
E-MEDISYS 2008
2nd International Conference: E-Medical Systems

October 29-31, 2008 – TUNISIA

Implementation and Evaluation of Delay-Aware and
Fault-Tolerant Mobile Transactions

Brahim Ayari, Abdelmajid Khelil, Neeraj Suri and Eugen Bleim

Technische Universität Darmstadt,
Dependable Embedded Systems and Software Group,

Hochschulstr. 10, 64289 Darmstadt, Germany
brahim@informatik.tu-darmstadt.de
khelil@informatik.tu-darmstadt.de
suri@informatik.tu-darmstadt.de

jonnybleim@gmx.de

Abstract: Pervasive healthcare is an emerging discipline, where mobile embedded systems are increasingly used to
support transactions. Such systems entail a range of heterogeneous entities - both the embedded devices and the
networks connecting them. While these systems are exposed to frequent and varied perturbations, the support of atomic
distributed transactions is still a fundamental requirement to achieve consistent decisions. Guaranteeing atomicity and
high performance in traditional fixed wired networks is based on the assumption that faults like node and link failures
occur rarely. This assumption is not supported in current and future mobile healthcare embedded systems where the
heterogeneity and mobility often result in link and node failures as a dominant operational scenario. In this paper we
summarize our work to provide for atomic commit protocols for mobile environments where consistency can not be
compromised, for example healthcare systems. We present the implementation and experimental evaluation of a commit
protocol showing its suitability for healthcare environments.
Key words: Transactions, mobile database systems, dependability, healthcare systems.

INTRODUCTION
Future mobile medicine and healthcare home

pervasive computing scenarios aim to make healthcare
available to anyone, anytime and anywhere [MOH].
The use of wireless technologies and mobile devices
allows for pervasive access to health care services.
The corresponding computing environments are
increasingly characterized by frequent and varied
perturbations. These are directly apparent to the
delivery of services as constraints and failures. These
mobile systems are also constrained by the scarcity of
processing, storage and energy resources of mobile
devices, and the continuously varying properties of
wireless channels. Most of the failures which can
occur in such systems are caused by node (given the
mobility and size of these nodes) or communication
failures. These failures can last from seconds, minutes
to even hours, e.g., network partitioning. Also
increasingly, the mobile medicine and healthcare
environments involve applications such as life

assist systems, patient data management, body area
networks [JON 01] that require strict atomic database
transactions guaranteeing strict data consistency.
Atomic commit protocols ensure strict atomicity of
database transactions and play therefore a major role
for the design of these applications. In the literature
computer transactions are usually considered to be
delay-sensitive. Accordingly, most of existing atomic
protocols display very limited perturbation-tolerance
leading to either poor transaction commit rate or to
high resource blocking time which consequently
decreases the efficiency of the mobile healthcare
system. In our previous work [AYA 06], we showed
that sacrificing latency (time needed to decide about
the outcome of the transaction) is necessary to cope
with frequent and enduring perturbations without
sacrificing performance in terms of efficiency and
commit success rate.

In mobile healthcare systems both delay-sensitive
transactions (for data with low time validity) and
delay-tolerant transactions (for data with high time
validity) are needed. A limited body of research exists
for real-time transactions [HAR 00] [LIU 02].
However, to the best of our knowledge, delay-aware
transactions have not yet been addressed. In [AYA 08]

Research supported in part by EC CoMiFin, NoE
ReSIST and DFG GRK 1362 (TUD GKMM)

 - 1 -

E-MEDISYS 2008

we argued for the necessity of delay-awareness of
mobile transactions in networked embedded systems.
Our work in [AYA 06] investigated primarily
infrastructure-based system models. We extended this
base model in [AYA 08] to cope with a more
generalized mobile system that also involves ad-hoc
communication scenarios. In this paper we build upon
our prior work to (a) detail delay-aware transaction
handling for environments such as mobile healthcare,
and (b) provide a real implementation.

The remainder of this paper is organized as
follows. In Section 2, the system model is described
along with a classification of perturbations in mobile
healthcare environments. A mobile transaction commit
protocol, referred to as FT-PPTC, is presented in
Section 3. In Section 4, the implementation of the
presented protocol is discussed. Section 5 presents
experimental measurements expressing the
performance of the FT-PPTC protocol. Section 6
concludes the paper and briefly outlines the future
work.

1. Related Work
Mobile transactions are increasingly the focus of

extensive ongoing research [DUN 97] [CHR 93] [PIT
95] [MAD 01], and some recent commit protocols
have also been proposed in the literature [BOB 00]
[KUM 02] [NOU 05].

Unilateral Commit for Mobile (UCM) [BOB 00]
supports disconnections and off-line executions on
mobile devices. UCM is a one-phase protocol where
the voting phase of the two-phase commit (2PC)
[GRA 78] is eliminated. The coordinator acts as a
“dictator” imposing its decision on all participants.
UCM guarantees atomicity. However due to its strict
assumptions (strict two-phase locking [BER 87]
required for all participants), the data accessed by
uncommitted local transactions remain locked until
the whole transaction is committed or aborted. In
addition, the UCM assumes homogeneous database
systems that is often not viable in mobile
environments. Transaction Commit On Timeout
(TCOT) [KUM 02] uses timeouts to provide a non-
blocking protocol that limits the amount of
communication between the participants in the
execution of the protocol. Instead of exchanging
messages to reach a Commit or Abort decision, the
coordinator waits for timeouts to expire. TCOT
provides only semantic atomicity as defined in [GAR
83], which is weaker than the desired strict atomicity
[HAE 94] for transactions. This limits the applicability
of TCOT. Furthermore, TCOT does not consider
mobile hosts as active participants in the execution of
transactions.

Mobile two Phase Commit (M-2PC) [NOU 05]
considers mobile hosts as active participants. A
mobile participant executes its fragments and
delegates the commitment to its agent on a fixed host.
Unfortunately, M-2PC assumes that all mobile
participants are connected at the transaction initiation

and that network disconnections are allowed only after
the mobile host delegates its commitment duties.

A common drawback of these protocols is that
they address only a small subset of the numerous
failure types that may occur in the mobile
environment. Furthermore, these protocols are not
robust to coordinator failures. In our work [AYA 06]
[AYA 08], we propose a comprehensive fault model
and design our protocol to tolerate faults resulting in
enhanced transaction resilience compared to existing
protocols.

2. System and Fault Models
We first present a model of the mobile healthcare

(MHC) environment. Consequently, we elaborate the
system model, and the corresponding transaction and
fault models.

2.1. Model of the Mobile Healthcare Environment
We consider a mobile distributed environment

consisting of a set of mobile hosts (MH) and a set of
fixed hosts (FH). The MHs intermittently connect to
the wired network through Mobile Support Stations
(MSS) via wireless channels (Figure 1). MHs can
communicate with each other or with fixed entities
using only the services provided by the MSSs. We
refer to the set of MHs as M = {MH1, … , MHm}, and
that of FHs as S = {FH1, … , FHs}, where m and s are
the number of MHs and FHs respectively.

MSS

Wireless Radio
Cell

Wireless LAN Cell
11-54 Mbps

Wireless Radio Cell
9 Kbps – 2 Mbps

High Speed Wire
Line Network

FH Fixed Host

Mobile Support
Station

MSS
MSS MSS

MSS

MH

MH

MH

MH

MH
MH

MH

FH FH

FH

Data Management
System

Wireless
Communication
Wired
CommunicationMobile HostMH

Figure 1. Architecture of MHC environments

We assume that each MH has a Mobile Database
Server (MDBS) installed on it, and that a Database
Server (DBS) is attached to each FH. Database servers
are needed on both fixed and mobile hosts to support
basic transaction operations such as read, write,
commit and abort.

2.2. System Model
We consider applications, which run on either

mobile or fixed hosts and access data located on both

 - 2 -

E-MEDISYS 2008

mobile and fixed hosts. A transaction can originate
from any host in M∪S, and the participants in its
execution can be any set P⊆ M∪S. However, most of
mobile transactions involve some FHs as participants.

The hosts in the considered mobile environment
may entail different hardware and software
implementations, including their database
management systems. Thus, we are dealing with
heterogeneous mobile databases. MHs are also
heterogeneous and can range from smart cards, mobile
phones and personal digital assistants (PDAs) with
restricted storage and processing capabilities to
laptops with considerably higher capabilities.

We consider the distributed database system
components (∈ M∪S) to be autonomous. Autonomy
means that the components of the system are able to
perform their tasks independently from each other.
With respect to the execution of transactions, this
requires that every component must take the decision
to commit or abort the transaction independently from
other components in the network. Components are
also able to decide which information to share with the
global system and how to manage their own data. The
data of the MH is replicated on a fixed backup
database server.

We assume the existence of a coordinator (CO),
which is responsible for coordinating the execution of
the corresponding transaction. For different
transactions, different nodes may play the CO role.
The CO is responsible for storing information
concerning the state of the transaction execution.
Based on the information collected from the
participants of the transaction, the CO takes the
decision to commit or abort the transaction and
informs all participants about its decision.

The MH is not considered to have a physical stable
storage, as it can be subject to loss, damage and
random disconnections. For this reason the MH is not
desired to take on the CO role. We assume only FHs
to have stable storage. Thus, the CO role should be
performed by one or more FHs. If a MSS has similar
capabilities to that of a FH, the CO role can also be
performed by a MSS. The CO maintains information
about the connectivity of the MHs participating in the
execution of the transaction (i.e., whether they are
connected to the network or not).

We do not place any restrictions on the storage
capabilities of FHs. Further we assume that all DBSs
attached to the FHs support the prepare operation of
the 2PC protocol as a basic operation.

2.3. Transaction Model
Users (doctors, nurses, patients etc.) issue

transactions from MHs. After processing a transaction,
the system provides the result of the transaction on the
user’s MH. The transaction may be entirely executable
at the user’s MH. More often, the transaction has to be
fragmented and distributed among a set of nodes
P⊆M∪S. We refer to a distributed transaction where

at least one MH participates in its execution as a
Mobile Transaction (MT). Similar to the concept of
transaction formalization presented in [OZS 91], we
formally define the MT Ti as a triple <Fi, Li, FLMi>,
where Fi = {ei1, ei2, . . . , ein} is a set of n “execution
fragments” [KUM 98] [KUM 00], Li = {li1, li2, … , lik}
is a set of k locations in M∪S (k ≤ m + s), and FLMi =
{flmi1, flmi2, … , flmin} is a set of fragment-location
mappings (flm’s), where ∀j, flmij(eij) = lij , 1 ≤ j ≤ k.
Although the execution fragments of Ti are
semantically related, each one of them can commit
independently given the autonomy of their
corresponding locations, leading to the commit of Ti.

We refer to the MH, where Ti is initiated, as Home
MH (H-MH). The commit set consists of all FHs and
MHs participating in execution and commit of Ti
including H-MH. FHs and MHs in the commit set are
called participant FHs (Part-FH) and participant MHs
(Part-MH) respectively.

The database system installed on MHs provides
backup facilities to assist with the recovery of the
database. To achieve a complete recovery, all the
operations completed on the MH need to be stored on
a stable and reliable storage on a FH. Thus, the MHs
are able to take part in the execution of transactions in
the considered environment independently of other
system components.

2.4. Fault Model
Designing a fault-tolerant transaction commit

protocol essentially requires the identification of
constraints and failure modes that can occur in the
considered environment. The following sections
enumerate these aspects.

2.4.1. Constraints
The MHC environment is constrained mainly by

the characteristics of MHs and wireless links. MHs
intuitively possess less computational resources such
as processor capabilities and storage capacity than the
FHs. This increases the time MHs need to execute
transactions or may even lead to execution failure.
Furthermore, MHs are highly vulnerable to physical
loss or damage, and may run in different energy
modes or be put-off to save energy. Therefore, MHs
naturally show frequent and random network
disconnections.

The effective bandwidth available for the MH over
a wireless link is highly dynamic. This depends on the
wireless technology, access coverage, and number of
MHs that have to share the medium. These
characteristics lead to an unreliable and intermittent
network connectivity of MHs.

The limitations and characteristics listed above
outline the variation of constraints for the MHC
environment being different from those in fixed
environments. These constraints also make it harder to
design appropriate and efficient commit protocols. A
protocol that aborts the transaction, each time the MH
disconnects from the network, is not suitable for

 - 3 -

E-MEDISYS 2008

mobile environments since frequent disconnections
are not exceptional but are rather part of the normal
mode of mobile operations. Therefore, disconnections
need to be explicitly tolerated by the protocol.

2.4.2. Failure Modes
We now outline the considered failure modes

classified into primary classes of communication and
node failures.

Communication Failures: These constitute the most
frequent failures in the mobile environment. We
distinguish between three kinds of communication
failures: Message loss, communication delay and
network disconnection.

Node Failures: We distinguish between MH, FH and
CO failures. We separate CO failures from FH failures
given the central role CO plays in commit protocols.
For MHs, we classify the failures into transient and
permanent failures.

- Transient MH failures occur from either software
or hardware faults and usually disappear if the
MH is restarted. Transient failures are the most
probable failures of MHs in the MHC
environment. In the case of a transient MH
failure, the content of the volatile storage of the
MH and consequently the state of its recent
computations is lost.

- Permanent MH failures are irreparable failures
such as the loss or damage of the MH itself or its
nonvolatile storage, where the data and logs are
stored. Consequently, all the data stored in the
MH is lost.

- CO failures: We assume a crash-recovery model,
i.e., if the CO crashes it stops receiving, sending
and processing messages until it recovers after a
finite amount of time. Volatile storage of the CO
is checkpointed periodically to stable storage and
the CO logs its computations and received/sent
messages between two checkpoints. Once a
backup is done the log is deleted and a fresh
logging process is initiated.

- FH failures: We assume a crash-recovery model
but limit its details as our focus is on failures that
are specific to the described MHC environment.

3. The FT-PPTC Commit Protocol
A solution referred by Fault-Tolerant Pre-Phase

Transaction Commit (FT-PPTC) for the mentioned
commit problem has been presented in [AYA 06]. In
this section we shortly review the FT-PPTC protocol
before presenting an implementation of it. As key
drivers, the FT-PPTC commit protocol ensures the
atomicity property. FT-PPTC efficiently minimizes
the number of transaction aborts by tolerating the
failures described in the fault model, and sacrificing
the transaction execution delay. High efficiency is
reflected by a low message complexity, especially for
wireless messages. Since some FHs participate in
most of the transactions, FT-PPTC reduces the

sensitive blocking time of resources at Part-FHs.

As Part-MHs may need an arbitrary long time to
execute their fragments, and as very few assumptions
can be made regarding the connection intervals of
MHs, resources of Part-FHs may potentially be
blocked for an undefined period of time. Therefore,
FT-PPTC decouples the commit of mobile participants
from that of fixed participants. FT-PPTC splits
transaction execution into two phases. The first phase,
called the pre-commit phase (Figure 2), collects
“sufficient” information from mobile participants and
reduces the commit set to a set of entities in the fixed
network. In the second phase the commit involves
only FHs and thus can be completed by any atomic
commit protocol for wired networks, such as the
traditional 2PC protocol [GRA 78]. We refer to the
second phase as the core 2PC phase.

To allow for this decoupling, we assign a MH
Agent (MH-Ag) to each Part-MH. The MH-Ag is
representing the Part-MH in the fixed network. The
MH-Ag is responsible for storing all the information
related to the state of all MTs involving the
corresponding MH. The MH-Ag is also responsible
for executing the 2PC protocol on the behalf of its
corresponding Part-MH. The MH-Agent can be
implemented by any FH. The CO itself is the MH-Ag
of the H-MH.

Intuitively, this decoupling reduces the blocking
time of the resources at the fixed devices. It also
simplifies the handling of the different types of
failures that arise from the mobility of nodes as
described in the fault model.

Pre-com
m

itm
ent

phase
C

ore 2PC
phase

Figure 2. Failure-free execution of the FT-PPTC
protocol

3.1. Pre-Commit Phase
The pre-commit phase only involves Part-MHs.

The MH-Ags act as intermediators between Part-MHs
and the CO. Similar to [KUM 02], we exploit a
timeout-based concept to reach a provisional Commit
decision at the end of the pre-commit phase. Each
Part-MH computes an execution timeout (Et), an upper
bound for the time to complete the execution of the
transaction fragment, and a shipping timeout (St), an
upper bound for the time to compose updates and to

 - 4 -

E-MEDISYS 2008

send them to the CO. Both timeouts have to account
for the constraints of the MH and the wireless link.
These timeouts can be extended if needed. Each
mobile participant sends both timeout values Et and St
to the CO via its MH-Ag.

The CO waits for the expiration of the timeouts of
Part-MHs and collects their votes along with the data
logs of the H-MH in case of successful execution. The
data logs contain the list of all updates made by the
MT. The data logs of other Part-MHs (in case of
successful execution) are stored by their
corresponding MH-Ags. The MH-Ag should be able
to propagate the updates made by the Part-MH (in
case this has a permanent failure) to its corresponding
backup database server using the logs. The CO
finalizes the pre-commit phase by a provisional
Commit decision or a final Abort decision. The CO
decides to proceed to the second phase of FT-PPTC,
only if it receives the updates from the H-MH and a
“Yes” vote from all MH-Ags (representing the rest of
Part-MHs) within the specified time-limit. The
transaction is aborted as soon as one Part-MH aborts
the transaction or the timeout expires at the CO
without receiving either the updates of the H-MH or a
“Yes” vote from one of the MH-Ags.

3.2. Core 2PC Phase
As a result of the pre-commit phase, the Part-MHs

delegate their corresponding MH-Ags to execute the
2PC protocol on their behalf. The second phase of the
protocol begins, when the CO sends the execution
fragments of Part-FHs to their corresponding FHs and
the 2PC protocol is executed to collect their votes. If
all Part-FHs vote for committing the MT, the CO
decides to commit it, otherwise it decides to abort. We
assume that the 2PC protocol used for collecting the
votes from the Part-FHs is modified in such a way that
it is non-blocking. This can be achieved using, for
example, timeouts to detect message loss.

4. Implementation of FT-PPTC
We first discuss the selection of used technologies

and then present the implementation of the FT-PPTC
protocol.

For the implementation the object-oriented
paradigm is adopted for portability (from one
hardware platform to the other) and reusability
purposes. JME (Java Platform Micro Edition) was
chosen as an implementation platform suitable for so
called “embedded consumer products” like sensor
nodes, mobile phones, PDAs etc. It represents one of
the common accessible solutions for developing
applications in mobile environments. The technology
allows making the applications reusable and portable
between different platforms. JME Platform is a
collection of technologies (Figure 3) that can be easily
tailored to build a Java environment suitable to the
desired goals on the used mobile devices. Figure 3
highlights the modularity of the Java architecture that
can be easily customized to our highly heterogeneous
mobile healthcare environment. This technology

consists basically of three components: (1) a
configuration providing basic libraries and a virtual
machine (VM), (2) a useful profile as a set of
Application Programming Interfaces (APIs) for a
selected device, and (3) an optional package with
technology-specific APIs. Two configurations are
currently provided: the CLDC (Connected Limited
Device Configuration), suitable for small/resource-
limited devices like mobile phones and the CDC
(Connected Device Configuration), appropriate for
more powerful devices like PDAs. JVM (Java Virtual
Machine) is the interface between the Operating
System (OS) and the hardware platform. A VM
consists of a class loader, garbage collection and
execution engine. It allows compiled applications to
be portable and platform independent. VM technology
allows also for robust and fault-tolerant
implementation as it simplifies fault isolation etc. In
our implementation the J9 IBM virtual machine [J9] is
used for its advanced features of configurability,
compactness and speed. It also provides a predictable
architectural layer presenting a common interface for
application programs regardless of the underlying
device hardware or OS. J9 runs on almost every OS
(Windows Mobile, QNX, embedded Linux, OSE,
ITRON, etc.) and manages the specific interface with
the OS and the hardware of mobile devices.

Figure 3. Java technologies [JVT]

Figure 4. Derby embedded in an application [DER]

For the databases installed on Part-MHs and Part-
FHs, Derby-Cloudscape or shortly Derby [DER] is
chosen. Derby is a relational database which is
embeddable, non-administrated and Java-coded.

 - 5 -

E-MEDISYS 2008

Derby can be embedded in the applications as a
Relational Database Management System (RDBMS)
engine. By employing Derby in a client application, a
Derby system requires no supporting administration
(Figure 4).

Optionally Derby can run in Network Server mode
as a separate process. This database is strictly
implemented in Java. Consequently, Derby is
platform-independent and simple to configure and
install. Furthermore Derby runs on any certified Java
Virtual Machine and needs no proprietary platform
environments. This lightweight database engine has a
memory footprint of about 2 MB and requires as little
as 4 MB Java heap. Derby uses JDBC and provides to
write stored procedures and functions in Java without
having any proprietary language. Moreover it
implements the SQL92E standard [SQL 92] as well as
many SQL 99 extensions and includes support of
many other RDBMS features like transaction commit
and rollback, transactional isolation (serializability),
crash recovery, multithreaded connections and online
backup.

The core functionality of the FT-PPTC protocol is
implemented as Java components which are organized
into different packages. This organization allows for
an easy customization of the implementation to the
target hosts by installing only the required packages.
For instance, the MH does not need to implement the
services of an agent that are only relevant to a fixed
host. Common components which are required by
each service build their own package. Figure 5
illustrates the dependencies between the FT-PPTC
protocol implementation packages.

Figure 5. Packages dependency

The packages ftpptc.partmh, ftpptc.agent and
ftpptc.partfh contain the active components which can
be started as a service thread on a corresponding host.
The ftpptc.partmh, ftpptc.partfh and ftpptc.agent
packages implement the behaviour of Part-MHs, Part-
FHs und MH-Ags respectively. There exist no
dependencies between these three packages which can
be independently deployed to their corresponding
hosts. The other packages include only passive
components which can be only used by other packages
and are either basic or necessary add-on components.

The package ftpptc.partmh implements the core
functionalities of the FT-PPTC protocol for Part-MHs

and the execution of the transaction fragments on
them. Additionally, a graphic interface (Figure 6) is
implemented to simplify the initiation and
configuration of the protocol. It can also be used for
debugging purposes.

The ftpptc.agent package implements the services
offered by the CO and the MH-Ags. The main services
offered by this package include the management of
transaction and participant states and the
administration of log files and backups. This package
also contains components responsible for creating the
connections between the MH-Ags and their
corresponding Part-MHs. After a crash of the MH-Ag,
this service first recovers the execution state of the
Part-MH by loading the corresponding logs from its
stable storage. Based on the loaded state, the agent
decides to request needed information from the Part-
MH which allows it continuing the execution of the
MT.

Figure 6. Mobile frame

The package ftpptc.database contains the
components that serve to handle all database
operations on the local databases. These components
allow also the execution of independent sub-services
in parallel threads to parallelize the execution and
control of MTs. This package is also responsible for
starting the database of the corresponding transaction
participant either in normal mode or in recovery mode.
The recovery mode brings the database to the last
consistent state before it crashed.

The package ftpptc.partfh implements the core of
the 2PC protocol described in [GRA 78].

The ftpptc.transaction module is responsible for
generating, initiating and executing transactions.
Moreover this module records the current state of the
execution of a particular transaction. These records are
important in case of failures in order to recover and
consistently continue the execution of the MT.

The package ftpptc.addons offers add-on
components to support the modality of the protocol
implementation and support its evaluation. This
package implements basic functionalities to configure
the agents, administrate their communication and
measure the throughput.

 - 6 -

E-MEDISYS 2008

5. Evaluation
Based on the described implementation in Section

4, we now provide the evaluation of FT-PPTC with
respect to throughput, latency and resource blocking
time. We first describe the testbed used for our
experiments. Subsequently the results of our
experiments are discussed.

5.1. Testbed
The equipments used in the testbed are illustrated

in Figure 7. Two PDAs with the described
configurations in this figure are connected via wireless
link to an access point. The access point and the fixed
hosts are connected to the same LAN.

Both PDAs, Acer n50 and Fujitsu Loox C550 with
the characteristics given in Figure 7, have Derby
database installed on them with a few test tables and
J9 JVM. The PartMH service described in Section 4 is
deployed to each of the Part-MHs. This service is
started on each Part-MH. The access point provides
the wireless coverage for the PDAs and connects them
to the fixed network illustrated in Figure 7. All three
FHs used in the test environment are standard PCs.
The configuration of FHs does not impact the results
of our experiments, which depend mainly on our Part-
MHs. Two of those FHs are deployed as MH-Ags and
the MHAgent service implemented by the protocol is
started on them. Both FHs are associated to both Part-
MHs as their corresponding MH-Ags using the
configuration facilities on the FHs and MHs. The third
FH is deployed as a Part-FH. The Part-FH starts the
PartFH service and is consequently ready to
participate in any transaction whenever requested.

Figure 7. Testbed

5.2. Performance
One of the important aspects of protocol

evaluation is the investigation of the performance. A
commit protocol should maximize transaction commit
rate and throughput by minimizing resource blocking

time. First we investigate the appropriate timeouts
values which should be selected by the Part-MHs in
order to minimize the number of aborts due to too
short timeouts. Then we investigate throughput and
blocking time of FT-PPTC.

5.3. Selection of Timeouts
The value of timeouts is the sum of the execution

and the shipping timeout defined in Section 3.1. The
optimal timeout varies from one application to another
and from one platform to another. Some applications
may prefer to achieve higher commit rates by adopting
longer timeouts and sacrificing transaction latency.
Whereas other applications may select lower timeouts
in order to achieve lower transaction latencies leading
to poor commit rates. In the following, we investigate
the challenging task to find the appropriate timeouts
leading to maximal commit rate.

To find out the appropriate timeouts settings, we
conduct experiments with different timeout values and
also by varying the number of initiated transactions.
We start with a timeout equal to zero and increment
the value by 100ms for the subsequent experiments.
The suitable timeouts for the throughput measurement
are the smallest values which yield maximal commit
rate.

Figure 8 demonstrates that the commit rate
increases with higher values of timeouts for a fixed
number of initiated transactions. Each curve represents
the percentage of committed transactions for the
corresponding value of timeouts and for a fixed
number of initiated transactions. The experiments
show the existence of a value for the timeouts after
which the commit rate is always 100%. This value
ranges between 900 and 1000ms for the different
experiments conducted.

0

20

40

60

80

100

200 300 400 500 600 700 800 900 1000 1100

Timeouts (Et + St) [ms]

C
om

m
it

ra
te

 [%
]

1 T

5 T
10 T

50 T
100 T

Figure 8. Timeout selection

We conducted experiments to collect some
intermediate measures on the average times needed to
execute different steps of MTs using FT-PPTC in the
failure free case. These measurements are presented in
Table 1 and present the basis for fixing the experiment
settings. A complete transaction that involves two
Part-MHs and one Part-FH with one update database
operation on each participant may take 2 to 3s. This
duration consists of the following protocol execution
steps. The execution of a simple database operation
like an update statement on the mobile host takes
about 200-300ms whereas the protocol part that

 - 7 -

E-MEDISYS 2008

prepares and finishes the execution block including
the execution itself may take up to 550ms. These
measures are not valid for the first database operation
which lasts even 5 times longer than the subsequent
operations (up to 900-1000ms). Therefore the first
transaction is not taken into account in order to avoid
inaccuracy of the results. The protocol needs 90-
150ms to compose the log file. Transmitting the log
file over the wireless channel takes 100-200ms.
Waiting for receiving the vote of the second Part-MH,
executing the core of the 2PC protocol involving the
Part-FH, and taking the final decision take from 1-1.5s
if each mobile participant voted to commit the MT,
otherwise 500-700ms less. The decision handling
phase usually takes 100-200ms including committing
or rolling back the changes made on the database and
sending the acknowledgements.

Protocol step
Execution

time on MH

Transaction 2-3 s

Database operation (update) 200-300 ms

Execution with prepare and finish 550 ms

Composing the log file 90-150 ms

Transfer of the log file 100-200 ms

Waiting for decision 1-1.5 s

Decision handling 100-200 ms

Table 1. Execution time of different protocol steps on
MHs

The measurements of the different protocol steps
on fixed hosts deliver different results. Every first
execution of an operation on an already started
database takes around 100-300ms. Thus, the first
transaction is not taken into account while computing
the throughput. All the further executions last, on
average, between 10 and 30ms. The time needed for
composing the update file varies from 20-90ms and
the average time to transmit it is usually 10-30ms.

Our experiments showed that the FHs are up to 10
times faster in executing the same database operation
than MHs. The transfer of a log file from a MH over
wireless connection to a FH is nearly 10 times slower
than over a wired connection. The composing of a file
is surprisingly approximately 2 times faster on a FH
than on a MH.

5.4. Throughput
The transaction throughput is commonly defined

as the number of successfully performed transactions
per unit of time.

To measure the throughput of mobile transactions
it is required to perform transactions involving at least
two mobile and one fixed participants. Preferably, the
transactions are initiated successively after each other
and from the same mobile host to simplify the

experiment. The reason behind this configuration is
that a simultaneous initiation of transactions involving
the same set of participants from different hosts may
induce the mutual blocking of resources and falsify
the experimental results.

The numbers of transactions initiated in each
experiment varies from 0 to 100. For each number of
transactions three runs are performed and the average
is considered, in order to smooth the impact of
outliers. For the timeouts we used the values
Et=300ms for the execution timeout and St=700ms for
shipping timeout conform to the value of the sum of
these timeouts (Et +St = 1000ms) fixed in the previous
subsection.

Figure 9 illustrates the throughput of the FT-PPTC
protocol which shows a stable throughput as the
number of initiated transactions increases. The
throughput reaches a maximum and then starts to
slightly decrease as maximum load on fixed FH is
reached

0

0,1

0,2

0,3

0,4

0,5

0 1 5 10 20 30 50 100

Transactions [T]

Th
ro

ug
hp

ut
 [T

/s
]

Figure 9. Transaction throughput

5.5. Blocking time
The FT-PPTC protocol is primarily designed to

provide short blocking time of the valuable resources
of FHs. This is achieved by decoupling the execution
of Part-MH fragments from Part-FH fragments. To
measure the blocking time we continue to use two
Part-MHs and one Part-FH similar to the throughput
study. Each conducted experiment is also repeated
three times under the same conditions and the average
is considered.

0

200

400

600

800

1000

1 5 10 20 30 50 100

#Transactions [T]

Ti
m

e
[m

s]

Figure 10. Blocking time

Figure 10 shows how the blocking time of the
resources on the Part-FH varies with the number of
transactions. The results show that this blocking time
is relatively constant and does not depend on the

 - 8 -

E-MEDISYS 2008

number of initiated transactions. The average blocking
time varies between 550 and 650ms. In the conducted
experiments the minimum blocking time value is
450ms and maximum value is 900ms. These results
highlight the scalability of the protocol with respect to
the number of initiated transactions and consequently
the number of (mobile) participants.

6. Conclusion
In this paper, we first summarized our previous

work on developing fault- and delay-aware mobile
transactions. We then adopted our main solution, the
Fault-Tolerant Pre-phase Commit (FT-PPTC)
protocol, to the crucial domain of pervasive healthcare
systems. We have further presented a Java
implementation of FT-PPTC leading to a real testbed
for fault-tolerant and delay-aware mobile transactions.
Finally we used this testbed to investigate the
performance of FT-PPTC and to give further insights
of the protocol under real deployment conditions. The
experiments highlight the benefits of sacrificing
transaction delay for the purpose of fault-tolerance.

In future, we plan to extend the communication
model and design atomic commit protocols for ad-hoc
networks which are being increasingly used in
pervasive healthcare systems.

REFERENCES
[AYA 06] B. Ayari, A. Khelil, and N. Suri, “FT-PPTC: An

Efficient and Fault-Tolerant Commit Protocol for
Mobile Environments,” SRDS’06, pp. 96–105, 2006.

[AYA 08] B. Ayari, A. Khelil, and N. Suri, “Delay-Aware
Mobile Transactions,” 6th IFIP Workshop on Software
Technologies for Future Embedded & Ubiquitous
Systems (SEUS), pp. 280–291, 2008.

[BER 87] P. A. Bernstein, et al., Concurrency Control and
Recovery in Database Systems, Addison-Wesley, 1987.

[BOB 00] C. Bobineau, et al., “A Unilateral Commit
Protocol forMobile and Disconnected Computing,”
PDCS, 2000.

[CHR 93] P. K. Chrysanthis, “Transaction Processing in
Mobile Computing Environment,” IEEE Workshop on
Advances in Parallel and Distributed Systems, 1993, pp.
77–83.

[DER] “Apache Derby Cloudscape Overview”. Apache.
[Online]. http://db.apache.org/derby/

[DUN 97] M. H. Dunham, et al, “A Mobile Transaction
Model That Captures Both the Data and Movement
Behavior,” Mobile Networks and Applications, 2(2): pp.
149–162, 1997.

[GAR 83] H. Garcia-Molina, “Using semantic knowledge
for transaction processing in a distributed database,”
ACM Transactions on Database Systems, 8(2): pp. 186–
213, 1983.

[GRA 78] J. Gray, “Notes on data base operating systems,”
Operating Systems, An Advanced Course, pp. 393–481,
1978.

[HAE 94] T. Haerder, et al., Principles of transaction-
oriented database recovery, Morgan Kaufmann
Publishers Inc., 1994.

[HAR 00] J. R. Haritsa, K. Ramamritham, “Gupta, R.: The
prompt real-time commit protocol,” IEEE Transactions
on Parallel and Distributed Systems, 11(2) pp. 160–181,
2000.

[J9] WebSphere Everyplace Custom Environment. [Online].
http://www-01.ibm.com/software/wireless/wece/

[JON 01] V. Jones, R. Bults, D. Konstantas, and P. A M
Vierhout, “Healthcare PANs: Personal Area Networks
for trauma care and home care,” Fourth International
Symposium on Wireless Personal Multimedia
Communications (WPMC), 2001.

[JVT] Java ME. [Online]. http://java.sun.com/javame/

[KUM 98] V. Kumar, et al., “Defining Location Data
Dependency, Transaction Mobility and Commitment,”
TR 98-CSE-1, Southern Methodist University, 1998.

[KUM 00] V. Kumar, “A Timeout-Based Mobile Transaction
Commitment Protocol,” East-European Conference on
Advances in Databases and Information Systems, pp.
339–345. 2000.

[KUM 02] V. Kumar, et al., “TCOT-A Timeout-Based
Mobile Transaction Commitment Protocol,” IEEE
Transactions on Computers, 51(10): pp. 1212–1218,
2002.

[LIU 02] Y. S. Liu, G. Liao, G. Li, J. Xia, “Relaxed atomic
commit for real-time transactions in mobile computing
environment,” Third International Conference on
Advances in Web-Age Information Management, pp.
397–408, 2002.

[MAD 01] S. K. Madria, et al., “A Transaction Model to
Improve Data Availability in Mobile Computing,”
Distributed Parallel Databases, 10(2): pp. 127–160,
2001.

[MOH] MobiHealth Project. [Online].
http://www.mobihealth.org/

[NOU 05] N. Nouali, et al., “A Two-Phase Commit Protocol
for Mobile Wireless Environment,” 16th Australasian
Database Conference, pp. 135–143. 2005.

[OZS 91] M. T. Ozsu, et al., Principles of distributed
Database Systems, Prentice-Hall, Inc., 1991.

[PIT 95] E. Pitoura, et al., “Maintaining consistency of data
in mobile distributed environments,” 15th ICDCS, pp.
404–413, 1995.

[SQL 92] Database Language SQL. [Online].
http://www.contrib.andrew.cmu.edu/~shadow/sql/

 - 9 -

http://db.apache.org/derby/

