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Abstract—Federated Learning (FL) enables collaborative
model training across multiple devices while preserving data
privacy. However, it remains susceptible to backdoor attacks,
where malicious participants can compromise the global model.
Existing defence methods are limited by strict assumptions on
data heterogeneity (Non-Independent and Identically Distributed
data) and the proportion of malicious clients, reducing their
practicality and effectiveness. To overcome these limitations, we
propose Robust Knowledge Distillation (RKD), a novel defence
mechanism that enhances model integrity without relying on
restrictive assumptions. RKD integrates clustering and model
selection techniques to identify and filter out malicious updates,
forming a reliable ensemble of models. It then employs knowledge
distillation to transfer the collective insights from this ensem-
ble to a global model. Extensive evaluations demonstrate that
RKD effectively mitigates backdoor threats while maintaining
high model performance, outperforming current state-of-the-art
defence methods across various scenarios.

Index Terms—Federated Learning, Defence Method, Backdoor
Attacks

I. INTRODUCTION

Federated Learning (FL) has emerged as a powerful
paradigm that enables multiple clients to collaboratively train
a shared global model without exchanging their private local
data, thereby enhancing data privacy and security [14]. In FL,
each client trains a local model on its own dataset and shares
only the model updates with a central server, which aggregates
these updates to form the global model. Despite its advantages,
FL faces significant challenges that threaten the effectiveness
and integrity of the resulting global model.

One critical challenge is the vulnerability of FL to security
threats, particularly backdoor attacks. In these attacks, mali-
cious clients introduce harmful updates into the training pro-
cess by embedding hidden triggers within their model updates
[15]. These hidden triggers are specific patterns or inputs that,
when encountered by the global model, cause it to produce
incorrect or malicious outputs. Malicious clients achieve this
by manipulating their local training data and altering their
model parameters, ensuring that the backdoor behaviour is
incorporated into the global model during aggregation without
being detected. Since these triggers are often designed to be
stealthy inputs, and malicious clients train on both clean input
data and inputs containing the trigger, the attacks can go
unnoticed during normal validation. This stealthiness makes
backdoor attacks particularly effective and dangerous threats
to FL systems [25]. As a result, the compromised global model

behaves normally on standard inputs but can cause significant
harm when the triggers are activated, posing serious risks to
the integrity and reliability of FL deployments.

Another significant challenge arises from the Non-IID data
distribution across clients. In real-world scenarios, client data
often differ substantially from the overall data distribution,
leading to inconsistent global model performance and slower
convergence [24]. This heterogeneity can cause conflicting
model updates from different clients, making it difficult for
the global model to generalize well across all participants.
Many existing defense methods assume that client data are
Independent and Identically Distributed (IID) and that only
a small fraction of clients are malicious [27], [28], [8].
These assumptions simplify the aggregation process but fail
to capture the complexity of practical FL deployments.

Various defense strategies have been explored. Robust ag-
gregation methods, such as RLR [17] and FoolsGold [8],
modify the aggregation process to reduce the influence of
malicious updates; however, they may struggle against sophis-
ticated backdoor attacks and perform suboptimally in Non-
IID settings. Other approaches include root data validation
methods like FLTrust [4] and Baffle [2], which use trusted
data to validate client updates, yet they can be circumvented by
adversaries that mimic benign behavior. Differential Privacy-
based methods, exemplified by FLAME [16], incorporate noise
and weight clipping to maintain privacy and integrity, but they
require careful tuning and often compromise model perfor-
mance. While approaches such as FedDF [13] and FedBE
[5] have been proposed to address the challenges posed by
Non-IID data—primarily through knowledge distillation tech-
niques—they focus on improving model performance under
data heterogeneity rather than explicitly defending against
backdoor attacks. In other words, although these methods help
mitigate issues caused by Non-IID distributions, they do not
provide targeted defenses against adversarial updates.

To bridge this gap, we propose Robust Knowledge Distil-
lation (RKD), a novel defense mechanism that enhances the
integrity of the global model without relying on restrictive
IID assumptions or low malicious-client ratios. RKD integrates
clustering and model selection techniques to identify and filter
out malicious updates, forming a reliable ensemble of benign
models. Specifically, it employs cosine similarity measures and
Hierarchical Density-Based Spatial Clustering of Applications
with Noise (HDBSCAN) to cluster client models, isolating



potential outliers. Models closest to the median of the benign
cluster are then selected to form an ensemble that is subse-
quently distilled into the global model. This approach defends
against backdoor attacks in Non-IID settings.

Our contributions are summarized as follows:

• We introduce the RKD framework, which robustly ag-
gregates client updates by filtering out adversarial contri-
butions without assuming IID data or a low fraction of
malicious clients.

• We evaluate RKD on diverse datasets, including CIFAR-
10, EMNIST, and Fashion-MNIST, demonstrating its
effectiveness against sophisticated backdoor attacks such
as A3FL [22], F3BA [7], DBA [20], ADBA [26], and
TSBA [3].

• Empirical results show that RKD maintains high model
accuracy above 80% while reducing attack success rates
below 17%, outperforming state-of-the-art defense meth-
ods, particularly in challenging Non-IID scenarios.

Extensive experiments underscore the effectiveness of RKD
in enhancing FL robustness, and maintaining high model
performance while effectively mitigating backdoor threats.
The implementation of the RKD framework is available at
https://github.com/EbtisaamCS/RKD.git.

II. BACKGROUND AND PROBLEM SETTING

FL is a distributed machine learning paradigm where multi-
ple clients collaboratively train a shared global model Mglobal
while keeping their local data Di decentralized and private.
Each client i trains a local model Mi on its own dataset Di

and then shares only the model parameters θi with a central
server. The central server aggregates these local parameters
to update the global model. A common aggregation algorithm
is Federated Averaging (FedAvg), which computes the global
model parameters as: θglobal = 1

N

∑N
i=1 θi, where N is the

number of participating clients [14]. After aggregation, the
server sends the updated global model Mglobal back to all
participating clients. Each client then updates its local model
using the received global parameters, ensuring synchronization
across the network. This collaborative process allows the
construction of a global model that benefits all clients without
exposing datasets, thus preserving data privacy [25].

However, despite its advantages, FL is vulnerable to security
threats, particularly backdoor attacks. In backdoor attacks,
malicious clients aim to compromise the integrity of the global
model Mglobal by manipulating their local training data Di

and/or altering their model updates θi before sending them to
the central server. These manipulations are designed to embed
hidden malicious behaviours into the global model without
being detected. Furthermore, the presence of Non-IID data dis-
tributions among clients exacerbates the difficulty in detecting
and mitigating such attacks, as data heterogeneity can mask
the malicious updates, making it challenging to distinguish
between benign model variations and manipulations [7].

A. Backdoor Attacks

1) Data Poisoning Attacks: In backdoor data poisoning
attacks, malicious clients intentionally modify their local train-
ing data to embed hidden triggers that induce the global
model to exhibit malicious behaviour when these triggers
are encountered [15]. Specifically, a malicious client takes
its original dataset Di = {(xj , yj)} and creates a poisoned
dataset Dpoison

i by injecting a small number of modified
data instances {(x′

k, y
′
k)}. In these instances, x′

k contains a
trigger pattern—such as a specific pixel arrangement in an
image—and y′k is an incorrect target label chosen by the
attacker. The modified dataset D̃i = Di ∪Dpoison

i is then used
to train the local model Mi [20].

The attacker’s objective is to train Mi such that it performs
well on normal data while misclassifying inputs containing
the trigger pattern. This can be formalized by minimizing the
loss function: L(Mi(D̃i), y), where y represents the labels.
By successfully training on D̃i, the model learns the backdoor
association between the trigger and the target label y′k. When
these malicious model updates θi are aggregated by the server,
the global model Mglobal inherits the backdoor behaviour,
causing it to misclassify inputs containing the trigger pattern
while maintaining normal performance on clean data.

2) Model Poisoning Attacks: In backdoor model poisoning
attacks, malicious clients manipulate their local model param-
eters θi to embed backdoors into the global model, often in
combination with injecting triggers into their training data.
Unlike data poisoning attacks that focus primarily on the
training data, model poisoning attacks involve directly altering
the model parameters to maximize the impact of the backdoor
while minimizing the risk of detection [24].

In general, malicious clients may:
• Manipulate Model Parameters: After training on the

poisoned data, attackers further manipulate their model
parameters θi to enhance the backdoor effect or to avoid
detection. This can involve:

– Adversarial Adaptation: Adapting the trigger and
model parameters to remain effective against changes
in the global model during training [22].

– Scaling Weights: Amplifying the impact of the ma-
licious update by scaling the model parameters [3]:
θpoison
i = α · θi, where α > 1 increases the update’s

influence on the global model during aggregation.
– Adding Perturbations: Introducing subtle changes

to the model parameters to maintain stealth [7]:
θpoison
i = θi + δ, where δ is a small perturbation

designed to embed the backdoor while avoiding
detection by defence mechanisms.

Advanced optimization techniques, such as Projected Gradi-
ent Descent (PGD) [22], can be employed to iteratively adjust
δ to find the optimal perturbation that balances attack success
with stealthiness [19]. In some cases, attackers perform model
replacement attacks, where they entirely replace their local
model with a maliciously crafted model θpoison

i and scale it
to influence the global aggregation [3] disproportionately. By

https://github.com/EbtisaamCS/RKD.git


carefully manipulating both the training data and the model
parameters, attackers ensure that their malicious updates blend
in with those from benign clients, making the backdoor attack
stealthy and difficult to detect.

B. Impact on the Global Model

When the central server aggregates the model up-
dates, the presence of malicious updates from attackers
influences the global model parameters. Specifically, the
aggregated global model parameters become: θpoison

global =
1
N

(∑
i∈H θi +

∑
j∈M θpoison

j

)
, where H is the set of honest

clients andM is the set of malicious clients. The malicious up-
dates θpoison

j are designed to inject the backdoor into the global
model M poison

global . As a result, the compromised global model
may behaves normally on standard (clean) inputs, maintaining
high performance and thus not raising suspicion. However,
when presented with inputs containing the backdoor trigger,
the model exhibits incorrect or malicious behaviour, such as
misclassifying the input or producing outputs desired by the
attacker. This stealthy alteration poses significant risks to the
integrity and reliability of the FL system, as the backdoor can
remain undetected until the trigger is activated.

C. Characteristics of Backdoor Attacks

Backdoor attacks often exhibit distinctive characteristics in
the model updates sent by malicious clients, which can be
exploited for detection. Key characteristics include:

• Angular Deviation: Malicious model updates may have
a different direction in the parameter space compared
to updates from benign clients [3]. This directional dif-
ference can be quantified using the cosine similarity
(or angular deviation) between the parameter vectors
of malicious updates θattack and benign updates θbenign:
∆θangular = cos−1

(
θattack·θbenign

∥θattack∥∥θbenign∥

)
. Angular deviations

indicate that the malicious update is contributing in a
different direction, which may be due to the attacker’s
attempt to embed the backdoor, such as F3BA attack [7].

• Magnitude Deviation: Malicious updates may have a
significantly different norm magnitude compared to be-
nign updates. This occurs when attackers scale their
model updates to increase their influence on the aggre-
gated global model [20]. The magnitude deviation can be
observed when: ∥θattack∥ ≫ ∥θbenign∥.

• Subtle Deviations: Some attackers design their updates
to closely resemble those of benign clients, keeping
the deviation between the malicious and benign updates
within a small threshold ϵ to avoid detection: ∥θattack −
θbenign∥ < ϵ. Techniques like A3FL attack [22] adjust
both the magnitude and direction of the malicious update
to embed the backdoor while maintaining stealthiness.

Understanding these characteristics is crucial for designing
defence mechanisms that can detect and mitigate backdoor
attacks without relying on overly restrictive assumptions.

D. Threat Model

Our work assumes the FL system in which a subset of
clients, referred to as malicious clients, aim to compromise
the global model through backdoor attacks. The goal of these
attacks is to embed hidden triggers into the global model,
causing targeted misclassifications on specific inputs while
maintaining high accuracy on clean data to avoid detection.
Below, we outline the adversary’s knowledge, capabilities, and
the defender’s knowledge:

• Adversary’s Knowledge: The malicious clients have no
access to other clients’ model updates or data. They op-
erate under the assumption that they can only manipulate
their local data and model updates.

• Adversary’s Capabilities: The adversaries can collude
and coordinate their attacks but cannot intercept or alter
communications between other clients and the server.
They can manipulate their local training data (data poi-
soning) and modify their model updates before sending
them to the server (model poisoning).

• Defender’s Knowledge: The server is aware that some
clients may be malicious but does not know their identi-
ties. The server has access only to the submitted model
updates and any auxiliary data (e.g., public unlabeled
datasets) used for knowledge distillation.

III. RELATED WORK

Defending against backdoor attacks in FL is a critical area
of research, with various strategies proposed to enhance the
robustness of FL. These defence mechanisms can be broadly
categorized into robust aggregation methods, clustering-based
defences, and knowledge distillation approaches.

Robust Aggregation Methods aim to mitigate the influence
of malicious updates during the model aggregation process.
The Robust Learning Rate (RLR) method [17] adjusts the
learning rates of clients based on the alignment of their updates
with the global model’s direction. By assigning smaller learn-
ing rates to updates that deviate significantly, RLR reduces the
impact of potentially malicious updates. However, RLR may
not fully address attacks that manipulate the magnitude of up-
dates, such as scaling attacks, and its effectiveness diminishes
in heterogeneous (Non-IID) data environments where benign
updates naturally vary in direction and magnitude.

FoolsGold [8] is designed to counter backdoor attacks by
analyzing the similarity of gradient updates among clients. It
assigns lower aggregation weights to clients whose updates are
overly similar, under the assumption that malicious clients will
produce highly similar gradients due to coordinated attacks.
While effective against certain types of attacks, FoolsGold
may inadvertently penalize benign clients with similar data
distributions, leading to unfairness and potential degradation
of overall model performance.

Clustering-Based Defences. Prior work has explored
clustering-based techniques to distinguish between benign and
malicious updates in federated learning by grouping similar
updates and flagging outliers. For example, FLAME [16]



leverages HDBSCAN for clustering and introduces noise to
enhance security; however, its adaptability to evolving threat
landscapes remains limited. Similarly, RFCL [1] employs
HDBSCAN to cluster client updates for defending against
gradient poisoning attacks, yet its effectiveness diminishes
against adaptive backdoor attacks [22]. A critical limitation
of these methods lies in their reliance on the precision of
the clustering process, which is often compromised in high-
dimensional parameter spaces typical of deep learning models.
In such spaces, traditional clustering algorithms can struggle
due to the curse of dimensionality, leading to inefficient
clustering and the potential misclassification of benign updates
as malicious, or vice versa.

In contrast, our approach mitigates these issues by first
computing cosine similarity scores between client updates and
the global model. These scalar similarity values capture the
directional alignment of updates while reducing the data from
a high-dimensional space to a one-dimensional representation,
thereby simplifying the clustering task. We then apply HDB-
SCAN to these cosine similarity scores, which significantly
enhances clustering efficiency and accuracy.

Knowledge Distillation Approaches have been recognized
for their ability to improve learning efficiency and address
Non-IID data distributions in a federated framework. Methods
such as FedDF [13] and FedBE [5] leverage knowledge
distillation to aggregate models. FedDF performs model fusion
by distilling knowledge from client models into a global model
using unlabeled public data, effectively aligning the models’
outputs. FedBE builds upon this by employing Bayesian
ensemble techniques to instruct a student model based on the
ensemble’s predictive distribution.

FedRAD [18] enhances FedDF by assigning weights to
client models according to their median scores, which measure
how often a model’s prediction corresponds to the median pre-
diction among all clients. While these methods improve per-
formance in Non-IID settings, they are vulnerable to backdoor
attacks when transferring knowledge from ensemble models
without analyzing outliers. Malicious clients can introduce
backdoors into their models, and without mechanisms to detect
and exclude these compromised models, the backdoor triggers
can be propagated to the global model during distillation.

Our proposed approach, RKD, builds upon existing methods
by innovatively integrating and enhancing foundational tech-
niques such as HDBSCAN and knowledge distillation. This
approach addresses the limitations of prior works, particularly
in defending against recent backdoor attacks in Non-IID data.

First, by integrating cosine similarity with HDBSCAN,
RKD improves clustering efficiency in high-dimensional pa-
rameter spaces, effectively identifying malicious updates even
when they are subtle or adaptive. Focusing on the angular rela-
tionships between model updates captures essential differences
without being overwhelmed by the volume of parameters,
thereby ensuring accurate clustering despite Non-IID data.

Second, the RKD framework incorporates a robust model
selection process that selects models near the median of
the cluster. By identifying and using the most representative

models, RKD further mitigates the influence of any remaining
malicious updates. This selection forms a reliable and trust-
worthy ensemble for knowledge distillation.

Third, RKD ensures secure knowledge transfer by distilling
from the carefully selected ensemble models, preventing the
propagation of backdoor triggers to the global model. By
excluding outlier models identified during clustering, RKD
reduces the risk of incorporating malicious behaviours into the
model. Additionally, knowledge distillation aids in smoothing
out variations caused by Non-IID data, leading to a more
generalized and robust global model.

By addressing the challenges of high-dimensional data, im-
proving clustering efficiency, and ensuring secure knowledge
transfer, RKD provides a robust defence against backdoor
attacks in federated learning while effectively handling Non-
IID data distributions.

IV. METHODOLOGY

The RKD framework is designed to secure FL against back-
door attacks by identifying and mitigating malicious model
updates. It consists of three core components: Automated
Clustering, Model Selection, and a Knowledge Distillation
Module. These components work together to detect and elim-
inate malicious influences while preserving the performance
and integrity of the global model.

A. Framework Overview

The proposed RKD framework employs a multi-tiered strat-
egy to enhance the robustness of federated learning systems.
We provide an overview of the framework by outlining its
key components and processes. Detailed explanations of each
component are presented in the subsequent subsections.

Initially, the central server initializes the global model
M0

global and broadcasts it to all participating clients. Each client
i trains its local model Mr

i on its private dataset Di, starting
from the current global model Mr

global. The resulting updated
model parameters θri are then returned to the server.

At the server, the focus is on identifying potential malicious
updates. The server computes the cosine similarity between
each client model update θri and the current global model
Mr

global. This metric captures the angular similarity between
local updates and the global model, enabling the detection of
updates that significantly deviate in direction—a characteristic
of malicious behavior known as Angular Deviation.

Using these similarity scores, the server employs the HDB-
SCAN algorithm to cluster the models based on their similarity
to the global model. This clustering process distinguishes be-
nign updates, which form dense clusters due to their similarity,
from potentially malicious updates, which appear as outliers
because of their dissimilarity. By clustering based on similarity
scores rather than directly using high-dimensional parameter
vectors, the computational complexity is significantly reduced,
making the clustering process more scalable and efficient.

Within the benign cluster, the server computes the median of
the model parameters by taking the median of each parameter
across the models. This helps mitigate the impact of extreme



values in the updates, addressing the Magnitude Deviation
characteristic of malicious behavior.

To further enhance robustness, the server selects models
whose parameters are closest to the median to form an
ensemble. This selection filters out any updates that may have
evaded detection during clustering but still deviate from the
central tendency of the benign models.

The selected models are then aggregated to form an initial
distilled model. To further refine this model and improve its
resilience against subtle backdoor triggers in Non-IID settings,
Knowledge Distillation (KD) is applied. The ensemble of
selected models guides the refinement of the distilled model
Mr+1

global, ensuring it reflects the collective behavior of benign
clients. This process mitigates the risk of Subtle Deviations,
where attackers craft updates that closely mimic benign up-
dates in both magnitude and direction.

Finally, the server broadcasts the refined global model
Mr+1

global to benign clients for further training. For clients
identified as malicious, our primary approach is the Exclusion
Strategy: these clients are not provided with the updated
global model Mr+1

global; instead, they continue training using
their current local model until they are reclassified as benign.
This complete exclusion prevents adversaries from adapting
their strategies based on the most recent global model updates.

As an alternative, we also consider the Perturbation Strat-
egy (referred to as RKD Perturbed Global Model, or PGM). In
this approach, to mask the fact that a client has been flagged as
malicious, the server sends a perturbed version of the refined
global model. Specifically, the perturbed model is defined as
Mr+1

pert = Mr+1
global + η, where η is a noise vector with a small

magnitude (e.g., ∥η∥ ≈ 1 × 10−4). This strategy limits the
opportunity for adaptive adversaries to deduce their status
while still providing them with an updated model.

In both cases, if a client previously classified as malicious
is reclassified as benign in subsequent rounds, it will begin
receiving the updated global model Mr+1

global to realign with the
overall training process.

Algorithm 1 summarizes the RKD framework.

B. Automated Clustering.

This component identifies and excludes potentially mali-
cious models to maintain the integrity of the federated learning
process. The method leverages cosine similarity and the HDB-
SCAN clustering algorithm to distinguish between benign and
malicious model updates.

At iteration r, each client i has local model parameters θri .
To identify alignment with the current global model, the server
computes the cosine similarity si between each client’s model
and the global model Mr

global:

si =
(θri )

⊤
Mr

global

∥θri ∥
∥∥∥Mr

global

∥∥∥ , for i = 1, . . . , N.

Higher cosine similarity values indicate greater alignment with
the global model, which is expected for benign clients, while
malicious clients are more likely to deviate.

Algorithm 1 RKD Framework Methodology

Require: Clients A, number of iterations R, malicious client
strategy S ∈ {Exclusion, Perturbation}

Ensure: Final global model MR
global

1: Initialize global model M0
global

2: for r = 0 to R− 1 do
3: if r = 0 then
4: Send M0

global to all clients in A
5: else
6: Send Mr

global to benign clients Ar−1
benign

7: if S = Exclusion then
8: for each malicious client i ∈ A \ Ar−1

benign do
9: Send the current local model Mr

i to client i
10: end for
11: else {Otherwise, using Perturbation}
12: Compute perturbed model Mr

pert = Mr
global + η

13: Send Mr
pert to malicious clients A \ Ar−1

benign
14: end if
15: end if
16: Collect models {Mr} = {Mr

i | i ∈ A}
17: Identify {Mr

benign} and Ar
benign via clustering ▷ See

Algorithm 2
18: Select ensemble models Er from {Mr

benign}
19: Compute aggregated model Mr

distill from Er
20: Update Mr+1

global = KD(Mr
distill, Er) ▷ See Algorithm 3

21: end for
22: return Final global model MR

global

These similarity scores {si} are then clustered using HDB-
SCAN. Clustering based on scalar similarity scores signifi-
cantly reduces computational complexity compared to cluster-
ing in the high-dimensional parameter space.

The minimum cluster size Q for HDBSCAN is dynam-
ically adjusted at each training round r using the formula:
Q = max (2, ⌈0.2N − r⌉) , where N is the total number of
participating clients, and ⌈·⌉ denotes the ceiling function to
ensure Q is an integer.

Applying HDBSCAN to the set of similarity scores yields
cluster labels {Li}: {Li} = HDBSCAN ({si}, Q) . For each
identified cluster Ck, the mean cosine similarity µk is com-
puted: µk = 1

∥Ck∥
∑

i∈Ck
si, where ∥Ck∥ is the number of

clients in cluster Ck.
The cluster with the highest mean cosine similarity µmax is

considered the benign cluster: µmax = max ({µk}) . Clusters
are classified as follows:

Cluster Ck is classified as

{
benign, if µk = µmax,

malicious, otherwise.

Models in the benign cluster are used for further training
and receive the updated global model in the next iteration.
For models identified as malicious, our framework supports
two strategies. In the primary Exclusion Strategy, malicious
clients are entirely excluded from receiving the updated global
model, thereby limiting their influence on the federated learn-



ing process. Alternatively, under the Perturbation Strategy,
malicious clients receive a perturbed version of the updated
global model, which similarly limits their influence while
obscuring their classification.

The detailed steps of the automated clustering procedure are
presented in Algorithm 2.

Algorithm 2 Automated Clustering Algorithm

Require: {Mr} = {θri }Ni=1: Client models at iteration r
Ensure: {Mr

benign}, Ar
benign: Benign models and client indices

1: for each client i = 1 to N do
2: Compute cosine similarity score si =

(θr
i )

⊤Mr
global

∥θr
i ∥∥Mr

global∥
3: end for
4: Apply HDBSCAN to similarity scores
5: for each cluster Ck do
6: Compute mean cosine similarity µk = 1

∥Ck∥
∑

i∈Ck
si

7: end for
8: Determine benign cluster: µmax = max ({µk})
9: Identify benign clients: Ar

benign =
{i | Li = k and µk = µmax}

10: Collect benign models: {Mr
benign} =

{
θri | i ∈ Ar

benign

}
11: return {Mr

benign}, Ar
benign

C. Model Selection.
This component refines the set of benign models by se-

lecting the most representative ones for aggregation, thereby
mitigating the impact of outliers and enhancing the robustness
of the aggregated model against backdoor attacks.

From the set of benign models {Mr
benign} = {θri | i ∈

Ar
benign}, we compute the median model parameter vector

θrmedian by taking the element-wise median across all benign
models: θrmedian = median

(
{θri | i ∈ Ar

benign}
)
.

Next, we calculate the distance between each benign model
θri and the median model θrmedian using the L1 norm: di =
∥θri − θrmedian∥1 , for all i ∈ Ar

benign.
These distances {di} are then used to rank the benign

models. To select the most representative models, we define
a threshold ϵ based on the dispersion of the di values. For
example, one may set ϵ = µd + kσd, where µd and σd denote
the mean and standard deviation of the distances {di}, and
k is a hyperparameter that controls the threshold level. The
ensemble is then defined as: Er =

{
θri ∈ {Mr

benign} | di ≤ ϵ
}
.

This threshold ensures that only models whose distances from
the median are within a reasonable range are selected, thereby
accommodating the inherent variability in benign updates.

D. Knowledge Distillation Process.

This process refines the global model by distilling knowl-
edge from an ensemble of selected benign models Er, iden-
tified through the previous steps. The server utilizes an
unlabeled dataset Dval (which is separate from the clients’
training data and comprises 16% of the total training data) for
knowledge distillation. Pseudo-labels are generated from the
ensemble’s outputs to guide the training of the distilled model.

For each sample x in Dval, the server computes the logits
using each model in the ensemble. These logits are averaged
to produce the ensemble logits:

Ensemble Logits(x) =
1

∥Er∥
∑

Mi∈Er

fMi(x),

where fMi(x) denotes the logits (i.e., the raw output scores
before softmax) produced by model Mi for input x. The
pseudo-labels are then generated by applying the softmax
function with a temperature parameter T :

ỹ(x) = softmax
(

Ensemble Logits(x)
T

)
.

Dividing by T smooths the probability distribution, allowing
for a softer target during distillation.

The distilled model Mdistill is trained to minimize the
Kullback-Leibler (KL) divergence between its output proba-
bilities and the pseudo-labels:

L = DKL

(
ỹ(x)

∥∥∥ softmax
(
fMdistill(x)

T

))
.

This loss encourages the distilled model to align with the
behavior of the ensemble.

To further stabilize training and enhance generalization, we
employ Stochastic Weight Averaging (SWA). SWA maintains a
running average of the model weights, capturing the trajectory
of the parameters as they converge. During each epoch of
knowledge distillation, after updating Mdistill using gradient
descent, the SWA model MSWA is updated as follows:

MSWA ←
nSWA ·MSWA +Mdistill

nSWA + 1
,

where nSWA is the number of SWA updates. Initially, MSWA
is set to Mdistill and nSWA = 1.

Finally, after completing the distillation process, the SWA
model is set as the updated global model for the next iteration:

Mr+1
global ←MSWA.

The process of knowledge distillation is summarized in
Algorithm 3.

V. EXPERIMENTS

We evaluate the effectiveness of the proposed RKD frame-
work in the FL setting under backdoor attack scenarios. We
simulate a standard FL environment where multiple clients
collaboratively train a global model under the coordination of
a central server. The training process is iterative and continues
until convergence is achieved.

A. Datasets and Models

We conducted experiments on three widely used datasets:
CIFAR-10, EMNIST, and Fashion-MNIST:

CIFAR-10 [12] consists of 60,000 color images of size
32 × 32 pixels, categorized into 10 classes. It serves as a
comprehensive benchmark for image classification tasks.

EMNIST [6] is an extension of the MNIST dataset, contain-
ing 814, 255 handwritten character images across 62 classes,



Algorithm 3 Knowledge Distillation Process

Require: Er: Ensemble of selected benign models; Dval: Un-
labeled data for distillation; T : Temperature for softmax;
EKD: Number of epochs; η: Learning rate

Ensure: Updated global model Mr+1
global

1: Ensemble Logits(x) = 1
∥Er∥

∑
Mi∈Er fMi(x) ▷

Compute ensemble logits for all x ∈ Dval
2: Generate pseudo-labels:

ỹ(x) = softmax
(

Ensemble Logits(x)
T

)
3: Initialize MSWA ←Mdistill and nSWA ← 1
4: for epoch e = 1 to EKD do
5: for each mini-batch {xb} ⊂ Dval do
6: Distill Logits(xb) = fMdistill(xb) ▷

Compute distilled model logits.
7: Compute loss: L =

DKL

(
ỹ(xb)

∥∥∥ softmax
(

Distill Logits(xb)
T

))
8: Update Mdistill using SGD with learning rate η
9: end for

10: Update SWA model: MSWA ← nSWA·MSWA+Mdistill
nSWA+1

11: nSWA ← nSWA + 1
12: end for
13: Set Mr+1

global ←MSWA

14: return Updated global model Mr+1
global

including digits and letters. The images are grayscale with a
28× 28 pixels resolution.

Fashion-MNIST [23] comprises 70, 000 grayscale images
of fashion products from 10 categories, each of size 28 × 28
pixels, providing a more challenging alternative to MNIST
dataset.

For each dataset, we employed model architectures suitable
for the complexity of the tasks:

For CIFAR-10, we used a ResNet-18 architecture [9], which
is well-suited for handling the complexity of colour images
and capturing hierarchical features. The model was trained
with a batch size of 64 and an initial learning rate of 0.01.

For EMNIST, we utilized a Convolutional Neural Network
(CNN) consisting of two convolutional layers, each followed
by max pooling and dropout layers to prevent overfitting, and a
fully connected layer for classification. The model was trained
with a batch size of 64 and a learning rate of 0.001.

For Fashion-MNIST, we implemented a CNN with two
convolutional layers, each followed by batch normalization
and dropout layers, and a fully connected layer. This archi-
tecture aids in normalizing the input features and regularizing
the model. The training was conducted with a batch size of
64 and a learning rate of 0.001.

B. Attack Setup

To evaluate the robustness of the RKD framework against
backdoor attacks, we simulated the FL environment with 30

clients. We considered three scenarios where 20%, 40%, and
60% of the clients were compromised by an adversary.

Each compromised client injected backdoor triggers into
50% of its local training data. The backdoor trigger was a
pattern added to the images, and the labels of the poisoned
samples were altered to a target class specified by the adver-
sary. This simulates a realistic attack where malicious clients
attempt to implant a backdoor into the global model while
maintaining normal performance on clean data.

The compromised clients followed the federated learning
protocol but aimed to influence the global model towards the
backdoor task. The benign clients trained on their local data
without any manipulation.

C. Attack Methods

To thoroughly evaluate the robustness of our RKD frame-
work, we examined its efficacy against four recent and sophis-
ticated backdoor attack methods. These attacks are designed
to circumvent traditional defence mechanisms and present
significant challenges in federated learning environments.

a) Adversarially Adaptive Backdoor Attack to Federated
Learning (A3FL): The A3FL attack [22] enhances backdoor
persistence by dynamically adapting the trigger pattern in
response to the global training dynamics. Instead of using
a static trigger, A3FL continuously optimizes the trigger to
remain effective against the evolving global model. It employs
an adversarial adaptation loss function and Projected Gradient
Descent (PGD) to refine the backdoor trigger. By iteratively
updating the trigger based on both the current global model
and adversarially crafted models, A3FL ensures that the back-
door remains functional throughout multiple training rounds,
making it particularly challenging to detect and mitigate.

b) Focused-Flip Federated Backdoor Attack (F3BA):
F3BA [7] targets the global model by manipulating a small
subset of its parameters with minimal impact on overall perfor-
mance. The attack calculates the importance of each parameter
w[j] concerning the global loss Lg using the following metric:
S[j] = −

(
∂Lg

∂w[j]

)
· w[j]. Here, ∂Lg

∂w[j] is the gradient of the
global loss with respect to parameter w[j], and · denotes
element-wise multiplication.

Parameters with the highest importance scores are selected,
and their signs are flipped to embed the backdoor. This
selective manipulation allows the attacker to implant the back-
door with minimal deviation from normal training behaviour,
thereby evading detection.

c) Distributed Backdoor Attack (DBA): The DBA [20]
spreads a trigger pattern across multiple adversarial clients,
enhancing stealth and making detection more difficult. Each
compromised client injects a portion of the full trigger into
its local training data. When these local models are aggre-
gated, the global model inadvertently learns to associate the
combined trigger pattern with the target class. As a result,
inputs containing the full trigger pattern are misclassified,
effectively executing the backdoor attack without any single
client contributing a suspiciously large modification.



d) The Anti-Distillation Backdoor Attack (ADBA): The
ADBA [26], initially designed for centralized machine learn-
ing scenarios utilizing knowledge distillation, has been adapted
in this work to the federated learning paradigm. Originally,
ADBA embeds a robust backdoor into a teacher model by
dynamically optimizing a trigger and using a shadow model
to ensure backdoor transfer through distillation. In extending
this attack to FL, the global model is treated as the teacher,
while client models act as distributed learners, effectively
mirroring the hierarchical structure of knowledge distillation.
Compromised clients inject backdoors by optimizing a crafted
trigger using the PGD while adhering to FL constraints.

e) Train-and-Scale Backdoor Attack (TSBA): TSBA [3]
aims to evade anomaly detection mechanisms by carefully
scaling the model weights after training. The adversarial client
first trains its local model with the backdoor trigger until
convergence. Then, it scales down the model updates by a
factor γ that remains within acceptable bounds defined by the
FL protocol. By doing so, the malicious updates appear similar
in magnitude to benign ones, thereby bypassing defenses that
rely on detecting abnormal update sizes. The scaling factor γ
is chosen to balance stealth and backdoor effectiveness.

D. Heterogeneous Setting

In FL, data heterogeneity (Non-IID data distribution) among
clients is a common and challenging issue that can signifi-
cantly impact the learning process and model performance.
To simulate realistic federated learning environments with
varying degrees of data heterogeneity, we utilize the Dirichlet
distribution to partition the datasets among the clients [21].

The Dirichlet distribution allows us to control the level
of heterogeneity by adjusting the concentration parameter α.
Each client i receives a proportion pi,k of data from class k,
where pi = [pi,1, pi,2, . . . , pi,C ] ∼ Dirichlet(α) and C is the
number of classes. A lower α value leads to more uneven class
distributions among clients, simulating higher heterogeneity.

Specifically, we set the α parameter to:
Extreme Heterogeneity: α = 0.5, α = 0.3, and α = 0.1.

These lower values of α result in clients having data predom-
inantly from a few classes, leading to highly Non-IID data
distribution scenarios.

Moderate Heterogeneity: α = 0.9 and α = 0.7. Higher
values of α produce more balanced class distributions across
clients, representing a moderately heterogeneous setting.

IID: In addition to the above Non-IID scenarios, we con-
duct experiments under IID conditions (i.e., when data is
independently and identically distributed across clients) in the
appendix to provide a baseline for comparison.

By varying α (and including IID experiments), we create a
spectrum of data heterogeneity scenarios to comprehensively
evaluate the robustness of the RKD framework under different
degrees of Non-IID data distributions. This approach allows
us to assess how well the RKD framework can handle the
challenges posed by data heterogeneity, which is critical for
practical federated learning applications.

Compared Defence Baselines. We evaluate the RKD
framework against seven recent FL defences methods: FedAvg
[14], FLAME [16], FedDF [13], FedRAD [18], FedBE [5], RLR
[17], and FoolsGold (FG) [8].

E. Evaluation Metrics

We utilized two key evaluation metrics: Main Task Accuracy
(MTA) and Attack Success Rate (ASR). These metrics provide
a comprehensive understanding of the model’s performance on
legitimate tasks and its resistance to backdoor triggers.

a) Main Task Accuracy (MTA): MTA measures the clas-
sification accuracy of the global model on a clean test dataset
Dtest, reflecting its ability to correctly predict the true labels
of inputs without any backdoor influence. It is defined as:
MTA = ∥{x∈Dtest|f(x)=y}∥

∥Dtest∥ , where x is an input sample from
Dtest, f(x) denotes the prediction of the global model f for
input x, and y is the corresponding true label. Here, ∥ · ∥
denotes the cardinality of the set.

A higher MTA indicates that the model performs well on
the primary classification task, correctly identifying inputs as
per their true labels.

b) Attack Success Rate (ASR): ASR evaluates the effec-
tiveness of the backdoor attack by measuring the proportion
of poisoned inputs that the global model misclassifies into
the attacker’s target class. It is calculated on a test dataset
containing backdoor triggers, denoted as Dpoison: ASR =
∥{x∈Dpoison|f(x)=ytarget}∥

∥Dpoison∥ , where x is an input sample from the
poisoned test dataset Dpoison that contains backdoor triggers,
f(x) is the prediction of the global model f for input x, and
ytarget is the target label that the attacker intends the model to
output for backdoor inputs.

A lower ASR signifies better robustness against backdoor
attacks, as it indicates that the model is less likely to misclas-
sify backdoor inputs into the attacker’s target class.

The goal of an effective Defence mechanism like the RKD
framework is to maintain a high MTA while minimizing the
ASR. This balance ensures that the model retains its perfor-
mance on legitimate data while being resilient to manipulation
attempts by adversaries. In our experiments, we focus on
achieving this balance to demonstrate the RKD framework’s
capability to defend against sophisticated backdoor attacks
without degrading the overall model performance.

F. Experimental Results

We evaluated the robustness of the RKD framework against
advanced backdoor attacks in FL. The models were trained
under non-IID data distributions, measuring the MTA and
ASR. To ensure reliability, all experiments were repeated five
times with different data resampling, with confidence intervals
reported at a significance level of ρ = 0.01.

1) Defence Against A3FL Attack: Under highly hetero-
geneous Non-IID conditions (α = 0.3), RKD demonstrated
significant resilience against the A3FL attack on the CIFAR-
10 and Fashion-MNIST datasets. As shown in Figures 1 and 2,
RKD achieved a substantially lower attack success rate while
maintaining high accuracy compared to baseline methods.



0 20 40 60 80 100
Rounds

0.0

0.2

0.4

0.6

0.8
A

cc
ur

ac
y 

R
at

e(
%

)

RKD
RKD(PGM)
FedAvg
FLAME
FedDF

FedRAD
FedBE
RLR
FG

0 20 40 60 80 100
Rounds

0.0

0.2

0.4

0.6

0.8

A
cc

ur
ac

y 
R

at
e(

%
)

RKD
RKD(PGM)
FedAvg
FLAME
FedDF

FedRAD
FedBE
RLR
FG

0 20 40 60 80 100
Rounds

0.0

0.2

0.4

0.6

0.8

A
cc

ur
ac

y 
R

at
e(

%
)

RKD
RKD(PGM)
FedAvg
FLAME
FedDF

FedRAD
FedBE
RLR
FG

0 20 40 60 80 100
Rounds

0.0

0.2

0.4

0.6

0.8

1.0

A
tt

ac
k 

Su
cc

es
s 

R
at

e(
%

)

(a) 20% of A3FL

0 20 40 60 80 100
Rounds

0.0

0.2

0.4

0.6

0.8

1.0
A

tt
ac

k 
Su

cc
es

s 
R

at
e(

%
)

(b) 40% of A3FL

0 20 40 60 80 100
Rounds

0.0

0.2

0.4

0.6

0.8

1.0

A
tt

ac
k 

Su
cc

es
s 

R
at

e(
%

)
(c) 60% of A3FL

Fig. 1: Performance of baselines and RKD on CIFAR-10 under
Non-IID (α = 0.3), evaluated against 20%, 40%, and 60%
A3FL attacker clients.
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Fig. 2: Performance of baselines and RKD on Fashion-MNIST
under Non-IID (α = 0.3), evaluated against 20%, 40%, and
60% A3FL attacker clients.

These results confirm that RKD effectively distinguishes
malicious from benign client updates and aggregates only
reliable models. By restricting the dissemination of the updated
global model to clients identified as benign, RKD prevents
adversaries from adapting their strategies based on the lat-
est global updates. In our primary approach—the Exclusion
Strategy—malicious clients continue training with their cur-
rent local models. Alternatively, the Perturbation Strategy
(denoted as RKD (PGM)) provides suspected malicious clients
with a minimally perturbed global model: Mr+1

pert = Mr+1
global+η,

where ∥η∥ ≈ 1 × 10−4. This slight perturbation effectively
obscures the precise state of the global model, thereby limiting
the opportunity for adaptive adversaries to refine their attacks.

Comparative experiments show that RKD (PGM) maintains
an average accuracy nearly identical to that of RKD using the
Exclusion Strategy, while still mitigating adaptive attack risks.
Overall, the experimental findings illustrate that RKD robustly
mitigates backdoor attacks under Non-IID conditions.

2) Defense Against F3BA Attack: RKD effectively de-
fends against F3BA on CIFAR-10 and EMNIST datasets under
non-IID conditions (α = 0.5), as substantiated by Figures 3
and 4. Using cosine similarity-based clustering, RKD filters
out anomalies from compromised clients and integrates knowl-
edge distillation to maintain low ASR and high accuracy.

RKD’s iterative training enhances the global model’s accu-
racy and resilience, demonstrating its superiority over methods
like FedAvg. This is particularly evident in high attacker ratios
of 40% and 60%, highlighting RKD’s robust defence against
sophisticated attacks like F3BA.
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Fig. 3: Performance of baselines and RKD on CIFAR-10 under
Non-IID (α = 0.5), evaluated against 20%, 40%, and 60%
F3BA attacker clients.
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Fig. 4: Performance of baselines and RKD on EMNIST under
Non-IID (α = 0.5), evaluated against 20%, 40%, and 60%
F3BA attacker clients.

3) Defense Against DBA Attack: RKD effectively defends
against the Distributed Backdoor Attack (DBA) on CIFAR-10
and EMNIST under non-IID settings (α = 0.9), as shown
in Figures 5 and 6. Using cosine similarity-based clustering,
RKD detects and isolates malicious updates. Median model
selection ensures that only benign models contribute to the
global model, minimizing subtle backdoor triggers.



During knowledge distillation, RKD synthesizes insights
from vetted models into a robust aggregated model, en-
hancing generalizability and security. Compared to methods
like FedDF, FedRAD, and FedBE, RKD provides superior
protection by meticulously analyzing and distilling knowledge
from selected models. This enables RKD to maintain high
accuracy while significantly reducing the ASR, demonstrating
its effectiveness against sophisticated attacks like DBA.
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Fig. 5: Performance of baselines and RKD on CIFAR-10 under
Non-IID (α = 0.9), evaluated against 20%, 40%, and 60%
DBA attacker clients.
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Fig. 6: Performance of baselines and RKD on EMNIST under
Non-IID (α = 0.9), evaluated against 20%, 40%, and 60%
DBA attacker clients.

4) Defense Against ADBA Attack: The RKD framework
robustly defends against Anti-Distillation Backdoor Attacks
(ADBA) on CIFAR-10 under Non-IID conditions (α = 0.5),
as shown in Figure 7. Compared to FedAvg and other baseline
methods, RKD effectively detects and mitigates ADBA back-
door attacks, demonstrating superior resilience and enhanced
model integrity in challenging heterogeneous environments.

5) Defense Against TSBA Attack: The RKD framework
robustly defends against TSBA on CIFAR-10 and EMNIST
under Non-IID conditions (α = 0.5), as shown in Figures
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Fig. 7: Performance of baselines and RKD on CIFAR-10 under
Non-IID (α = 0.5), evaluated against 20%, 40%, and 60%
ADBA attacker clients.

8 and 9. RKD detects and mitigates TSBA manipulations,
maintaining high accuracy and low ASR even with increased
attacker ratios. Unlike other methods that falter under poisoned
conditions, RKD excels with clean and poisoned datasets.
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Fig. 8: Performance of baselines and RKD on CIFAR-10 under
Non-IID (α = 0.5), evaluated against 20%, 40%, and 60%
TSBA attacker clients.

6) The Impact of Heterogeneous Degree: We evaluated
baseline defence methods and the RKD framework under
varying degrees of data heterogeneity, including moderate
(α = 0.7) and extreme (α = 0.3, 0.1) Non-IID conditions
(see Figure 10). Under extreme heterogeneity, many baseline
methods achieve high accuracy on clean inputs but struggle to
detect subtle backdoor triggers—resulting in elevated ASR. In
contrast, RKD consistently maintains robust defence by effec-
tively excluding malicious updates, which helps to suppress
ASR while sustaining high MTA.

Notably, although extreme heterogeneity adversely impacts
overall accuracy for all methods, RKD outperforms baseline
defences by achieving a better balance between low ASR
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Fig. 9: Performance of baselines and RKD on EMNIST under
Non-IID (α = 0.5), evaluated against 20%, 40%, and 60%
TSBA attacker clients.

and high MTA. This indicates that a key contribution of our
work is enhancing robustness in highly Non-IID scenarios.
Moreover, under extremely Non-IID conditions (α = 0.1),
baseline methods often struggle to generalize, resulting in
model collapse that leads to a low ASR—since their offline
behavior prevents an accurate assessment of robustness. In
contrast, RKD sustains stable learning and robust defence,
achieving both high accuracy and a genuinely low ASR.

Overall, these results highlight RKD’s superior effectiveness
in challenging heterogeneous data environments.
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Fig. 10: Performance impact of heterogeneous degrees on
baselines and RKD on Fashion-MNIST, evaluated against 60%
F3BA attacker clients.

7) Empirical Analysis of Q Sensitivity: We evaluated the
impact of the minimum cluster size Q on Main Task Accuracy
(MTA) and Attack Success Rate (ASR) using the CIFAR-
10 dataset under a Non-IID setting with 30 clients, 40% of
which were malicious and executing A3FL backdoor attacks.
Figure 11 presents the results.

When Q is fixed at 2, the resulting small clusters allow
malicious updates to dominate, yielding a high ASR despite a
relatively high MTA. In contrast, fixing Q at 20 causes many
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Fig. 11: Impact of Q on MTA and ASR.

malicious updates to be included in the benign cluster, leading
to slightly lower accuracy and higher ASR.

A dynamic adjustment of Q effectively mitigates these
issues by excluding malicious updates while retaining the
majority of benign ones, thus ensuring consistently high MTA
and low ASR. These findings underscore the importance of
dynamically tuning Q to reduce the influence of residual
outliers and adversarial updates, thereby preserving the overall
robustness and performance of the global model.

8) Scalability Analysis: RKD enhances scalability by ap-
plying cosine similarity to model updates before clustering,
transforming high-dimensional parameter vectors into scalar
similarity scores. This dimensionality reduction significantly
lowers computational complexity, making the clustering pro-
cess more efficient. By avoiding clustering in the high-
dimensional parameter space, RKD reduces both the time
and resources required for defence operations. As shown in
Table I, RKD’s defence time is 42.029 seconds, substantially
faster than FedDF and FedBE, which require 141.714 and
198.765 seconds, respectively. While RLR exhibits the shortest
defence time, it compromises on detection accuracy due to
its simplistic approach. FLAME is slightly more efficient
in defence time, but RKD achieves a better balance be-
tween performance and robustness. These results highlight
RKD’s overall efficiency and scalability, demonstrating that its
methodological design—specifically the use of cosine similar-
ity and efficient clustering—provides robust defence without
incurring significant computational overhead.

Method Defense Time (seconds)
RLR 0.020
FLAME 37.064
RKD 42.029
FedDF 141.714
FedBE 198.765

TABLE I: Comparative Defense Times

G. Ablation Study

We conducted ablation studies to evaluate the effectiveness
of each component within the RKD framework against sophis-
ticated backdoor attacks. Specifically, we analyzed the impact
of removing key components: Automated Clustering, Model
Selection, and Knowledge Distillation, as shown in Figure 12.



RKD without Clustering and Model Selection (Median).
Removing both the Automated Clustering and Model Selection
components, and leaving only the knowledge distillation pro-
cess, significantly weakens the framework’s defenses. While
it performs reasonably well under a 20% DBA attack, as the
proportion of adversarial clients rises to 40%, its defensive
capabilities drop sharply. At a 60% F3BA attacker ratio,
the model suffers from severe performance degradation, with
misclassifications aligning with attackers’ objectives. This
highlights that without clustering, RKD is unable to effectively
identify and isolate malicious updates, allowing backdoor
attacks to compromise the global model.

RKD without Model Selection (Median). Excluding the
model selection component while retaining HDBSCAN clus-
tering, this variant effectively manages a 20% DBA attack
ratio. However, with a 40% attack ratio, performance is
noticeably decreased. Under a 60% F3BA attacker ratio, the
removal of model selection further impairs RKD’s defense,
resulting in increased ASR and reduced MTA. Even after the
clustering phase effectively isolates most malicious updates,
some malicious or anomalous updates may still be present.
Without employing the median to mitigate the influence of
residual outliers, these outliers can disproportionately affect
the aggregated model, resulting in unstable ASR measure-
ments. These findings underscore the critical role of model
selection in refining the aggregation process by selecting
models closest to the benign cluster centroid, thus enhancing
robustness against higher proportions of attackers.

RKD without Knowledge Distillation. Retaining both
clustering and model selection but omitting the Knowledge
Distillation module, this variant successfully identifies and
excludes malicious models, achieving a lower ASR. However,
it suffers from a significant drop in accuracy, approximately
20% lower than the full RKD framework. This underscores the
crucial role of KD in transferring knowledge from the selected
ensemble of models to the global model, which enhances
both accuracy and generalization, particularly across Non-IID
settings. Without KD, the framework is unable to effectively
integrate and refine the knowledge from ensemble models,
leading to poor performance in Non-IID environments despite
successful isolation of malicious updates. KD specifically
addresses the challenge of generalization in Non-IID data
scenarios, ensuring the model remains robust and effective.

VI. CONCLUSION AND FUTURE WORK

We present RKD, a novel framework designed to mitigate
sophisticated backdoor attacks in FL under Non-IID condi-
tions. Our extensive evaluations on CIFAR-10, EMNIST, and
Fashion-MNIST datasets demonstrated RKD’s effectiveness in
maintaining high accuracy levels while significantly reduc-
ing attack success rates. RKD’s automated clustering, model
selection, and knowledge distillation components collectively
enhance the robustness and integrity of FL systems. Our results
underscore RKD’s superiority over existing defence methods,
offering a robust solution to preserve the efficacy and security
of FL in diverse and adversarial environments.
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Fig. 12: Ablation study of RKD method against attacks.
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APPENDIX

A. Defense Against A3FL Attack Under IID Conditions.

As shown in Figure 13, RKD outperforms baseline models
in defending against the A3FL attack on the CIFAR-10 dataset
under IID conditions, across varying attacker ratios (20%,
40%, and 60%). RKD’s robustness against adversarial attacks
in IID settings underscores its effectiveness as a defence
mechanism. The baseline models also demonstrate some in-
herent robustness at lower attacker ratios (20% and 40%),
which can be attributed to the uniform data distribution in
IID settings that allows models to learn more generalizable
patterns, making it harder for attacks to succeed.

B. Defense Against F3BA Attack Under IID Conditions.

Figure 14 illustrates RKD’s effective defense against the
F3BA attack on the CIFAR-10 dataset under IID conditions.
RKD consistently achieves lower ASR and higher MTA com-
pared to baseline methods across different attacker ratios. This
superior performance highlights RKD’s potential as a reli-
able defense in adversarial federated learning environments.
Baseline models show some robustness against 20% of F3BA
attackers, likely due to the IID settings enabling the models
to learn generalizable patterns that are less susceptible to
manipulation by adversarial clients.
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Fig. 13: Performance of baselines and RKD on CIFAR-10
under IID settings against A3FL attacker clients.
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Fig. 14: Performance of baselines and RKD on CIFAR-10
under IID settings against F3BA attacker clients.

C. Performance Under Non-IID and IID Conditions Without
Attacks

We evaluated the performance of RKD and baseline meth-
ods under both Non-IID and IID data distributions in the
absence of attacks. As shown in Figure 15, the attack success
rate remains close to zero across all methods when no attacks
are present. Additionally, models trained under IID conditions
consistently achieve higher accuracy compared to those trained
under Non-IID settings.

The higher accuracy observed in IID scenarios can be
attributed to the uniform distribution of data, which facilitates
more effective training and generalization. In contrast, the
slightly lower accuracy under Non-IID conditions reflects
the challenges posed by data heterogeneity. These findings
imply that, in adversarial scenarios, attackers could exploit
the inherent difficulties of Non-IID training to inject malicious
behavior—highlighting the need for robust training strategies
capable of effectively handling heterogeneous data distribu-
tions among clients.
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Fig. 15: Performance of baselines and RKD on CIFAR-10
under Non-IID and IID conditions with no attack.
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