
Tagungsband - 1 - ME 2006

Supporting Heterogeneous Applications in the
DECOS Integrated Architecture

C. El Salloum, R. Obermaisser, B. Huber, H. Kopetz Neeraj Suri

Vienna University of Technology, Austria TU-Darmstadt, Germany
Email: {salloum, romano, huberb, hk}@vmars.tuwien.ac.at Email: suri@informatik.tu-darmstadt.de

Abstract
The DECOS integrated time-triggered architecture provides a framework for integrating multiple heteroge-
neous real-time application subsystems within a single distributed computer system while retaining the
fault-isolation, fault-containment and complexity-management benefits of a classic federated system. A
central issue in the DECOS architecture is the provision of standardized, validated and certified services
that facilitate the development of distributed real-time applications. This paper describes how these ser-
vices are structured within the architecture in order to satisfy the diverse requirements of heterogeneous
applications (e.g. different real-time requirements, different criticality levels). In particular we focus on the
reuse of legacy subsystems, and show the feasibility of our concept by implementing a Controller Area
Network (CAN) application within the integrated architecture.

1 Introduction
Distributed real-time systems are increasingly
being used to control safety-critical functions in
automotive, aerospace and space applications
for civil or military purposes. Examples are steer
by-wire, fly-by-wire, missile guidance systems
and many other control systems.

At present, the design of large and complex
safety-critical systems often follows a "federated"
design philosophy, where each application sub-
system has its own dedicated distributed com-
puter system. Federated systems have been
preferred for ultra-dependable applications since
the inherent separation of application subsys-
tems simplifies fault-isolation and complexity
management. Another reason for the existence
of federated systems is that many embedded
systems have historically grown. A good exam-
ple is the automotive industry where different
subsystems (e.g. Anti-lock Braking System
(ABS), Electronic Stability Control (ESC)) have
been subsequently added in order to continu-
ously improve a car’s overall functionality.

Contrary to a federated system an integrated
system is characterized by the integration of
multiple application subsystems within a single
distributed computer system [13]. Since different
application subsystems share the available
hardware resources (computational nodes and
the communication network) the total number of
required nodes and communication resources

can be significantly reduced compared to the
federated approach (modern luxury cars incorpo-
rate up to 75 Electronic Control Units (ECUs)
[5]). The reduction of network nodes leads to a
higher dependability of the total system with re-
spect to wiring and connectors. Furthermore in-
tegrated architectures permit an optimal interplay
of application functions, advanced redundancy
management and the realization of a system
wide homogeneous diagnostic infrastructure.

The objective of the European IST project DE-
COS (IST-511764) is to devise an integrated
architecture that provides a framework for inte-
grating multiple application subsystems within a
single distributed computer system while retain-
ing the fault-isolation, fault-containment and
complexity-management benefits of a federated
system [13].

This paper focuses on the flexible provision of
architectural services within the DECOS archi-
tecture. It is organized as follows: The challenge
of structuring architectural services is stated in
Section 2. Section 3 describes our proposed ap-
proach. The interface of the DECOS platform is
described in section 4. Section 5 describes the
assembly of a prototype implementation that was
used to evaluate the proposed approach. The
developed concepts are finally summarized in
section 6.

Tagungsband - 2 - ME 2006

2 Problem Statement
A central issue in the DECOS integrated archi-
tecture is the provision of standardized, validated
and certified architectural services that facilitate
the development of distributed real-time applica-
tions. These architectural services separate the
application functionality from the underlying plat-
form technology in order to facilitate reuse and
reduce design complexity. This strategy corre-
sponds to the concept of platform-based design
[21], which proposes the introduction of abstrac-
tion layers that facilitate refinements into subse-
quent abstraction layers in the design flow. Ex-
amples for architectural services are communi-
cation, diagnostic or fault-tolerance services.
The problem on which we focus in this work is
how to structure these services and how to pro-
vide them to the applications.

Figure 1 depicts the hierarchical structure of the
DECOS architecture. The architecture is based
on a minimal set of core services. The core ser-
vices include predictable time-triggered message
transport, fault tolerant clock synchronization,
strong fault isolation, and consistent diagnosis of
failing nodes. The small number of core services
eases a thorough validation (e.g., permitting a
formal verification), which is crucial for prevent-
ing common mode failures since all high-level
services and consequently all applications de-
pend on the core services. Any architecture that
provides these core services can be used as a
base architecture [20] for the DECOS integrated
architecture. An example of a suitable base ar-
chitecture is the Time-triggered Architecture
(TTA) [11].

Based on the core services, higher-level archi-
tectural services can be realized. Since the DE-
COS architecture is intended to be used in mul-
tiple heterogeneous application domains where

each domain has its own specific demands, a
wide variety of architectural services has to be
supported. Specific functional requirements of an
application, like dependability or flexibility induce
the demand for respective architectural services.
Examples for different requirements are the de-
sired properties of communication protocols:
Safety-critical applications (e.g. steer-by-wire
systems) that have to deliver a given service
within a guaranteed time bound require commu-
nication services that are highly deterministic in
the temporal domain (e.g. time-triggered proto-
cols), whereas many non-safety-critical systems
typically have to be optimized for average load in
order to optimize cost (e.g. the comfort electronic
system of car) and require a highly flexible pro-
tocol that adheres to the event-triggered com-
munication paradigm. Additional architectural
services have to be provided in order to support
the reuse and the integration of legacy applica-
tions by emulating the corresponding legacy
platform. Examples are emulations of standard
communication protocols that are frequently
used in specific application domains (e.g. CAN
[1] in the automotive sector, ARINC 629 [14] for
avionics ...).

Consequently, a diverse, configurable, scalable,
and open set of architectural services has to be
provided. Scalability is an important factor since
it is not possible to anticipate how applications
and their requirements will evolve in the future.
Openness means in this sense that third party
developers should be allowed to add additional
domain-specific services to the architecture.
Since freely added services can not always be
assumed to be free from design faults, error con-
tainment with respect to architectural services is
a key issue. In order to be resource effective, the
set of services has to be configurable, which
means that a platform that is used in a given
system should be adaptable to contain only
those services that are actually required and
used by the system.

In this work we propose a layered model for
higher-level architectural services that supports
the open integration of additional services with-
out compromising the dependability of already
existing services.

3 Proposed Model
The proposed approach divides the set of archi-
tectural services into two distinct layers: A stable
and trusted set of Generic High-level Services,
and based on these services an extensible and

Higher-level
Architectural Services

Core Services

C1 Predictable Message
Transport

C2 Fault-Tolerant Clock
Synchronization

C3 Strong Fault Isolation
C4 Consistent Diagnosis of

Failing Nodes

Hiding of implementation details from
the application, thereby extending
the range of implementation choices

Time-Triggered
Base Architecture

Figure 1: DECOS Architecture

Tagungsband - 3 - ME 2006

open set of Domain Specific Services (see Fig-
ure 2).

Figure 2: Architectural Services

3.1 Generic High-level Services

In the DECOS architecture, the application ser-
vices of the integrated system that are provided
at controlled object interfaces are divided into a
set of nearly-independent Distributed Application
Subsystems (DASs) where each DAS provides a
distinct functionality (e.g. a brake-by-wire DAS or
a multimedia DAS in a car). Each DAS is further
decomposed into smaller units called jobs which
are the basic unit of distribution.

A major focus of the architecture is to support
independent design and development of sepa-
rate DASs in an integrated system. The generic
high-level services encompass a set of services
that support a DAS-centric design flow.

Among the generic high-level services is the en-
capsulation service that establishes so-called
partitions, where each partition functions as an
execution environment for a single job. The en-
capsulation service guarantees temporal and
spatial partitioning between partitions, which
prevents faulty jobs from stealing processor time
of any other job and from corrupting another
job’s memory structures [7].

In order to support a DAS-centric design flow
also with respect to communication, virtual net-
work services [17] are provided which realize
encapsulated communication infrastructures for
single DASs. All communication activities of a
virtual network are private to the respective DAS.
Transmissions and receptions of messages can
only occur by jobs of the corresponding DAS
unless a message is explicitly exported or im-
ported by a hidden gateway [16]. Furthermore, a
virtual network exhibits predefined temporal
properties that are independent from activities in
other virtual networks. The provision of encapsu-
lated execution environments and encapsulated
communication infrastructures is a prerequisite
for the independent development of DASs and
for the integration of multiple DASs with mixed
criticality.

Despite the encapsulation service and the virtual
network service, the high level-services encom-
pass a fault-tolerant global time service for the
coordination of distributed activities of the jobs of
a DAS, and a reliable membership service that
provides consistent information about the opera-
tional state (correct or faulty) of the network
nodes within the distributed system.

Figure 3: Platform Interface

The generic high-level services are provided via
the so called Platform Interface (PI) to the jobs of
a DAS (figure 3). The specification of the PI
hides the details of the underlying platform, while
providing all information required for ensuring
the functional and meta-functional (dependabil-
ity, timeliness) requirements in the design of a
safety-critical real-time application. It serves as a
validated stable baseline that reduces applica-
tion development efforts and facilitates reuse,
because applications are built on a generic inter-
face that can be established on top of numerous
platform technologies.

We regard a job as a Fault Containment Unit
(FCR) for software faults (fault containment is
established by the partitions of the encapsulation
service), and assume all architectural services
that are beneath the PI to be validated and free
from design faults. A more detailed fault hy-
pothesis can be found in [13].

3.2 Domain-specific Services
In order to provide a simple and stable baseline
for application development only a small set of
selected services is provided natively via the PI.
For many applications these services will be suf-
ficient, but in some cases they might have to be
extended or refined. These domain-specific ex-
tensions and refinements should not increase
the complexity and the certification effort of the
DECOS platform. Therefore these domain-
specific services are realized on top of the PI in
a dedicated layer within the application job. We
call this layer the application middleware and its
interface the Application Programming Interface
(API) (see Figure 4).

Tagungsband - 4 - ME 2006

One common scenario where additional domain-
specific services are needed is the reuse of leg-
acy code. When a company decides to port a
large federated system to the DECOS architec-
ture, it might be too costly and time-consuming
to rewrite the complete application software in
order to be compliant with the generic high-level
services of the PI. As an example we can think
of a distributed application that has initially in-
corporated the CAN protocol as a communica-
tion infrastructure. Instead of rewriting the legacy
software, a dedicated application middleware
can be incorporated that emulates an application
programming interface for CAN, by establishing
the CAN protocol on top of the generic virtual
network service of the PI.

Figure 4: PI versus API

In the following we summarize the advantages
that result from moving domain-specific services
into the job:

Openness and Configurability: As mentioned

above, domain-specific services of a given
application middleware are specified and
accessed via its API. In contrast to the PI
the API is not considered to be single stable
interface. Each application middleware pro-
vides its own specific set of services, and
thus has its own dedicated API which may
conform to a proprietary or to a well-
established open standard (e.g.TCP/IP or
CAN [1]). Since the application middleware
is based on the PI which has an open inter-
face specification, third party suppliers are
able to develop domain-specific services on
their own. Furthermore, the concept of the
job-internal application middleware enables
the addition and the removal of domain-
specific services without changing the PI or
the underlying platform.

Error Containment: Since third party develop-
ers should be unrestrictedly allowed to pro-
vide additional domain-specific services,
theses services can not always be assumed
to be free of software faults. Therefore non-
interference and error containment with re-

spect to domain-specific services is a major
issue. As mentioned above, a job is the
fault-containment region for software faults
[13]. By placing the application middleware
into the job, the domain-specific services will
become part of the job’s fault-containment
region, and a software fault within a domain-
specific service can have an immediate im-
pact exclusively on the jobs that incorporate
the corresponding application middleware.
This leads to an architecture where a given
application middleware can be certified ac-
cording to the criticality level that is sufficient
for the DAS in which it will be actually used,
and does not have be certified according to
the highest criticality level within the system.

Intellectual Property Protection: In many
cases, the protection of intellectual property
is a major concern of potential suppliers of
domain-specific services. In the DECOS ar-
chitecture, jobs are the region of IP protec-
tion. This means, that it is not required to
supply the source-code of the actual appli-
cation or of the application middleware to
the system integrator. Suppliers of domain-
specific functions may decide to deliver their
application middleware as precompiled ob-
ject code that can be linked to the actual
application.

4 The Platform Interface - PI
The platform interface (PI) constitutes the border
line between the DECOS platform and the appli-
cation subsystems (figure 3). It provides the plat-
form’s generic high-level services to the applica-
tion jobs in a standardized way and abstracts
over the actual implementation of the platform.
This section describes the services that are pro-
vided via the PI.

4.1 Virtual Network Service
A virtual network is an encapsulated communi-
cation infrastructure for a single DAS [17]. In or-
der to retain the non-interference properties of
federated architectures, where each DAS has its
own physical network, each virtual network is
logically encapsulated so that communication
activities in virtual networks of other DASs are
neither visible nor have any effect (e.g. perform-
ance penalty) on the exchange of messages in
the virtual network. Furthermore each virtual
network owns its independent name space. Due
to these encapsulation properties, DASs can be
independently developed verified and integrated
in the system with respect to their communica-

Tagungsband - 5 - ME 2006

tion activities. A job accesses a virtual network
via so-called ports. A port through which mes-
sages are received is called input port, and a
port through which messages are sent is called
output port. The sum of all input ports and output
ports through which a job is attached to a virtual
network is called link.

Multiple virtual networks can be realized as logi-
cal overlay networks on top of a single physical
network. In the DECOS integrated architecture
virtual networks are provided on top of the time-
triggered core communication service of the
base architecture, where encapsulation is
achieved by hierarchic subdivision of the time
slots in the communication schedule [17]. In or-
der to support the transmission of information
with state semantics and with event semantics,
generic time-triggered virtual networks and ge-
neric event-triggered networks are provided.

4.1.1 Generic time-triggered virtual networks

Time-triggered virtual networks are designed for
the periodic exchange of state messages. Be-
cause of the advantages of the time-triggered
control paradigm with respect to predictability,
error detection, fault tolerance, state synchroni-
zation, and replica determinism [8] all virtual
networks for safety critical DASs are strictly time-
triggered. Jobs interface a virtual time-triggered
network via the temporal firewall concept [12]
where the sender acts according to the informa-
tion push principle and the receiver according to
the information pull principle [6].
The time-triggered virtual network service is real-
ized by state-message ports, where each state-
message port is conceptually a singe buffer that
holds a single state message. Whenever the
application writes a new state message to an
output port, the old state that is stored in that
port is overwritten with the contents of the new
message. The generic time-triggered virtual net-
work service periodically transmits the actual
contents of the state-message output ports of
each sender to the corresponding state-
message input ports of the receivers, at statically
defined points in time. Whenever a new state
message is received at a state-message input
port, the old content that was stored in that input
port is overwritten with the new state message
(state messages are not queued). The following
functions are used to access a generic time-
triggered virtual network:
 void PI_write_TT(link, out_port, state_msg);

This function updates the state message in
the specified port of the specified link.

 PI_state_msg PI_read_TT(link, in_port);
This function reads the current value of the
state message located in the specified port
of the specified link.

 PI_temp_acc PI_get_temporal_accuracy(link, in_port);
This function returns a temporal accuracy
value which indicates for how long the state
message in the specified input port will be
still valid to use. Each state message can be
associated with a validity time span that indi-
cates for how long the message will be tem-
porally accurate after it has been received. If
the sender job fails to update the state mes-
sage within a specified time interval, the
state information at the receiver job gets
temporally inaccurate. The concept of tem-
poral accuracy is described in [9].

4.1.2 Generic event-triggered virtual networks

Event-triggered virtual networks are designed for
the sporadic exchange of event messages.
Compared to time-triggered networks they offer
higher flexibility with respect to resource alloca-
tion. The provision of resources can be opti-
mized towards the average demands of an ap-
plication which results in more cost-effective so-
lutions.

Since each event may be significant and event-
messages are generally not idempotent, event
messages have to be processed with exactly-
once semantics (i.e. every event message that
has been sent by a sender job has to be re-
ceived exactly once by each corresponding re-
ceiver job). Therefore event-message ports are
realized as queues that can hold multiple mes-
sages. Whenever the application writes a new
message to an event-message output port the
new message is enqueued in that output port
(the message is discarded if the queue is full).
The generic event-triggered network service
transports messages from the event-message
output ports of each sender job to the corre-
sponding input ports of the receiver jobs with a
guaranteed bandwidth. If a new message is re-
ceived at a event-message input port, it is en-
queued in the input port’s queue (the message is
discarded if the queue is full). Whenever a job
reads a message of an event-message input
port, the message is removed from the port’s
queue in order to establish exactly-once proc-
essing. The following functions are used to ac-
cess a generic event-triggered virtual network:
 bool PI_send_ET(link, out_port, event_msg);

This function tries to enqueue a new mes-

Tagungsband - 6 - ME 2006

sage in the queue of the specified port of the
specified link. If the queue is not full the
message in enqueued, and the value true is
returned. If the queue is full (i.e. an overflow
has occurred), the new message is dis-
carded and the value false is returned.

 bool PI_read_ET(link, in_port, *event_msg_p);
This function tries to dequeue the next mes-
sage from the queue of the specified port of
the specified link. If the queue is not empty,
the function returns true, dequeues the next
message of the queue and copies it to the
address where event_msg_p is pointing to. If
the the queue is empty, the function returns
false.

 bool PI_get_overflow_status(link, in_port);
The queue of an input port can overflow, if
the application job does not call PI_read_ET
frequently enough. The function
PI_get_overflow_status returns the status of
the specified input port with respect to over-
flows. True is returned when one or more
overflows have occurred since the last invo-
cation of the function
PI_get_overflow_status. Otherwise false is
returned.

4.2 Global Time Service

In a distributed system, a global notion of time is
the prerequisite to coordinate the actions of the
nodes in the temporal domain. According to [10]
a digital time format can be characterized by the
three parameters, granularity, horizon and ep-
och. The granularity determines the minimum
interval between two adjacent ticks of a clock.
The horizon determines the instant when the
time will warp around, and the epoch determines
the instant when the measuring of time starts.

The DECOS integrated architecture uses a uni-
form 64 bit long time format which is closely re-
lated to the GPS time format. It has been stan-
dardized by the OMG in the smart transducer
interface standard [18]. The smart transducer
time format has a granularity of 2-24 seconds
(about 60 nanoseconds) and a horizon of 240
seconds (more than 30000 years). The epoch
starts with the epoch of the GPS time i.e., Janu-
ary 1980. The fault-tolerant global time service
can be accessed with the following function:
 PI_global_time_t PI_get_global_time();

This function returns the actual global time.
PI_global_time_t is a 64 bit data type that
represents an instant of time in the standard-
ized OMG format.

4.3 Consistent Membership Service

The membership service provides consistent
information about the operational state (correct
or faulty) of the nodes of the integrated system.
It is based on the a priori knowledge about the
points in time of the time-triggered message ex-
changes on the core network.

The consistent membership service operates
exclusively at node-level. It guarantees that each
correct node has a consistent view of the
"health-state" of every other node within the
cluster ([11]). It is further guaranteed, that all
nodes that belong to an agreed membership
group have received every message within the
cluster consistently. Due to this consistency
property each correct node can be sure that
every other correct node works exactly on the
same data, which is crucial if jobs on different
nodes work together in a joint action. The con-
sistent membership service can be accessed
with the following function.
 PI_membership_t PI_get_membership();

This function returns the actual health state
of every node within the system.
PI_membership_t is a bit vector where each
bit represents the health state of a specific
node.

5 Implementation
In order to show the feasibility of the DECOS
integrated architecture, a prototype implementa-
tion of a DECOS cluster was developed in [7]
(see Figure 5). The focus of this section is on the
implementation of the domain-specific services.

Figure 5: Prototype Cluster

5.1 Core Services
Our prototype implementation uses the Time-
triggered Architecture (TTA) [11] as a base ar-
chitecture to establish the DECOS core services
(time-triggered message transport, fault tolerant
clock synchronization, strong fault isolation, and
consistent diagnosis of failing nodes). The time-
triggered core communication service is pro-

Tagungsband - 7 - ME 2006

vided by TTTech monitoring nodes [2] which are
based on the TTP-C2 controller (AS8202) and
are equipped with the Freescale embedded
PowerPC processor MPC855T.

5.2 Generic High-level Services

The generic high-level services and the parti-
tions for the jobs of a DAS are executed on a
compact communication computer of type Soek-
ris Engineering net4521 1 which is based on a
133Mhz 468 class ElanSC520 processor from
AMD. This compact computer has up to 64
Mbyte SDRAM main memory, uses a Compact-
Flash module for program and data storage, and
is equipped with two 10/100 Mbit Ethernet ports.
The interconnection between the Soekris
net4521 and the TTTech monitoring node is real-
ized using time-triggerd Ethernet.

Within the Soekris Engineering net4521 the real-
time Linux variant Real-Time Application Inter-
face (RTAI) [4] [19] is used together with the
LXRT extension to provide a time-triggered exe-
cution environment for temporal and spatial par-
titioning for the generic high-level services and
the partitions for the application jobs.

In order to guarantee temporal and spatial parti-
tioning between jobs with respect to the commu-
nication, each job is given a dedicated view of
the PI. This is realized by the provision of a
dedicated memory area for each job through
which the job exclusively accesses its own
communication link.

More detailed information about the implementa-
tion of the generic high-level services can be
found in [7], [16], and [15].

5.3 Domain-specific Services

As an example for a domain-specific service, an
application middleware has been realized that
provides the CAN protocol layer [1] in order to
allow the integration of CAN legacy code. This
chapter describes the CAN application middle-
ware with respect to the message-handling ca-
pabilities and the implementation. The described
application middleware supports BasicCAN [3]
and FullCAN [3] transmit and receive behavior,
on top of the generic event-triggered virtual net-
work service. The CAN application middleware
consists of the CAN middleware task and the
CAN API library (see Figure 7) which will be de-
scribed in the following subsections.

1 http://www.soekris.com

5.3.1 Message Handling

The CAN application middleware uses its own
data structures for message handling. Messages
that are to be received by the application are
temporary stored in receive queues or receive
mailboxes. In a receive queue, messages are
stored in the order of their reception (FIFO prin-
ciple), whereby the messages can have different
identifiers. Each receive queue is equipped with
a dedicated configurable message filter for re-
ception filtering. Overflows in a queue occur
whenever a new message is received and the
considered queue is full. In this case the incom-
ing message will be discarded, and the whole
queue will be marked by an overflow flag with
can be read by the application.

Contrary to a receive queue, a receive mailbox
stores only the last instance of a message that
matches a particular identifier. Receive mail-
boxes are recommended for applications where
jobs exchange messages with state semantics.
A read access to a receive mailbox will return
the content of the mailbox, and the number of
updates since the previous read access. This
feature gives the user the possibility to see
whether the data in the mailbox is new and how
many updates have been missed.

Messages that are sent by the application are
temporary stored in the transmit queue. The
transmit queue is periodically serviced in order to
disseminate the temporary stored messages via
the virtual network.
An alternative method for sending messages is
the use of remote mailboxes. Messages that are
entered in a remote mailbox are not sent imme-
diately, but only on request by another node.
Other nodes can issue such a request by send-
ing a remote frame.

5.3.2 Underlying Virtual Network

The CAN application middleware is realized on
top of the generic event-triggered virtual network
service, which is provided natively via the DE-
COS platform interface (PI). The generic event-
triggered virtual network service provides multi-
ple encapsulated virtual networks on top of a
shared physical network.

In order to be compliant to the CAN protocol, a
dedicated virtual network was configured to work
in broadcast topology (see Figure 6). In each
generic event-triggered virtual network every job
has a dedicated input port for each job from
which it can receive messages (i.e. for each
sender job). The concept of separate input ports

Tagungsband - 8 - ME 2006

was chosen in the DECOS architecture in order
to achieve error containment with respect to the
communication channels. A faulty job that sends
messages with a higher frequency as defined in
its specification can only cause queue overflows
in its corresponding input ports at the receivers.

Incoming messages are accessed via the identi-
fier of the input port. Since each input port corre-
sponds to a specific sender job, messages of
specific sender jobs can be selectively received
(i.e. messages can be filtered with respect to
their senders).

Figure 6: Topology of the Generic Event-triggered Vir-
tual Network for CAN

5.3.3 CAN Middleware Task

In contrast to the generic event-triggered virtual
network provided by the PI, the CAN protocol
does not perform message filtering with respect
to the sender of a message. In CAN, messages
are typically filtered with respect to the message
identifier. The CAN middleware task maps the
filtering method of the generic event-triggered
network (message filtering with respect to the
sender) to the filtering method typical for CAN
(message filtering with respect to the message
identifier). It provides the CAN specific receive
queues, transmit queues, and mailboxes (re-
ceive mailboxes and transmit mailboxes) and
layers them on top of the generic event-triggered
network (see Figure 7).
The CAN middleware task is periodically acti-
vated and scans at each activation each input
port of the generic event-triggered virtual net-
work for new messages. Whenever a new mes-
sage is received via an input port it is handed
over to each CAN receive queue and each CAN
receive mailbox in case of a CAN data message
or to each CAN remote mailbox in case of a
CAN remote frame. After each input port of the
generic event-triggered virtual network is
scanned, the CAN transmit queue is served in
order to copy pending messages to the output
port of the generic event-triggered network.

5.3.4 CAN API Library

The CAN API library contains all functions that
are required to access the queues and mail-
boxes which are generated by the CAN middle-
ware task, and is linked to the actual application
code. The application code plus the linked CAN
API are executed as a separate task which is
called the CAN application task (see Figure 7).
The queues and mailboxes are realized in a
shared memory area and can be accessed by
the CAN middleware task and the CAN applica-
tion task. The CAN application task and the CAN
middleware task constitute together a CAN job.

5.3.5 Synchronization

This section describes the synchronization be-
tween the task realizing the generic event trig-
gered virtual network, the CAN middleware task
and the CAN application task.

The middleware task realizing the generic event-
triggered virtual network and the CAN middle-
ware task are implicitly synchronized by the
time-triggered scheduler of the execution envi-
ronment. Both are periodically activated at stati-
cally defined points in time. Based on the speci-
fied minimum message inter-arrival times, the
appropriate queue sizes of the input ports of the
generic event-triggered virtual network and the
activation period of the CAN middleware task are
dimensioned in a way that overflows at the input
ports of the generic event-triggered virtual net-
work are avoided. Overflows at the CAN receive
queues have to be handled by the application
programmer of the considered CAN job.

The synchronization between the between the
CAN Middleware Task and the CAN Application
Task is more complex. The CAN middleware
task is a time-triggered task, with a worst case
execution time that is smaller than its dedicated

CAN Application Code

Output
Port

Input
Port

Input
Port

C
A

N
 Q

ue
ue

Input
Port

C
A

N
 Q

ue
ue

CAN
Msg

Buffer

CAN
Msg

Buffer0 to n
0 to n

Link to Generic
Event-Triggered Virtual Network

C
A

N
 A

pp
lic

at
io

n
M

id
dl

ew
ar

e

CAN Job

PI

Figure 7: Application Middleware for CAN

Tagungsband - 9 - ME 2006

time slot. At each invocation, it starts its se-
quence of operations on the queues and mail-
boxes and completes this sequence within its
dedicated time-slot without being preempted.
Thus, all operations on the queues and mail-
boxes that are performed by the CAN middle-
ware task are inherently atomic.

Contrary to the program flow of the CAN mid-
dleware task, the program flow of the CAN appli-
cation task is generally not synchronized with the
points of time of its preemption and resumption
that are enforced by the time-triggered scheduler
(legacy CAN code cannot be assumed to be
written according to the time-triggered para-
digm). Due to the missing synchronization, the
CAN application task can be preempted while it
is performing a write or read operation on the
queues or on the mailboxes. Thus, operations on
queues and on mailboxes that are performed by
the CAN application task cannot be assumed to
be atomic.

Accesses to the CAN queues (receive and
transmit) are synchronized by means of vari-
ables for the write position and the read position
of a given queue (explicit synchronization). The
CAN middleware task indicates the presence of
a new input message in a receive queue by in-
creasing the write position variable of the receive
queue after it has written the message into the
queue. The CAN application task indicates the
consumption of a message by increasing the
read position variable of the receive queue after
it has consumed the message from the queue.
The same principle is used for the transmit
queue. The CAN application task indicates the
presence of a new output message in the trans-
mit queue by increasing the write position vari-
able of the transmit queue after it has written the
message to the queue. The CAN middleware
task indicates the consummation of an output
message by increasing the read position variable
of the transmit queue after it has consumed the
message from the queue.

In order to synchronize accesses to CAN mail-
boxes, each mailbox incorporates a sequencer
variable which can be exclusively written by the
CAN middleware task, and a valid flag which can
be exclusively written by the CAN application
task.

When the CAN application task performs a read
operation on a mailbox it can happen, that it is
preempted during the read operation and that
the CAN middleware task updates exactly that
mailbox that the CAN application task is cur-
rently reading. In this case the CAN application

task would read inconsistent data. In order to
detect such a condition, a protocol similar to the
Non-Blocking Write protocol (NBW) [9] is used:
The sequencer variable of a mailbox is initialized
to zero at the system start-up phase. It is incre-
mented by the CAN middleware task each time
after it has updated the content of the mailbox.
Due to the fact, that the CAN middleware task is
a time-triggered task that completes always its
whole sequence of operations without preemp-
tion, updating the mailbox and incrementing the
sequencer variable can be regarded as one
atomic operation. When the CAN application
task performs a read operation on a mailbox, it
always starts by reading the mailbox’s se-
quencer variable. At the end of the read opera-
tion the CAN application task checks whether
the sequencer variable has been changed by the
CAN middleware task during the read operation.
If so, the read operation is retried until uncor-
rupted data is retrieved from the mailbox.

When the CAN application task performs a write
operation on a mailbox it can happen, that it is
preempted during the write operation and leaves
the contents of the mailbox in an inconsistent
state until it is resumed again and finishes the
write operation. In order to inform the CAN mid-
dleware task about the consistency or inconsis-
tency of a mailbox the CAN application task uses
the mailbox’s valid flag. It sets the flag to invalid
before each write operation and resets the flag
to valid after the write operation is completed.
Thus the CAN middleware task can always verify
the integrity of a CAN mailbox. The CAN mid-
dleware task treats each invalid mailbox as a
temporary non-existent mailbox (the mailbox will
not be used for any receive or send operations
until the next activation of the can middleware
task after the can application task has finished
its write operation and has set the flag to valid
again).

As far as the CAN application task is concerned,
all the synchronization activities are performed
by the CAN API library and are transparent to
the actual application code. Thus, legacy appli-
cation code does not have to be modified in or-
der to establish synchronization with respect to
the CAN middleware.

6 Conclusion
The DECOS architecture is intended to integrate
multiple application subsystems of heterogene-
ous application domains into a single distributed
computer system. Each application domain has
its own specific demands and requirements with

Tagungsband - 10 - ME 2006

respect to the underlying architecture (e.g. dif-
ferent real-time requirements and communica-
tion paradigms, different criticality levels). Con-
sequently a wide variety of architectural services
with different characteristics has to be provided
in order to support the development and the in-
tegration of such heterogeneous applications.

In this work we have devised an architecture that
structures the architectural services hierarchi-
cally into three distinct layers: The first layer real-
izes core services which are provided by the un-
derlying time-triggered communication architec-
ture. The second layer provides a fixed and sta-
ble set of generic high-level services that sup-
ports the independent development of distributed
application subsystems. These high-level ser-
vices include virtual network services that pro-
vide a dedicated encapsulated communication
infrastructure for each subsystem, a global time
service for the coordination of distributed appli-
cations and a reliable membership service that
provides consistent information about the opera-
tional state (correct or faulty) of the nodes within
the distributed system. The third layer realizes
an open and scalable set of domain-specific ser-
vices that can be unrestrictedly extended by third
party suppliers. Since domain-specific services
can be freely added, they can generally not be
assumed to be free from design faults. Therefore
they are placed into partitions which are fault-
containment regions for software faults. In order
to support the protection of intellectual property,
domain-specific services can be integrated as
precompiled object code.

To demonstrate the feasibility of our approach, a
prototype of a DECOS cluster was implemented
that provides all specified generic high-level ser-
vices. As an example for a domain-specific ser-
vice, an application middleware was imple-
mented that provides a CAN protocol layer that
supports the integration of legacy CAN applica-
tion code.

Acknowledgments
We would like to acknowledge the whole DE-
COS team for valuable discussions on the topics
of this paper. This work has been supported in
part by the European IST project DECOS (IST-
511764) and the European IST project ARTIST2
(IST-004527).

References

[1] CAN Specification, Version 2.0. Robert Bosch Gmbh,
Stuttgart, Germany, 1991.

[2] TTP Monitoringnode - A TTP Development Board for the
Time-triggered Architecture. TTTech Computertechnik AG,
2002.
[3] CAN history. CAN in automation (CiA), 2004. Available at
http://www.can-cia.org/can/protocol/history/history.html.
[4] D. Beal, E. Bianchi, L. Dozio, S. Hughes, P. Mantegazza,
and S. Papacharalambous. RTAI: Real-Time Application
Interface. Linux Journal, April 2000.
[5] A. Deicke. The electrical/electronic diagnostic concept of
the new 7 series. In Convergence International Congress &
Exposition On Transportation Electronics, Detroid, USA, Oct.
2002.
[6] W. Elmenreich, W. Haidinger, and H. Kopetz. Interface
design for smart transducers. In IEEE Instrumentation and
Measurement Technology Conference, volume 3, pages
1642–1647, Budapest, Hungary, May 2001.
[7] B. Huber, P.Peti, R. Obermaisser, and C. E. Salloum.
Using RTAI/LXRT for partitioning in a prototype implementa-
tion of the DECOS architecture. In Proceedings of the Third
International Workshop on Intelligent Solutions in Embedded
Systems, pages 3–16, 2005.
[8] H. Kopetz. Why time-triggered architectures will succeed
in large hard real-time systems. In Proceedings of the 5th
IEEE Computer Society Workshop on Future Trends of Dis-
tributed Systems, August 1995.
[9] H. Kopetz. Real-Time Systems, Design Principles for
Distributed Embedded Applications. Kluwer Academic Pub-
lishers, Boston, Dordrecht, London, 1997.
[10] H. Kopetz, A. Ademaj, P. Grillinger, and K. Steinham-
mer. The time-triggered ethernet (TTE) design. In 8th IEEE
International Symposium on Object-oriented Real-time dis-
tributed Computing, May 2005.
[11] H. Kopetz and G. Bauer. The time-triggered architecture.
IEEE Special Issue on Modeling and Design of Embedded
Software, Jan. 2003.
[12] H. Kopetz and R. Obermaisser. Temporal composability
[real-time embedded systems]. Computing & Control Engi-
neering Journal, 13(4):156–162, 2002.
[13] H. Kopetz, R. Obermaisser, P. Peti, and N. Suri. From a
federated to an integrated architecture for dependable em-
bedded real-time systems. Technical Report 22, Technische
Universität Wien, Institut für Technische Informatik, Treitlstr.
1-3/182-1, 1040 Vienna, Austria, 2004.
[14] J. Moore. Arinc 629, the civil aircraft databus for the
1990s. In IEE Colloquium on Time Critical Communications
for Instrumentation and Control, pages 5/1–5/2, 1989.
[15] R. Obermaisser and P. Peti. Specification and execution
of gateways in integrated architectures. In Proceedings of the
10th IEEE International Conference on Emerging Technolo-
gies and Factory Automation (ETFA’05), Italy, 2005.
[16] R. Obermaisser, P. Peti, and H. Kopetz. Virtual gate-
ways in the DECOS integrated architecture. In Proceedings
of the 19th IEEE International Parallel and Distributed Proc-
essing Symposium, pages 134a–134a, 2005.
[17] R. Obermaisser, P. Peti, and H. Kopetz. Virtual networks
in an integrated time-triggered architecture. In Proceedings
of the 10th IEEE International Workshop on Object-oriented
Real-time Dependable Systems (WORDS2005), pages 241–
253, Sedona, Arizona, Feb. 2005.
[18] Smart transducers interface v1.0, Jan. 2003. Specifica-
tion available at doc.omg.org/formal/2003-01-01 as docu-
mentptc/2002-10-02.
[19] RTAI Programming Guide, Version 1.0. Dipartimento di
Ingegneria Aerospaziale Politecnico di Milano (DIAPM), Italy,
September 2000. Available at http://www.rtai.org.
[20] J. Rushby. A comparison of bus architectures for safety-
critical embedded systems. Technical report, Computer Sci-
ence Laboratory, SRI International, Sept. 2001.
[21] A. Sangiovanni-Vincentelli. Defining platform-based
design. EEDesign of EETimes, February 2002.

