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Introduction. Software model checking [4] is a useful and practical branch of ver-
ification for verifying the implementation of the system. The wide usability comes at a
price of low time and space efficiency. In fact, model checking of even simple single-
process programs can take several hours using state-of-the-art techniques [6]. Verifica-
tion complexity gets even worse for concurrent programs that simultaneously execute
loosely coupled processes. Verification efficiency can be greatly improved by capturing
the state of the program, a technique generally referred to as stateful model checking
[2]. Intuitively, state capture enables to detect that two states are identical and, there-
fore, to consider only a representative state for verification. Unfortunately, capturing the
state in general software systems can be very hard, even if the entire state of the system
resides in the (local) memory. As a result, certain verification approaches (commonly
called stateless model checking) do not capture the system’s state at all [4]. Stateful
model checking is in principle possible for software, however, at a price of considerable
overhead. Therefore, stateful model checking is efficient only if the achieved reduction
of redundantly explored states compensate for the overhead.

Our focus is on fault-tolerant message-passing protocols, a class of systems that can
particularly benefit from formal verification for various mission-critical applications.
Although the verification of fault-tolerant message-passing protocols is known to be
a hard problem due to concurrency and faults, model checking has proven to be an
efficient approach to debug and verify small instances of deployed protocols [5].

In this brief announcement, we propose the state capture algorithm MP-State, which
improves software model-checking of general message-passing protocols. MP-State
makes use of two techniques that enable time- and space-efficient model checking. The
first technique is a selective hashing mechanism that captures state information only if
this might interfere with the specification. The second technique is a selective push-on-
stack strategy, which is an optimization that filters the states that are pushed onto the
search stack and, hence, are subject to backtracking. Selective push-on-stack is sound
because filtered-out states have no unvisited successor states.

Motivating Example. We give the intuition behind the proposed approach through
a simple message-passing example with two processes, p1 and p2. Process p1 sends two
messages m1 and m2 to process p2. Process p2 stores in its local state the messages it
receives. It is possible for m2 to arrive later than m1 at p2 due to network delays and p2
can process available messages (m1 and m2) in one atomic step. Having received m1

and m2, p2 sends an ack message to p1, informing that it has successfully received the
messages sent by p1.
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Fig. 1: (a) Naive depth-first search (DFS) and (b) MP-State search.

Figure 1(a) shows the state graph of the protocol as explored by a naive depth-first
search (DFS) and the corresponding operations of the search stack. We observe that
software model checkers can utilize auxiliary variables for the implementation of the
model checking process. These variables are not specified by the protocol under test.
For example, in Basset and MP-Basset [1], an auxiliary variable stores the messages de-
livered by a transition that is scheduled for execution. As a result, s5 and s6 are different
states, with the overhead of storing two states and exploring the successor state s two
times. In addition to auxiliary variables, model checkers may have auxiliary transitions.
Auxiliary transitions are the transitions that are ”independent” from the protocol under
test. For example, Basset and MP-Basset uses auxiliary transitions for the purpose of
switching context between processes, which is related to the model checker, not to the
protocol. As a result, states involved in the execution of such transitions (such as s2 and
s3 in Figure 1) are considered by DFS as any other state.

Selective hashing. We observe that (a) the transitions of common message-passing
protocols depend only on the local states of the processes and pending (undelivered)
messages; and (b) the usual properties of these protocols concern only about local states.
Therefore, it is sufficient to capture local states and pending messages of each visited
state. We refer to this technique as selective hashing. In our example, the state graph
resulting from selective hashing is shown in Figure 1(b). Note that states s5 and s6 col-
lapse into the same state because p1 and p2 have the same local states in both states and
the set of pending messages is empty. The gain of selective hashing is that (i) different
states resulting from differing values of auxiliary variables have to be processed only
once by the model checker, e.g., for successor states of s5 and s6, which is s, and (ii) it
is time efficient because state capture does not need to process the entire state.

Selective push-on-stack. We also observe that (c) usually auxiliary transitions are
not concurrent with other transitions and (d) auxiliary transitions and states where these
transitions are executed do not have to be remembered for counterexamples. Therefore,
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states with enabled auxiliary transitions do not have to be pushed onto the search stack.
We refer to this technique as selective push-on-stack. Consider the auxiliary transition
t from s2 to s3 in our example. Since t is the only transition that can be executed in s2,
no state remains unvisited if s2 is not backtracked by the search. Also, a path excluding
s2 and t preserves all protocol-specified information. The application of selective push-
on-stack to our example leads us to the search stack in Figure 1(b), where s2 is not
involved in any stack operation. Note that selective push-on-stack visits the same states
as the naive search but it is more time efficient thanks to fewer stack operations.

MP-State and other reductions. Broadly-studied and intuitive reductions are
partial-order (POR) [3] and symmetry reductions (SR) [7]. Figure 1 demonstrates that
MP-State is not a special case of these reductions. Firstly, POR is based on the idea of
swapping the order of commutative transitions but the path (s1 → s2 → s3 → s6 → s)
that is excluded in the reduced state graph in Figure 1(b) cannot be obtained by re-
ordering the transitions of another path in the graph. Formally, considering the main-
stream POR semantics, Figure 1(b) is not a stubborn/persistent/ample set reduction of
(a) because in every state of the reduced state graph the number of enabled transitions
is the same as in the unreduced one.

Secondly, SR is based on the symmetrical structure of the state graph but there is no
such symmetry in Figure 1(a). Formally speaking, there is no permutation acting over
the set of states (the formal notion of symmetry [7]) that would preserve the transition
relation. In fact, in order to symmetry reduce Figure 1(a) into (b), a permutation would
have to transpose s5 and s6 but these two states are not “symmetric” because of s4.

Our achieved reductions up to 69%. Our evaluation of MP-State with deployed
fault tolerant message-passing protocols (Paxos consensus, distributed storage, and
atomic broadcast) fortifies our initial claim that despite its overhead, stateful model
checking outperforms stateless model checking. Besides, the results of our experiments
show that MP-State is highly efficient, achieving a reduction of model checking time
and memory by up to 69% over naive (unreduced) stateful model checking with depth-
first search. In one of our experiments, we managed to reduce model checking time
from 22 hours 19 minutes to 10 hours 22 minutes.
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