loses its connection to the net-
work. Especially in ad-hoc scenarios network partitioning
is frequent and unpredictable [17]. Causes for network
partitioning are also the frequent and various perturbations
characterizing mobile environments. So a link disruption
e.g. can lead to network partitioning as well as the
absence of neighbors in communication range of a MH
participating in the execution of a MT. While partitioned
from the network, the MH is not able to send or receive
messages. As network partitioning is not exceptional but
rather part of the normal mode of operation, it needs to
be explicitly considered in the system design.

b) Node Failures: We distinguish between MH, FH
and CO failures. For MHs, we identify two main failures
classes, as transient and permanent failures. The CO can
theoretically be implemented either on a MH or FH, and
correspondingly exhibits either MH or FH failure modes.
However, we separate CO failures from MH and FH
failures given the central role the CO plays in commit
protocols. In Section IV, we will fix the entity implement-
ing the CO role and subsequently discuss the CO failures
in detail. Currently, we do not consider deliberate failures
such as Byzantine attacks or intrusions.

Transient MH failures: These occur from either software
or hardware faults and usually disappear if the MH
reboots. A further common cause of transient failures
is the lack of battery power to sustain operation of the
mobile device. Transient failures are the most probable
failures of MHs in the mobile environment. In contrast
to network partitioning, in the case of a transient MH
failure the content of the volatile storage of the MH and
consequently the state of its recent computations is lost.
In this work we concentrate only on network partitioning.

Permanent MH failures: These are irreparable failures
such as loss, theft or physical damage of the MH itself
or its non-volatile storage, where the data and logs are
stored (media failure). Consequently, all the data stored
in the MH is lost.

FH failures: We assume a crash-recovery model, i.e., if
the FH crashes it stops receiving, sending and processing
messages until it recovers after a finite amount of time.
Volatile storage of the FH is checkpointed periodically

to stable storage and the FH logs its computations and
received/sent messages between two checkpoints. Once a
backup is done the log is deleted and a fresh logging pro-
cess is initiated. The FH corresponding DBMS takes care
about the recovery from transaction and media failures.
The recovery includes also all logging operations which
need to be done when the FH is executing a transaction.

III. DESIGN REQUIREMENTS FOR MOBILE
TRANSACTIONS PROTOCOLS

We now present the design requirements of transactions
in the considered generalized mobile environment. A
basic issue is the need for new design requirements for
mobile transactions in mobile environments. The issue
being if it suffices to abort a MT when a perturbation
or anomaly appears and then to restart it later? The
problem with this methodology is that perturbations in
mobile environments are increasingly the normal case
than an exceptional situation. Another important argument
is the fact that restarting the transaction involves other
costs in term of energy consumption and charges for
using the wireless links, which are not always tolerable in
mobile environments. For this reasons we need to clearly
define the boundaries in terms of design requirements.
We identify the following main requirements and design
issues:

Resilience to Perturbations: (Fault-tolerance and re-
covery) To build resilient MT protocols, the first require-
ment is to define a comprehensive set of perturbations
(constraints and failures) and a set of techniques to cope
with constraints and recover from failures. The catego-
rization of perturbations assists the protocol designer in
identifying the main concerns and developing appropriate
solutions. The overall objective for fault-tolerance is to
maximize the number of committed MTs. As mentioned
above, a naive approach to provide for fault-tolerance is
to abort the MT each time a failure occurs and to restart
it later (e.g., after a back-off time or after the failure
disappears). However, this simplistic approach introduces
a large overhead for the successful participants (due to
frequent re-execution of the fragments) and requires some
external intelligence (either from the user or from the
ability of the system to detect failures). Therefore, we
introduce the delay-tolerance design requirement for MTs.

Delay-Tolerance and -Awareness: Masking latent
faults such as long disconnections imposes that the MT
execution time can be delayed till local Commit/Abort
decisions can be collected. This implies that MT can last
for minutes or even hours. We are dealing then with trans-
actions that we refer to as delay-tolerant transactions.
We believe that users can sacrifice latency for atomicity.
In this paper, we expect that the application/user is able
to specify an appropriate (tolerable) lifetime for each
initiated MT. The delay-tolerance design requirement is
orthogonal to the efficiency requirement and implies a real
challenge for the design of MTs.

Efficiency: The efficiency of MT protocols is measured
in terms of messages and blocking time. The classical
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approach to improve the efficiency of such protocols is
to reduce the communication overhead (message number
and size) and to minimize the blocking time. The reason
behind minimizing blocking time is that transactions, es-
pecially executing on FHs, often lock expensive resources.
These resources can not be accessed by other transactions
as long as they are locked by an uncommitted one. This
transaction is isolated from the rest of the transactions
by locking all relevant data needed by it. As long as
the locks are held, no other transaction can access the
same data. This data or resources are blocked. The more
transactions per second an application can process, the
better its scalability and throughput are. If resources
are blocked, transactions using them are delayed waiting
for the resources to be unlocked. The throughput of
the system then suffers. For this reason, blocking time,
especially of FH resources (because they are frequently
much more loaded than MHs), should be minimized.

Scalability: Transaction protocols are said to be scal-
able if they support growing number of participants with-
out sacrificing efficiency. The resource blocking time as
well as the capabilities and choice of the CO are the main
factors that determine the scalability of commit protocols.

IV. DELAY-AWARE MOBILE TRANSACTIONS:
OVERVIEW OF THE BASIC APPROACH

In the considered generalized mobile environment, net-
work partitioning (due to either node or link failures
or due to mobility) is the dominant case to consider.
We investigate the impact of network partitioning on
mobile transactions especially with respect to their delay-
awareness and design challenges for commit protocols
resilience to such failures. We also discuss the choice
of the CO which is a major design decision for commit
protocols in general and especially for MTs.

We proceed progressively in this section. First, we con-
sider the existence of powerful fixed participants besides
mobile participants (Infrastructure-based scenario). In this
first scenario we review existing solutions which consider
delay-tolerance for mobile transactions. Next, we consider
scenarios involving only mobile participants that use ad-
hoc wireless communication to communicate multi-hop
with each other (Ad-hoc scenario). We survey existing
solutions and propose a new approach that minimizes
and controls the blocking behavior of mobile participants
while providing for efficiency and strict atomicity. Finally,
we consider a generalized MT, where both mobile and
fixed participants are involved in its execution and mobile
participants may communicate with each other in ad-hoc
manner (Hybrid scenario).

A. MT in Infrastructure-based Scenarios

For infrastructure-based scenarios, we investigated the
problem of network partitioning and heterogeneity in
nodes and links in [1]. In [1], we presented FT-PPTC as
a new commit solution for infrastructure-based scenarios
and developed a set of efficient and generic techniques

to provide MT’s resilience to these fundamental pertur-
bations. In the following we briefly summarize these
techniques. First we start with decoupling the commit of
MHs from that of FHs. The execution of the transaction
is then split into two phases: (1) a mobile data gathering
phase called pre-commit phase where the votes (either
to commit or abort the MT) and the logs of the MHs
(containing all operations done by the MH during the
execution of its part of the MT) are collected to provide
progress, and (2) a core Two-Phase-Commit [18] (2PC)
phase, which involves only FHs for the commit action as
we represent MHs by agents (which are proxy entities) in
the fixed part of the network. As shown in Fig. 4, these
agents (Agent 1 and Agent 2) representing MT partici-
pant MHs (respectively P-MH 1 and P-MH 2) in the fixed
network store messages sent to the MHs participating in
the MT and forward them to their corresponding MHs
when they reconnect to the network. These agents can
also act on behalf of their corresponding MHs trying to
mask their disconnections. Decoupling prohibits network
partitioning of MHs to affect FHs especially their resource
blocking times. We concentrated our efforts on reducing
the resource blocking times especially of FHs because
they are frequently much more loaded than MHs in
infrastructure-based scenarios. FHs are generally involved
in much more transactions at a time than MHs which
are not expected to participate in more than one or
few transactions in parallel. We have shown in [1] how
delay-awareness can help in reducing the costs of mobile
transactions and in decreasing the number of aborted
transactions in infrastructure-based mobile environments.

MT Initiator

CO

P-MH_1

P-MH_2

Agent_1

Agent_2

Connected

Disconnected

MT
Execution 

fragments

Execution 

fragment

Execution 

fragment Vote

Vote

Vote

Vote

Vote

lifetime

P-MH: MH participating 

in MT execution  

Figure 4. Lifetime in infrastructure-based scenarios

As network partitioning in this class of scenarios usu-
ally leads to the isolation of some MHs from the rest of
the participants, the CO is chosen to run on one FH in
the fixed part of the network. This is also beneficial for
storage and overhead savings. The CO is always able to
take a decision about the outcome of the MT and inform
all participants which are connected to the network. The
CO usually waits for a specified time (TOCO) to receive
the vote (either to commit or abort the MT) from each
MH participating in the MT. Obviously this time depends
on the slowest mobile participant since the CO needs to
receive votes from every participant in order to be able to
decide about the outcome of the MT. In order to have a
good estimation of TOCO, each participant is requested to
send an estimation of the time it needs to execute its part
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of the MT and send its vote and its logs to the CO. This
estimation can also be updated when needed. This strategy
allows the CO to easily cope with both heterogeneity of
participants and their network partitioning by waiting for
the maximum of received timeouts.

This timeout concept introduces delay-awareness to
mobile transactions. This awareness is driven by the
heterogeneity of MT participants and their connectivity.
Some applications may impose a certain maximum exe-
cution time of the initiated MT. This maximum execution
time is referenced in this work as lifetime. The lifetime
of a MT models the time the user can sacrifice to receive
the MT result. The lifetime can either be set by the
application or estimated by the initiator or CO based
on previous experiences, observations, and data collected
from MTs executed previously. The initiator of the MT
hands the estimated lifetime of the initiated MT to the CO
or the CO estimates the lifetime by itself. The CO aborts
the MT when the lifetime expires. The optimal lifetime
value should account for how long disconnections of the
participants can last (see Fig. 4). This value is not trivial
for a generalized system model, however easier for certain
systems such as closed systems. The optimal lifetime
value depends also on the heterogeneity of participants.
As the user can only decide about its desired waiting
time, recommendations may support the user deciding
for an appropriate lifetime value. In order to allow for
recommendations, the system should keep a history of
system properties such as the average disconnection time
of mobile participants. The application may also extend
this lifetime if needed.

For infrastructure-based scenarios the choice of the CO
is easy due to the presence of FHs in the system. FHs can
be used to implement the CO role because of their com-
munication, computation and storage capabilities required
for the implementation of the CO role on a single node.
This design choice becomes much more difficult in ad-
hoc scenarios due to absence of such FHs. In the next
section this issue is discussed in more detail.

B. MT in Ad-hoc Scenarios

Mobile ad-hoc environments are characterized by the
lack of infrastructure and also by the self-organization of
the network. Ad-hoc scenarios show frequent and unpre-
dictable network partitioning as mentioned in Section II-
C. MHs in such scenarios are the only participants in
the execution of MTs. We review the design challenges
for commit protocols in the ad-hoc environment. Subse-
quently we outline existing solutions with their limitation
and then present our solution approach.

1) Commit Design Challenges: As MHs do not con-
nect to any infrastructure, the CO of the MT is required
to be a MH. A MH is not assumed to have stable storage
and is therefore not able to play the CO role alone unless
specific assumptions on the capabilities of such a MH can
be made (however same capabilities as a FH are in general
not realistic). Failures of the single mobile CO usually
lead to the blocking of all participants. Two extreme cases

are possible: Only one CO is defined by introducing a
more powerful MH (with additional assumptions on it
like stable storage) or every single participant in the MT
is CO. We believe that only a subset of the participants
should play the CO role as justified later in this Section.
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Figure 5. Factors for estimating MT lifetime in ad-hoc scenarios

The lifetime concept for infrastructure-based scenarios
introduced in Section IV-A can also be used in ad-hoc sce-
narios. Estimating the appropriate lifetime value depends
on multiple factors. A key issue is the network connectiv-
ity, which primarily depends on mobility parameters such
as speed of MHs, and their communication parameters
as depicted in Fig. 5. These variables make estimating
lifetime in ad-hoc scenarios a challenge. Applications
initiating delay-aware mobile transactions should be at
least able to compute how long they will be able to
wait before receiving the results of the initiated MT.
This time can be used as the lifetime of the initiated
mobile transaction or can be adapted to the current state
of the underlined mobile ad-hoc network. In this work
we do not assume synchronized clocks across the mobile
entities. Thus the lifetime can elapse on different times for
different participant MHs. This issue should be considered
while designing an appropriate MT solution.

Given frequent network partitioning, it is challenging
for ad-hoc scenarios to disseminate the fragments of the
MT to their corresponding MHs. For this, partition-aware
dissemination protocols can be used such as Hypergossip-
ing [19]. Next, we review the existing commit solutions
and sketch our new approach [3) & 4)] to deal with these
challenges.

2) Existing Cluster-based MT Commit: [20], [21]
propose the use of a cluster of coordinators preferably
in single-hop distance from each other to avoid blocking
of mobile participants in case one CO fails. The cluster
of COs elects a single main coordinator and uses the 3PC
protocol [22] to agree on a consistent decision either to
commit or abort the MT. If the cluster of COs is parti-
tioned or the main CO fails the authors use a termination
protocol based on the Paxos Consensus protocol [23] to
elect a new main coordinator. The termination protocol
succeeds only if a majority of the COs in the cluster
of coordinators does not fail and also belongs to the
same partition. The assumption on the mobility of the
cluster of COs made here is not valid in most of ad-hoc
scenarios. Targeting a more general solution, we relax this
assumption and consider a generalized arbitrary mobility
model.
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3) Proposed MT Commit based on Partition Member-
ship: We now present a commit solution assuming that
every MH in a partition knows all the members of the
partition it belongs to. Later we will relax this assumption
and present a corresponding solution. This solution is
based partly on the work presented in [24]. Given the par-
tition membership information, the participants in every
partition elect a CO and send their votes to the elected CO
which takes a pre-decision on the outcome of the MT. The
pre-decision can be different from the final decision. This
temporary decision is communicated to all participants
within the partition. If the pre-decision is Abort, then
every participant MH that receives this pre-decision can
safely abort the MT. If the pre-decision is Commit, every
participant in the partition should wait until all pre-
decisions are collected. Alternatively, when two partitions
merge, then the pre-decisions are exchanged and if all
pre-decisions are collected the outcome of the MT can
be safely decided since these include the votes of all
participants in MT. Now all the MH participants must
be informed about this outcome which can be achieved
through partition-aware communication protocols similar
to fragment dissemination. The correctness of the basic
solution described above is assured by the partition mem-
bership assumption [24]. If this assumption is not valid a
participant can be a member of a partition but the CO of
that partition is not aware about the membership of this
participant and subsequently the vote of this participant
can be lost i.e., not included in any pre-decision and
consequently not in the final decision.

The assumption that every MH in a partition knows all
the members of its partition is crucial for the proposed
solution. Some works [25], [26] addressed the problem
of group membership in mobile ad-hoc environments,
however a general solution for mobile environments re-
mains a challenge. Furthermore, the blocking time of
participants is often not considered and in worst case
all participants may be blocked forever if one of the
participants disappears forever. As shown in [27], there
exists no non-blocking atomic commit protocol if network
partitioning may occur for an unpredictable duration.
Fortunately, the number of blocked participants can be
minimized as we will discuss later. This approach based
on partition membership information is independent from
the mobility of nodes in contrast to [20], [21]. However it
is based on the assumption that partition membership is
available to all its members. Partitions in mobile ad-hoc
scenarios are usually very dynamic as nodes may leave
and join partitions arbitrarily. Therefore acquiring the
global partition membership information becomes very
inefficient.

4) Proposed MT Commit without Partition Member-
ship Information: In this paper, we present a new ap-
proach which (a) does not require partition membership
information, and (b) limits the resource blocking time
on participants by defining a lifetime for each initiated
MT and electing a CO in each partition. The lifetime
information is communicated to every participant upon

initialization of the MT but can only be used by partition
COs. Thus each partition CO can abort a MT if its lifetime
expires. Transaction progress of the proposed approach
is guaranteed because in each partition a pre-decision is
agreed upon as soon as all participants in the partition
communicate their votes to a priori elected partition CO.
Any election algorithm can be used for the selection of
the partition CO such as election of a random participant
or an election based on node IDs, e.g., selecting the
participant with the highest ID as a partition CO (nodes
6 and 7 in Fig. 6 (a) are elected as partition COs
because they have the highest ID in their corresponding
partitions). Existing election algorithms for mobile ad-
hoc networks like [28], [29] can be also used for the
election of the CO. The election can also be optimized
according to some factors like the connectivity to other
MH participants in the same partition, communication,
storage and computation capabilities. The COs can also be
selected upon initialization of the MT. In this case the COs
are not tied to partitions that dynamically change over
time, hence the notion of partition CO is not appropriate.
For this work we assume that sufficient time exists to elect
a partition CO before the partition composition changes.

As we do not assume the existence of partition member-
ship information, we require that every participant sends
its vote to each partition CO it encounters (i.e. it is able to
communicate with either directly or multi-hop) as long as
there is no final decision. In this way even if the original
partition CO was not aware about this participant’s vote,
e.g., due to message loss, then the vote information
is not lost. The vote information is communicated to
other partition COs when these are encountered. The pre-
decision taken by the partition CO can propagate from
one partition to another as the partition CO moves to
another partition. If at least one participant votes to abort
the MT, the partition CO decides to abort the MT and the
final decision is propagated to the rest of the participants.
If the pre-decision is Commit, the partition CO can not
take a decision about the outcome of the MT locally and
proceeds as follows.

The CO of each partition maintains a list of all partic-
ipants from which the partition CO received a vote (e.g.,
in Fig. 6 (a), node 6 maintains the list {2,4,5,6}). As long
as the received votes are Commit votes the pre-decision
is Commit. As soon as a participant votes to abort the
MT, the CO decides to abort the MT as discussed above.
The partition CO propagates its pre-decision and the list
of participants which voted to commit the MT (if the
pre-decision is Commit) to other partitions on partition
joins. As shown in Fig. 6 (b), if two partitions join,
the corresponding partition COs (nodes 6 and 7 in in
Fig. 6 (b)) exchange their lists and elect one CO among
themselves (e.g. using the same strategy as for election
of the partition COs). In the example of Fig. 6 (b), node
7 is elected as partition CO because it has a higher ID
than node 6. Using this schema for the election of a new
partition CO if two partitions join, we guarantee that no
two or more partition COs have the same knowledge about
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Figure 6. Partition-aware ad-hoc commit

which participants voted to commit the MT. In the latter
case these partition COs can take different decisions about
the outcome of the MT which violates the correctness
of the proposed solution. Every CO can abort the MT
if the lifetime expires before reaching a decision. Once
the list of participants that voted for Commit contains all
the participants of the MT, the CO (which is the single
CO in the system by this time) takes the decision to
commit the MT and sends the decision to the participants
in its current partition. Only one CO remains in the
system because all the partition COs should meet together
in order to exchange their lists and by this time they
select one CO among them. The lists are merged only if
the election succeeds. This guarantees the uniqueness of
the taken decision. The final decision is communicated
to other participants when they encounter participants
which already know this decision. For the dissemination
of the decision and for the communication between the
participants inside a single partition, either flooding or a
routing protocol like AODV [30] are used depending on
the ratio of participants to non-participants which exist in
that partition.

Our proposed approach reduces the resource blocking
time of mobile participants because the partition COs do
not wait arbitrarily long to connect in order to decide
about the outcome of the MT. If the lifetime expires at at
least one partition CO before reaching a final decision, the
MT is aborted. This is not viable in any existing solution
as mobile participants have to meet asynchronously to be
able to reach a final decision.

a) Evaluation of the Proposed Approach: We have
conducted simulations for the case of MT Commit with-
out Partition Membership Information to validate our
approach. We briefly summarize our simulation settings
and provide an overview on the simulation results.

Simulation Settings: For our conducted simulations,
we have used J-Sim [31], [32], a component-based, com-
positional simulation environment that is entirely devel-
oped in Java and increasingly used in the mobile ad-hoc
networks community [33]. We consider a representative
range of parameter values to assess our approach. We
selected the commonly used random waypoint mobility
model [34] (node speed is uniform in [0.5, 1.5] m/s).
We fix the geographical mobility area (2km x 2km)
and the communication range (250m), and vary the total
number of nodes to consider scenarios where the network
is heavily partitioned (10 MHs) and others where it is
most of the time (simulation time) composed of a single
partition (100 MHs). We generate the mobility model of
the nodes using the BonnMotion mobility simulator [35].

We generate transactions of similar length (transaction
parts or fragments of MH participants are of similar
length). We initiate one transaction at the beginning of
each simulation. We fix the number of participants to 10
MHs. We assume that the participant which initiates the
MT fixes the lifetime to 120s for all scenarios and selects
2 COs to play the role of partition COs as described
above. Each simulation is repeated 10 times for statistical
significance.

Simulation Results: We investigated in our simu-
lations the efficiency and availability of the approach.
Efficiency is measured in terms of resource blocking time.
The resource blocking time is the time interval, where
the resources at the MHs remain locked waiting for the
final decision of the initiated MT. We can observe that
resources at MHs are blocked as long as there is no final
decision for the initiated transaction. As shown in Fig. 7,
the resource blocking time is majorally determined by
the lifetime. The lifetime plays a major role in deter-
mining the maximum blocking time in case of frequent
and volatile network partitioning. Mobility is another
important parameter in determining the resource blocking
time. As the lifetime is defined by the user/application,
other transactions are not blocked only for tolerable
time bounds in case of highly partitioned mobile ad-hoc
networks (N between 10 and 30 in Fig. 7). If the network
conditions improve (N between 20 and 30), the resource
blocking time decreases as more and more transactions
are committed. For N between 30 and 100, the resource
blocking time is very low given the fact that in some
scenarios the majority and sometimes all participants are
located in a single partition and in other scenarios frequent
partition joins are occurring. A bounded resource blocking
time allows for high scalability in terms of number of
transactions and number of participants.

Availability is assessed using the rate of committed
MTs to the number of initiated ones. Fig. 8 shows how
the commit rate behaves when the total number of nodes
N varies. The increase of N results in less number of
partitions. We observe in Fig. 8 that we have 3 classes of
partitioning levels. In the first level (N between 10 and
20), network partitioning is frequent and some partitions
remain isolated for the whole lifetime considered (120s).
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In the second level (N between 20 and 40), network
partitioning remains dominant but some transactions are
committed due to network joins within the lifetime of the
initiated MTs. In the third level (N between 40 and 100),
a very high number of the initiated MTs are committed.
This is due to the fact that the fewer existing partitions
join frequently in comparison to the other two levels.

C. MT in Hybrid Scenarios

As a combination of both the infrastructure-based and
the ad-hoc scenarios, hybrid scenarios can use the advan-
tage of infrastructure-based scenarios when possible for
example choosing the CO to run on a FH or defining
agents as representatives for some of MH participants
which can connect to fixed networks using the services
of MSSs. When it is impossible to take some of these
advantages the system will behave like in ad-hoc scenar-
ios. Mobile initiators that are partitioned can also exploit
multi-hop communication in order to reach a pre-decision.
This is particulary helpful if one (or more) participant in
the same partition as the initiator aborts the MT.

It is also important in hybrid scenarios to investigate
the suitability of ad-hoc solutions involving all MH
participants before involving new entities from the fixed
network like the CO and agents of MH participants. For
example a MH which initiates a MT should be given the
possibility to check whether all other MH participants are
in the same partition or not. If it is the case the initiator
can accomplish the pre-phase of [1] in ad-hoc mode

before involving other FH entities in the MT. For hybrid
scenarios adaptation strategies to the current connection
state of mobile participants should be developed.

V. CONCLUSION AND FUTURE WORK

In this work we have investigated the notion of delay-
aware transactions for heterogeneous and generalized
mobile environments. Delay-awareness can help in pro-
viding perturbation resilience in generalized mobile em-
bedded systems. Furthermore, we explored the problem
of atomic transaction commit in different mobile envi-
ronments: Infrastructure-based, ad-hoc, and hybrid. We
have presented the main challenges atomic transaction
protocols face in such mobile systems and also divided
the generalized mobile embedded system into sub-classes.
We presented a framework to provide strict atomicity for
the identified sub-classes especially the mobile ad-hoc
sub-class which represents the novel contribution of this
work. For the ad-hoc sub-class, we examined in detail the
existing work in the area and presented the description
of a new atomic transaction commit solution valid for
a wider spectrum of applications because it is based
on fewer assumptions compared to existing solutions.
We have evaluated the new approach and shown how
delay-awareness can help in reducing the costs of mobile
transactions and in decreasing the number of aborted
transactions in ad-hoc mobile environments.

In our future work, we plan to formalize and implement
the framework presented for mobile ad-hoc scenarios and
assess its suitability to provide the desired requirements in
ad-hoc networks. Further the aggregation of the proposed
solutions to present a generalized solution for the general-
ized and hybrid mobile embedded environment introduced
in this work will be investigated.
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