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Abstract: Pervasive healthcare is an emerging discipline, where mobile embedded systems are increasingly used to 
support transactions. Such systems entail a range of heterogeneous entities - both the embedded devices and the 
networks connecting them. While these systems are exposed to frequent and varied perturbations, the support of atomic 
distributed transactions is still a fundamental requirement to achieve consistent decisions. Guaranteeing atomicity and 
high performance in traditional fixed wired networks is based on the assumption that faults like node and link failures 
occur rarely. This assumption is not supported in current and future mobile healthcare embedded systems where the 
heterogeneity and mobility often result in link and node failures as a dominant operational scenario. In this paper we 
summarize our work to provide for atomic commit protocols for mobile environments where consistency can not be 
compromised, for example healthcare systems. We present the implementation and experimental evaluation of a commit 
protocol showing its suitability for healthcare environments. 
Key words: Transactions, mobile database systems, dependability, healthcare systems. 

 

INTRODUCTION 
Future mobile medicine and healthcare home 

pervasive computing scenarios aim to make healthcare 
available to anyone, anytime and anywhere [MOH]. 
The use of wireless technologies and mobile devices 
allows for pervasive access to health care services. 
The corresponding computing environments are 
increasingly characterized by frequent and varied 
perturbations. These are directly apparent to the 
delivery of services as constraints and failures. These 
mobile systems are also constrained by the scarcity of 
processing, storage and energy resources of mobile 
devices, and the continuously varying properties of 
wireless channels. Most of the failures which can 
occur in such systems are caused by node (given the 
mobility and size of these nodes) or communication 
failures. These failures can last from seconds, minutes 
to even hours, e.g., network partitioning. Also 
increasingly, the mobile medicine and healthcare 
environments involve applications such as life 

 

assist systems, patient data management, body area 
networks [JON 01] that require strict atomic database 
transactions guaranteeing strict data consistency. 
Atomic commit protocols ensure strict atomicity of 
database transactions and play therefore a major role 
for the design of these applications. In the literature 
computer transactions are usually considered to be 
delay-sensitive. Accordingly, most of existing atomic 
protocols display very limited perturbation-tolerance 
leading to either poor transaction commit rate or to 
high resource blocking time which consequently 
decreases the efficiency of the mobile healthcare 
system. In our previous work [AYA 06], we showed 
that sacrificing latency (time needed to decide about 
the outcome of the transaction) is necessary to cope 
with frequent and enduring perturbations without 
sacrificing performance in terms of efficiency and 
commit success rate. 

In mobile healthcare systems both delay-sensitive 
transactions (for data with low time validity) and 
delay-tolerant transactions (for data with high time 
validity) are needed. A limited body of research exists 
for real-time transactions [HAR 00] [LIU 02]. 
However, to the best of our knowledge, delay-aware 
transactions have not yet been addressed. In [AYA 08] 
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we argued for the necessity of delay-awareness of 
mobile transactions in networked embedded systems. 
Our work in [AYA 06] investigated primarily 
infrastructure-based system models. We extended this 
base model in [AYA 08] to cope with a more 
generalized mobile system that also involves ad-hoc 
communication scenarios. In this paper we build upon 
our prior work to (a) detail delay-aware transaction 
handling for environments such as mobile healthcare, 
and (b) provide a real implementation. 

The remainder of this paper is organized as 
follows. In Section 2, the system model is described 
along with a classification of perturbations in mobile 
healthcare environments. A mobile transaction commit 
protocol, referred to as FT-PPTC, is presented in 
Section 3. In Section 4, the implementation of the 
presented protocol is discussed. Section 5 presents 
experimental measurements expressing the 
performance of the FT-PPTC protocol. Section 6 
concludes the paper and briefly outlines the future 
work. 

1. Related Work 
Mobile transactions are increasingly the focus of 

extensive ongoing research [DUN 97] [CHR 93] [PIT 
95] [MAD 01], and some recent commit protocols 
have also been proposed in the literature [BOB 00] 
[KUM 02] [NOU 05]. 

Unilateral Commit for Mobile (UCM) [BOB 00] 
supports disconnections and off-line executions on 
mobile devices. UCM is a one-phase protocol where 
the voting phase of the two-phase commit (2PC) 
[GRA 78] is eliminated. The coordinator acts as a 
“dictator” imposing its decision on all participants. 
UCM guarantees atomicity. However due to its strict 
assumptions (strict two-phase locking [BER 87] 
required for all participants), the data accessed by 
uncommitted local transactions remain locked until 
the whole transaction is committed or aborted. In 
addition, the UCM assumes homogeneous database 
systems that is often not viable in mobile 
environments. Transaction Commit On Timeout 
(TCOT) [KUM 02] uses timeouts to provide a non-
blocking protocol that limits the amount of 
communication between the participants in the 
execution of the protocol. Instead of exchanging 
messages to reach a Commit or Abort decision, the 
coordinator waits for timeouts to expire. TCOT 
provides only semantic atomicity as defined in [GAR 
83], which is weaker than the desired strict atomicity 
[HAE 94] for transactions. This limits the applicability 
of TCOT. Furthermore, TCOT does not consider 
mobile hosts as active participants in the execution of 
transactions. 

Mobile two Phase Commit (M-2PC) [NOU 05] 
considers mobile hosts as active participants. A 
mobile participant executes its fragments and 
delegates the commitment to its agent on a fixed host. 
Unfortunately, M-2PC assumes that all mobile 
participants are connected at the transaction initiation 

and that network disconnections are allowed only after 
the mobile host delegates its commitment duties. 

A common drawback of these protocols is that 
they address only a small subset of the numerous 
failure types that may occur in the mobile 
environment. Furthermore, these protocols are not 
robust to coordinator failures. In our work [AYA 06] 
[AYA 08], we propose a comprehensive fault model 
and design our protocol to tolerate faults resulting in 
enhanced transaction resilience compared to existing 
protocols. 

2. System and Fault Models 
We first present a model of the mobile healthcare 

(MHC) environment. Consequently, we elaborate the 
system model, and the corresponding transaction and 
fault models. 

2.1. Model of the Mobile Healthcare Environment 
We consider a mobile distributed environment 

consisting of a set of mobile hosts (MH) and a set of 
fixed hosts (FH). The MHs intermittently connect to 
the wired network through Mobile Support Stations 
(MSS) via wireless channels (Figure 1). MHs can 
communicate with each other or with fixed entities 
using only the services provided by the MSSs. We 
refer to the set of MHs as M = {MH1, … , MHm}, and 
that of FHs as S = {FH1, … , FHs}, where m and s are 
the number of MHs and FHs respectively.  
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Figure 1. Architecture of MHC environments 

We assume that each MH has a Mobile Database 
Server (MDBS) installed on it, and that a Database 
Server (DBS) is attached to each FH. Database servers 
are needed on both fixed and mobile hosts to support 
basic transaction operations such as read, write, 
commit and abort. 

2.2. System Model 
We consider applications, which run on either 

mobile or fixed hosts and access data located on both 
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mobile and fixed hosts. A transaction can originate 
from any host in M∪S, and the participants in its 
execution can be any set P⊆  M∪S. However, most of 
mobile transactions involve some FHs as participants. 

The hosts in the considered mobile environment 
may entail different hardware and software 
implementations, including their database 
management systems. Thus, we are dealing with 
heterogeneous mobile databases. MHs are also 
heterogeneous and can range from smart cards, mobile 
phones and personal digital assistants (PDAs) with 
restricted storage and processing capabilities to 
laptops with considerably higher capabilities. 

We consider the distributed database system 
components (∈  M∪S) to be autonomous. Autonomy 
means that the components of the system are able to 
perform their tasks independently from each other. 
With respect to the execution of transactions, this 
requires that every component must take the decision 
to commit or abort the transaction independently from 
other components in the network. Components are 
also able to decide which information to share with the 
global system and how to manage their own data. The 
data of the MH is replicated on a fixed backup 
database server. 

We assume the existence of a coordinator (CO), 
which is responsible for coordinating the execution of 
the corresponding transaction. For different 
transactions, different nodes may play the CO role. 
The CO is responsible for storing information 
concerning the state of the transaction execution. 
Based on the information collected from the 
participants of the transaction, the CO takes the 
decision to commit or abort the transaction and 
informs all participants about its decision. 

The MH is not considered to have a physical stable 
storage, as it can be subject to loss, damage and 
random disconnections. For this reason the MH is not 
desired to take on the CO role. We assume only FHs 
to have stable storage. Thus, the CO role should be 
performed by one or more FHs. If a MSS has similar 
capabilities to that of a FH, the CO role can also be 
performed by a MSS. The CO maintains information 
about the connectivity of the MHs participating in the 
execution of the transaction (i.e., whether they are 
connected to the network or not). 

We do not place any restrictions on the storage 
capabilities of FHs. Further we assume that all DBSs 
attached to the FHs support the prepare operation of 
the 2PC protocol as a basic operation. 

2.3. Transaction Model 
Users (doctors, nurses, patients etc.) issue 

transactions from MHs. After processing a transaction, 
the system provides the result of the transaction on the 
user’s MH. The transaction may be entirely executable 
at the user’s MH. More often, the transaction has to be 
fragmented and distributed among a set of nodes 
P⊆M∪S. We refer to a distributed transaction where 

at least one MH participates in its execution as a 
Mobile Transaction (MT). Similar to the concept of 
transaction formalization presented in [OZS 91], we 
formally define the MT Ti as a triple <Fi, Li, FLMi>, 
where Fi = {ei1, ei2, . . . , ein} is a set of n “execution 
fragments” [KUM 98] [KUM 00], Li = {li1, li2, … , lik} 
is a set of k locations in M∪S (k ≤ m + s), and FLMi = 
{flmi1, flmi2, … , flmin} is a set of fragment-location 
mappings (flm’s), where ∀j, flmij(eij) = lij , 1 ≤ j ≤ k. 
Although the execution fragments of Ti are 
semantically related, each one of them can commit 
independently given the autonomy of their 
corresponding locations, leading to the commit of Ti. 

We refer to the MH, where Ti is initiated, as Home 
MH (H-MH). The commit set consists of all FHs and 
MHs participating in execution and commit of Ti 
including H-MH. FHs and MHs in the commit set are 
called participant FHs (Part-FH) and participant MHs 
(Part-MH) respectively. 

The database system installed on MHs provides 
backup facilities to assist with the recovery of the 
database. To achieve a complete recovery, all the 
operations completed on the MH need to be stored on 
a stable and reliable storage on a FH. Thus, the MHs 
are able to take part in the execution of transactions in 
the considered environment independently of other 
system components. 

2.4. Fault Model 
Designing a fault-tolerant transaction commit 

protocol essentially requires the identification of 
constraints and failure modes that can occur in the 
considered environment. The following sections 
enumerate these aspects. 

2.4.1. Constraints 
The MHC environment is constrained mainly by 

the characteristics of MHs and wireless links. MHs 
intuitively possess less computational resources such 
as processor capabilities and storage capacity than the 
FHs. This increases the time MHs need to execute 
transactions or may even lead to execution failure. 
Furthermore, MHs are highly vulnerable to physical 
loss or damage, and may run in different energy 
modes or be put-off to save energy. Therefore, MHs 
naturally show frequent and random network 
disconnections. 

The effective bandwidth available for the MH over 
a wireless link is highly dynamic. This depends on the 
wireless technology, access coverage, and number of 
MHs that have to share the medium. These 
characteristics lead to an unreliable and intermittent 
network connectivity of MHs. 

The limitations and characteristics listed above 
outline the variation of constraints for the MHC 
environment being different from those in fixed 
environments. These constraints also make it harder to 
design appropriate and efficient commit protocols. A 
protocol that aborts the transaction, each time the MH 
disconnects from the network, is not suitable for 
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mobile environments since frequent disconnections 
are not exceptional but are rather part of the normal 
mode of mobile operations. Therefore, disconnections 
need to be explicitly tolerated by the protocol. 

2.4.2. Failure Modes 
We now outline the considered failure modes 

classified into primary classes of communication and 
node failures. 

Communication Failures: These constitute the most 
frequent failures in the mobile environment. We 
distinguish between three kinds of communication 
failures: Message loss, communication delay and 
network disconnection. 

Node Failures: We distinguish between MH, FH and 
CO failures. We separate CO failures from FH failures 
given the central role CO plays in commit protocols. 
For MHs, we classify the failures into transient and 
permanent failures. 

- Transient MH failures occur from either software 
or hardware faults and usually disappear if the 
MH is restarted. Transient failures are the most 
probable failures of MHs in the MHC 
environment. In the case of a transient MH 
failure, the content of the volatile storage of the 
MH and consequently the state of its recent 
computations is lost. 

- Permanent MH failures are irreparable failures 
such as the loss or damage of the MH itself or its 
nonvolatile storage, where the data and logs are 
stored. Consequently, all the data stored in the 
MH is lost. 

- CO failures: We assume a crash-recovery model, 
i.e., if the CO crashes it stops receiving, sending 
and processing messages until it recovers after a 
finite amount of time. Volatile storage of the CO 
is checkpointed periodically to stable storage and 
the CO logs its computations and received/sent 
messages between two checkpoints. Once a 
backup is done the log is deleted and a fresh 
logging process is initiated. 

- FH failures: We assume a crash-recovery model 
but limit its details as our focus is on failures that 
are specific to the described MHC environment. 

3. The FT-PPTC Commit Protocol 
A solution referred by Fault-Tolerant Pre-Phase 

Transaction Commit (FT-PPTC) for the mentioned 
commit problem has been presented in [AYA 06]. In 
this section we shortly review the FT-PPTC protocol 
before presenting an implementation of it. As key 
drivers, the FT-PPTC commit protocol ensures the 
atomicity property. FT-PPTC efficiently minimizes 
the number of transaction aborts by tolerating the 
failures described in the fault model, and sacrificing 
the transaction execution delay. High efficiency is 
reflected by a low message complexity, especially for 
wireless messages. Since some FHs participate in 
most of the transactions, FT-PPTC reduces the 

sensitive blocking time of resources at Part-FHs. 

As Part-MHs may need an arbitrary long time to 
execute their fragments, and as very few assumptions 
can be made regarding the connection intervals of 
MHs, resources of Part-FHs may potentially be 
blocked for an undefined period of time. Therefore, 
FT-PPTC decouples the commit of mobile participants 
from that of fixed participants. FT-PPTC splits 
transaction execution into two phases. The first phase, 
called the pre-commit phase (Figure 2), collects 
“sufficient” information from mobile participants and 
reduces the commit set to a set of entities in the fixed 
network. In the second phase the commit involves 
only FHs and thus can be completed by any atomic 
commit protocol for wired networks, such as the 
traditional 2PC protocol [GRA 78]. We refer to the 
second phase as the core 2PC phase. 

To allow for this decoupling, we assign a MH 
Agent (MH-Ag) to each Part-MH. The MH-Ag is 
representing the Part-MH in the fixed network. The 
MH-Ag is responsible for storing all the information 
related to the state of all MTs involving the 
corresponding MH. The MH-Ag is also responsible 
for executing the 2PC protocol on the behalf of its 
corresponding Part-MH. The MH-Agent can be 
implemented by any FH. The CO itself is the MH-Ag 
of the H-MH.  

Intuitively, this decoupling reduces the blocking 
time of the resources at the fixed devices. It also 
simplifies the handling of the different types of 
failures that arise from the mobility of nodes as 
described in the fault model. 

Pre-com
m

itm
ent 

phase
C

ore 2PC
phase

 
Figure 2. Failure-free execution of the FT-PPTC 
protocol 

3.1. Pre-Commit Phase 
The pre-commit phase only involves Part-MHs. 

The MH-Ags act as intermediators between Part-MHs 
and the CO. Similar to [KUM 02], we exploit a 
timeout-based concept to reach a provisional Commit 
decision at the end of the pre-commit phase. Each 
Part-MH computes an execution timeout (Et), an upper 
bound for the time to complete the execution of the 
transaction fragment, and a shipping timeout (St), an 
upper bound for the time to compose updates and to 
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send them to the CO. Both timeouts have to account 
for the constraints of the MH and the wireless link. 
These timeouts can be extended if needed. Each 
mobile participant sends both timeout values Et and St 
to the CO via its MH-Ag. 

The CO waits for the expiration of the timeouts of 
Part-MHs and collects their votes along with the data 
logs of the H-MH in case of successful execution. The 
data logs contain the list of all updates made by the 
MT. The data logs of other Part-MHs (in case of 
successful execution) are stored by their 
corresponding MH-Ags. The MH-Ag should be able 
to propagate the updates made by the Part-MH (in 
case this has a permanent failure) to its corresponding 
backup database server using the logs. The CO 
finalizes the pre-commit phase by a provisional 
Commit decision or a final Abort decision. The CO 
decides to proceed to the second phase of FT-PPTC, 
only if it receives the updates from the H-MH and a 
“Yes” vote from all MH-Ags (representing the rest of 
Part-MHs) within the specified time-limit. The 
transaction is aborted as soon as one Part-MH aborts 
the transaction or the timeout expires at the CO 
without receiving either the updates of the H-MH or a 
“Yes” vote from one of the MH-Ags. 

3.2. Core 2PC Phase 
As a result of the pre-commit phase, the Part-MHs 

delegate their corresponding MH-Ags to execute the 
2PC protocol on their behalf. The second phase of the 
protocol begins, when the CO sends the execution 
fragments of Part-FHs to their corresponding FHs and 
the 2PC protocol is executed to collect their votes. If 
all Part-FHs vote for committing the MT, the CO 
decides to commit it, otherwise it decides to abort. We 
assume that the 2PC protocol used for collecting the 
votes from the Part-FHs is modified in such a way that 
it is non-blocking. This can be achieved using, for 
example, timeouts to detect message loss. 

4. Implementation of FT-PPTC 
We first discuss the selection of used technologies 

and then present the implementation of the FT-PPTC 
protocol.  

For the implementation the object-oriented 
paradigm is adopted for portability (from one 
hardware platform to the other) and reusability 
purposes. JME (Java Platform Micro Edition) was 
chosen as an implementation platform suitable for so 
called “embedded consumer products” like sensor 
nodes, mobile phones, PDAs etc. It represents one of 
the common accessible solutions for developing 
applications in mobile environments. The technology 
allows making the applications reusable and portable 
between different platforms. JME Platform is a 
collection of technologies (Figure 3) that can be easily 
tailored to build a Java environment suitable to the 
desired goals on the used mobile devices. Figure 3 
highlights the modularity of the Java architecture that 
can be easily customized to our highly heterogeneous 
mobile healthcare environment. This technology 

consists basically of three components: (1) a 
configuration providing basic libraries and a virtual 
machine (VM), (2) a useful profile as a set of 
Application Programming Interfaces (APIs) for a 
selected device, and (3) an optional package with 
technology-specific APIs. Two configurations are 
currently provided: the CLDC (Connected Limited 
Device Configuration), suitable for small/resource-
limited devices like mobile phones and the CDC 
(Connected Device Configuration), appropriate for 
more powerful devices like PDAs. JVM (Java Virtual 
Machine) is the interface between the Operating 
System (OS) and the hardware platform. A VM 
consists of a class loader, garbage collection and 
execution engine. It allows compiled applications to 
be portable and platform independent. VM technology 
allows also for robust and fault-tolerant 
implementation as it simplifies fault isolation etc. In 
our implementation the J9 IBM virtual machine [J9] is 
used for its advanced features of configurability, 
compactness and speed. It also provides a predictable 
architectural layer presenting a common interface for 
application programs regardless of the underlying 
device hardware or OS. J9 runs on almost every OS 
(Windows Mobile, QNX, embedded Linux, OSE, 
ITRON, etc.) and manages the specific interface with 
the OS and the hardware of mobile devices. 

 
Figure 3. Java technologies [JVT] 

Figure 4. Derby embedded in an application [DER] 

For the databases installed on Part-MHs and Part-
FHs, Derby-Cloudscape or shortly Derby [DER] is 
chosen. Derby is a relational database which is 
embeddable, non-administrated and Java-coded. 
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Derby can be embedded in the applications as a 
Relational Database Management System (RDBMS) 
engine. By employing Derby in a client application, a 
Derby system requires no supporting administration 
(Figure 4). 

Optionally Derby can run in Network Server mode 
as a separate process. This database is strictly 
implemented in Java. Consequently, Derby is 
platform-independent and simple to configure and 
install. Furthermore Derby runs on any certified Java 
Virtual Machine and needs no proprietary platform 
environments. This lightweight database engine has a 
memory footprint of about 2 MB and requires as little 
as 4 MB Java heap. Derby uses JDBC and provides to 
write stored procedures and functions in Java without 
having any proprietary language. Moreover it 
implements the SQL92E standard [SQL 92] as well as 
many SQL 99 extensions and includes support of 
many other RDBMS features like transaction commit 
and rollback, transactional isolation (serializability), 
crash recovery, multithreaded connections and online 
backup. 

The core functionality of the FT-PPTC protocol is 
implemented as Java components which are organized 
into different packages. This organization allows for 
an easy customization of the implementation to the 
target hosts by installing only the required packages. 
For instance, the MH does not need to implement the 
services of an agent that are only relevant to a fixed 
host. Common components which are required by 
each service build their own package. Figure 5 
illustrates the dependencies between the FT-PPTC 
protocol implementation packages. 

 

Figure 5. Packages dependency 

The packages ftpptc.partmh, ftpptc.agent and 
ftpptc.partfh contain the active components which can 
be started as a service thread on a corresponding host. 
The ftpptc.partmh, ftpptc.partfh and ftpptc.agent 
packages implement the behaviour of Part-MHs, Part-
FHs und MH-Ags respectively. There exist no 
dependencies between these three packages which can 
be independently deployed to their corresponding 
hosts. The other packages include only passive 
components which can be only used by other packages 
and are either basic or necessary add-on components. 

The package ftpptc.partmh implements the core 
functionalities of the FT-PPTC protocol for Part-MHs 

and the execution of the transaction fragments on 
them. Additionally, a graphic interface (Figure 6) is 
implemented to simplify the initiation and 
configuration of the protocol. It can also be used for 
debugging purposes. 

The ftpptc.agent package implements the services 
offered by the CO and the MH-Ags. The main services 
offered by this package include the management of 
transaction and participant states and the 
administration of log files and backups. This package 
also contains components responsible for creating the 
connections between the MH-Ags and their 
corresponding Part-MHs. After a crash of the MH-Ag, 
this service first recovers the execution state of the 
Part-MH by loading the corresponding logs from its 
stable storage. Based on the loaded state, the agent 
decides to request needed information from the Part-
MH which allows it continuing the execution of the 
MT.  

 
Figure 6. Mobile frame 

The package ftpptc.database contains the 
components that serve to handle all database 
operations on the local databases. These components 
allow also the execution of independent sub-services 
in parallel threads to parallelize the execution and 
control of MTs. This package is also responsible for 
starting the database of the corresponding transaction 
participant either in normal mode or in recovery mode. 
The recovery mode brings the database to the last 
consistent state before it crashed. 

The package ftpptc.partfh implements the core of 
the 2PC protocol described in [GRA 78]. 

The ftpptc.transaction module is responsible for 
generating, initiating and executing transactions. 
Moreover this module records the current state of the 
execution of a particular transaction. These records are 
important in case of failures in order to recover and 
consistently continue the execution of the MT. 

The package ftpptc.addons offers add-on 
components to support the modality of the protocol 
implementation and support its evaluation. This 
package implements basic functionalities to configure 
the agents, administrate their communication and 
measure the throughput. 
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5. Evaluation 
Based on the described implementation in Section 

4, we now provide the evaluation of FT-PPTC with 
respect to throughput, latency and resource blocking 
time. We first describe the testbed used for our 
experiments. Subsequently the results of our 
experiments are discussed. 

5.1. Testbed 
The equipments used in the testbed are illustrated 

in Figure 7. Two PDAs with the described 
configurations in this figure are connected via wireless 
link to an access point. The access point and the fixed 
hosts are connected to the same LAN. 

Both PDAs, Acer n50 and Fujitsu Loox C550 with 
the characteristics given in Figure 7, have Derby 
database installed on them with a few test tables and 
J9 JVM. The PartMH service described in Section 4 is 
deployed to each of the Part-MHs. This service is 
started on each Part-MH. The access point provides 
the wireless coverage for the PDAs and connects them 
to the fixed network illustrated in Figure 7. All three 
FHs used in the test environment are standard PCs. 
The configuration of FHs does not impact the results 
of our experiments, which depend mainly on our Part-
MHs. Two of those FHs are deployed as MH-Ags and 
the MHAgent service implemented by the protocol is 
started on them. Both FHs are associated to both Part-
MHs as their corresponding MH-Ags using the 
configuration facilities on the FHs and MHs. The third 
FH is deployed as a Part-FH. The Part-FH starts the 
PartFH service and is consequently ready to 
participate in any transaction whenever requested.  

 
Figure 7. Testbed 

5.2. Performance 
One of the important aspects of protocol 

evaluation is the investigation of the performance. A 
commit protocol should maximize transaction commit 
rate and throughput by minimizing resource blocking 

time. First we investigate the appropriate timeouts 
values which should be selected by the Part-MHs in 
order to minimize the number of aborts due to too 
short timeouts. Then we investigate throughput and 
blocking time of FT-PPTC. 

5.3. Selection of Timeouts 
The value of timeouts is the sum of the execution 

and the shipping timeout defined in Section 3.1. The 
optimal timeout varies from one application to another 
and from one platform to another. Some applications 
may prefer to achieve higher commit rates by adopting 
longer timeouts and sacrificing transaction latency. 
Whereas other applications may select lower timeouts 
in order to achieve lower transaction latencies leading 
to poor commit rates. In the following, we investigate 
the challenging task to find the appropriate timeouts 
leading to maximal commit rate. 

To find out the appropriate timeouts settings, we 
conduct experiments with different timeout values and 
also by varying the number of initiated transactions. 
We start with a timeout equal to zero and increment 
the value by 100ms for the subsequent experiments. 
The suitable timeouts for the throughput measurement 
are the smallest values which yield maximal commit 
rate. 

Figure 8 demonstrates that the commit rate 
increases with higher values of timeouts for a fixed 
number of initiated transactions. Each curve represents 
the percentage of committed transactions for the 
corresponding value of timeouts and for a fixed 
number of initiated transactions.  The experiments 
show the existence of a value for the timeouts after 
which the commit rate is always 100%. This value 
ranges between 900 and 1000ms for the different 
experiments conducted.  
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Figure 8. Timeout selection 

We conducted experiments to collect some 
intermediate measures on the average times needed to 
execute different steps of MTs using FT-PPTC in the 
failure free case. These measurements are presented in 
Table 1 and present the basis for fixing the experiment 
settings. A complete transaction that involves two 
Part-MHs and one Part-FH with one update database 
operation on each participant may take 2 to 3s. This 
duration consists of the following protocol execution 
steps. The execution of a simple database operation 
like an update statement on the mobile host takes 
about 200-300ms whereas the protocol part that 
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prepares and finishes the execution block including 
the execution itself may take up to 550ms. These 
measures are not valid for the first database operation 
which lasts even 5 times longer than the subsequent 
operations (up to 900-1000ms). Therefore the first 
transaction is not taken into account in order to avoid 
inaccuracy of the results. The protocol needs 90-
150ms to compose the log file. Transmitting the log 
file over the wireless channel takes 100-200ms. 
Waiting for receiving the vote of the second Part-MH, 
executing the core of the 2PC protocol involving the 
Part-FH, and taking the final decision take from 1-1.5s 
if each mobile participant voted to commit the MT, 
otherwise 500-700ms less. The decision handling 
phase usually takes 100-200ms including committing 
or rolling back the changes made on the database and 
sending the acknowledgements. 

Protocol step 
Execution 

time on MH 

Transaction  2-3 s 

Database operation (update) 200-300 ms 

Execution with prepare and finish 550 ms 

Composing the log file 90-150 ms 

Transfer of the log file 100-200 ms 

Waiting for decision 1-1.5 s 

Decision handling 100-200 ms 

 

Table 1. Execution time of different protocol steps on 
MHs 

The measurements of the different protocol steps 
on fixed hosts deliver different results. Every first 
execution of an operation on an already started 
database takes around 100-300ms. Thus, the first 
transaction is not taken into account while computing 
the throughput. All the further executions last, on 
average, between 10 and 30ms. The time needed for 
composing the update file varies from 20-90ms and 
the average time to transmit it is usually 10-30ms. 

Our experiments showed that the FHs are up to 10 
times faster in executing the same database operation 
than MHs. The transfer of a log file from a MH over 
wireless connection to a FH is nearly 10 times slower 
than over a wired connection. The composing of a file 
is surprisingly approximately 2 times faster on a FH 
than on a MH. 

5.4. Throughput 
The transaction throughput is commonly defined 

as the number of successfully performed transactions 
per unit of time. 

To measure the throughput of mobile transactions 
it is required to perform transactions involving at least 
two mobile and one fixed participants. Preferably, the 
transactions are initiated successively after each other 
and from the same mobile host to simplify the 

experiment. The reason behind this configuration is 
that a simultaneous initiation of transactions involving 
the same set of participants from different hosts may 
induce the mutual blocking of resources and falsify 
the experimental results.  

The numbers of transactions initiated in each 
experiment varies from 0 to 100. For each number of 
transactions three runs are performed and the average 
is considered, in order to smooth the impact of 
outliers. For the timeouts we used the values 
Et=300ms for the execution timeout and St=700ms for 
shipping timeout conform to the value of the sum of 
these timeouts (Et +St = 1000ms) fixed in the previous 
subsection. 

Figure 9 illustrates the throughput of the FT-PPTC 
protocol which shows a stable throughput as the 
number of initiated transactions increases. The 
throughput reaches a maximum and then starts to 
slightly decrease as maximum load on fixed FH is 
reached 
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Figure 9. Transaction throughput 

5.5. Blocking time 
The FT-PPTC protocol is primarily designed to 

provide short blocking time of the valuable resources 
of FHs. This is achieved by decoupling the execution 
of Part-MH fragments from Part-FH fragments. To 
measure the blocking time we continue to use two 
Part-MHs and one Part-FH similar to the throughput 
study. Each conducted experiment is also repeated 
three times under the same conditions and the average 
is considered.  
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Figure 10. Blocking time 

Figure 10 shows how the blocking time of the 
resources on the Part-FH varies with the number of 
transactions. The results show that this blocking time 
is relatively constant and does not depend on the 
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number of initiated transactions. The average blocking 
time varies between 550 and 650ms. In the conducted 
experiments the minimum blocking time value is 
450ms and maximum value is 900ms. These results 
highlight the scalability of the protocol with respect to 
the number of initiated transactions and consequently 
the number of (mobile) participants. 

6. Conclusion 
In this paper, we first summarized our previous 

work on developing fault- and delay-aware mobile 
transactions. We then adopted our main solution, the 
Fault-Tolerant Pre-phase Commit (FT-PPTC) 
protocol, to the crucial domain of pervasive healthcare 
systems. We have further presented a Java 
implementation of FT-PPTC leading to a real testbed 
for fault-tolerant and delay-aware mobile transactions. 
Finally we used this testbed to investigate the 
performance of FT-PPTC and to give further insights 
of the protocol under real deployment conditions. The 
experiments highlight the benefits of sacrificing 
transaction delay for the purpose of fault-tolerance.  

In future, we plan to extend the communication 
model and design atomic commit protocols for ad-hoc 
networks which are being increasingly used in 
pervasive healthcare systems. 
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