Practical Aspects of IP Take-Over Mechanisms

Christof FETZER Neeraj SJRI
AT&T Labs — Research Technical University of Darmstadt
christof@research.att.com suri@informatik.tu-darmstadt.de

Abstract has been an enormous effort to make broadcast mechanisms
very efficient. A client sends a request to a service by broad-
Transparent replication has been viewed as the holy grail casting it to all servers (see Figdre 1). The client and the
of fault-tolerant computing. We discuss issues arising whenserver code can be conventional client/server code in which
using atomic broadcast to replicate services that are ac- the communication mechanism is replaced by an atomic
cessed via the Internet. We show how some of these isbroadcast mechanism. An atomic broadcast mechanism en-
sues can be addressed by the use of IP based replicatiorsures that a client request is either delivered to all servers or
schemes. In particular, we argue for the replication of ser- to none of the servers (atomicity property) and all requests
vices using a simple IP take-over scheme. Also, we showare delivered in the same order to all servers (total order
how a simple fail-over scheme can be combined with a loadproperty). Assuming that the server code is deterministic,
shedding and balancing mechanism. the use of an atomic broadcast mechanism ensures that all
servers stay in sync.
In recent years, researchers have started to argue against
1 Introduction the use of transparent replication (e.gl, [6]). One argument
against replication transparency is that application develop-
The dependability community has been investigating con-€rs need or want to control how an application is replicated,
cepts and mechanisms to improve the availability of ser- €-9-, they want to control when a fail-over should take place.
vices. Fault-tolerance mechanisms use replication to in-!n this paper, we address various implementation, adminis-
crease the availability of a service. Some researchers stiltrative, and performance issues in the contexwife-area
view transparent replicatiorof services as the holy grail services i.e., services accessed by clients via a wide-area
of fault-tolerant computingTransparent replicatiomeans network like the Internet. In particular, we discuss how IP
that a service can be replicated without the need to mod-based replication mechanisms can address some of these is-
ify the client or server code. For example, in recent years SU€s.
a fault-tolerant version of CORBA was defined that enables
programmers a more or less transparent replication of servei@  Transparent Replication Issues
(which, in this case are represented by objects).
Most clients use TCP/IP or UDP/IP to communicate with
a service because of the universal availability of these pro-
tocols. To support transparent replication of such IP based
services, one could tunnel all TCP and UDP traffic through
an atomic broadcast mechanism (see Fifjjire 2). This can be
implemented by wrapping the client and server code with
tunneling code, i.e., no modification of the client or server
code is needed.
Modifying client code and even wrapping client code can
_ be difficult. Clients of wide-area services are typically in a
Service different administration domains than the servers (see Fig-
Figure 1: Transpal_'ent active_replication mechanisms use an atomic ureB)_ Also, the clients themselves can be in many differ-
broadcast mechanism to replicate the sate of a service. ent administration domains. Even if the client code is open
Transparent replication has been investigated in the con-source, installing code modifications is not always possible
text of atomic and causal broadcast mechanisms, and theréecause not all administrative domains might be willing to

atomic
broadcast



Request via TCP

Translate TCP to atomic broadcast

atomic broadcast i
oTCP Service

Figure 4: Server side broadcast makes use of the faster links between

Figure 2: TCP or UDP traffic could be transparently tunneled through ~ the servers to improve the performance of broadcasting requests.
an atomic broadcast mechanism with the help of server and client side

WIappers. Many services are non-deterministic. One reason is the

prevalent use of multi-threading to be able to harness the

run the (rjnqdqﬁed \./ersc|jon. Thehsame is true. for v;/rapptt)ers' power of multi-processor systems. Another source of non-
Some administrative domains have very strict rules aboutyeerminism are resource depletion failures in the operat-

what software and hence, wrappers, can run on a host. ing system that propagate to the application level. Non-

deterministic servers can be kept in sync with the help of
@ @ a leader/follower protocol (see Figure 5).
¥ ~

admi\nist(ati\'/e domains

. L eader/

Follower

Figure 3: Clients and servers of wide-area services are typically in dif- 'Thread
ferent administrative domains. Installing modified or wrapped client

o Figure 5: Most services are non-deterministic, e.g., due to the use of
code can hence be very difficult. 9 9

multi-threading. To keep servers in sync, one needs a coordination
Implementing an efficient atomic broadcast mechanism Protocol like aleader/follower protocol.

for wide-area systems is non-trivial. Running atomic broad-  The end-to-end argument implies that there is no need of
cast code on routers would increase the performance. How=enforcing a total order on the messages delivered by a TCP-
ever, installing an atomic broadcast code on routers is closenased server side broadcast mechanism. Messages from
to impOSSible. In wide-area SerViCES, the network link be- each client are enqueued at a unique TCP socket. An or-
tween a client and the servers has typically a lower through-der on the processing of messages is enforced by the leader
put and a higher latency than the links between the serversy follower protocol. Instead of enforcing a total order on
To cope with the different link properties — if no protocol  g|| messages, it is sufficient that a TCP-based server side
code can be run on the routers — it make sense to implemenproadcast mechanism enforces that servers receive the same
a server side broadcast (see Figyre 4). sequence of messages per client, i.e., per socket (see Figure
0)).
3 TCP-Based Server Side Broadcast TCP-based server side broadcast mechanisms together
with a leader / follower protocol can be used to implement
To avoid the above mentioned administrative and perfor- transparent replication of services. For example, consider
mance issues, one can use a TCP-based server side broathat 1) SAMBA clients do not reconnect to a SAMBA ser-
cast mechanism. Recently, a few such mechanisms haveice after the SAMBA server has failed, and 2) it is not pos-
been proposed][] 5,4, 7]. The main ideas are that (1) clientssible to change the SAMBA client software. In this case,
use an unmodified TCP stack to communicate with the ser-transparent replication using TCP-based server side broad-
vice, and (2) that servers coordinate amongst themselves t¢ast mechanisms is an appropriate approach to increase the
make sure they receive the same set of messages. availability of the SAMBA service (see Figufé 7). In par-



communicate with a service via UDP or TCP (see Figure
[8). Communications in wide-area networks is typically un-
reliable. Hence, many clients used in WANS retry after the
connection to the service has failed.

request via TCP or UDP

Figure 6: A TCP-based server side broadcast mechanism ensures that

correct servers receive the same sequence of messages from a client.
There is however no ordering between the messages received from

different clients.

ticular, if the SAMBA server is deterministic, this is good
solution to cope with host crash failures. Figure 8: A service is identified by a IP address (and port). If a request

fails, many clients retry the request.

Many services running on a single host are automatically
restarted when the service crashes. Server crash failures can
be masked by clients retrying failed requests. To deal with
host crash failures in addition to pure service crash failures,
one can restart the service on a different host after the orig-
inal host failed. In this case, client retries mask host crash
failures as long as the new host takes over the service IP
address (see Figuré 9).

Service

Figure 7: TCP-base server side replication can be used to replicate
a SAMBA server transparently. Non-deterministic server code will
require a leader/follower protocol to keep the servers in sync.

Implementing a TCP-based server side broadcast mech-
anism and a leader/follower protocol is non-trivial. Both
mechanisms need to be kept up to date with constantly chang-
ing program environments. The TCP-based server side broad-
cast might need to be updated for each new version of the
TCP stack. The leader/follower protocol needs to be able
to cope with all non-deterministic library functions. Hence,

a !eader/follower protocol |mplemented_on the Ilbr.ary level Figure 9: If a host crashes, the server code running on the host crashes.
might need to be updated for each new library version. Keep- Host crashes can be masked by restarting the server on a new host,
ing the program environment constant is rarely an option assigning the service IP address to this host, and clients retrying failed
because at least security patches need to be applied. A con-requests.

stant update of the program environment makes it very diffi- Stateless Server Design

cult to maintain a robust transparent replication mechanism. To process client requests correctly, most services need
Hence, a different replication mechanism might be a better keep state. When a server crashes, it loses its in mem-

choice. ory state. The standard way to make a service restartable is
to keep sufficient state on a stable storage system (see Fig-
4 Simple IP Address Take-Over ure[I0). We call this state ttinter-request stateKeeping
the inter-request state on a stable storage system makes the
An alternative to transparent replication, which is actu- servicestateless
ally widely used in industry, is a simple IP address take-over  Note that transmission of requests via a wide-area net-
mechanism. In this approach a service is represented by on&vork typically take many milliseconds. Hence, the over-
or more IP addresses. Clients use this service IP address thead of storing inter-request state on stable storage might




be acceptable as long as the stable storage system is suffi-
ciently fast. One can use a variety of techniques to make

the storage system fast and highly available, e.g., one can
use replicated memory storage with battery backup. Note
that the storage system needs to be accessible from multiple

hosts and should not be a single point of failure.

Figure 12: The leader assumes the service IP address while all other
hosts have to disable the service IP address.

exists a leader (unless all hosts crash). In most systems one

request 1| | 3 reply has a preference of which host should run the server code
and also one wants to keep the service running on the same
host as long as possible. Hence, we extended the speci-
fication by the following requirements: (3) the server with
the highest priority becomes leader (unless a failure occurs),

inter—request state and (4) only a failure can lead to a leader change.

2

8 dependable storage system 5 Load Balancing and Fail-Over

Figure 10: In a stateless servic'e design, the inter-request state is saved For small work-loads, a server running on a single host
on stable storage before replying to a request. might be sufficient. For large work-loads, it is often more
When the host executing the server code crashes, thecost effective to distribute the load over multiple hosts. We
server code is restarted on a new host. Retried client re-introduce a novel load discretization approach that com-
quests are only processed if there is no reply stored on stabl®ines load balancing with a simple IP take-over mechanism.
storage. Otherwise, the previous reply is resent.

» ?
e

Figure 13: A load balancer box forwards incoming client connections
dependable storage system to individual hosts.

1| request

inter—request
state

. . ! Load balancing can be achieved by (1) using a load bal-
Figure 11: Replies to messages are stored on stable storage and the .
stored replies are resent when a retried request is received. ancer _that forwards TCF_’ connectl_onS to a set of serve_zrs
_ _ (see Figuré 13), or (2) using a rotating DNS scheme to dis-

Implementing a Simple IP Address Take-Over tributed the load over a set of servers. Our approach can be

We have implemented a simple IP address take-over mecBompined with both existing approaches.

anism. Todo thiS, we derived a h|gh|y available leader elec- In our approach, we assign a set of IP addresses to the
tion protocol from the protocol described in [3]. The idea service. Each client request is mapped to exactly one of
is that the leader assumes the service IP address (see Figutgese IP addresses. This can either be done with the help

[12). If a leader is demoted, it must give up the service IP of 4 |oad balancer (see Figdre] 14) or using a rotating DNS
address. This can be enforced by assigning an expirationscheme.

time to the IP address Similarly to the dynamic IP addresses To balance the load orto do a fai|-0ver, our approach can
assigned by DHCP. _ _ reassign IP addresses to servers (see Fjgyre 15). In partic-
Our leader election protocol implements a slightly strongegjar, one server can be assigned more than one IP address,
specification than the general leader election specification.e g, when a host crash failure forces other servers to take
The general leader election problem specifies that (1) at anypyer the IP addresses previously assigned to the crashed
time there is at most one |eader, and (2) |nf|n|te|y often there server. Note that if too many hosts Crash, the remaining



Servers T1 T2 Time
s1 IP1 1P1, IP3 IP1, IP3

L oad shedding

L oad balancer - R K

A
= IP3 ussigned 1P address(es)}

Figure 14: The load balancer (or DNS server) maps client requests to
a unique IP address.

. Figure 16: The current membership view can be used to assign the
servers might not be able to take over all the work load. service IP addresses to the servers.

Hence, one needs to facilitate load shedding. In our ap-

proach this is performed by not assigning all service IP ad- mechanism instead. While IP-based transparent replication
dresses to servers. can be a good solution, we also argue that stateless server
designs combined with IP take-over schemes might in many
instances be a more robust design choice. We proposed a
novel approach to combine an IP take-over mechanism with
a load balancing and load shedding scheme.

Figure 15: A server can be assigned multiple IP addresses. References

Our approach can be implemented with the help of & 1) | aisi, T.C. Bressoud, A. El-Khashab, K. Marzullo, and
membership protocol like the one described'in [2]. In par- * * 7. zagorodnov. Wrapping server-side tcp to mask connection
ticular, we need (1) synchronized clocks, (2) an agreement  fajlures. InProceedings of Infocom 200April 2001.
onthe Cl_me”t mempers (e, servers)’_and (3)an agreemer[&] C. Fetzer and F. Cristian. A fail-aware membership service.
on the times at which the membership changes. The as- " |, proceedings of the 16th Symposium on Reliable Distributed
signment of IP addresses to servers can be done by a map- Systemspages 157—164, Oct 1997.
ping that, given th_e current membershl_p VIEW, assIgns eac 3] C. Fetzer and F. Cristian. A highly available local leader ser-
server a set of unique IP addresses. Since the change of the™ ... \EEE Transactions on Software Engineeripages 603—
membership is synchronized in time, one can avoid thatan  g1g sept.-Oct. 1999.

IP r i ign more than on rver ime.
address is assigned to more than one server at a time [4] Shivakant Mishra, Manish Marwah, and Christof Fetzer. Tcp

To clarify this approach, consider a system consisting of : ; oo
th S1 92 d.$3 and th P add EP1 server fault tolerance using connection migration to a backup
ree servers i, oz, an an ree I~ address ’ server. Ininternational Conference on Dependable Systems

IP2, andIP3 (see Figur¢ 16). Initially, IP addregs: is and NetworksSan Francisco, CA, USA., June 2003.
assigned to servefi. Let us consider that servSB crashes
and at time7'1 the membership changes frdifi1, 52, S3}

to {S1, S2}. In this case, serve$1 takes over the IP ad-
dressl P3 from S3. Assume that a server is capable of pro-
cessing the load arriving via two service IP addresses but 6]
not three addresses. If serv&? crashes and the member-
ship changes at tim&2, S1 still only servers IP addresses
IP1 and I P3 and addresd P3 stays unassigned. In this
case, a load shedding is performed by leaving a service =Y
address unassigned.

[5] M. Orgiyan and C. Fetzer. Tapping tcp streamsPhoceed-
ings of the IEEE International Symposium on Network Com-
puting and ApplicationsFebruary 2002.

Werner Vogels, Robbert van Renesse, and Ken Birman. Six
misconceptions about reliable distributed computing. Inn
Proc. of the Eighth ACM SIGOPS European Works!®iptra,
Portugal., September 1998.

Dmitrii V. Zagorodnov, Lorenzo Alvisi, Keith Marzullo, and
Thomas C. Bressoud. Engineering fault-tolerant tcp/ip ser-
vices using ft-tcp. Innternational Conference on Dependable
Systems and NetworkSan Francisco, CA, USA., June 2003.
6 Conclusion

In this paper we argued for the use of IP-based replica-
tion mechanisms for wide-area services. Instead of using
an atomic broadcast based transparent replication, we dis-
cussed reasons for using a TCP-based server side broadcast



	Introduction
	Transparent Replication Issues
	TCP-Based Server Side Broadcast
	Simple IP Address Take-Over
	Load Balancing and Fail-Over
	Conclusion

