
SpreadFGL: Edge-Client Collaborative Federated
Graph Learning with Adaptive Neighbor Generation

Luying Zhong1,2, Yueyang Pi1,2,3, Zheyi Chen1,2,3,∗, Zhengxin Yu4, Wang Miao5, Xing Chen1,2,3, and Geyong Min6

1College of Computer and Data Science, Fuzhou University, China
2Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing, Fuzhou University, China

3Engineering Research Center of Big Data Intelligence, Ministry of Education, China
4School of Computing and Communications, University of Lancaster, UK

5School of Engineering, Computing and Mathematics, University of Plymouth, UK
6Department of Computer Science, University of Exeter, UK

{luyingzhongfzu@163.com, piyueyangcc@163.com, z.chen@fzu.edu.cn, z.yu8@lancaster.ac.uk,
wang.miao@plymouth.ac.uk, chenxing@fzu.edu.cn, g.min@exeter.au.uk}

∗Corresponding Author

Abstract—Federated Graph Learning (FGL) has garnered
widespread attention by enabling collaborative training on mul-
tiple clients for semi-supervised classification tasks. However,
most existing FGL studies do not well consider the missing
inter-client topology information in real-world scenarios, causing
insufficient feature aggregation of multi-hop neighbor clients
during model training. Moreover, the classic FGL commonly
adopts the FedAvg but neglects the high training costs when
the number of clients expands, resulting in the overload of
a single edge server. To address these important challenges,
we propose a novel FGL framework, named SpreadFGL, to
promote the information flow in edge-client collaboration and
extract more generalized potential relationships between clients.
In SpreadFGL, an adaptive graph imputation generator incor-
porated with a versatile assessor is first designed to exploit
the potential links between subgraphs, without sharing raw
data. Next, a new negative sampling mechanism is developed
to make SpreadFGL concentrate on more refined information
in downstream tasks. To facilitate load balancing at the edge
layer, SpreadFGL follows a distributed training manner that
enables fast model convergence. Using real-world testbed and
benchmark graph datasets, extensive experiments demonstrate
the effectiveness of the proposed SpreadFGL. The results show
that SpreadFGL achieves higher accuracy and faster convergence
against state-of-the-art algorithms.

Index Terms—Edge intelligence, federated graph learning,
semi-supervised learning, neighbor generation.

I. INTRODUCTION

With powerful expressive capabilities, graphs [1] have been
widely used to depict real-world application scenarios such
as social network [2], knowledge graph [3], and paper cita-
tion [4]. In the area of graph learning, the emerging Graph
Neural Networks (GNNs) have gained significant attention
due to their exceptional performance in dealing with graph-
related tasks. GNNs efficiently utilize the feature propagation
by employing multiple graph convolutional layers for node
classification tasks, where the structural knowledge is distilled
into discriminative representations from complex graph-orient
data in diverse domains such as prediction modeling [5],
malware detection [1], and resource allocation [6]. Commonly,
the training performance of GNNs depends on the substantial
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Fig. 1. Comparison between the classic FGL and the FedGL designed in
the proposed SpreadFGL. In Fig. 1 (left), the FGL [7] does not consider the
inter-links between clients, causing insufficient feature propagation of multi-
hop neighbors. In Fig. 1 (middle), the FGL [8] solely infers the missing
links by local subgraphs but ignores the meaningful information in neighbor
clients. In Fig. 1 (right), the proposed FedGL utilizes the globally-shared
information among clients, thereby extracting important cross-subgraph links
for classification tasks.

graph data distributed among clients. However, due to privacy
and overhead concerns, it is impractical to assemble graph data
from all clients for GNN training.

Following a distributed training mode, Federated Graph
Learning (FGL) aims to deal with the problem of graph data is-
land by promoting cooperative training among multiple clients
[9]. To protect privacy, the FGL offers generalized graph
mining models over distributed subgraphs without sharing raw
data [7]. Many studies have verified the feasibility of FGL in
various domains such as transportation [10], computer vision
[11], and edge intelligence [12]. Recently, some studies also
adopted FGL-based frameworks for semi-supervised classifi-
cation tasks [8], [13]. These approaches typically join an edge
server with multiple clients to train a globally-shared classifier
for downstream tasks, where the clients and edge server
undertake local updating and global aggregation, respectively.

In real-world FGL application scenarios, there are potential
links between the subgraphs of a client and others since
these subgraphs contain significant information about neighbor
clients [7]. However, previous FGL-related studies [14], [15]
overlooked such important links among clients, as shown
in Fig. 1 (left). This oversight results in the insufficient
feature propagation of multi-hop neighbors during local model
training, ultimately leading to degraded performance in clas-



sification tasks. To explore the potential links among clients,
some prior studies inferred the missing links in subgraphs,
as shown in Fig. 1 (middle). For example, Zhang et al. [8]
employed linear predictors on local models to conduct the
missing links in subgraphs. However, the potential links rely
solely on local clients, disregarding meaningful information
from neighbor clients. Therefore, the features implied in the
generated links may be incomplete and infeasible to recover
the cross-client information. Moreover, most existing studies
[8], [16] commonly adopted the classic FedAvg algorithm
[17], neglecting the high training costs when the number of
clients continues to expand, which leads to a serious single-
point overload problem.

To address these essential challenges, we propose FedGL,
an improved centralized FGL framework, to explore potential
cross-subgraph links by leveraging the global information
flow. As illustrated in Fig. 1 (right), we consider the edge
server as an intermediary to facilitate the flow of global in-
formation, thereby enhancing communication among different
clients and fostering the collaborative knowledge integration
of their subgraphs. Thus, the proposed FedGL is able to extract
unbiased and generalized missing links through collaboration
among the edge server and clients. Furthermore, we extend
the FedGL to a multi-edge collaborative scenario and propose
the SpreadFGL to efficiently handle the load balancing issue
at the edge layer. The main contributions of this paper are
summarized as follows.

• We propose an improved centralized FGL framework,
named FedGL. In FedGL, GNNs are utilized as the node
classifiers in clients for semi-supervised classification
tasks, ensuring effective feature propagation.

• We design an adaptive graph imputation generator to ex-
plore generalized potential cross-subgraph links, referring
to the globally-shared topology graph at the edge layer.

• We develop a new versatile assessor that incorporates a
negative sampling mechanism to supervise the process of
generating subgraphs, where the discriminate features are
constructed by autoencoder. Thus, we can focus on more
refined features that are beneficial to classification tasks.

• We propose a novel distributed FGL framework, named
SpreadFGL, which extends the FedGL to a multi-edge
scenario. In SpreadFGL, the neighbor edge servers col-
laboratively conduct model training with a well-designed
distributed loss function, enabling efficient extraction of
the potential links between subgraphs. Thus, the Spread-
FGL facilitates faster model convergence and better load
balancing at the edge layer.

• Using real-world testbed and benchmark graph datasets,
extensive experiments are conducted to demonstrate the
superiority of the proposed SpreadFGL. The results show
that the SpreadFGL outperforms state-of-the-art algo-
rithms from the perspectives of model accuracy and
convergence speed.

The rest of this paper is organized as follows. Section
II reviews the related work of GNNs and FGL. Section III

elaborates the proposed FedGL and SpreadFGL. Section IV
evaluates the proposed frameworks via extensive experiments.
Section V concludes this paper.

II. RELATED WORK

A. Graph Neural Networks

Graph Neural Networks [18] have drawn considerable at-
tention in recent years due to their remarkable capabilities.
As an emerging technique in semi-supervised learning, GNNs
can achieve accurate node classification for massive unlabeled
nodes by training scarce labeled data. Considering the ad-
vanced ability in modeling graph structures, GNNs have de-
rived several variants such as Graph Convolutional Networks
(GCNs) [19], Graph Attention Networks (GAT) [20], and
GraphSAGE [21]. For example, GCNs conduct the operations
of neural networks on graph topology, which have been widely
used in semi-supervised learning tasks. The inference vector
of the node u on the (l + 1)-th GCN layer is defined as

h(l+1)
u = σ

{
AGG

(
h(l)
v , euv

)
|∀v ∈ V

}
, (1)

where h
(l)
v is the vector of the node u in the l-th GCN layer.

euv indicates the link between the node u and v. AGG(·) is an
aggregator function used to integrate the neighbor features of
node u via euv . And σ(·) is a non-linear activation function.

The GAT incorporates GCNs with attention mechanisms to
adaptively assign the weights α

(l+1)
uv for the neighbors of the

node u, and the inference vector is defined as

h(l+1)
u = σ

{
AGG

(
α(l+1)
uv h(l)

v , euv

)
|∀v ∈ V

}
. (2)

The GraphSAGE aggregates node features by sampling
from neighbor nodes and the inference vector is defined as

h(l+1)
u = σ

{
h(l)
u ∥AGG

(
h(l)
v , euv

)
|∀v ∈ V

}
, (3)

where ∥ denotes the concatenation operation.
Many scholar have contributed to GNN-based semi-

supervised learning. For instance, Wang et al. [22] proposed
a GCN framework that conducted feature propagation in
topology and node spaces, aiming to promote the fusion of
graphs and features. Zhong et al. [23] designed a contrastive
GCN framework with a generative adjacency matrix to explore
the topology correlations for downstream tasks. Sun et al. [24]
adopted a multi-stage GCN-based framework that employed
self-supervised learning to compensate for the limit labeled
signal. Although the existing studies have gained great success
in centralized semi-supervised learning, they did not well
consider the discrete distribution of graph data that occurred
in real-world scenarios. It should be noted that the message
passing between subgraphs will be blocked if the cross-
subgraph connections are missing. This seriously violates the
propagation of GNNs in multi-hop neighbors and leads to
unsatisfactory performance. Therefore, there is an urgent need
to study the restoration of missing cross-subgraph links for
better handling the semi-supervised node classification.
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Fig. 2. Overview of the proposed SpreadFGL. The SpreadFGL targets a distributed scenario that consists of multiple edge servers and clients. At the edge
layer, the autoencoder is employed to explore potential global features of the covered clients, and then the versatile assessor is combined with a negative
sampling mechanism to supervise refined information, where model parameters transmission is permitted between neighbor edge servers. At the client layer,
GNNs are used as local node classifiers for downstream tasks, and then graphic patchers are employed to repair subgraphs and missing cross-subgraph links.

B. Federated Graph Learning
Federated Graph Learning (FGL) [15], [25], [26] has

emerged as a captivating topic in recent years. Different from
the classic GNN that relies on centralized feature propagation
across the entire graph, FGL enables distributed clients to
collectively maintain a globally-shared model through gradient
aggregation. Many efforts have contributed to this topic. For
instance, He et al. [27] proposed a graph-level scheme that
distributed graph datasets across multiple clients, catering
to various downstream tasks. Wu et al. [28] designed an
FGL framework for recommendation tasks, where subgraphs
contain overlapped items. Xie et al. [2] developed an FGL-
based framework to mitigate the heterogeneity among features
and graphs. They employed clustering techniques to aggregate
clients based on the GNN gradients, aiming to enhance the
collaboration efficiency of federated learning.

However, the above studies overlooked the pervasive miss-
ing links between clients happened in real-world scenarios,
which may cause undesired performance in downstream tasks.
To the best of our knowledge, few studies well considered
and tackled the problem of missing cross-subgraph links.
Zhang et al. [8] utilized a local linear predictor to explore the
potential relationships between clients according to the local
subgraph structure. However, the cross-subgraph relationships
rely on important information from neighbor clients, which
makes it hard to find the potential links only using local
subgraphs, thereby leading to inefficient recovery of cross-
client information. Moreover, prior studies commonly adopted
the classic FedAvg for training, ignoring the overload of a
single node (e.g., edge server) especially when the number of
clients expands.

III. THE PROPOSED SPREADFGL
In this section, we consider the typical FGL scenario with

distributed graph datasets. Based on this setting, we first pro-

pose an improved centralized FGL framework, named FedGL.
Next, we extend the FedGL to the scenario of multi-edge
collaboration and propose a novel distributed FGL framework,
named SpreadFGL. Specifically, Fig. 2 provides a detailed
illustration of the proposed SpreadFGL.

A. Overview and Motivation
A graph dataset is denoted as D (G,Y), where G =

(V, E ,X) is a global graph. V is the node set, where |V| = n.
E = {euv} is the edge set that stores the link relationship
between the nodes u and v, where ∀u, v ∈ V . X ∈ Rn×d

indicates the node feature matrix, where xi ∈ Rd is the
feature vector of the i-th node. Y = [0, 1] ∈ Rn×c is the
label matrix, where c is the number of classes. Considering
that there are N edge servers and M clients. The edge server
Sj covers Mj local clients {Cj

i |i ∈ [Mj ]} to conduct the
FGL training, where

∑N
j=1 Mj = M . The client Cj

i owns the
part samples of the graph dataset, denoted by Dj

i

{
Gji,Yji

}
,

where Gji =
(
Vji, Eji,Xji

)
is a local subgraph and Yji

is the sub-label matrix of nodes Vji. To simulate the real-
world scenario of missing links between clients, we consider
that there are no shared nodes and connected links among
clients, formulated by Vji ∩ V ĵr = ∅, where ∀i, r ∈ [Mj ] and
i ̸= r if j = ĵ, and ∀i ∈ [Mj ],∀r ∈ [Mĵ ] if j ̸= ĵ. The
subgraphs of all clients form the complete graph, defined by∑N

j=1

∑Mj

i=1 |Vji| = n. Thus, there is no link between any two
clients, and a client cannot directly retrieve the node features
from another client.

Based on the above scenario, the client Cj
i owns a local

node classifier F j
i and graphic patcher P j

i , and all clients
can jointly learn graph representations for semi-supervised
node classification. Generally, the proposed SpreadFGL aims
to conduct collaborative learning on independent subgraphs
across all clients, prioritizing the privacy of raw data. There-
fore, the SpreadFGL obtains the global node classifiers



{Fj |j ∈ [N ]} parameterized by {Wj |j ∈ [N ]} in the edge
servers for downstream tasks. With this consideration, we for-
mulate the optimization problem as minimizing the aggregated
risks to find the optimal weights {Wj |j ∈ [N ]}, defined as
N∑
j=1

min
Wj

Rj (Fj(Wj)) =

N∑
j=1

min
W(j,i)

1

Mj

Mj∑
i=1

Rj
i

(
F j
i (W(j,i))

)
,

(4)

where W(j,i) is the learnable weights of local node classifier
F j
i . Rj is the loss function of the global node classifier Fj .

And Rj
i is the loss function of the i-th client that is used to

measure the local empirical risk,

Rj
i

(
F j
i (W(j,i))

)
=

1

|Vji
t |

∑
v∈Vji

t

Rj
i

(
Wj ;F

j
i (G

ji(v)), yji
v

)
, (5)

where Vji
t ⊆ Vji is the labeled training set in the i-th client,

and yjiv is the ground truth of node v in the i-th client.

B. FedGL: Centralized Federated Graph Learning

Since clients cannot directly capture cross-subgraph links
that contain important neighbor information, the feature prop-
agation from higher-order neighbors becomes inadequate, re-
sulting in degraded classification performance. Therefore, it is
crucial to explore the potential topology links among clients.
To achieve this goal, we propose an improved centralized
FGL framework, named FedGL. In FedGL, we consider an
edge server to communicate with M clients. The FedGL
leverages the edge server Sj as an intermediary to facilitate the
information flow among clients, where Sj covers all clients,
denoted by Mj = M . Specifically, we incorporate a graph
imputation generator to construct learnable links, thereby
generating the latent links between subgraphs. To enhance
feature propagation in local tasks and facilitate subsequent
inference with the global model, we employ a L-layer GNN
model with the local node classifier F j

i , defined as

H(j,i) = GNNconvW(j,i)
(Eji,Xji), (6)

where GNNconv(·) is a GNN model and H(j,i) indicates the
GNN output of the i-th client covered by Sj . The feature
propagation of the (l+1)-th layer is given in Eq. (3). Moreover,
the Cross-Entropy loss function is adopted for the i-th client
covered by Sj in the downstream tasks, defined as

LF j
i
= Rj

i

(
F j
i (W(j,i))

)
= −

|Vji
t |∑

u=1

c∑
r=1

Yji
urlnH

(j,i), (7)

where Yji
u is the inference vector of the node u conducted by

local training.
For every edge-client communication in FedGL, each client

parallelly trains the local node classifier F j
i parameterized by

W(j,i) in local training rounds, formulated as

Wt+1
(j,i) = Wt

(j,i) − α∇Ri

(
Fi(W

t
(j,i))

)
, (8)

where α is the learning rate. t ∈ [Tl − 1] indicates the local
training rounds.

After local training, Sj aggregates local parameters{
W(j,i)|i ∈ [Mj ]

}
to update global ones Wj , and then broad-

casts Wj to all clients at each edge-client communication.

C. Graph Imputation Generator with Versatile Assessor

To capture the potential cross-subgraph links, we design
a graph imputation generator and incorporate it with a ver-
satile assessor to explore a learnable potential graph Gj =

(Vj , Ej ,Xj
) for mending the cross-subgraph links.

Graph Imputation Generator. To construct the globally-
shared information without revealing raw data, the clients
upload the processed embeddings

{
H(j,i)|i ∈ [Mj ]

}
to the

edge server at every K intervals of edge-client communication,
where the original linked nodes remain proximate in the
low-dimensional space. Next, the graph imputation generator
performs the fusion on the processed embeddings to obtain
the globally-shared information Hj ∈ R|Vj |×c, where Vj is
the number of all clients covered by Sj . Based on this, Hj is
denoted as

Hj =
[
H(j,1)∥ · · · ∥H(j,Mj)

]
. (9)

In real-world application scenarios of FGL, it is possible
for each node in clients to own potential cross-subgraph links,
and it may be insufficient for clients to propagate features in
multi-hop neighbors if missing these cross-subgraph links. In
response to this problem, the graph imputation generator uti-
lizes the distance to evaluate the node similarity and construct
the global topology graph, referred to A

j
= HjHjT . Next,

k most similar nodes are selected from this topology graph
as potential cross-subgraph links, denoted by the set Ej . To
generate the potential feature vectors X

j
under the guidance of

the globally-shared information, an autoencoder parameterized
by ΦAE is used to explore overcomplete underlying represen-
tations from Hj . Furthermore, to guarantee data privacy, the
random noisy vector S is input to the autoencoder, and thus the
output of the autoencoder is reconstructed as H

j
= h (f(S)),

where f(·) and h(·) are the encoder and decoder, respectively.
It is noted that X

j
= f(S) indicates the potential features

expected to be extracted by the encoder. With the autoencoder,
the random noisy vector is mapped to the same dimension as
Hj , and the output of the (l + 1)-th layer is defined as

H
(j,l+1)

= σ
(
H

(j,l)
W(j,l+1)

a + b(j,l+1)
a

)
, (10)

where W
(j,l+1)
a ∈ Rdl×dl+1 and b

(j,l+1)
a ∈ Rdl are the

layer-specific weights and biases, respectively. σ(·) denotes
the activation function.

Versatile Assessor. Since the conditional distribution of H
j

relies on X
j

and is independent of S,
{
S→ X

j → H
j
}

in
the autoencoder follows the Markov principle. Therefore, we
design a versatile assessor parameterized by ΦAS to supervise
the quality of reconstruction data from the decoder, aiming
to extract the expected underlying features X

j
tailored for

node classification. Considering the diversity of datasets, the
assessor should be trainable to fit in specific tasks. Thus, the
assessor adopts a fully-connected neural network to evaluate



H
j
. Concretely, the assessor takes the reconstructed globally-

shared information H
j

as input in the form of a value, which
is positively correlated with the quality evaluation of the
reconstructed data. Hence, the autoencoder tends to obtain a
higher value under the supervision of the assessor and extract
more valid global information. Specifically, the loss function
of the autoencoder is defined as

L̂AE = −
∑

u
E
p(h

j
u|∀u∈Vj)

(
Assor

(
h
j

u

))
,

=
1

|Vj |
∑

u
log

(
1−Assor

(
h
j

u

))
,

(11)

where Ep(·) is the expectation of the variables in p(·), and
p(h

j

u|∀u ∈ Vj) indicates h
j

u sampled from the distribution of
H

j
. Assor(·) is the assessor that evaluates the constructed

global information. To distinguish the original and recon-
structed global data, we regard the globally-shared information
as the criterion and train the assessor to assign higher scores.
In contrast, the assessor is trained to assign lower scores with
the reconstructed global information. Therefore, the assessor
is able to guide the autoencoder to evolve more discriminative
representations of latent features. Specifically, the loss function
of the assessor is defined as
L̂AS = −

∑
u

[
E
p(h

j
u|∀u∈Vj)

(
Assor

(
hj
u

))
+ E

p(h
j
u|∀u∈Vj)

(
1−Assor

(
h
j
u

)) ]
=

1

|Vj |
∑

u

[
log

(
1−Assor

(
hj
u

))
+ log

(
Assor

(
h
j
u

))]
,

(12)

where p(hj
u|∀u ∈ Vj) denotes hj

u sampled from the distribu-
tion of Hj .

The training processes of the autoencoder and assessor
are performed simultaneously, where the assessor guides the
autoencoder to learn more discriminative reconstructed data
and potential features through back-propagation.

D. Negative Sampling and Graph Fixing

Negative Sampling. To extract more refined potential fea-
tures, we develop a negative sampling mechanism to concen-
trate on the pertinent information for node classification. Based
on the proposed versatile assessor, we first set a threshold
θ ∈ (0, 1) in every training iteration of the autoencoder
and select the attributes in hj

u that are less than θ. These
attributes are deemed as negative and their feedbacks from
the assessor are 0. Next, the zero-regularization is used to
process these negatives, and thus both the autoencoder and the
assessor can spotlight the representations that are meaningful
for downstream tasks. Hence, the loss function of the assessor
is updated and redefined as

LAS =
1

|Vj |
∑

u

[
log

(
1−Assor

(
hj
u ⊙ eu

))
+ log

(
Assor

(
h
j

u ⊙ eu

)) ]
,

(13)

where eu is a c-dimensional vector that judges whether hj
ui ∈

hj
u is higher than θ (eui = 1) or not (eui = 0). ⊙ is the

element-wise multiplication.

Correspondingly, the loss function of the autoencoder is
updated and redefined as

LAE =
1

|Vj |
∑

u

[
log

(
1−Assor

(
h
j

u ⊙ eu

))
+ ∥hj

u ⊙ (1− eu)− h
j

u ⊙ (1− eu)∥22
]
,

(14)

where hj
u and h

j

u are the u-th vector of Hj and H
j
, respec-

tively. 1 is an indicator vector with the values of 1.
Through the above operations, Ej and X

j
are used to form

the learnable potential graph Gj = (Vj , Ej ,Xj
).

Graph Fixing. The edge server Sj divides Gj into
some subgraphs, denoted by the set {Gji(Vji, Eji,N ji

)|i ∈
[Mj ]},where Eji = {ejiuv|ejiuv ∈ E

j
,∀u, v ∈ Vji} is the

neighbor set of Vji, N ji
= {X ji

u |u ∈ Vji}, and X ji

u =

{xji
v |ejiuv ∈ E

ji} indicates the potential neighbor feature
vectors of u. Next, Sj assigns the subgraphs to each client. It
is noted that each local client repairs the subgraph by using
the local graphic patcher P j

i referring to Ĝji = P j
i (G

ji
). This

process simulates the missing links, thereby promoting the
feature propagation of local tasks in Eq. (3). By collaborating
with the edge server, clients are expected to acquire diverse
neighbor features from globally-shared information, thereby
fixing cross-subgraph missing links. Moreover, these cross-
subgraph links contribute to training a global node classifier
Fj , aligning with the overall optimization objective in Eq. (4).

E. SpreadFGL: Distributed Federated Graph Learning

In real-world application scenarios, a single edge server
may encounter the problem of excessive costs and degraded
performance as the number of clients expands, particularly
when clients are geographically dispersed. To address this
problem, we propose a novel distributed FGL framework,
named SpreadFGL, that extends the FedGL to a multi-edge
environment. The SpreadFGL is able to facilitate more ef-
ficient FGL training and better load balancing in a multi-
edge collaborative environment. We consider that there are
N edge servers, and an edge server Sj is equipped with a
global node classifier Fj parameterized by Wj . Besides, a
client only communicates with its closest edge server. There
exist neighbor relationships among the servers, denoted by
the matrix A ∈ RN×N . If Si and Sj are neighbors, aij = 1;
otherwise, aij = 0. Moreover, the parameter transmission is
permitted between neighbor servers.

In SpreadFGL, the clients adopt the L-layer GNNs and
conduct the feature propagation via Eq. (3) during the local
training. The edge servers exchange information with the
covered clients in each edge-client communication. At each
K intervals of edge-client communications, the clients and
their nearest edge servers collaboratively utilize the shared
information to extract the potential links based on the proposed
graph imputation generator and negative sampling mechanism.
However, the potential cross-subgraph links strictly depend on
the information provided by all clients. This not only violates
the core idea of the SpreadFGL but also is impractical if the



information is transmitted from the clients that are under the
coverage of other servers. In light of these concerns, we design
a weight regularizer during the local training. Based on trace
normalization, the regularizer is used to enhance the network
learning capability of the local node classifiers. Specifically,
the loss function of the i-th client under the coverage of Sj is
defined as

L
F

j
i
= Rj

i

(
F j
i (W(j,i))

)
= −

|Vji
t |∑

u=1

c∑
r=1

Yji
urlnH

(j,i) + Tr(W(j,i,L)W
T
(j,i,L)),

(15)

where Tr(·) is the square matrix trace. W(j,i,L) indicates the
parameters of L-th GNN layer for the local node classifier F j

i .
To better explore the potential cross-subgraph links by using

the information from other servers, we adopt the topology
structure at the edge layer to facilitate the parameter transmis-
sion between neighbor servers. This enables the information
flow among clients via the gradient propagation at each K
intervals of edge-client communication. Specifically, Sj first
aggregates the model parameters of its neighbor servers. Next,
Sj averages the parameters and broadcast them to the covered
clients. This process can be described as

Wj ← 1/(

N∑
r=1

arjMr)

N∑
r=1

Mr∑
i=1

arjW(r,i). (16)

The procedure of the proposed SpreadFGL is elaborated in
Algorithm 1, whose core components have been described in
detail before.

IV. PERFORMANCE EVALUATION

In this section, we first compare the proposed FedGL and
SpreadFGL with state-of-the-art algorithms based on real-
world testbed and graph datasets. Next, we conduct ablation
experiments to further verify the superiority of the core
components designed in the proposed frameworks.

A. Experiment Setup

Real-world Testbed. As shown in Fig. 3, we build a hard-
ware testbed to evaluate the proposed FedGL and SpreadFGL
in real-world scenarios of edge-client collaboration. In the
testbed, each Raspberry Pi 4B acts as a client that is equipped
with Broadcom BCM2711 SoC @1.5GHz with 4 GB RAM,
and the OS is Raspbian GNU/Linux 11. Each Jetson TX2
acts as an edge server that is equipped with one 256-core
NVIDIA Pascal(R) GPU, one Dual-core Denver 2 64-bit CPU
and a quad-core Arm(R) Cortex(R)-A57 MPCore processor
equipped with 8 GB RAM, and the OS is Ubuntu 18.04.6
LTS. The above hardware communicates through a 5 GHz
WiFi network, and the proposed frameworks are implemented
based on PyTorch. After completing local training, the client
(Raspberry Pi 4B) uploads the local model parameters to its
connected edge server (Jetson TX2). An edge server conducts
aggregation and distributes the globally-shared model to its
connected clients.

Algorithm 1: The proposed SpreadFGL.

1 Input: N edge servers, M clients, local graph datasets
{Dj

i {Gji,Yji}|i ∈ [Mj ]}, adjacency matrix A, local
training rounds Tl, edge-client communication rounds
Tg , assessor iterations Tas, autoencoder iterations Tae.

2 for j = 1→ N do
3 Initialize W(j,i) ←Wj , ∀i ∈ [Mj ];

4 for tg = 0→ Tg − 1 do
5 # Parallel training of edge servers.
6 for j = 1→ N do
7 # Training of clients.
8 for tl = 0→ Tl − 1 do
9 Calculate LF j

i
←Rj

i (F
j
i (W(j,i))) in Eq.(15);

10 # Training of graph imputation.
11 if tg % K = 0 then
12 Upload Sj ← {W(j,i)}, {H(j,i)}, i ∈ [Mj ];
13 Aggregate Sj ← {W(r,i)|i ∈ [Mr]}, where

Sr is the neighbor of Sj ;
14 Update Wj in Eq. (16);
15 Calculate A

j ← HjHjT and form links E ;
16 while not convergent do
17 for tae = 0→ Tae − 1 do
18 Calculate H

j ←h(f(S)) by Eq. (10);
19 Update Φ

tae+1

AE ←Φtae

AE −β∇Φtae
AE
LAE

in Eq. (14);
20 for tas = 0→ Tas − 1 do
21 Calculate H

j ←h(f(S)) by Eq. (10);
22 Update Φ

tas+1

AS ←Φtas
AE − β∇

Φ
tas
AS
LAS

in Eq. (13);

23 # Graph fixing in clients.
24 Download Cj

i ←Gji(V
ji,Eji,N ji

), ∀i ∈ [Mj ];
25 Fix Ĝi ← Pi(G

i
), ∀i ∈ [Mj ];

26 else
27 Aggregate Sj ←

{
W(Sj ,i)|i ∈ [Mj ]

}
;

28 Calculate Wj ← 1
Mj

Mj∑
i=1

W(j,i);

29 Download W(j,i) ←Wj , ∀i ∈ [Mj ];

30 Output: Global node classifiers {Fj |j ∈ [N ]}.

Datasets. The following four benchmark graph datasets are
used in our experiments, as shown in Table I, where c is the
number of classes, |Vi| and |Ei| are the average number of
nodes and edges in subgraphs, and |∆E| is the number of
missing cross-subgraph links.

• Cora [29] is a dataset of citation network, where nodes
and edges indicate papers and their mutual citations,
respectively. According to the paper topics, the nodes are
labeled with 7 classes.

• Citeseer [29] is a research paper citation dataset, where
nodes and edges indicate publications and citation re-



TABLE I
DESCRIPTION OF BENCHMARK GRAPH DATASETS

Datasets Cora Citeseer WikiCS CoauthorCS

c 7 6 10 15
|V| 2,708 3,327 11,701 18,333
|E| 5,429 4,715 215,863 81,894
d 1433 3703 300 6,805

M 6 9 12 15 6 9 12 15 6 9 12 15 6 9 12 15

|Vi| 451 300 225 180 554 369 277 221 1,950 1,300 975 780 3,055 2,037 1,527 1,222
|Ei| 750 438 304 229 768 357 341 263 13,928 6,607 3,985 2,685 7,582 4,047 2,475 1,947
|∆E| 935 1,487 1,781 1,994 110 434 632 782 348,157 372,257 383,899 291,439 36,405 45,475 52,203 52,699

Edge servers:
Jetson TX2

Clients:
Raspberry Pi 4B

Fig. 3. Real-world testbed for FedGL and SpreadFG.

lationships, respectively. The citation relationships are
defined as a word vector, and the nodes are classified
into 6 classes.

• WikiCS [30] is a dataset derived from Wikipedia, where
nodes and edges indicate computer science (CS) articles
and different branches, respectively. All nodes are labeled
with 6 classes.

• CoauthorCS [31] is an academic network dataset on
microsoft scholar graph, where nodes and edges indicate
authors and co-author relationships, respectively. The
nodes are labeled with 15 classes based on research fields.

Comparison Algorithms. We compare our proposed
FedGL and SpreadFGL with the following state-of-the-art
algorithms.

• LocalFGL is a local node classifier in the SpreadFGL,
which is trained by a client independently.

• FedAvg-fusion [17] is an improved FedAvg framework,
which trains a globally-shared GNN model with FedAvg
via collaborating subgraphs distributed among clients.

• FedSage+ [8] adopts a linear predictor to locally repair
the potential links between subgraphs, referring to the
latent information in each training round.

It is worth noting that there are few studies for handling the
FGL scenario with completely missing cross-subgraph links
between clients. FedSage+ is deemed as the state-of-the-art al-
gorithm for studying the missing cross-subgraph links in FGL
fields. However, it still suffers from performance bottlenecks
and has not been well solved in real-world scenarios.

Parameter Settings. For the proposed SpreadFGL and
FedGL, we adopt the GraphSAGE [21] with two layers and
use the GCN aggregator as local node classifiers. The au-
toencoder employs 4 fully-connected layers, where the neural
number of encoder and decoder are {c, 16, d} and {d, 16, c},

respectively. In the autoencoder, the Softmax is used as an ac-
tivation function in the last layer. The assessor adopts a fully-
connected neural network, where the hidden neural number
is {c, 128, 16, 1}. In the assessor, the Sigmoid is used as an
activation function in the last layer while the ReLU is used
in the rest layers. The training iterations of the autoencoder
and assessor are Tae = 5 and Tas = 3, respectively, and
the Adam optimizer is used to update parameters with the
learning rate of 0.001. The threshold θ is set to 1/c and k
ranges in [3, 20]. Moreover, we select [20%, 60%] samples as
the training set and randomly choose 20% as the testing set.
The Louvain algorithm [32] is used to measure the subgraph
similarity for clients. The FedGL uses an edge server and the
SpreadFGL adopts three edge servers for collaborative training
with a ring topology structure, where the number of clients
ranges in [6, 15]. The Adam optimizer is used to update the
parameters of local classifiers with the learning rate lr = 0.01.
Besides, we use the well-known accuracy (ACC) and macro
F1-score (F1) as performance metrics.

B. Experiment Results and Analysis

Node Classification Accuracy. As shown in Table II, the
proposed SpreadFGL and FedGL can both achieve higher
classification accuracy than other state-of-the-art algorithms
under different datasets, indicating the superiority of the pro-
posed frameworks for node classification tasks. Specifically,
the significant performance gap between the LocalFGL and
SpreadFGL verifies the advantages of using the proposed edge-
client collaboration mechanism. The FedGL and SpreadFGL
outperform the FedSage+ by around 12.78% and 14.71% in
terms of ACC and F1, respectively. This demonstrates that the
FedGL and SpreadFGL gain more generalized potential cross-
subgraph links through the global information flow, further
validating the effectiveness of the proposed graph imputation
generator. Moreover, compared to the FedGL, the SpreadFGL
achieves better performance on most of the datasets under
various scenarios with different numbers of clients. This
indicates that the information flow between clients and edge
servers utilized in the SpreadFGL effectively promotes the
repair of missing links among clients even though the scenario
becomes complex with more clients.

Performance with Different Labeled Ratios. Fig. 4 de-
picts the ACC of the SpreadFGL on different datasets with
various labeled ratios, varying from 0.2 to 0.6. With the same
labeled ratio, the ACC tends to decrease as the datasets are
distributed on more clients. This is because massive heteroge-



TABLE II
NODE CLASSIFICATION ACCURACY (%) ON FOUR DATASETS WITH LABELED RATIO OF 0.3 AND M = 6, 9, 12, 16

Dataset Cora Citeseer

Methods Metrics M = 6 M = 9 M = 12 M = 15 M = 6 M = 9 M = 12 M = 15

LocalFGL ACC 62.20 60.00 57.14 63.33 51.63 55.56 46.15 43.75
F1 56.71 52.43 53.96 41.47 47.85 49.70 46.00 37.90

FedAvg-fusion ACC 81.70 76.89 73.19 70.61 71.57 71.42 69.07 68.64
F1 79.15 74.05 66.14 63.83 61.89 67.17 60.00 60.11

FedSage+ ACC 80.26 80.18 80.06 48.11 73.13 72.87 72.46 72.09
F1 79.98 79.63 78.72 48.06 63.12 62.25 61.65 60.45

FedGL ACC 84.47 83.36 82.81 76.71 73.83 73.08 73.53 73.03
F1 84.08 83.11 81.63 75.34 69.41 67.53 64.39 63.72

SpreadFGL ACC 84.49 83.56 82.59 78.55 73.38 73.43 73.72 73.23
F1 84.32 83.11 82.34 75.90 67.72 68.12 67.01 67.63

Dataset WikiCS CoauthorCS

Methods Metrics M = 6 M = 9 M = 12 M = 15 M = 6 M = 9 M = 12 M = 15

LocalFGL ACC 58.58 55.56 52.13 47.46 82.76 80.00 79.81 79.90
F1 52.06 48.50 46.06 42.31 57.45 58.55 53.97 62.06

FedAvg-fusion ACC 76.25 74.70 73.67 73.37 87.73 86.96 87.35 87.60
F1 68.98 66.52 63.09 62.53 73.46 67.15 62.68 64.11

FedSage+ ACC 36.32 38.73 36.94 38.89 86.93 87.69 87.68 88.03
F1 32.32 34.56 33.24 35.61 66.57 67.06 61.85 65.06

FedGL ACC 77.56 76.97 76.24 75.26 90.49 89.74 87.72 88.62
F1 70.71 68.87 66.83 64.37 74.89 67.38 65.22 65.06

SpreadFGL ACC 78.93 78.06 77.10 76.32 90.43 89.74 89.68 88.63
F1 72.19 71.32 69.78 67.49 74.54 68.13 65.25 65.98

Labeled ratio

(a) Cora (b) Citeseer

(d) CoauthorCS(c) WikiCS

Fig. 4. ACC of SpreadFGL with various numbers of clients and labeled ratios.

neous clients cause difficulty and instability in the aggregation
process of model parameters. Under this scenario, the perfor-
mance of the classic FGL might be seriously degraded since it
adopts a centralized training manner. It is noted that the ACC
is rising as the labeled ratio increases, but with fewer data
points presenting the opposite situation. This discrepancy may
be attributed to the sparsity of certain classes in the feature
space, leading to insufficient model training and thus affecting
classification accuracy.

Parameter Sensitivity. We analyze the parameter sensi-
tivity of the proposed SpreadFGL on different datasets with
respect to the hyperparameter K and Tl. As shown in Fig. 5, K
remarkably affects the classification accuracy in terms of the
ACC and F1. Specifically, the ACC and F1 stay at a low level

Fig. 5. Accuracy of SpreadFGL with different values of K.

(a) Cora (b) Citeseer

Fig. 6. ACC of SpreadFGL with various local training iterations Tl.

when K is more than 10, while they keep stable as K ranges
in [1, 10], attributed to the reason that the graph imputation
generator can better repair the missing links in subgraphs
to promote feature propagation in local models within fewer
edge-client communications, thereby improving the training of
the global node classifiers. In this regard, the suggested values
of K range from 1 to 10. Fig. 6 presents the influence of



Fig. 7. Ablation study on negative sampling mechanism and versatile assessor
when M = 6 and the labeled ratio is 0.3.

local training iteration Tl on the SpreadFGL. The SpreadFGL
converges slowly and achieves a local optimum when Tl is less
than 5. This is because local models cannot sufficiently learn
feature patterns within fewer local iterations, leading to slow
model convergence. It is noted that the ACC declines when Tl

exceeds 50 due to the overfitting of the model. Therefore, a
suitable range of Tl is [10, 20], considering both accuracy and
convergence speed.

Ablation Study. As shown in Fig. 7, we regard the FedAvg-
fusion as a baseline that adopts the FedAvg to aggregate the
parameters from multiple clients on an edge server. Also,
we test the performance of the FedGL without a negative
sampling mechanism (denoted by NS), versatile assessor (de-
noted by Assor), and the FedGL without NS. The proposed
FedGL and SpreadFGL achieve comparable performance and
outperform others by combining graph imputation generator,
versatile assessor, and negative sampling mechanism. It is
noted that there is only a small performance improvement
when just utilizing one of the core components designed in
the proposed frameworks. It obtains considerable improvement
when the SpreadFGL adopts all the proposed components.
This demonstrates that the integration of these components
is able to better extract more refined potential cross-subgraph
links, thereby promoting the accuracy of classification tasks.

(a) Cora (b) Citeseer

Fig. 8. Training loss of different FGL-based frameworks when M = 6 and
the labeled ratio is 0.3.

Convergence Validation. Fig. 8 illustrates the training loss
of different FGL-based frameworks on Cora and Citeseer
datasets. It can be observed that both the FedGL and Spread-
FGL can always rapidly converge compared to the state-of-
the-art algorithms, validating the effectiveness of the proposed

frameworks in node classification tasks. Fig. 9 shows the
curves of ACC when using different FGL-based frameworks.
It is noted that the FedGL and SpreadFGL can achieve
higher ACC than other state-of-the-art algorithms within fewer
training iterations. Compared to the FedGL, the SpreadFGL
converges faster to higher accuracy on different graph datasets,
demonstrating the superiority of the SpreadFGL in multi-edge
collaborative environments.

(a) Cora (b) Citeseer

Fig. 9. ACC of different FGL-based frameworks when M = 6 and the
labeled ratio is 0.3.

V. CONCLUSION

In this paper, we propose a novel FGL-based framework
named FedGL and its extended framework SpreadFGL, ad-
dressing the challenges of generating cross-subgraph links
and single-node overloading. First, we design the FedGL to
repair the missing links between clients, where a new graph
imputation generator is developed that incorporates a versatile
assessor and negative sampling mechanism to explore refined
global information flow, extracting unbiased latent links and
thus improving the training effect. Next, to alleviate the
overloading issue at the edge layer, we extend the FedGL and
propose the SpreadFGL with multi-edge collaboration to en-
hance the global information exchange. Extensive experiments
are conducted on real-world testbed and benchmark graph
datasets to verify the superiority of the proposed FedGL and
SpreadFGL. The results show that the FedGL and SpreadFGL
outperform state-of-the-art algorithms in terms of model accu-
racy. Further, through ablation experiments and convergence
analysis, we validate the effectiveness of the core components
designed in the proposed frameworks and the advantage of the
SpreadFGL for achieving faster convergence speed.
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