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Abstract

In this paper, we propose a self-supervised representation learning framework for
the adversarial attack detection task to address this drawback. Firstly, we map the
pixels of augmented input images into an embedding space. Then, we employ the
prototype-wise contrastive estimation loss to cluster prototypes as latent variables.
Additionally, drawing inspiration from the concept of memory banks, we introduce
a discrimination bank to distinguish and learn representations for each individual
instance that shares the same or a similar prototype, establishing a connection
between instances and their associated prototypes. Experimental results show
that, compared to various benchmark self-supervised vision learning models and
supervised adversarial attack detection methods, the proposed model achieves
state-of-the-art performance on the adversarial attack detection task across a wide
range of images.

1 Introduction

Given an image potentially perturbed by an attack algorithm, the goal of adversarial attack detection
is to distinguish between adversarial and normal samples using the differences between them. Ad-
versarial attack detection is an important security topic applicable in real-world applications such as
autonomous driving systems, object detection, medical image processing, and robotics (1; 2; 3; 4)
among many others. Recent deep learning-based adversarial attack detection techniques (5; 6; 7; 8)
are predominantly trained in a supervised manner, where a large number of labeled adversarial and
normal samples are provided as input to neural networks. The model is then trained to reconstruct
the corresponding clean sample and compare it with the input sample to provide the detection result.
Consequently, supervised learning-based adversarial attack detection approaches suffer from three
main drawbacks.

Firstly, human-imperceptible adversarial attacks on images are challenging to label manually. This
process can be time-consuming and may introduce errors, particularly when the annotator lacks
familiarity with the task. Secondly, the trained adversarial attack detection models may need
to be deployed in previously unseen conditions, including novel attack algorithms and datasets.
Consequently, there is a strong likelihood of a mismatch between the training and testing conditions.
In such cases, we lack the ability to leverage recorded test data to improve the model’s performance in
the unseen test setting. Thirdly, prototype-based adversarial attack detection methods (9; 5) estimate
an object’s category (e.g., cats or dogs) as the prototype. These methods calculate the degree of
similarity between new data samples and autonomously chosen prototypes to classify images as
adversarial or normal samples. However, each prototype may potentially consists of multiple instance
samples, which often leads to a neglect of the rich intrinsic semantic relationships between prototypes
of individual objects in images. For example, while the model may be trained on some tank images,
it may struggle to classify new tanks or entirely new classes of objects when faced with previously
unseen types of tanks.
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To overcome these drawbacks, we propose a self-supervised representation learning framework
aimed at extracting feature representations for the downstream task, i.e., adversarial attack detection.
Building upon pixel mapping and contrastive estimation, we propose a discrimination bank to
distinguish individual instances for each prototype from the embedding space. We demonstrate that
the instance-wise feature maps capture richer information compared to the prototype-based approach,
resulting in performance improvements.

2 Proposed Method

Our proposed framework is presented in Figure 1.

Figure 1: Self-supervised representation learning framework.

2.1 Pixel Mapping

As the first major component of the encoder, a PAA-based network with parameter θ is ex-
ploited to transform training set X = {x1, x2, ..., xn} of n image samples to feature vectors
V = {v1, v2, ..., vI}, such that V best describes X . Different from previous work, we propose
a pixel mapping loss with data augmentation, LPM, to learn an invariant representation of xi by
minimizing the risk

∑
i L (xi, vi; θ). To achieve that, we use a pair of transformations, denoted as

t and s, in some set of transformations T (e.g. geometric transformations) to xi, to produce the
augmentation as xti

i and xsi
i . We define this process as V = fPM (X) with the loss as:

LPM = − log
exp

(
fPM

(
xti
i

)T · fPM (xsi
i ) /τ

)
∑B

b=1 exp
(
fPM

(
xtb
b

)T · fPM (xsi
i ) /τ

) (1)

where T and B are the transpose symbol and batch size, respectively. It is highlighted that all
the embeddings in the loss function are L2-normalized (10). While previous data augmentation
studies (11) have shown that the choice of transformation techniques plays an important part in
self-supervised representation learning, most previous works do not give much consideration to
the individual choice of ti and si on pairs of images, which are simply uniformly sampled over T .
Therefore, in the proposed pixel mapping technique, we aim to overcome this limitation and select
the optimal transformation algorithm for each sample xi. To achieve this, we select transformation
algorithms that maximize the risk defined by the loss LPM:

{ti, si} = argmax
{ti,si}∈T

n∑
i=1

LPM
(
xti
i , x

si
i ; θ, T

)
(2)

In the proposed pixel mapping technique, we prioritize the difference between ti and si for each
image over their absolute values.

2.2 Prototype-wise Contrastive Estimation

We assume that the observed data xi are related to latent variable P = {pi} which denotes the
prototypes of the data. We aim to find a network parameter that maximizes the log-likelihood function
of the observed n samples by a prototype-wise contrastive estimation (PCE). To achieve that, we
use the local peaks of the density (12) as the prototype, in other words, the most representative data
samples of X . The loss, namely LPCE , is defined as:

LPCE =
1

|M|
∑

p+
i ∈M

− log
exp

(
vi · p+i /γ

)∑
p−
i ∈N exp

(
vi · p−i /γ

) (3)
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where Mi and Ni are prototype collections of the positive and negative samples, respectively. As
aforementioned, inspired from previous supervised learning work (13)(14), we find different levels
of concentration distributes around each prototype embeddings. Therefore, we exploit γ as the
concentration level around the prototype pm within the m-th cluster as:

γ =

∑n
i=1 ∥pm − vmi ∥2
n log(n+ β)

(4)

where the momentum features are {vmi }ni=1 within the same cluster as a prototype p. We set a smooth
parameter β to ensure that small clusters do not have an overly-large γ. Then, γ acts as a scaling
factor on the similarity between an embedding v and its prototype p.

2.3 Instance-Wise Contrastive Learning

The core of our method lies in establishing a connection between prototype and instance features
to facilitate instance clustering. Initially, we create K independent discrimination banks to enhance
instance discrimination across clusters. Similar to a memory bank, the discrimination bank aids
in contrastive learning, leveraging extensive data to acquire robust representations. We assume a
contrastive set Ji for the t-th bank At as:

Ji = {z′i | z′i ∈ At∀t ∈ [1, C]} (5)

where z′i is the estimated representation of xi. Specifically, for each training batch with B samples and
M prototypes, our discrimination memory is built with size M×B×D, where D is the dimension of
pixel embeddings. The (pm, b)-th element in the discrimination memory is a D-dimensional feature
vector obtained by average pooling all the embeddings of pixels labeled as pm prototype in the b-th
batch. To update the discrimination bank, we enqueue each instance to the nearest prototype and add
the new one in each back propogation cycle:

LICL =
exp(cos(vi, zi) · cos (vi, pmi /ϕ))∑

z′∈At

∑r
j=0 exp(cos(vi, z

′
j) · cos

(
vi, pmj /ϕ

)
) · Ji

(6)

where cos(·, ·) is the cosine similarity between a pair of representations. The concentration level of
LICL is presented as ϕ and estimated similar as γ in (4) but we replace v′c to z′c. With the loss, we dis-
criminate representations belongs to the same bank. To discover the underlying concepts with unique
visual characteristics, we infer their decision boundaries by reducing the visual redundancy among
clusters, namely maximising the visual similarity of samples within the same clusters and minimising
that between clusters. The overall cost-function used to train the MAE is now a combination of the
above loss terms with hyper-parameters λ1 and λ2 as L = LPM + λ1 · LPCE + λ2 · LICL.

3 Experiments

3.1 Datasets and Attacks

We randomly select 50,000 images from ImageNet (15) and 10,000 images from ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) (16) for the training and validation, respectively. As
aforementioned, we evaluate the competitor and proposed models with unseen datasets. In the test
stage, we extensively perform experiments on 10,000 random images from each CIFAR-10 (17) and
COCO (18).

We select seven attack algorithms (19)(20)(21)(22)(23)(24)(25) in the test stage because they are
robust to novel adversarial attack detection and defense techniques.

3.2 Implementation Details

In the experiment, we implement the network with a ResNet-50 (26) whose last fully-connected layer
outputs a 128-D and L2-normalized feature with a parallel axial-attention (PAA) block (27; 28). We
multiply all the channels by 1.5 and 2, resulting in PAA-ResNet-M, L, respectively. We always use 8
heads in multi-head attention blocks (29). In order to avoid careful initialization of weights (WQ,
WK , WV ) and location vectors (rq , rk, rv), we use batch normalizations (30) in all attention layers.
To evaluate and compare the adversarial attack detection accuracy, we use the detection rate (DR).
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The proposed model is trained by using the SGD optimizer with a weight decay of 0.0001, a
momentum of 0.9, and a batch size of 256. We train the networks for 200 epochs, where we warm-up
the network in the first 20 epochs by only using the pixel-mapping loss. The initial learning rate
is 0.03, and is multiplied by 0.1 at 120 and 160 epochs. In terms of the hyper-parameters, we set
τ = 0.1, β = 10, r = 16000, λ1 = 1 and λ2 = 1 based on grid search.

3.3 Results

We assess the learned representation over CIFAR-10 and COCO. Tables 1 & 2 show the results.

Table 1: Comparison on CIFAR-10.

Models Clean (%) Attacked (%)
TiCo (31) 81.4 78.0
MAE (32) 89.9 74.2
Mugs (33) 90.5 73.7

Unicom (34) 92.6 84.1
DINOV2 (35) 94.3 86.7
ESMAF (36) 73.8 56.4

TS (37) 89.7 59.5
sim-DNN (14) 82.0 65.7

DTBA (38) 87.0 74.1
TLC (39) 84.9 72.4

SimCat (40) 88.0 77.3
PAA-ResNet-S 92.7 84.4
PAA-ResNet-M 94.1 87.8
PAA-ResNet-L 94.8 89.0

Table 2: Comparison on COCO.

Models Clean (%) Attacked (%)
TiCo (31) 78.9 67.3
MAE (32) 88.9 73.5
Mugs (33) 89.0 73.3

Unicom (34) 90.2 82.8
DINOV2 (35) 91.7 83.9
ESMAF (36) 75.4 55.6

TS (37) 76.7 56.8
sim-DNN (14) 80.6 62.2

DTBA (38) 85.3 68.8
TLC (39) 80.8 71.5

SimCat (40) 82.6 70.1
PAA-ResNet-S 90.9 83.7
PAA-ResNet-M 91.5 84.9
PAA-ResNet-L 91.7 85.6

On both datasets, our models show strong detection performance: accuracy improves considerably
with the proposed algorithm. Additionally, our results outperforms both the self-supervised and
supervised results by large margins on clean images detection.

Furthermore, we perform experiments to evaluate the robustness of our work. Table 3 shows the
detection accuracy results (in %) with CIFAR-100 (17) and ImageNet-R (41).

Table 3: Adversarial attack detection performance (clean / attacked images) on seen and unseen
datasets.

Training ImageNet-R ILSVRC CIFAR-100
Test ImageNet-R CIFAR-10 ILSVRC CIFAR-100 CIFAR-100 ImageNet-R

Unicom (34) 91.9 / 82.7 91.0 / 80.4 94.7 / 88.5 92.0 / 81.1 93.3 / 82.7 89.3 / 77.9
DINOV2 (35) 93.4 / 84.5 92.4 / 81.7 96.2 / 90.0 93.4 / 82.6 95.1 / 84.0 90.5 / 79.4
DTBA (38) 92.2 / 85.2 85.3 / 76.9 96.0 / 90.3 86.8 / 78.2 94.7 / 83.1 88.2 / 69.9

PAA-ResNet-L 93.5 / 87.9 92.9 / 85.7 97.1 / 90.5 94.2 / 87.0 96.0 / 87.6 92.1 / 83.4

Compared to supervised learning-based methods (36)(37)(38)(14), the proposed SSL representation
learning method experiences relatively less performance degradation.

4 Conclusion

In this paper, we have proposed a self-supervised representation learning approach for adversarial
attack detection, offering an effective alternative to traditional supervised pipelines. We establish a
connection between prototype and instance features through the use of a discrimination bank, thereby
enriching the information available to enhance the proposed model’s ability to detect adversarial
attacks. Our evaluation with different datasets and attacks has demonstrated the robust performance
of the proposed method on unseen datasets.
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