
Practical Aspects of IP Take-Over Mechanisms

Christof FETZER Neeraj SURI

AT&T Labs – Research Technical University of Darmstadt
christof@research.att.com suri@informatik.tu-darmstadt.de

Abstract

Transparent replication has been viewed as the holy grail
of fault-tolerant computing. We discuss issues arising when
using atomic broadcast to replicate services that are ac-
cessed via the Internet. We show how some of these is-
sues can be addressed by the use of IP based replication
schemes. In particular, we argue for the replication of ser-
vices using a simple IP take-over scheme. Also, we show
how a simple fail-over scheme can be combined with a load
shedding and balancing mechanism.

1 Introduction

The dependability community has been investigating con-
cepts and mechanisms to improve the availability of ser-
vices. Fault-tolerance mechanisms use replication to in-
crease the availability of a service. Some researchers still
view transparent replicationof services as the holy grail
of fault-tolerant computing.Transparent replicationmeans
that a service can be replicated without the need to mod-
ify the client or server code. For example, in recent years
a fault-tolerant version of CORBA was defined that enables
programmers a more or less transparent replication of servers
(which, in this case are represented by objects).

clientclient client

Server

request

Server

Service

...

......atomic
broadcast

1 12 2

Figure 1: Transparent active replication mechanisms use an atomic
broadcast mechanism to replicate the sate of a service.

Transparent replication has been investigated in the con-
text of atomic and causal broadcast mechanisms, and there

has been an enormous effort to make broadcast mechanisms
very efficient. A client sends a request to a service by broad-
casting it to all servers (see Figure 1). The client and the
server code can be conventional client/server code in which
the communication mechanism is replaced by an atomic
broadcast mechanism. An atomic broadcast mechanism en-
sures that a client request is either delivered to all servers or
to none of the servers (atomicity property) and all requests
are delivered in the same order to all servers (total order
property). Assuming that the server code is deterministic,
the use of an atomic broadcast mechanism ensures that all
servers stay in sync.

In recent years, researchers have started to argue against
the use of transparent replication (e.g., [6]). One argument
against replication transparency is that application develop-
ers need or want to control how an application is replicated,
e.g., they want to control when a fail-over should take place.
In this paper, we address various implementation, adminis-
trative, and performance issues in the context ofwide-area
services, i.e., services accessed by clients via a wide-area
network like the Internet. In particular, we discuss how IP
based replication mechanisms can address some of these is-
sues.

2 Transparent Replication Issues

Most clients use TCP/IP or UDP/IP to communicate with
a service because of the universal availability of these pro-
tocols. To support transparent replication of such IP based
services, one could tunnel all TCP and UDP traffic through
an atomic broadcast mechanism (see Figure 2). This can be
implemented by wrapping the client and server code with
tunneling code, i.e., no modification of the client or server
code is needed.

Modifying client code and even wrapping client code can
be difficult. Clients of wide-area services are typically in a
different administration domains than the servers (see Fig-
ure 3). Also, the clients themselves can be in many differ-
ent administration domains. Even if the client code is open
source, installing code modifications is not always possible
because not all administrative domains might be willing to

1

client

Server

Translate TCP to atomic broadcast

Server

atomic broadcast
toTCP

...

Figure 2: TCP or UDP traffic could be transparently tunneled through
an atomic broadcast mechanism with the help of server and client side
wrappers.

run the modified version. The same is true for wrappers.
Some administrative domains have very strict rules about
what software and hence, wrappers, can run on a host.

client

Server Server

client client

Server Server

administrative domains

Figure 3: Clients and servers of wide-area services are typically in dif-
ferent administrative domains. Installing modified or wrapped client
code can hence be very difficult.

Implementing an efficient atomic broadcast mechanism
for wide-area systems is non-trivial. Running atomic broad-
cast code on routers would increase the performance. How-
ever, installing an atomic broadcast code on routers is close
to impossible. In wide-area services, the network link be-
tween a client and the servers has typically a lower through-
put and a higher latency than the links between the servers.
To cope with the different link properties – if no protocol
code can be run on the routers – it make sense to implement
a server side broadcast (see Figure 4).

3 TCP-Based Server Side Broadcast

To avoid the above mentioned administrative and perfor-
mance issues, one can use a TCP-based server side broad-
cast mechanism. Recently, a few such mechanisms have
been proposed [1, 5, 4, 7]. The main ideas are that (1) clients
use an unmodified TCP stack to communicate with the ser-
vice, and (2) that servers coordinate amongst themselves to
make sure they receive the same set of messages.

client client client

Server

...

...

Request via TCP

Server

Service

Figure 4: Server side broadcast makes use of the faster links between
the servers to improve the performance of broadcasting requests.

Many services are non-deterministic. One reason is the
prevalent use of multi-threading to be able to harness the
power of multi-processor systems. Another source of non-
determinism are resource depletion failures in the operat-
ing system that propagate to the application level. Non-
deterministic servers can be kept in sync with the help of
a leader/follower protocol (see Figure 5).

T1
T2

T1

... ...

T2

Thread

Leader/

Follower

Figure 5: Most services are non-deterministic, e.g., due to the use of
multi-threading. To keep servers in sync, one needs a coordination
protocol like a leader/follower protocol.

The end-to-end argument implies that there is no need of
enforcing a total order on the messages delivered by a TCP-
based server side broadcast mechanism. Messages from
each client are enqueued at a unique TCP socket. An or-
der on the processing of messages is enforced by the leader
/ follower protocol. Instead of enforcing a total order on
all messages, it is sufficient that a TCP-based server side
broadcast mechanism enforces that servers receive the same
sequence of messages per client, i.e., per socket (see Figure
6).

TCP-based server side broadcast mechanisms together
with a leader / follower protocol can be used to implement
transparent replication of services. For example, consider
that 1) SAMBA clients do not reconnect to a SAMBA ser-
vice after the SAMBA server has failed, and 2) it is not pos-
sible to change the SAMBA client software. In this case,
transparent replication using TCP-based server side broad-
cast mechanisms is an appropriate approach to increase the
availability of the SAMBA service (see Figure 7). In par-

2

client

M2

M1

M2

M1

Figure 6: A TCP-based server side broadcast mechanism ensures that
correct servers receive the same sequence of messages from a client.
There is however no ordering between the messages received from
different clients.

ticular, if the SAMBA server is deterministic, this is good
solution to cope with host crash failures.

client client client...

SAMBA

Server

SAMBA

Server

Service
Figure 7: TCP-base server side replication can be used to replicate
a SAMBA server transparently. Non-deterministic server code will
require a leader/follower protocol to keep the servers in sync.

Implementing a TCP-based server side broadcast mech-
anism and a leader/follower protocol is non-trivial. Both
mechanisms need to be kept up to date with constantly chang-
ing program environments. The TCP-based server side broad-
cast might need to be updated for each new version of the
TCP stack. The leader/follower protocol needs to be able
to cope with all non-deterministic library functions. Hence,
a leader/follower protocol implemented on the library level
might need to be updated for each new library version. Keep-
ing the program environment constant is rarely an option
because at least security patches need to be applied. A con-
stant update of the program environment makes it very diffi-
cult to maintain a robust transparent replication mechanism.
Hence, a different replication mechanism might be a better
choice.

4 Simple IP Address Take-Over

An alternative to transparent replication, which is actu-
ally widely used in industry, is a simple IP address take-over
mechanism. In this approach a service is represented by one
or more IP addresses. Clients use this service IP address to

communicate with a service via UDP or TCP (see Figure
8). Communications in wide-area networks is typically un-
reliable. Hence, many clients used in WANs retry after the
connection to the service has failed.

client

Server

request via TCP or UDP

IP Addr

Server

Figure 8: A service is identified by a IP address (and port). If a request
fails, many clients retry the request.

Many services running on a single host are automatically
restarted when the service crashes. Server crash failures can
be masked by clients retrying failed requests. To deal with
host crash failures in addition to pure service crash failures,
one can restart the service on a different host after the orig-
inal host failed. In this case, client retries mask host crash
failures as long as the new host takes over the service IP
address (see Figure 9).

client

Server

IP Addr

Server

IP Addr

Figure 9: If a host crashes, the server code running on the host crashes.
Host crashes can be masked by restarting the server on a new host,
assigning the service IP address to this host, and clients retrying failed
requests.

Stateless Server Design
To process client requests correctly, most services need

to keep state. When a server crashes, it loses its in mem-
ory state. The standard way to make a service restartable is
to keep sufficient state on a stable storage system (see Fig-
ure 10). We call this state theinter-request state. Keeping
the inter-request state on a stable storage system makes the
servicestateless.

Note that transmission of requests via a wide-area net-
work typically take many milliseconds. Hence, the over-
head of storing inter-request state on stable storage might

3

be acceptable as long as the stable storage system is suffi-
ciently fast. One can use a variety of techniques to make
the storage system fast and highly available, e.g., one can
use replicated memory storage with battery backup. Note
that the storage system needs to be accessible from multiple
hosts and should not be a single point of failure.

Server

client

request

dependable storage system

inter−request state

1

2

3 reply

Figure 10: In a stateless service design, the inter-request state is saved
on stable storage before replying to a request.

When the host executing the server code crashes, the
server code is restarted on a new host. Retried client re-
quests are only processed if there is no reply stored on stable
storage. Otherwise, the previous reply is resent.

Server

client

r1

2

4

5

6 reply

3
equest

dependable storage system

inter−request

state

Server

Figure 11: Replies to messages are stored on stable storage and the
stored replies are resent when a retried request is received.

Implementing a Simple IP Address Take-Over
We have implemented a simple IP address take-over mech-

anism. To do this, we derived a highly available leader elec-
tion protocol from the protocol described in [3]. The idea
is that the leader assumes the service IP address (see Figure
12). If a leader is demoted, it must give up the service IP
address. This can be enforced by assigning an expiration
time to the IP address similarly to the dynamic IP addresses
assigned by DHCP.

Our leader election protocol implements a slightly stronger
specification than the general leader election specification.
The general leader election problem specifies that (1) at any
time there is at most one leader, and (2) infinitely often there

Server Server Server...

IP Addr

Figure 12: The leader assumes the service IP address while all other
hosts have to disable the service IP address.

exists a leader (unless all hosts crash). In most systems one
has a preference of which host should run the server code
and also one wants to keep the service running on the same
host as long as possible. Hence, we extended the speci-
fication by the following requirements: (3) the server with
the highest priority becomes leader (unless a failure occurs),
and (4) only a failure can lead to a leader change.

5 Load Balancing and Fail-Over

For small work-loads, a server running on a single host
might be sufficient. For large work-loads, it is often more
cost effective to distribute the load over multiple hosts. We
introduce a novel load discretization approach that com-
bines load balancing with a simple IP take-over mechanism.

client client client...

Server Server Server...

Load balancer

Figure 13: A load balancer box forwards incoming client connections
to individual hosts.

Load balancing can be achieved by (1) using a load bal-
ancer that forwards TCP connections to a set of servers
(see Figure 13), or (2) using a rotating DNS scheme to dis-
tributed the load over a set of servers. Our approach can be
combined with both existing approaches.

In our approach, we assign a set of IP addresses to the
service. Each client request is mapped to exactly one of
these IP addresses. This can either be done with the help
of a load balancer (see Figure 14) or using a rotating DNS
scheme.

To balance the load or to do a fail-over, our approach can
reassign IP addresses to servers (see Figure 15). In partic-
ular, one server can be assigned more than one IP address,
e.g., when a host crash failure forces other servers to take
over the IP addresses previously assigned to the crashed
server. Note that if too many hosts crash, the remaining

4

client client client...

Load balancer

IP1 IPn
Figure 14: The load balancer (or DNS server) maps client requests to
a unique IP address.

servers might not be able to take over all the work load.
Hence, one needs to facilitate load shedding. In our ap-
proach this is performed by not assigning all service IP ad-
dresses to servers.

IPnIP2

Server

IP5IP1

Server

IP3

Server

Figure 15: A server can be assigned multiple IP addresses.

Our approach can be implemented with the help of a
membership protocol like the one described in [2]. In par-
ticular, we need (1) synchronized clocks, (2) an agreement
on the current members (i.e., servers), and (3) an agreement
on the times at which the membership changes. The as-
signment of IP addresses to servers can be done by a map-
ping that, given the current membership view, assigns each
server a set of unique IP addresses. Since the change of the
membership is synchronized in time, one can avoid that an
IP address is assigned to more than one server at a time.

To clarify this approach, consider a system consisting of
three serversS1, S2, andS3 and three IP addressesIP1,
IP2, andIP3 (see Figure 16). Initially, IP addressIP i is
assigned to serverSi. Let us consider that serverS3 crashes
and at timeT1 the membership changes from{S1, S2, S3}
to {S1, S2}. In this case, serverS1 takes over the IP ad-
dressIP3 from S3. Assume that a server is capable of pro-
cessing the load arriving via two service IP addresses but
not three addresses. If serverS2 crashes and the member-
ship changes at timeT2, S1 still only servers IP addresses
IP1 andIP3 and addressIP3 stays unassigned. In this
case, a load shedding is performed by leaving a service IP
address unassigned.

6 Conclusion

In this paper we argued for the use of IP-based replica-
tion mechanisms for wide-area services. Instead of using
an atomic broadcast based transparent replication, we dis-
cussed reasons for using a TCP-based server side broadcast

Fetzer, Suri

V={S1,S2,

S3}

S1

S2

S3

IP1

IP2

IP3 Assigned IP address(es)

V={S1,S2}

IP1, IP3

IP2

V={S1}

IP1, IP3

Load shedding

T1 T2Servers

Membership Views

Time

Figure 16: The current membership view can be used to assign the
service IP addresses to the servers.

mechanism instead. While IP-based transparent replication
can be a good solution, we also argue that stateless server
designs combined with IP take-over schemes might in many
instances be a more robust design choice. We proposed a
novel approach to combine an IP take-over mechanism with
a load balancing and load shedding scheme.

References

[1] L. Alvisi, T.C. Bressoud, A. El-Khashab, K. Marzullo, and
Z. Zagorodnov. Wrapping server-side tcp to mask connection
failures. InProceedings of Infocom 2001, April 2001.

[2] C. Fetzer and F. Cristian. A fail-aware membership service.
In Proceedings of the 16th Symposium on Reliable Distributed
Systems, pages 157–164, Oct 1997.

[3] C. Fetzer and F. Cristian. A highly available local leader ser-
vice. IEEE Transactions on Software Engineering, pages 603–
618, Sept.-Oct. 1999.

[4] Shivakant Mishra, Manish Marwah, and Christof Fetzer. Tcp
server fault tolerance using connection migration to a backup
server. InInternational Conference on Dependable Systems
and Networks, San Francisco, CA, USA., June 2003.

[5] M. Orgiyan and C. Fetzer. Tapping tcp streams. InProceed-
ings of the IEEE International Symposium on Network Com-
puting and Applications, February 2002.

[6] Werner Vogels, Robbert van Renesse, and Ken Birman. Six
misconceptions about reliable distributed computing. InIn
Proc. of the Eighth ACM SIGOPS European Workshop, Sintra,
Portugal., September 1998.

[7] Dmitrii V. Zagorodnov, Lorenzo Alvisi, Keith Marzullo, and
Thomas C. Bressoud. Engineering fault-tolerant tcp/ip ser-
vices using ft-tcp. InInternational Conference on Dependable
Systems and Networks, San Francisco, CA, USA., June 2003.

5

	Introduction
	Transparent Replication Issues
	TCP-Based Server Side Broadcast
	Simple IP Address Take-Over
	Load Balancing and Fail-Over
	Conclusion

