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Abstract 
The DECOS integrated time-triggered architecture provides a framework for integrating multiple heteroge-
neous real-time application subsystems within a single distributed computer system while retaining the 
fault-isolation, fault-containment and complexity-management benefits of a classic federated system. A 
central issue in the DECOS architecture is the provision of standardized, validated and certified services 
that facilitate the development of distributed real-time applications. This paper describes how these ser-
vices are structured within the architecture in order to satisfy the diverse requirements of heterogeneous 
applications (e.g. different real-time requirements, different criticality levels). In particular we focus on the 
reuse of legacy subsystems, and show the feasibility of our concept by implementing a Controller Area 
Network (CAN) application within the integrated architecture.  
 

 

1 Introduction 
Distributed real-time systems are increasingly 
being used to control safety-critical functions in 
automotive, aerospace and space applications 
for civil or military purposes. Examples are steer 
by-wire, fly-by-wire, missile guidance systems 
and many other control systems.  

At present, the design of large and complex 
safety-critical systems often follows a "federated" 
design philosophy, where each application sub-
system has its own dedicated distributed com-
puter system. Federated systems have been 
preferred for ultra-dependable applications since 
the inherent separation of application subsys-
tems simplifies fault-isolation and complexity 
management. Another reason for the existence 
of federated systems is that many embedded 
systems have historically grown. A good exam-
ple is the automotive industry where different 
subsystems (e.g. Anti-lock Braking System 
(ABS), Electronic Stability Control (ESC)) have 
been subsequently added in order to continu-
ously improve a car’s overall functionality. 

Contrary to a federated system an integrated 
system is characterized by the integration of 
multiple application subsystems within a single 
distributed computer system [13]. Since different 
application subsystems share the available 
hardware resources (computational nodes and 
the communication network) the total number of 
required nodes and communication resources 

can be significantly reduced compared to the 
federated approach (modern luxury cars incorpo-
rate up to 75 Electronic Control Units (ECUs) 
[5]). The reduction of network nodes leads to a 
higher dependability of the total system with re-
spect to wiring and connectors. Furthermore in-
tegrated architectures permit an optimal interplay 
of application functions, advanced redundancy 
management and the realization of a system 
wide homogeneous diagnostic infrastructure. 

The objective of the European IST project DE-
COS (IST-511764) is to devise an integrated 
architecture that provides a framework for inte-
grating multiple application subsystems within a 
single distributed computer system while retain-
ing the fault-isolation, fault-containment and 
complexity-management benefits of a federated 
system [13]. 

This paper focuses on the flexible provision of 
architectural services within the DECOS archi-
tecture. It is organized as follows: The challenge 
of structuring architectural services is stated in 
Section 2. Section 3 describes our proposed ap-
proach. The interface of the DECOS platform is 
described in section 4. Section 5 describes the 
assembly of a prototype implementation that was 
used to evaluate the proposed approach. The 
developed concepts are finally summarized in 
section 6. 
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2 Problem Statement 
A central issue in the DECOS integrated archi-
tecture is the provision of standardized, validated 
and certified architectural services that facilitate 
the development of distributed real-time applica-
tions. These architectural services separate the 
application functionality from the underlying plat-
form technology in order to facilitate reuse and 
reduce design complexity. This strategy corre-
sponds to the concept of platform-based design 
[21], which proposes the introduction of abstrac-
tion layers that facilitate refinements into subse-
quent abstraction layers in the design flow. Ex-
amples for architectural services are communi-
cation, diagnostic or fault-tolerance services. 
The problem on which we focus in this work is 
how to structure these services and how to pro-
vide them to the applications.  

 

  
Figure 1 depicts the hierarchical structure of the 
DECOS architecture. The architecture is based 
on a minimal set of core services. The core ser-
vices include predictable time-triggered message 
transport, fault tolerant clock synchronization, 
strong fault isolation, and consistent diagnosis of 
failing nodes. The small number of core services 
eases a thorough validation (e.g., permitting a 
formal verification), which is crucial for prevent-
ing common mode failures since all high-level 
services and consequently all applications de-
pend on the core services. Any architecture that 
provides these core services can be used as a 
base architecture [20] for the DECOS integrated 
architecture. An example of a suitable base ar-
chitecture is the Time-triggered Architecture 
(TTA) [11]. 

Based on the core services, higher-level archi-
tectural services can be realized. Since the DE-
COS architecture is intended to be used in mul-
tiple heterogeneous application domains where 

each domain has its own specific demands, a 
wide variety of architectural services has to be 
supported. Specific functional requirements of an 
application, like dependability or flexibility induce 
the demand for respective architectural services. 
Examples for different requirements are the de-
sired properties of communication protocols: 
Safety-critical applications (e.g. steer-by-wire 
systems) that have to deliver a given service 
within a guaranteed time bound require commu-
nication services that are highly deterministic in 
the temporal domain (e.g. time-triggered proto-
cols), whereas many non-safety-critical systems 
typically have to be optimized for average load in 
order to optimize cost (e.g. the comfort electronic 
system of car) and require a highly flexible pro-
tocol that adheres to the event-triggered com-
munication paradigm. Additional architectural 
services have to be provided in order to support 
the reuse and the integration of legacy applica-
tions by emulating the corresponding legacy 
platform. Examples are emulations of standard 
communication protocols that are frequently 
used in specific application domains (e.g. CAN 
[1] in the automotive sector, ARINC 629 [14] for 
avionics ...).  

Consequently, a diverse, configurable, scalable, 
and open set of architectural services has to be 
provided. Scalability is an important factor since 
it is not possible to anticipate how applications 
and their requirements will evolve in the future. 
Openness means in this sense that third party 
developers should be allowed to add additional 
domain-specific services to the architecture. 
Since freely added services can not always be 
assumed to be free from design faults, error con-
tainment with respect to architectural services is 
a key issue. In order to be resource effective, the 
set of services has to be configurable, which 
means that a platform that is used in a given 
system should be adaptable to contain only 
those services that are actually required and 
used by the system.  

In this work we propose a layered model for 
higher-level architectural services that supports 
the open integration of additional services with-
out compromising the dependability of already 
existing services.  

3 Proposed Model 
The proposed approach divides the set of archi-
tectural services into two distinct layers: A stable 
and trusted set of Generic High-level Services, 
and based on these services an extensible and 

Higher-level
Architectural Services

Core Services 

C1 Predictable Message 
Transport

C2 Fault-Tolerant Clock 
Synchronization

C3 Strong Fault Isolation
C4 Consistent Diagnosis of 

Failing Nodes

Hiding of implementation details from 
the application, thereby extending 
the range of implementation choices

Time-Triggered 
Base Architecture

Figure 1: DECOS Architecture 
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open set of Domain Specific Services (see Fig-
ure 2).  

 
Figure 2:  Architectural Services  

3.1 Generic High-level Services 

In the DECOS architecture, the application ser-
vices of the integrated system that are provided 
at controlled object interfaces are divided into a 
set of nearly-independent Distributed Application 
Subsystems (DASs) where each DAS provides a 
distinct functionality (e.g. a brake-by-wire DAS or 
a multimedia DAS in a car). Each DAS is further 
decomposed into smaller units called jobs which 
are the basic unit of distribution.  

A major focus of the architecture is to support 
independent design and development of sepa-
rate DASs in an integrated system. The generic 
high-level services encompass a set of services 
that support a DAS-centric design flow.  

Among the generic high-level services is the en-
capsulation service that establishes so-called 
partitions, where each partition functions as an 
execution environment for a single job. The en-
capsulation service guarantees temporal and 
spatial partitioning between partitions, which 
prevents faulty jobs from stealing processor time 
of any other job and from corrupting another 
job’s memory structures [7].  

In order to support a DAS-centric design flow 
also with respect to communication, virtual net-
work services [17] are provided which realize 
encapsulated communication infrastructures for 
single DASs. All communication activities of a 
virtual network are private to the respective DAS. 
Transmissions and receptions of messages can 
only occur by jobs of the corresponding DAS 
unless a message is explicitly exported or im-
ported by a hidden gateway [16]. Furthermore, a 
virtual network exhibits predefined temporal 
properties that are independent from activities in 
other virtual networks. The provision of encapsu-
lated execution environments and encapsulated 
communication infrastructures is a prerequisite 
for the independent development of DASs and 
for the integration of multiple DASs with mixed 
criticality.  

Despite the encapsulation service and the virtual 
network service, the high level-services encom-
pass a fault-tolerant global time service for the 
coordination of distributed activities of the jobs of 
a DAS, and a reliable membership service that 
provides consistent information about the opera-
tional state (correct or faulty) of the network 
nodes within the distributed system.  

  

 
Figure 3:  Platform Interface 

 
The generic high-level services are provided via 
the so called Platform Interface (PI) to the jobs of 
a DAS (figure 3). The specification of the PI 
hides the details of the underlying platform, while 
providing all information required for ensuring 
the functional and meta-functional (dependabil-
ity, timeliness) requirements in the design of a 
safety-critical real-time application. It serves as a 
validated stable baseline that reduces applica-
tion development efforts and facilitates reuse, 
because applications are built on a generic inter-
face that can be established on top of numerous 
platform technologies.  

We regard a job as a Fault Containment Unit 
(FCR) for software faults (fault containment is 
established by the partitions of the encapsulation 
service), and assume all architectural services 
that are beneath the PI to be validated and free 
from design faults. A more detailed fault hy-
pothesis can be found in [13]. 

3.2 Domain-specific Services 
In order to provide a simple and stable baseline 
for application development only a small set of 
selected services is provided natively via the PI. 
For many applications these services will be suf-
ficient, but in some cases they might have to be 
extended or refined. These domain-specific ex-
tensions and refinements should not increase 
the complexity and the certification effort of the 
DECOS platform. Therefore these domain-
specific services are realized on top of the PI in 
a dedicated layer within the application job. We 
call this layer the application middleware and its 
interface the Application Programming Interface 
(API) (see Figure 4). 
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One common scenario where additional domain-
specific services are needed is the reuse of leg-
acy code. When a company decides to port a 
large federated system to the DECOS architec-
ture, it might be too costly and time-consuming 
to rewrite the complete application software in 
order to be compliant with the generic high-level 
services of the PI. As an example we can think 
of a distributed application that has initially in-
corporated the CAN protocol as a communica-
tion infrastructure. Instead of rewriting the legacy 
software, a dedicated application middleware 
can be incorporated that emulates an application 
programming interface for CAN, by establishing 
the CAN protocol on top of the generic virtual 
network service of the PI. 

  

 
Figure 4:  PI versus API 
 

In the following we summarize the advantages 
that result from moving domain-specific services 
into the job:  

 
Openness and Configurability: As mentioned 

above, domain-specific services of a given 
application middleware are specified and 
accessed via its API. In contrast to the PI 
the API is not considered to be single stable 
interface. Each application middleware pro-
vides its own specific set of services, and 
thus has its own dedicated API which may 
conform to a proprietary or to a well-
established open standard (e.g.TCP/IP or 
CAN [1]). Since the application middleware 
is based on the PI which has an open inter-
face specification, third party suppliers are 
able to develop domain-specific services on 
their own. Furthermore, the concept of the 
job-internal application middleware enables 
the addition and the removal of domain-
specific services without changing the PI or 
the underlying platform.  

Error Containment: Since third party develop-
ers should be unrestrictedly allowed to pro-
vide additional domain-specific services, 
theses services can not always be assumed 
to be free of software faults. Therefore non-
interference and error containment with re-

spect to domain-specific services is a major 
issue. As mentioned above, a job is the 
fault-containment region for software faults 
[13]. By placing the application middleware 
into the job, the domain-specific services will 
become part of the job’s fault-containment 
region, and a software fault within a domain-
specific service can have an immediate im-
pact exclusively on the jobs that incorporate 
the corresponding application middleware. 
This leads to an architecture where a given 
application middleware can be certified ac-
cording to the criticality level that is sufficient 
for the DAS in which it will be actually used, 
and does not have be certified according to 
the highest criticality level within the system. 

Intellectual Property Protection: In many 
cases, the protection of intellectual property 
is a major concern of potential suppliers of 
domain-specific services. In the DECOS ar-
chitecture, jobs are the region of IP protec-
tion. This means, that it is not required to 
supply the source-code of the actual appli-
cation or of the application middleware to 
the system integrator. Suppliers of domain-
specific functions may decide to deliver their 
application middleware as precompiled ob-
ject code that can be linked to the actual 
application.  

4 The Platform Interface - PI 
The platform interface (PI) constitutes the border 
line between the DECOS platform and the appli-
cation subsystems (figure 3). It provides the plat-
form’s generic high-level services to the applica-
tion jobs in a standardized way and abstracts 
over the actual implementation of the platform. 
This section describes the services that are pro-
vided via the PI. 

4.1 Virtual Network Service 
A virtual network is an encapsulated communi-
cation infrastructure for a single DAS [17]. In or-
der to retain the non-interference properties of 
federated architectures, where each DAS has its 
own physical network, each virtual network is 
logically encapsulated so that communication 
activities in virtual networks of other DASs are 
neither visible nor have any effect (e.g. perform-
ance penalty) on the exchange of messages in 
the virtual network. Furthermore each virtual 
network owns its independent name space. Due 
to these encapsulation properties, DASs can be 
independently developed verified and integrated 
in the system with respect to their communica-



Tagungsband - 5 - ME 2006 

tion activities. A job accesses a virtual network 
via so-called ports. A port through which mes-
sages are received is called input port, and a 
port through which messages are sent is called 
output port. The sum of all input ports and output 
ports through which a job is attached to a virtual 
network is called link. 

Multiple virtual networks can be realized as logi-
cal overlay networks on top of a single physical 
network. In the DECOS integrated architecture 
virtual networks are provided on top of the time-
triggered core communication service of the 
base architecture, where encapsulation is 
achieved by hierarchic subdivision of the time 
slots in the communication schedule [17]. In or-
der to support the transmission of information 
with state semantics and with event semantics, 
generic time-triggered virtual networks and ge-
neric event-triggered networks are provided. 

4.1.1 Generic time-triggered virtual networks 

Time-triggered virtual networks are designed for 
the periodic exchange of state messages. Be-
cause of the advantages of the time-triggered 
control paradigm with respect to predictability, 
error detection, fault tolerance, state synchroni-
zation, and replica determinism [8] all virtual 
networks for safety critical DASs are strictly time-
triggered. Jobs interface a virtual time-triggered 
network via the temporal firewall concept [12] 
where the sender acts according to the informa-
tion push principle and the receiver according to 
the information pull principle [6].  
The time-triggered virtual network service is real-
ized by state-message ports, where each state-
message port is conceptually a singe buffer that 
holds a single state message. Whenever the 
application writes a new state message to an 
output port, the old state that is stored in that 
port is overwritten with the contents of the new 
message. The generic time-triggered virtual net-
work service periodically transmits the actual 
contents of the state-message output ports of 
each sender to the corresponding state-
message input ports of the receivers, at statically 
defined points in time. Whenever a new state 
message is received at a state-message input 
port, the old content that was stored in that input 
port is overwritten with the new state message 
(state messages are not queued). The following 
functions are used to access a generic time-
triggered virtual network:  
 void PI_write_TT(link, out_port, state_msg);  

This function updates the state message in 
the specified port of the specified link. 

 PI_state_msg PI_read_TT(link, in_port);  
This function reads the current value of the 
state message located in the specified port 
of the specified link. 

 PI_temp_acc PI_get_temporal_accuracy(link, in_port);  
This function returns a temporal accuracy 
value which indicates for how long the state 
message in the specified input port will be 
still valid to use. Each state message can be 
associated with a validity time span that indi-
cates for how long the message will be tem-
porally accurate after it has been received. If 
the sender job fails to update the state mes-
sage within a specified time interval, the 
state information at the receiver job gets 
temporally inaccurate. The concept of tem-
poral accuracy is described in [9].  

 

4.1.2 Generic event-triggered virtual networks 

Event-triggered virtual networks are designed for 
the sporadic exchange of event messages. 
Compared to time-triggered networks they offer 
higher flexibility with respect to resource alloca-
tion. The provision of resources can be opti-
mized towards the average demands of an ap-
plication which results in more cost-effective so-
lutions.  

Since each event may be significant and event-
messages are generally not idempotent, event 
messages have to be processed with exactly-
once semantics (i.e. every event message that 
has been sent by a sender job has to be re-
ceived exactly once by each corresponding re-
ceiver job). Therefore event-message ports are 
realized as queues that can hold multiple mes-
sages. Whenever the application writes a new 
message to an event-message output port the 
new message is enqueued in that output port 
(the message is discarded if the queue is full). 
The generic event-triggered network service 
transports messages from the event-message 
output ports of each sender job to the corre-
sponding input ports of the receiver jobs with a 
guaranteed bandwidth. If a new message is re-
ceived at a event-message input port, it is en-
queued in the input port’s queue (the message is 
discarded if the queue is full). Whenever a job 
reads a message of an event-message input 
port, the message is removed from the port’s 
queue in order to establish exactly-once proc-
essing. The following functions are used to ac-
cess a generic event-triggered virtual network:  
 bool PI_send_ET(link, out_port, event_msg); 

This function tries to enqueue a new mes-
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sage in the queue of the specified port of the 
specified link. If the queue is not full the 
message in enqueued, and the value true is 
returned. If the queue is full (i.e. an overflow 
has occurred), the new message is dis-
carded and the value false is returned. 

 bool PI_read_ET(link, in_port, *event_msg_p); 
This function tries to dequeue the next mes-
sage from the queue of the specified port of 
the specified link. If the queue is not empty, 
the function returns true, dequeues the next 
message of the queue and copies it to the 
address where event_msg_p is pointing to. If 
the the queue is empty, the function returns 
false.  

 bool PI_get_overflow_status(link, in_port); 
The queue of an input port can overflow, if 
the application job does not call PI_read_ET 
frequently enough. The function 
PI_get_overflow_status returns the status of 
the specified input port with respect to over-
flows. True is returned when one or more 
overflows have occurred since the last invo-
cation of the function 
PI_get_overflow_status. Otherwise false is 
returned. 

4.2 Global Time Service 

In a distributed system, a global notion of time is 
the prerequisite to coordinate the actions of the 
nodes in the temporal domain. According to [10] 
a digital time format can be characterized by the 
three parameters, granularity, horizon and ep-
och. The granularity determines the minimum 
interval between two adjacent ticks of a clock. 
The horizon determines the instant when the 
time will warp around, and the epoch determines 
the instant when the measuring of time starts. 

The DECOS integrated architecture uses a uni-
form 64 bit long time format which is closely re-
lated to the GPS time format. It has been stan-
dardized by the OMG in the smart transducer 
interface standard [18]. The smart transducer 
time format has a granularity of 2-24 seconds 
(about 60 nanoseconds) and a horizon of 240 
seconds (more than 30000 years). The epoch 
starts with the epoch of the GPS time i.e., Janu-
ary 1980. The fault-tolerant global time service 
can be accessed with the following function:  
 PI_global_time_t PI_get_global_time();  

This function returns the actual global time. 
PI_global_time_t is a 64 bit data type that 
represents an instant of time in the standard-
ized OMG format.  

4.3 Consistent Membership Service 

The membership service provides consistent 
information about the operational state (correct 
or faulty) of the nodes of the integrated system. 
It is based on the a priori knowledge about the 
points in time of the time-triggered message ex-
changes on the core network. 

The consistent membership service operates 
exclusively at node-level. It guarantees that each 
correct node has a consistent view of the 
"health-state" of every other node within the 
cluster ([11]). It is further guaranteed, that all 
nodes that belong to an agreed membership 
group have received every message within the 
cluster consistently. Due to this consistency 
property each correct node can be sure that 
every other correct node works exactly on the 
same data, which is crucial if jobs on different 
nodes work together in a joint action. The con-
sistent membership service can be accessed 
with the following function.  
 PI_membership_t PI_get_membership();  

This function returns the actual health state 
of every node within the system. 
PI_membership_t is a bit vector where each 
bit represents the health state of a specific 
node.  

5 Implementation 
In order to show the feasibility of the DECOS 
integrated architecture, a prototype implementa-
tion of a DECOS cluster was developed in [7] 
(see Figure 5). The focus of this section is on the 
implementation of the domain-specific services.  

 

 
Figure 5:  Prototype Cluster 

5.1 Core Services 
Our prototype implementation uses the Time-
triggered Architecture (TTA) [11] as a base ar-
chitecture to establish the DECOS core services 
(time-triggered message transport, fault tolerant 
clock synchronization, strong fault isolation, and 
consistent diagnosis of failing nodes). The time-
triggered core communication service is pro-
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vided by TTTech monitoring nodes [2] which are 
based on the TTP-C2 controller (AS8202) and 
are equipped with the Freescale embedded 
PowerPC processor MPC855T.  

5.2 Generic High-level Services 

The generic high-level services and the parti-
tions for the jobs of a DAS are executed on a 
compact communication computer of type Soek-
ris Engineering net4521 1   which is based on a 
133Mhz 468 class ElanSC520 processor from 
AMD. This compact computer has up to 64 
Mbyte SDRAM main memory, uses a Compact-
Flash module for program and data storage, and 
is equipped with two 10/100 Mbit Ethernet ports. 
The interconnection between the Soekris 
net4521 and the TTTech monitoring node is real-
ized using time-triggerd Ethernet.  

Within the Soekris Engineering net4521 the real-
time Linux variant Real-Time Application Inter-
face (RTAI) [4] [19] is used together with the 
LXRT extension to provide a time-triggered exe-
cution environment for temporal and spatial par-
titioning for the generic high-level services and 
the partitions for the application jobs.  

In order to guarantee temporal and spatial parti-
tioning between jobs with respect to the commu-
nication, each job is given a dedicated view of 
the PI. This is realized by the provision of a 
dedicated memory area for each job through 
which the job exclusively accesses its own 
communication link. 

More detailed information about the implementa-
tion of the generic high-level services can be 
found in [7], [16], and [15]. 

5.3 Domain-specific Services 

As an example for a domain-specific service, an 
application middleware has been realized that 
provides the CAN protocol layer [1] in order to 
allow the integration of CAN legacy code. This 
chapter describes the CAN application middle-
ware with respect to the message-handling ca-
pabilities and the implementation. The described 
application middleware supports BasicCAN [3] 
and FullCAN [3] transmit and receive behavior, 
on top of the generic event-triggered virtual net-
work service. The CAN application middleware 
consists of the CAN middleware task and the 
CAN API library (see Figure 7) which will be de-
scribed in the following subsections.  

                                                 
1 http://www.soekris.com 

5.3.1 Message Handling 

The CAN application middleware uses its own 
data structures for message handling. Messages 
that are to be received by the application are 
temporary stored in receive queues or receive 
mailboxes. In a receive queue, messages are 
stored in the order of their reception (FIFO prin-
ciple), whereby the messages can have different 
identifiers. Each receive queue is equipped with 
a dedicated configurable message filter for re-
ception filtering. Overflows in a queue occur 
whenever a new message is received and the 
considered queue is full. In this case the incom-
ing message will be discarded, and the whole 
queue will be marked by an overflow flag with 
can be read by the application. 

Contrary to a receive queue, a receive mailbox 
stores only the last instance of a message that 
matches a particular identifier. Receive mail-
boxes are recommended for applications where 
jobs exchange messages with state semantics. 
A read access to a receive mailbox will return 
the content of the mailbox, and the number of 
updates since the previous read access. This 
feature gives the user the possibility to see 
whether the data in the mailbox is new and how 
many updates have been missed.  

Messages that are sent by the application are 
temporary stored in the transmit queue. The 
transmit queue is periodically serviced in order to 
disseminate the temporary stored messages via 
the virtual network.  
An alternative method for sending messages is 
the use of remote mailboxes. Messages that are 
entered in a remote mailbox are not sent imme-
diately, but only on request by another node. 
Other nodes can issue such a request by send-
ing a remote frame. 

5.3.2 Underlying Virtual Network 

The CAN application middleware is realized on 
top of the generic event-triggered virtual network 
service, which is provided natively via the DE-
COS platform interface (PI). The generic event-
triggered virtual network service provides multi-
ple encapsulated virtual networks on top of a 
shared physical network.  

In order to be compliant to the CAN protocol, a 
dedicated virtual network was configured to work 
in broadcast topology (see Figure 6). In each 
generic event-triggered virtual network every job 
has a dedicated input port for each job from 
which it can receive messages (i.e. for each 
sender job). The concept of separate input ports 
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was chosen in the DECOS architecture in order 
to achieve error containment with respect to the 
communication channels. A faulty job that sends 
messages with a higher frequency as defined in 
its specification can only cause queue overflows 
in its corresponding input ports at the receivers.   

 

Incoming messages are accessed via the identi-
fier of the input port. Since each input port corre-
sponds to a specific sender job, messages of 
specific sender jobs can be selectively received 
(i.e. messages can be filtered with respect to 
their senders).  

 

 
Figure 6:  Topology of the Generic Event-triggered Vir-
tual Network for CAN 

5.3.3 CAN Middleware Task 

In contrast to the generic event-triggered virtual 
network provided by the PI, the CAN protocol 
does not perform message filtering with respect 
to the sender of a message. In CAN, messages 
are typically filtered with respect to the message 
identifier. The CAN middleware task maps the 
filtering method of the generic event-triggered 
network (message filtering with respect to the 
sender) to the filtering method typical for CAN 
(message filtering with respect to the message 
identifier). It provides the CAN specific receive 
queues, transmit queues, and mailboxes (re-
ceive mailboxes and transmit mailboxes) and 
layers them on top of the generic event-triggered 
network (see Figure 7). 
The CAN middleware task is periodically acti-
vated and scans at each activation each input 
port of the generic event-triggered virtual net-
work for new messages. Whenever a new mes-
sage is received via an input port it is handed 
over to each CAN receive queue and each CAN 
receive mailbox in case of a CAN data message 
or to each CAN remote mailbox in case of a 
CAN remote frame. After each input port of the 
generic event-triggered virtual network is 
scanned, the CAN transmit queue is served in 
order to copy pending messages to the output 
port of the generic event-triggered network. 

5.3.4 CAN API Library 

The CAN API library contains all functions that 
are required to access the queues and mail-
boxes which are generated by the CAN middle-
ware task, and is linked to the actual application 
code. The application code plus the linked CAN 
API are executed as a separate task which is 
called the CAN application task (see Figure 7). 
The queues and mailboxes are realized in a 
shared memory area and can be accessed by 
the CAN middleware task and the CAN applica-
tion task. The CAN application task and the CAN 
middleware task constitute together a CAN job. 

5.3.5 Synchronization 

This section describes the synchronization be-
tween the task realizing the generic event trig-
gered virtual network, the CAN middleware task 
and the CAN application task. 

The middleware task realizing the generic event-
triggered virtual network and the CAN middle-
ware task are implicitly synchronized by the 
time-triggered scheduler of the execution envi-
ronment. Both are periodically activated at stati-
cally defined points in time. Based on the speci-
fied minimum message inter-arrival times, the 
appropriate queue sizes of the input ports of the 
generic event-triggered virtual network and the 
activation period of the CAN middleware task are 
dimensioned in a way that overflows at the input 
ports of the generic event-triggered virtual net-
work are avoided. Overflows at the CAN receive 
queues have to be handled by the application 
programmer of the considered CAN job. 

The synchronization between the between the 
CAN Middleware Task and the CAN Application 
Task is more complex. The CAN middleware 
task is a time-triggered task, with a worst case 
execution time that is smaller than its dedicated 
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time slot. At each invocation, it starts its se-
quence of operations on the queues and mail-
boxes and completes this sequence within its 
dedicated time-slot without being preempted. 
Thus, all operations on the queues and mail-
boxes that are performed by the CAN middle-
ware task are inherently atomic.  

Contrary to the program flow of the CAN mid-
dleware task, the program flow of the CAN appli-
cation task is generally not synchronized with the 
points of time of its preemption and resumption 
that are enforced by the time-triggered scheduler 
(legacy CAN code cannot be assumed to be 
written according to the time-triggered para-
digm). Due to the missing synchronization, the 
CAN application task can be preempted while it 
is performing a write or read operation on the 
queues or on the mailboxes. Thus, operations on 
queues and on mailboxes that are performed by 
the CAN application task cannot be assumed to 
be atomic.  

Accesses to the CAN queues (receive and 
transmit) are synchronized by means of vari-
ables for the write position and the read position 
of a given queue (explicit synchronization). The 
CAN middleware task indicates the presence of 
a new input message in a receive queue by in-
creasing the write position variable of the receive 
queue after it has written the message into the 
queue. The CAN application task indicates the 
consumption of a message by increasing the 
read position variable of the receive queue after 
it has consumed the message from the queue. 
The same principle is used for the transmit 
queue. The CAN application task indicates the 
presence of a new output message in the trans-
mit queue by increasing the write position vari-
able of the transmit queue after it has written the 
message to the queue. The CAN middleware 
task indicates the consummation of an output 
message by increasing the read position variable 
of the transmit queue after it has consumed the 
message from the queue. 

In order to synchronize accesses to CAN mail-
boxes, each mailbox incorporates a sequencer 
variable which can be exclusively written by the 
CAN middleware task, and a valid flag which can 
be exclusively written by the CAN application 
task.  

When the CAN application task performs a read 
operation on a mailbox it can happen, that it is 
preempted during the read operation and that 
the CAN middleware task updates exactly that 
mailbox that the CAN application task is cur-
rently reading. In this case the CAN application 

task would read inconsistent data. In order to 
detect such a condition, a protocol similar to the 
Non-Blocking Write protocol (NBW) [9] is used: 
The sequencer variable of a mailbox is initialized 
to zero at the system start-up phase. It is incre-
mented by the CAN middleware task each time 
after it has updated the content of the mailbox. 
Due to the fact, that the CAN middleware task is 
a time-triggered task that completes always its 
whole sequence of operations without preemp-
tion, updating the mailbox and incrementing the 
sequencer variable can be regarded as one 
atomic operation. When the CAN application 
task performs a read operation on a mailbox, it 
always starts by reading the mailbox’s se-
quencer variable. At the end of the read opera-
tion the CAN application task checks whether 
the sequencer variable has been changed by the 
CAN middleware task during the read operation. 
If so, the read operation is retried until uncor-
rupted data is retrieved from the mailbox.  

When the CAN application task performs a write 
operation on a mailbox it can happen, that it is 
preempted during the write operation and leaves 
the contents of the mailbox in an inconsistent 
state until it is resumed again and finishes the 
write operation. In order to inform the CAN mid-
dleware task about the consistency or inconsis-
tency of a mailbox the CAN application task uses 
the mailbox’s valid flag. It sets the flag to invalid 
before each write operation and resets the flag 
to valid after the write operation is completed. 
Thus the CAN middleware task can always verify 
the integrity of a CAN mailbox. The CAN mid-
dleware task treats each invalid mailbox as a 
temporary non-existent mailbox (the mailbox will 
not be used for any receive or send operations 
until the next activation of the can middleware 
task after the can application task has finished 
its write operation and has set the flag to valid 
again).  

As far as the CAN application task is concerned, 
all the synchronization activities are performed 
by the CAN API library and are transparent to 
the actual application code. Thus, legacy appli-
cation code does not have to be modified in or-
der to establish synchronization with respect to 
the CAN middleware.  

6 Conclusion 
The DECOS architecture is intended to integrate 
multiple application subsystems of heterogene-
ous application domains into a single distributed 
computer system. Each application domain has 
its own specific demands and requirements with 
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respect to the underlying architecture (e.g. dif-
ferent real-time requirements and communica-
tion paradigms, different criticality levels). Con-
sequently a wide variety of architectural services 
with different characteristics has to be provided 
in order to support the development and the in-
tegration of such heterogeneous applications.  

In this work we have devised an architecture that 
structures the architectural services hierarchi-
cally into three distinct layers: The first layer real-
izes core services which are provided by the un-
derlying time-triggered communication architec-
ture. The second layer provides a fixed and sta-
ble set of generic high-level services that sup-
ports the independent development of distributed 
application subsystems. These high-level ser-
vices include virtual network services that pro-
vide a dedicated encapsulated communication 
infrastructure for each subsystem, a global time 
service for the coordination of distributed appli-
cations and a reliable membership service that 
provides consistent information about the opera-
tional state (correct or faulty) of the nodes within 
the distributed system. The third layer realizes 
an open and scalable set of domain-specific ser-
vices that can be unrestrictedly extended by third 
party suppliers. Since domain-specific services 
can be freely added, they can generally not be 
assumed to be free from design faults. Therefore 
they are placed into partitions which are fault-
containment regions for software faults. In order 
to support the protection of intellectual property, 
domain-specific services can be integrated as 
precompiled object code.  

To demonstrate the feasibility of our approach, a 
prototype of a DECOS cluster was implemented 
that provides all specified generic high-level ser-
vices. As an example for a domain-specific ser-
vice, an application middleware was imple-
mented that provides a CAN protocol layer that 
supports the integration of legacy CAN applica-
tion code.  
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