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Abstract

The complex interactions between faults, errors, failures
and fault handling mechanisms can be studied via
injection experiments. This paper presents an investigation
of both fault and error injection techniques for emulating
software faults. For evaluation, 1600 software faults and
5400 time-triggered errors were injected into an embedded
real-time system. The cost-related results are: (i) the time
required to create a fault set for fault injection was about
120 times longer than the time required to create an error
set for time-triggered injection and (ii) the execution time
for the time-triggered error injection experiments were
four times shorther than for the fault injection experiments.
However, the error injection would be only 1.3 times faster
if another strategy for fault injection had been used.
Furthermore, failure symptom related results are: (i) the
test case had a greater influence than the fault type on the
failure symptoms for fault injections, (ii) the error type had
a greater influence on the failure symptom for time-
triggered error injections than had the test case and (iii)
the error type had a larger impact on the failure symptoms
than the fault type.

1. Introduction

Computers are currently employed to control applica-
tions such as nuclear power plants, aircraft and automo-
biles. The control of vehicle dynamic functions in future
automobiles, for instance, will be totally dependent on
computers, as these systems will be built without any me-
chanical backup devices. A failure in a computer system
that controls such an application can thus lead to significant
economic losses or even loss of human lives. Obviously,
such a system must undergo a rigorous dependability vali-
dation and verification.

Fault injection is an attractive approach to the experi-
mental dependability validation of fault-tolerant systems
(see eg. [1], [2]), as it provides the means for a detailed
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study of the complex interaction between faults, errors,
failures and fault-handling mechanisms (Figure 1.1). De-
pendability validation of fault-tolerant systems by fault in-
jection addresses fault removal and fault forecasting [3]. In
the case of fault removal, fault injection uncovers potential
fault tolerance deficiencies, e.g. transitions 3, 8 and 9 in
Figure 1.1. In the case of fault forecasting, fault injection
allows an estimation of the coverage factors, which are im-
portant parameters in analytical dependability models.
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Figure 1.1. The fault, error and failure process in
the context of fault and error injection.
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In both the academic community and industry, most
fault injection studies have been aimed at studying the ef-
fects of physical hardware faults, i.e. faults caused by
wear-out or external disturbances (see e.g. [4], [5]).

Only a few studies have been concerned with injection
and emulation of software faults, e.g. [6], [7]. It is often
pointed out that SWIFI (SoftWare-Implemented Fault In-
jection) can be used to emulate software faults by injecting
errors, but to the authors knowledge no studies have been
published that compare the failure symptoms obtained us-
ing source code faults and SWIFI injected errors. SWIFI is
done by changing the contents of memory or registers,
based on some fault models, to emulate the occurrence of
hardware or software faults.

This paper presents an investigation of both fault and er-
ror injection techniques for emulating software faults. More



specifically, the investigation focused on the following two
aspects: (i) the cost in terms of setup and execution time for
using the techniques and (ii) the impact of the test case,
fault type and error type on the failure symptoms of the tar-
get system. We did not study coverage, as the target system
did not have any fault handling mechanisms.

A Fault Injection Campaign Control Computer (FIC®)
was developed for this investigation. The FIC® injection
environment is designed to inject faults and errors into an
embedded real-time system using SWFI. Several papers on
fault injection environments that use SWIFI have been
published: FAUST [7], FIAT [8], FERRARI [9],
HYBRID [10], FINE [6], FTAPE [11], XCEPTION [12],
DOCTOR [13]. FIC® alows the injection of faults using
modification of the source code, resembling the method
used by FAUST. The error injection methods used by FIC®
are based on modification of the memory, similar to the
method used by FIAT, and processor registers, comparable
to the methods used by FINE and FERRARI.

More specifically, the injection techniques supported by
FIC® are (see Figure 1.1):

» fault injection (FI), i.e. a modified object file is

loaded to the target system;

* event-triggered error injection (EIE), i.e. an error
(first error) isinjected at a breakpoint with the pur-
pose to exactly mimic a software fault; and

* time-triggered error injection (EIT) which injects a
propagated error at a certain point in time (in some
cases even periodically).

Consequently, the FIC® environment can be used to
emulate both software faults and intermittent hardware
faults, since a propagated error can be caused by both.

Asseenin Figure 1.1, an activation of a fault (transition
1) will cause the first error, and al events between the first
error and a possible system failure (transition 3) are seen as
error propagation (transition 2). The first error is defined
as.

A software fault is activated and manifests itself as the
first error when a processor register is loaded with an
incorrect value.

This paper is organized as follows. Section 2 gives a

user’s view of the FI€injection system, section 3 provides

2. The Fault Injection Campaign Contr ol
Computer (FIC?)

An injection campaign can be seen as three consecutive
phases: a&etup phase, aninjection phase and ananalysis
phase. These phases are depicted in Figure 2.1.

The setup phase uses external data (e.g. source code,
field defect distributions, usage profiles) to produce a cam-
paign specification. The campaign specification defines the
fault and/or the error sets, test cases and readouts that are
to be collected from a target system. Several probes in-
serted into the target system do the readout collection; this
manual instrumentation of the target system must be done
on the basis of the readout specification given in the cam-
paign specification.
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Figure 2.1. An overview of the phases in an injec-
tion campaign.
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The campaign specification is used to automatically
conduct an injection campaign during timgection phase.
That is, faults and/or errors are injected into the target sys-
tem while the test cases are executed and readouts are col-
lected. The readouts collected during the injection cam-
paign are stored in the campaign readout files. Relevant
readouts are extracted from the campaign readout files
during theanalysis phase. The extracted readouts are then
analyzed, and measures are computed, e.g. asymptotic error
detection coverage. A more detailed description of these
three phases is given in the sections below.

2.1 The setup phase

The setup phase consists of three main tasks (see Figure

a case study describing experiments carried out on an ai-2): generation of faults=t) or errors E*) according to
craft arresting system. Section 4 contains a discussion afefect distributions observed in the field; generation of test
the FIC and the obtained results, and section 5 presentscases *) based on data on possible usage; and campaign

summary.

setup, which creates a campaign specification for the injec-
tion experiments. Each injection experiment is defined by
an experiment specification with four main components: a
reference to an object load file for faulf}, parameters to

an interrupt routine for errore), specification of a test
case () and a specification of the readouts that are to be
collected during the experiment.
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Figure 2.2. The setup phase: inputs required,
tasks and produced output.

Generation of faults and errors. The generation of
faults (F*) is currently a semiautomatic task, i.e. one sub-
task requires manua work while the other sub-tasks are
automatic. However, the generation of errors (E*ge) is a
manual task, as the FIC? system does not currently provide
any automatic support. Thus, errors must be identified
manually using loader information and source code listings.
Note that the fault set targets software faults, whereas the
error set can mimic both software faults and intermittent
hardware faults.

Generation of FI faults, i.e. the generation of modified
load files, is done via four sub-tasks (see Figure 2.3): iden-
tification of possible faults, selection of faults via random
sampling, manual insertion of the sampled faults and auto-
matic generation of object code load files. The generation
of EIE errors, i.e. the identification of error parameters to
the interrupt routine (see Figure 2.3), isamanual task.
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Figure 2.3. The generation of a fault set (F*) or an
error set (E*zi).
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The generation of the fault set (F*) starts with an auto-
matic identification of possible fault locations. That is, a
parser will use the target systems source code to automati-
cally generate a list of possible software faults (Fp). This
list of possible faults is actually a subset of all possible
faults (F) in the target system, i.e. F, O F. Nevertheless,
the size of Fj, can be too large to use exhaustively. There-

fore, the list of faults that are to be injected is selected by
means of random sampling from F,. This sampling can be
done according to any distribution, but the preference is a
distribution obtained from the field. The selected faults
must then be manually inserted into the source code, and
each fault is saved as a modified source file. However, it
should be possible to automate the fault insertion. All the
modified source files are then automatically recompiled
and re-linked to object load files (F*). This automatic gen-
eration of load files is governed by a set of build instruc-
tions. The set of selected faults thus consists of a number of
modified load files, one file for each fault (f). Note that: f O
FOF, OF.

The generation of an error set (E*g ) for event-triggered
injection is based on the list of selected faults and on loader
information. The rationale for thisis that we want to mimic
software faults via the injection of errors. That is, a soft-
ware fault is mimicked via injection of the first error (see
Figure 1.1). The error injection can be done via modifica-
tion of: aregister content, a memory cell or a control flow.
The event-triggered injection is used to ensure that the first
error is injected, i.e. the injection is synchronized with the
execution of the fault location. The decision as to when
(i.e. synchronized with an address in the text segment) to
inject what (e.g. incorrect value) where (e.g. into register
D) is made on the basis of source code and |oader informa-
tion. The answers to when, what and where provide the pa-
rameters for an error injection routine. Thus, the set of se-
lected errors consists of error injector parameters, one file
for each error (e). Note that: e [0 E*ge O E.

Time-triggered, i.e. clock activated, error injection is
used to mimic a propagated error. For EIT, the answers to
when, what and where are selected without considering the
source code statements. The generation of an error set
(E*gi7) for time-triggered injection might use loader infor-
mation if a stack or global variables are to be targeted.
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Figure 2.4. The generation of campaign specifica-
tions for fault injection.



Campaign setup. The campaign setup is a semiauto-
matic task, i.e. the first sub-task requires manual work and
the second sub-task is automatic. The two tasks to be per-
formed in campaign setup are (see Figure 2.4): experimen-
tal planning and automatic generation and compilation of
specifications.

The experimental planning involves. deciding which
measures to obtain from the campaign, identifying the
readouts used to calculate the measures and creating a
readout specification defining the readouts to be collected.

2.2 Theinjection phase

The injection phase will conduct the actual injection
campaign, and each injection experiment consists of five
main automatic tasks that are driven by the campaign speci-
fication. The tasks carried out during one experiment are
(see Figure 2.5): reset the target system, download a fault
(f) or an error (e); trigger the error injection; control the
environment simulators; and control the readout collection.
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Figure 2.5. The injection phase: input required,
tasks, the affected target system and collected
readouts.
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The trigger task will activate the error-injecting interrupt
routine when the injection condition is satisfied. That is, an
interrupt will be generated either when the emulated fault
location is executed (EIE) or at a particular time (EIT).

The environment simulator provides an artificial envi-
ronment to the target system. The simulator must thus
mimic the environments response to actions taken by the
target system. Furthermore, the simulator must provide arti-
ficial environment stimuli to the target system. Thus, a
system that interfaces with the environment at N number of
points calls for N tailored simulators. These simulators are
controlled in a standardized and general way by means of
the test case specifications.

The readout collection is done by the environment
simulators, which log the output that the system sends to
the environment. Furthermore, special hardware probes are
inserted into the target system, and dedicated software
control the readout collection. A device readout file is cre-
ated for each probe and for each environment simulator.
References to these device readout files are collected and
stored in an experiment readout file, and references to the
experiment readout files are in turn stored in the campaign
readout file.

2.3 The analysis phase

The analysis phase extracts and analyzes the readouts
stored in the readout files. This is done in three main steps:
extract relevant events from the device readout files, inter-
pret the event data and compute required measures. The
task carried out during this phase is often quite specific for
the experiment at hand, and this phase will not be further
discussed.

3. Case study

a “clean state”. The internal state of the target system might A case study was carried out with the purpose of inves-

be corrupted during the previous experiment, and the res
is therefore required to ensure independence between t
experiments.

tigating both fault and error injection techniques for emu-
faging software faults. Fault injection and error injection
experiments targeting an embedded real-time system were

The faults and errors are downloaded to the target sysonducted.

tem via a serial link. The injection type defined by the ex-

Table 3.1. Summary of the injection experiments.

periment specification decides whether a fault or an errg

shall be downloaded. The injection types a@den run,
fault injection or error injection. A golden run means that
the correct object load file is downloaded to the target syj

tem. A fault injection implies that a modified object load
file is sent to the target system, whereas an error injectid

calls for the transmission of error injection parameters }

which are given by the experiment specification - to an in

terrupt routine. The interrupt routine will inject an error
into the target system, i.e. modify the internal system stat
This interrupt routine will be activated by a trigger task.

' Type Technique Measurements Injections
Modification Setup cost
FI of Execution cost 1600
- source code Distribution of fail-
ure symptoms
n Breskpoint
EIE activated Setup cost 0
interrupt
routine
Clock acti- Setup cost
h EIT vated Execution cost 5400
B interrupt Distribution of fail-
routine ure symptoms




The following two types of experiments were con-
ducted: fault injection (FI) and error injection time-
triggered (EIT). Error injection event-triggered (EIE) ex-
periments were setup but not conducted. The assumption is
that EIE will result in exact emulation of a software fault
and that deviations would be the cause of faulty parameters
or defects in the FIC® error injection module. Two types of
measurements were collected: cost in terms of time and the
distribution of failure symptoms. The time needed to create
the fault or the error set was measured during the Setup
phase. The creation of the sets for FI, EIE and EIT were
carried out by three different persons, i.e. each author cre-
ated one set. The time it took to conduct the FI and EIT
experiments was also measured. However, the time needed
to build the supporting software tools was not logged.

These measurements are described in the text below,
and the experiments conducted are summarized in Table
3.1 above.

3.1 Experimental setup

Target system. The target system is designed to arrest
aircraft landing on a runway. A fighter equipped with a
hook is stopped by means of a cable barrier (i.e. as on an
aircraft carrier). The requirements on the cable barrier can
be found in [14]. The barrier consists - besides the physical
barrier hardware - of:

e Two tape drums, one on each side of the runway, con-
nected viaacable.

e A Programmable Logic Controller (PLC) which con-
trols al functions related to the physical barrier, e.g.
raising the barrier, lowering the barrier and monitoring
the hydraulic brake system.

e A master node, which periodically reads the rotation
sensor and starts an arrest when the sensor indicates
rotation on its tape drum. The master node uses the
rotation sensor to measure the speed of the landing air-
craft and controls a brake pressure valve using a soft-
ware-implemented PID regulator. This valve feeds hy-
draulic oil to the brake cylinder, which is used to slow
the rotation of one of the tape drums. Furthermore, the
master node sends the desired brake pressure to the
slave node, which controls the pressure valve on the
other tape drum.

e A dave node, which is basicaly a software-
implemented PID regulator that controls the brake
pressure valve, i.e. it reads the pressure sensor and
checks whether it conforms to the pressure ordered by
the master node.

The setup of the experimental environment can be seen
in Figure 3.1. The physical barrier hardware and the land-
ing aircraft is simulated, i.e. the master node and the save

node are communicating with simulated sensors and ac-
tuators. The injection experiments target the master node.

The simulator is driven by the FIC® environment (for
details see [15]). This setup enables us to automatically in-
ject faults and/or errors while the target system is subjected
to different test cases. A test case is defined by the aircraft
weight (kg) and its engagement speed (nV/s).
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Figure 3.1. The target system; an aircraft arrest-
ing system.

Generation of a fault set. The targeted processor has
no operating system, and the targeted part of the applica-
tion (16 KB object code) is written in C. The C Fault Lo-
cator (CFL, see[15] for details) identified 991 possible lo-
cations (F, O F) of the fault types assignment (A), checking
(©) and interface (1 ), which are a subset of the fault types
of the ODC, Orthogonal Defect Classification [16]. The
resulting distribution is shown in column four in Table 3.2.

Table 3.2. Distribution of the 991 possible faults
and of the 200 sampled faults.

Fault type Possible fault Sampled faults
Assignment 514 52% 92 46%
Checking 223 23% 46 23%
| nterface 254 26% 62 31%

Total 991 100% 200 100%

To reduce the labor in the setup phase, it was decided
that 200 faults would be injected. A random sampling of
fault locations was used to sample (without replacement)
200 faults from the list of possible faults generated by the
CFL program. As we had no a priori knowledge of the dis-
tribution of software faults in the target system we were
forced to sample the 200 faults according to a uniform dis-
tribution. The outcome of that sampling is shown in col-
umn 6in Table 3.2.

The 200 sampled faults (F*) were manually inserted into
the source code. One load file was generated for each in-
serted fault (f). Recall that f O F* O F, O F.

Generation of an error set for EIE. EIE is supposed
to exactly mimic the behavior of software faults. The tech-
nique used in EIE, is to force the processor into making
incorrect computations, e.g. computing the address for



p[i] instead of the addressof t [ i ] (see[15] for details). Test cases. The main function of the target system is to
Predefined error injection routines are used to manipulate  arrest an incoming airplane. The barrier and the airplane
the processor. Consequently, the generation of an error set  are simulated. The following parameters control the simu-
for EIE involves identification of parameters to these rou- lator:

tines. We attempted to identify parameters for an error set «  engaging speed: 30 m/s to 100 m/s

which would exactly mimic the behavior of the 200 faults ~ «  aircraft weight: 4000 kg to 25 000 kg

mentioned above (F*). However, we were not able to create Eight test cases corresponding to three types of aircraft
error injector parameters for 15 of the faults. The main  with three or two different engaging speeds were manually
problems during identification of the parameters involved:  generated. The test cases and the resulting kinetic energy
off line location of an intermediate value stored on the  (i.e.E, = (mv?) / 2) are shown in Table 3.3.

stack; and modification of comparison operators in a Boo-

. . Table 3.3. The eight test cases.
lean expression, e.g. forcing the processor to check for “

< B) && !done” instead of {A >= B) && Test cases (tc)
I done”. Aircraft| M [tc#| v | B [Te#| v | B [tc#| v | E
(kg) (m/s) | (kJ) (m/s)| (kJ) (m/s) | (kJ)

S18 | 23300 1 | 50 (18640 2 | 70 [41940| 3 | 80 [74560
F16 | 16000 4 | 50 [20000( 5 | 70 |39200| 6 | 80 |51200

Generation of an error set for EIT. A set of 675 er-
rors aimed at EIT was designed to both mimic softwarg
faults and intermittent hardware faults. Periodic EIT, with| A4 | 12400] 7 | 40 |15500) & | 60 | 30380
the same period as the main control loop in the target sys-
tem, was employed as an attempt to mimic software faults. The eight test cases shown in Table 3.3 were grouped

The following types of errors were injected: into three categories. This was done on the basis of the ki-
e Maodification of memory EIT (Mem)) netic energy level. Three energy levels were considered:
— 50 bit-flips, each in a randomly selected bit andlow, medium and high. The three levels and the related test
byte of the stack area, and case number are shown in Table 3.4.
— 225 bit-flips, each in a randomly selected bit and 'able 3.4. The three levels of kinetic energy.
byte of the global data area. That is, 25 errors Energy level Range (M.J) Test case
were injected in the global data area in each of thg Hign (Hi) 45-75 tc3,tc6
nine source code modules of the target system; Medium (Med) 30-45 tc2, tc 5, tc 8
Low (Low) 15-30 tcl,tc4, tc?

¢ Moadification of a registerEIT (Reg))

200 pit-flips, eaph in a randomly selected bit in a Setup cost. The Setup time is given by (1) and is com-
16-bit register, i.e. 50 errors in PC, D, X and Y, hosed of: the time required to design a fault or an error set

respectively, and with N elements and the time needed for the creatidvl of
— 50 bit-flips in randomly selected bit in the control test cases.
code register; and _ <N M
g Taop= Y (Ti+Ta +Te) + Y " (Ti+Ta) (1)

e 150 delays of the processor executid&iT( (Del)).
That is, 50 delays for each of the times 0.4, 1.6 and 4.0 In (1), T is the time needed to identifyic the time
ms account for 5%, 20% and 50% of the main loop peheeded to create afd the time required to automatically
riod, respectively. build the fault or error sefl, and T apply for both the

fault/error set and for the set of test cases. We will measure
These errors were injected every eight milliseconds, thenly times related to the generation of the fault or the error
first injection time is randomly selected within the period.S€t.
The rest of the injections are periodical during the obser-
vation time of 40 seconds, resulting in 5000 activations of [Execution cost. The time required to conduct an injec-
the error injector for each injection run. Each activation ofiion campaign is given by (2). This approach was used to
the error injector requires 167 execution cycles of the Mocarry out the experiments presented in this paper.
torola M68HC11, which corresponds to 83.5 microsec-T,,, = ZM— ZN_ (Tui + Tsj + Toij) )
onds. Hence, the total execution time for the error injector 171 4=l
is 0.42 seconds, which means that the injector “steals” ap- In (2), T, is the time needed to load a fault or an error,
proximately 1% of the observation time. This is also thels the synchronization time anf, the observation time.
case for the golden run, but the error injector executes onfyhe second summation (or inner loop) representsNthe
167 NOPs, i.e. no error is injected. elements in the fault or the error set, while the first summa-
tion is related to th&/ test cases. With a minor alteration,



the load time (T,) does not need to be part of both summa-
tions, which is shown by (3).

Tee:= Y L (Tu+Y " (Tsi +Ton)) (3)

Consequently, injection campaigns can be conducted in
two ways: (i) download a new fault for each injection and
(i) download a new fault for each test case. The execution
time required by the first approach is given by (2), and the
time needed for the second is given by (3).

Classification of failure symptoms. The readout files
from the aircraft simulator were used to identify the various
faillure symptoms. The following parameters were used:
Retardation force (R) on hook; brake force (B) on cable;
position (p) of aircraft; brake pressure ordered by master
(Praster); @nd brake pressure ordered by dave (Pyawe)-

The failure indicators considered are in order of criti-
cality:

1. diding hook (SL_HOOK). The absolute error be-
tween the perpendicular brake force from the master
and the perpendicular brake force from the dave is
larger then the friction force (Uga * R).

2. Runaway (RUNAWAY). The aircraft passes the
maximum runway position (i.e. p >335 m).

3. Incorrect stop position (IN_S_POS). The aircraft
stop position deviates more than 20 m from the stop
position measured during the golden run.

4. Incorrect pressure (IN_PRESS). The absolute error
between the golden run and the experiment run (&)
exceeds a predefined limit.

5. Other failure (Other). This includes two types: the
simulator crashes as the target system behaves
strangely due to an injection; and the retardation force
exceeds 2.8 g times the mass of the aircraft.

An injection run that does not result in any failure indi-
catorsis classified as dormant (DORMANT).

3.2 Resaults

Cost measures. The average time needed to identify
and create a fault or an error is shown in Table 3.5. This
table also shows the average time required to build, i.e.
compile and link an object load file. The build average of
1.07 seconds does not include the time required to correct
nine compilation errors that were caused by incorrect crea-
tion of these nine faults. Furthermore, these average times
for identification do not include the time required to sam-
ple the fault set. However, the sampling times are the same
for EIE and FI, as both use the exact same set of sampled
faults.

The time required to generate the 675 errors used for
EIT is negligible, as it took 2 minutes and 31 seconds to

generate the parameters for the injection of these 675 er-
rors. An interesting observation is that the average time re-
quired to identify and create a fault set for FI and an error
set for EIE are comparable: 110 seconds and 115 seconds
for FI and EIE, respectively. This is quite surprising, as we
expected that the error set generation would take much
longer time.

Table 3.5. Average Setup cost for the different

injection types

Secondsin cell Fl EIE EIT
Averageidentification time (T;) 53 78 =0.22
Average create time (Tc) 57 37 =0.005
Average build time (Tg) 1.07 n/a n/a

The average times required to load, synchronize and ob-
serve during the injection experiments are shown in Table
3.6.

Table 3.6. Average execution cost for the differ-
ent injection types

Secondsin cell Fl EIE EIT
Average load time (T.) 191 n/a 2.8
Average synchronization time (Ts) 20 n/a 20
Average Observation time (To) 40 n/a 40
Total 251 na | 62.8

Failure symptoms. The distribution of the failure
symptoms is shown for al fault injections (FI (All)), as-
signment faults (FI (A)), checking faults (FI (C)), interface
faults (FI (1)), all error injections (EIT (All)), modification
of memory (EIT (Mem)), modification of registers (EIT
(Reg)) and delay of the processor execution (EIT (Del)), in
bars one through eight in Figure 3.2, respectively.

8 0 0 8 78 24 33 21

124 =l

80% 69
2 1640

100%

131
90%

148

70% 20

m Other

404 | |mSL_HoOK
538 O RUNAWAY
oIN_S_POS
mIN_PRESS
[t |0 DORMANT

60% 286 141 59 1356

50%

40% 769

30%

838 370 190 278 1215 ﬁ
0
20% 1866

10% 312

339

0%

FI(Al)  FI(A)  FI(C) FIl)  EI(Al) EI(Mem) El(Reg) EI(Del)

Figure 3.2. Failure symptoms by type of injection

Figure 3.2 shows the distribution of the failure symp-
toms as a function of the fault type (i.e. FI (A), FI (C) and
FI (). It seems that the fault type does have an effect on
the observed failure symptom. The fault type interface (1),
for instance, seems to cause an unproportionaly large frac-



tion of the failure symptom diding hook (SL_HOOK).
Moreover, the fault type checking (C) appears to cause a
large proportion of runaway (RUNAWAY) failures. How-
ever, the question is: are these differences significant?

A simple non-parametric statistical test that can be used
to determine the significance of the differences is the x*
test for k independent samples[17]. Let the null hypothesis
be: The failure symptoms are independent of the fault type.
The level of significance is set to 0.001, and the degrees of
freedom are 10. Hence, the critical value of the chi-square
at the 0.001 significance level (x%.001(10)) equals 29.59.
The chi-sguare value (q(10)) computed from the data
equals 68.51, and the probability of occurrence for q(10)
equals 2.5x10™°. Consequently, the null hypothesis can be
rejected (x%0.001(10) = 29.59 < q(10) = 68.51, p =2.5x10%).

Figure 3.2 aso shows the distribution of the failure
symptoms as a function of the error injection procedure
used (i.e. EIT(Mem), EIT(Reg) and EIT(Del)). Clearly, the
type of injection used has an impact on the failure symp-
tom. The x? test will be used to determine whether the dif-
ferences are significant. Let the null hypothesis be: The
failure symptoms are independent of the type of injected
error. The null hypothesis can be rejected as: X2.00002(10) =
35.36 < q(10) = 3076.0, p < 10°3®,

Figure 3.3 shows the distribution of the failure symp-
toms as a function of the type of test case (i.e. Low, Me-
dium and High kinetic energy) for both FI and EIT. The
test case type does have an effect on the observed failure
symptom for both FI and EIT. Again the x? test will be
used to determine whether the differences are significant.
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Figure 3.3. Failure symptoms by type of test case
(energy level)

Let the null hypothesis be; The failure symptoms for FI
are independent of the type of test case. The null hypothe-
sis can be rejected as: X%00001(10) = 3556 < q(10) =
172.60, p = 1.75x10°%.

Let the null hypothesis be: The failure symptoms for EIT
are independent of the type of test case. The null hypothe-
sis can be rejected as: X%.00001(10) = 35.56 < (10) =
1185.5, p = 1.93x10%*%.

4. Discussion
4.1 I njection cost

Setup cost. The technique with the lowest demands on
both setup time and execution time was EIT. FI and EIE
were comparable in terms of Setup cost. The cost for Fl
could be drastically reduced if the manual fault insertion
(see Figure 2.3) is automated. However, we see no simple
way to automate the parameter generation for EIE.

Execution cost. The main reason for the large differ-
ence in execution time between FI and EIT can be attrib-
uted to the time required to download an object load file to
the target processor, i.e. 3 minutes and 11 seconds. That
time must be related to the observation time (i.e. 40 sec-
onds) and the synchronization time (i.e. 20 seconds).
Hence, a reduction in the number of downloads would re-
duce the execution time. This was discussed above, and
formulas were provided for the computation of the execu-
tion time.

Table 4.1 shows a relative comparison between execu-
tion time for different injection techniques. This compari-
son uses the data presented in Table 3.6, and formula (2)
and (3) from section 3.1. It isassumed in Table 4.1 that the
fault and error set has 100 members and that two sets of
test cases exist: one with 10 tests and the other with 100
tests. Then, the total number of experiments equal 1000
and 10000, respectively. The numbers shown in Table 4.1
are speedup in execution time as compared with Fl ac-
cording to formula (2).

Table 4.1. Execution time speedup

Speedup normalized 10 test cases 100 test cases

to Fl and formula (2) A BT = BT
Formula (2) 1.0 4.0 1.0 4.0
Formula (3) 3.2 4.2 4.1 4.2

Summary. The execution times are comparable for Fl
and EIT, however the setup cost is negligible for EIT. Note
that the setup time mainly consists of manual labor, and can
therefore not be compared with the execution time. Our
low-cost choice would thus be EIT if low realism of the
injected faults is acceptable.

4.2 Impact of fault type and test case

The previously presented results provide evidence that
the fault type and the test case have an impact on the re-
sulting failure symptom. A non-parametric statistical test -
the X test for k independent samples - enabled us to con-
clude that there is a relationship between these variables.
The main question is the strength of these relations, and a



simple indicator of the strength of arelationship exists. Let nigue that in most cases exactly mimics the behavior of
us, for instance, compute Pearson’s contingency coefficiersimple, single statement software faults such as the ones
(Pcc) for the chi-square values computed above, see [18, psed in this study. This injection technique can be espe-
305]. A contingency coefficient is 0 for independent vari-cially useful for the injection of software faults targeting an

ables andi/+/2 in case of a perfect relationship. The upperembedded system whose text segment is stored in ROM.

limit of the contingency coefficient can be adjusted toHowever, if a set of generic error injection routines is em-

make the interpretation easier, i.e. 0 for independence afti?Yed: all types of software faults may not be possible to

1 for a perfect relationship. The type of injection, the null€Mulate using EIE.

hypothesis, the probability of occurrence (p) for the com- EIT emulates propagated errors, and it can therefore be

puted chi-square value and Pearson’s contingency coefﬁ’-sed to mimic both software faults and intermittent hard-

cient are shown in Table 4.2. ware faults. However, EIT does not guarantee that a par-
ticular software fault is mimicked, nor does it enable us to

Table 4.2. A summary of conducted tests emulate specific distributions of fault types. Nevertheless,
Type Null hypothesis P Pec | Pecry2 EIT into memory cells storing global variables and stack
; -10 . . . . .
| Thefailure symptoms are 25410 020 | 028 data resulted in a distribution of failure symptoms that at
independent of the fault type X . . .. .
= The fallure symptoms are 175x0% | 0.30 0.42 first glance is quite similar to the outcome of FI and might
independent of the test case - therefore be possible to use as a low-setup-cost method to
EIT The failure symptoms are <10° 0.60 0.85
independent of the error type test a system. . . . .
BT The failure symptoms are 1.93x102%® | 0.42 0.60 To summarize our discussion, Fl is the most accurate
independent of the test case technique, followed by EIE, while EIT is the least accurate
technique. Furthermore, both EIE and EIT may disturb the
Our interpretation of Pcc is: timing characteristics of the target system.

e The fault type and test case had an impact on the fail-
ure symptoms in the case of FI, and the test case ag; Summary
pears to have more influence on the symptoms.

« The injected error type and test case had an impact on This paper presents an investigation of both fault and er-
the failure symptoms in the case of EIT, and the typeaor injection techniques for emulating software faults. For
of injected error seems to have the greatest influencevaluation, 1600 software faults and 5400 time-triggered
of the two. errors were injected into an embedded real-time system. A

- The type of injected error had larger impact (0.85) or 2ult Injection Campaign Control Computer (FiGvas

the failure symptoms, as compared to the type of ind€veloped for this investigation.

jected fault (0.28). This can also be seen in Figure 3.2. Three types of fault and error sets were created: one set
with 200 software faults for fault injection (FI); one set

The test had a | infl the fail with 185 errors that were aimed at emulating the software
i ? ez ;?sfe Ita adarge n lf{ﬁ.nc.e gn te 3'1 utre Slymrféults (EIE); and one set with 675 errors that were meant to
oms for both faulls and errors, this Indicates that a lalgy aqq the system (EIT). Furthermore, two types of injection
amount of test cases should be applied in injection experg periments were conducted: Fl, which modified the

rgle_lz_nts. Th.e greiat |mpactt of the ttedst _I(Ease on the OUthomaéj urce code and downloaded a new object file for each ex-
experiments was not expected. 1he main cause 101 g, iment and EIT, which used a clock activated interrupt

:cmpactdl's that the ?pphlcathn prf[)grarndl's kiletter exermfe outine to inject an error periodically. Eight test cases, 200
or medium energy Ievels, since It periodically re-Computes, 1q anqg eight golden runs resulted in a total of 1608 FI

the desired pressure level. .For low and high energy Igve periments. Eight test cases, 675 errors and eight golden
the application uses predefined pressure levels to a high Ins give a total of 5408 EIT experiments. From our inves-
extent, and is therefore less sensitive to errors in calculatq ations we can see that:

variables. . .
e Fl is the most accurate technique, followed by EIE,

while EIT is the least accurate technique.
e The execution times are comparable for FI and EIT,
however the setup cost is negligible for EIT. Note that
setup time mostly consists of manual labor, and can
therefore not be compared with execution time. Our
low-cost choice would thus be EIT if low realism of
the injected faults is acceptable.

4.3 Emulating softwar e faults

The most accurate way to emulate software faults is, ob-
viously, to modify the source code (FI). Another approach
that emulates software faults is to force the processor into
incorrect behavior via modification of register and memory
contents. Synchronizing the modification of the processor
content with the execution of code (EIE) provides a tech-



e The test case had a large influence on the failure
symptoms for both faults and errors, which indicates
that a large amount of test cases should be applied in
injection experiments.
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