
Execution Path Profiling for OS Device Drivers:
Viability and Methodology?

Constantin Sârbu1, Andréas Johansson2 and Neeraj Suri1

1 Department of Computer Science – Technische Universität Darmstadt,
Hochschulstr. 10, D–64289 Darmstadt, Germany

{cs, suri}@cs.tu-darmstadt.de
2 Department of Mechatronics and Software – Volvo Technology Corporation,

Sven Hultins gata 9C, SE–41288 Göteborg, Sweden
andreas.olof.johansson@volvo.com

Abstract. Operating Systems (OSs) mediate across the hardware and
software applications, leading to overall system service provision, but of-
ten sacrifice service robustness while favoring increasing feature richness
and peripheral support. The OS interface to peripherals is implemented
by components termed as Device Drivers (DDs). Unfortunately, despite
extensive testing, DDs continue to constitute the prominent cause of
system service failures.
To find DD’s weakness areas, this paper proposes a novel technique for
profiling kernel mode DDs execution paths. Such profiles highlight the
frequently used parts of a driver for a workload, helping identify redun-
dant tests. The communication interfaces between the OS and DDs are
simultaneously monitored, revealing the kernel functions invoked at run-
time and the followed code paths. To highlight execution hotspots, a
cluster analysis scheme using string similarity metrics is proposed to dis-
tribute the code paths into equivalence classes, reflecting the occurrence
weights of both kernel functions and code paths.

Keywords: Operating System, Device Driver, Code Path Profiling, Cluster
Analysis, Black-box Testing.

1 Introduction

COTS OSs are invariably required to balance the tradeoff between service de-
pendability and service performance. Often performance aspects are favored in
order to offer extensive support for a wide spectrum of applications and periph-
erals. The OS interface to peripherals, namely device drivers (DDs), are typically
produced by third-party developers, often lacking the necessary skill and knowl-
edge required to develop high quality and robust DDs. Moreover, under the
? This research has been supported, in part, by Microsoft Research, EU FP6 NoE

ReSIST and DFG TUD GK-MM.

pressure to fulfill market demands, resources allocated to DD testing are often
limited. Thus, while OS kernels have reached a certain maturity, the DDs are
prematurely released and therefore are more likely prone to failures, affecting
the overall provisioning of OS’ service robustness.

With hundreds of devices attached to each ordinary computing system (about
250 in a Windows XP or Vista installation [1]) the drivers’ code represents a
significant share of the total OS code. In Linux, for instance, about 70% of the
total lines of code belongs to DDs [2]. Given the immaturity of their code, this
trend suggests that driver code is responsible for many OS service outages. This
observation is confirmed by the OS reliability research community’s results from
several independent [3], academic [2, 4–7] and industry [8] sources.

As DDs coexist in privileged space with critical OS kernel structures, an error
in a defective DD can propagate to the kernel, eventually leading to degraded
OS service level or even generalized system failure. Recent studies [9, 10] have
shown that OS kernels are permeable to error propagation, mostly due to the
fact that in kernel space various components communicate under a “gentleman’s
agreement”. This means that, for the sake of performance, kernel components
perform only minimal (if any!) parameter validation, assuming that their com-
munication parties are error-free and non-malicious. DDs should also follow this
policy, hence passing the responsibility of producing error-free code to driver
developers. This means that, beside programming experience, driver developers
have to possess a deep understanding of OS kernel intricacies and be fully aware
of the DD’s runtime context.

It is reasonable that system integrators themselves test the DDs installed
in their systems to verify that the specified level of service and reliability is
provided. Typically, black-box testing is the only viable approach. Therefore,
working continually under deadline pressure, system integrators limit DD testing
to simpler acceptance and integration tests.

Execution profiling information is an important prerequisite for helping rig-
orous DD validation. It is an abstract model describing how a DD behaves under
the influence of external stimuli. As such it can help DD testers identify which
part of the DD code is most exercised for a representative workload. This can
be used to guide selection of test cases, by focusing on the most frequently used
parts in an operational setting, which may substantially differ from statically
selected test cases.

Regardless, the ability to identify DD execution profiles increasingly repre-
sents a serious technical challenge as: (a) the access to the OS kernel space is lim-
ited (debugging is non-trivial); (b) the access to source code is limited (usually,
testers cannot access the source code of the tested object); and (c) envisioning
the runtime environment for COTS DDs is difficult (virtually each individual
computing system has its own unique set of HW and SW components).

Paper Emphasis and Contributions

With the overall aim to enhance OS robustness, in this paper we develop a
profiling methodology for kernel-mode DD execution paths by considering an

additional communication interface alongside with the I/O requests considered
in our prior work [11, 12]. In this communication paradigm, at runtime, a DD
acts as a consumer of the services (i.e., functions) provided by various kernel
libraries. Therefore, a DD’s runtime activity can be defined by the sequences of
calls made to external functions. As DDs act on kernel calls, the call sequences
are delimited by the I/O requests generated by the OS, and thus infer the execu-
tion path taken in the DD’s code, helping to evaluate and to compare the effects
of different workloads (i.e., test suites or individual test cases) by revealing ex-
ecution hotspots. The presented process for caption and evaluation of the call
traces does not require source code access to any of the involved components.

The presented results show a key phenomenon, the tendency of call traces
to cluster with respect to the code being executed. We consequently present a
cluster analysis method to ascertain the relative similarity of the code paths
taken. The obtained trace clusters represent (together with their occurrence
indexes) effective representations of a DD’s execution hotspots. From a testing
perspective, this strongly indicates the possibility to significantly reduce the
testing effort needed to cover the exercised code paths by thoroughly testing
only a single representative code path from each equivalence class.

Additionally, we show how the number of equivalence classes can be decided
by varying the similarity threshold (the cutoff factor of the dendrogram - a
tree-like structure describing the clustering). This represents a powerful tool for
directing the efforts that a subsequent testing campaign needs undergo.

Overall, this paper outlines a methodology to obtain execution profiles for
kernel DDs, and ascertain its viability against a set of actual Windows DDs.
By using tracing information from two driver communication interfaces, our
technique provides insights that help understand a DD’s runtime behavior in
terms of execution paths. The main contributions of this paper are:

• A novel method to accurately profile a driver’s runtime behavior in terms
of the called kernel services.
• An occurrence-weighted list of kernel functions accessed by a driver indi-
cating possible error propagation paths among kernel libraries and drivers.
• A novel application of clustering algorithms to identify and tune equiva-
lence classes of test cases.
• A tendency of call traces to cluster is demonstrated in a real-world sce-
nario, outlining execution hotspots for an actual DD (the floppy disk driver).

Paper Organization

The paper is organized as follows. Section 2 introduces the related work, followed
in Sects. 3, 4 and 5 by the presentation of the terminology and main work
concepts used throughout the paper. After a discussion on clustering aspects in
Sect. 6, Sects. 7 and 8 present and then discuss the experimental validation of
the method. Finally, Sect. 9 concludes and briefly presents our ongoing research
activities.

2 Related Work

Weyuker recommends to focus testing of general SW onto the functionalities
with high occurrence rates in the field [13, 14] in order to find faults with high
likelihood to perturb service provision early on. Intuitively, such an option is
enabled only under the assumption that a runtime profile of the program targeted
by testing is available. Our methodology create such profiles for kernel DDs
by revealing the taken code paths and the set of driver-external functionalities
required at runtime. Defect localization studies for general [15] and OS-specific
SW [6] support Weyuker’s recommendation by showing that defects tend to
cluster into certain areas of code. By profiling a DD’s activity, the work presented
in this paper guides a rigorous partitioning of the code by indicating runtime
execution hotspots. Moreover, Weyuker warns about the necessity to validate
COTS components in their new environments, even though they successfully
passed their producers’s testing campaigns. As our methodology is completely
disconnected from the need to access any OS part’s source code, it can be used
for black-box level DD profiling, thus easing the testing efforts of a DD’s user.

Johansson et al. proposed in [16] a selection method for SWIFI injection trig-
gers which is based on call blocks of driver-external functions. The methodology
presented in this paper for profile construction is similar in terms of the used
monitoring strategy, but in contrast we consider the effects of the kernel’s I/O
requests on the DD’s behavior. Mendonca and Neves [1] used a SWIFI tech-
nique to evaluate the robustness of the kernel libraries. The target functions
were selected statically, by inspecting the import tables of the DDs (see 5.1) of
several Windows installations and choosing the ones that are used by most of
the DDs. In accordance with Weyuker’s recommendations, our results suggest
that the target functions should be selected on a dynamic basis (using profiling)
by building occurrence indexes to guide the selection process.

Ball and Larus [17] acknowledged the application of path profiling for test
coverage assessment, “by profiling a program and reporting unexecuted state-
ments or control flow”. They used binary instrumentation to obtain instruction
traces that reveal a program’s control-flow to identify paths and their execution
frequencies. The paths ended at loop and procedure boundaries. An extension
is represented by the “whole program paths” described in [18], which cross both
boundaries to reveal a better picture of a program’s execution pattern. Though,
these approaches are not directly applicable to DD as the they are implemented
as function libraries rather than programs in the classical sense. Moreover, in-
strumentation induces a high execution overhead and produces large amounts of
data, two characteristics which penalize the use of this approach inside the OS
kernel space.

Leon and Podgursky [19] used profiles generated by individual test cases and
a clustering technique for evaluating test suite minimization by selecting one test
case per cluster. The profiles used were generated by third-party tools, so the
cluster analysis had to rely on their accuracy. While test cost reduction is out of
the scope of this paper, we focus on building viable and accurate DD profiles,
as a prerequisite mean to reducing test efforts.

3 System Model: The Entailed OS Kernel Components

In this paper we consider a model of a computing system as depicted in Fig.
1. It represents a computer equipped with Windows XP, the chosen OS for the
case studies presented in Sect. 7. Nevertheless, the system in Fig. 1 is general
enough to represent the architecture of most of contemporary COTS OSs. Here,
the OS defines the layer between the hardware and user-mode applications. It
provides to the applications an abstract view of the hardware peripherals and a
set of services for accessing and managing them. In Fig. 1, the entities relevant
for the approach are located inside the OS kernel space.

...Appl. 1

Driver 1

System Service Interface

Hardware layer

USER

KERNEL

HW

...

Driver 2

Driver 3 Driver n

Appl. mAppl. 2
System

Workload

SPACE

SPACE

SPACE

OS
I/O

Manager

OS

Kernel

Libraries

Fig. 1. A HW-SW system featuring a COTS OS with n DDs (Windows XP).

The System Service Interface provides a uniform service interface to the ap-
plications. That is, applications issue access requests to different services offered
by the OS and this abstraction layer translates them into specific calls to various
OS structures, hiding the diversity of the peripheral access interfaces from the
applications.

The device drivers (DDs) can be considered device-specialized toolboxes to
access each particular hardware peripheral. The DDs are loaded by the OS at
initialization time or on demand, when it needs to communicate with a certain
hardware device. In Windows XP, the structure of the DDs is specified by the
Windows Driver Model (WDM) [20]. WDM defines the format of the kernel
structures associated with DDs, the programming interface they need to follow
and the communication paradigm with the I/O Manager, described below. To
support the concepts described by the WDM, a Driver Developer Kit (DDK)
containing tools and documentation is available for DD development.

The I/O Manager is a combination of various OS kernel structures with role
in naming, registering and managing the DD objects. The I/O Manager is con-
cerned with preparing and sending commands to the DDs, for OS administrative
purposes or on behalf of the applications. Also, the I/O Manager prepares the
results of the I/O invocations of the peripherals (received from the corresponding
DDs) and forwards them to the calling applications. Section 4 contains a more
detailed discussion on DD’s interaction with the I/O Manager.

The OS Kernel Libraries are dynamic-linked libraries implementing general
functionality and mechanisms that ensure core OS service provision (i.e., pro-
cess and thread management, synchronization primitives, scheduling). In the
Windows-family OSs the kernel libraries are built as portable executables, fol-
lowing the PE/Coff standard [21]. The DDs and other kernel components use
the services offered by the kernel libraries by calling their exported functions.
Section 5 discusses in detail how DDs use the functionalities stored in kernel
libraries.

4 Developing the Basis for Code Tracing: The I/O
Request Packet (IRP) Interface

I/O Request Packets (IRP) are kernel structures built by the I/O Manager when
a request needs to be sent to a DD. The IRP structure contains the request type
and the parameters needed by the recipient DD to start executing the request-
associated activity. When a result of the operation is available, the DD uses the
same IRP structure to piggyback it back to the I/O Manager.

Currently, WDM specifies 28 types of IRP requests (for instance READ for
reading data from the device and CLEANUP for preparing the device for unload
etc.). A DD must implement dispatch functions for every IRP type it supports
and register its list of supported IRPs with the I/O Manager. This request type-
based code separation of WDM-compliand DDs is relevant for our approach, as
one can infer the functionality executed at any instant, based only on the type
of the issued IRP.

4.1 The Processing of I/O Requests

To illustrate how an I/O request is processed, consider a simple example of an
application that issues a read request to a hardware device. Figure 2 depicts this
procedure where the main stages are: (1) the application calls ReadFile function
of the WinAPI; (2) the WinAPI traps the OS kernel into the I/O Manager which
selects the DD managing the target HW device; (3) the I/O Manager encodes the
I/O request in an IRP structure and forwards it to the DD; (4) the DD contacts
the HW device, instructs it to retrieve the data and completes the IRP; (5) the
I/O Manager reads the completion information from the IRP and (6) returns
the result to the WinAPI, in terms of a pointer to data; (7) the WinAPI copies
the data to a buffer accessible to the calling application (in user space) and (8)
informs the application about the result of the operation and the location of the
requested data. In this paper, we capture the IRP flow between the I/O Manager
and a DD. At this communication interface, two relevant events are recorded:
incoming IRPs (from I/O Manager to DD, step (3)) and outgoing IRPs (from
DD to the I/O Manager, step (5)). Onwards, we call this communication level
the “IRP interface”.

According to the WDM specification, each HW device has at least two drivers
servicing it, the function driver and the bus driver. The function driver is han-
dling the receipt and completion of IRPs, whereas the bus driver is responsible

USER

SPACE

KERNEL

SPACE

HW

SPACE

Function driver

Filter driver

Bus driver

Application

(Workload)

I/O Manager

Win API Buffer

IRP

status Device Driver Stack

HW Device

1

2 6

8

7

3

5

4

Fig. 2. Processing of I/O requests.

KERNEL

SPACE

Lib1.sys

“foo”

“bar”

Device

Driver

Lib2.dll
IAT2

IAT1

EAT

EAT
EAT

Fig. 3. A DD importing functions from
two libraries.

for connecting the device with the host computer, being usually the driver lo-
cated closest to the HW peripheral. On top of the function driver, a driver stack
can contain one or several filter drivers, which act as wrappers for the underly-
ing drivers. Filter drivers are usually responsible for the preparation of the the
IRP structure or initialization of other kernel structures needed by the drivers
located below in the stack.

In order to capture the IRP flow we have built a filter driver and installed
it on the top of the driver stack. Its location enables it to be the first to receive
the incoming IRPs and the last to see the outgoing ones. Our filter driver logs
the incoming and outgoing IRPs and forwards them, unchanged, to their orig-
inal recipients while keeping the induced computational overhead to minimum.
As each incoming IRP triggers the execution of a dispatch function and each
outgoing IRP signals the termination of the associated computation, we use the
captured IRP flow logs to specify a DD’s activity at any certain instant. The
filter driver is written with portability in mind, so that it can be installed on
top of any WDM-compliant DD, without requiring modifications.

4.2 Mode, Transition and Operational Profile of a Device Driver

As we do not assume access to the DD’s source code, we consider that DD
state changes are caused by the I/O request flow having the DD as recipient. In
our previous work [11] we introduced an abstracted DD state definition called
mode that allows for expressing DD activity at runtime. The mode of a driver
is defined as follows:

Definition 1 (Driver Mode). The mode of a driver D is the tuple of binary
predicates, each assigned to one of the n distinct IRP types supported by the
driver:

MD : < PIRP1 PIRP2 PIRP3 .. PIRPn >, where PIRPi is

PIRPi =
{

1, if performing the functionality triggered by receival of IRPi

0, otherwise

A transition between modes is triggered by the receival of a new IRP or
completing an executed IRP. As the I/O Manager serializes the IRP flow, our
model assumes that only one bit of the tuple describing the mode of the DD
is flipped at a time. Therefore, the DD can switch only to modes whose binary
tuples are within Hamming distance of 1 from the current mode. Because of this
behavior, the number of possible transitions in the model is n · 2n (each mode
can be left on n exit transitions).

We call the set of the modes (Nop) visited under a certain workload relevant
for the DD, together with the traversed transitions (Top) the operational profile
of the DD. In [11] we have demonstrated that irrespective of the chosen workload,
the operational profile is a small subset of the total, theoretically-possible state
space of the DD (Nop � 2n and Top � n · 2n).

5 Developing the Basis for Code Tracing: The Functional
Interface

The communication between OS kernel and DDs is not limited to the IRP
scheme. A DD also communicates with the OS kernel using a second inter-
face, which we onwards call the “functional interface”. Enabled by the concept
of dynamic linking, at this communication level the parties involved are kernel
libraries and DDs, as image files. In fact, this scheme forms the basis of OS mod-
ularity, and is the most commonly used data communication paradigm between
binaries. The OS provides a set of kernel libraries containing functions required
by the different kernel components. Each library publishes a list of the available
functions. On the other side, the DDs (as consumers of the services provided by
the libraries) contain a list of necessary libraries and for each of them a list of
the used functions from the respective library. For both kernel libraries and DDs
the lists mentioned above are stored in the headers of the binary files.

5.1 The PE/COFF Executable Format and DLL-Proxying

In Windows, the PE/COFF format [21] specifies the file headers that permit a
Windows executable file to publish the contained functions and variables (ex-
ports) and to use functions defined externally by another library (imports). The
example in Fig. 3 depicts a DD that imports functions implemented in two exter-
nal libraries, Lib1.sys and Lib2.dll. Each contains an Export Address Table
(EAT) that publishes a list of functions exported by the respective library. At
runtime, the DD links to the kernel libraries on demand, when the result of the
functions foo and, respectively, bar are needed. Therefore, the header of the DD
file contains an Import Address Table (IAT) for each of the needed libraries. The
IAT contains only the function names which are used in the DD’s code.

At DD load time, the OS automatically checks if all the required libraries
are present in the system by inspecting the DD’s IATs. If they cannot be found,
an error message is issued and the DD loading is aborted. At load time, no
verification is done to check if the libraries found actually contain the necessary

functions for the DD to execute correctly. Only at runtime, when a portion of
DD code containing calls to external functions is reached, the DD accesses the
associated library to utilize its services.

The work presented in this paper relies on the ability to capture the calls to
external functions at DD runtime. While various methods for capturing calls to
externally located functions exist (eg., Detours [22], Spike [23]), they are specific
to user-space software and are therefore not directly applicable to kernel-mode
programs. In contrast, we need a kernel space mechanism to monitor the function
calls. Therefore, we have chosen to implement a DLL-proxying technique. Briefly,
DLL-proxying consists of building a DLL library which act as a wrapper of the
original library. In order to leave the functionality of the DD unaffected, the
wrapper library has to implement all the functions required by the DD, or to
forward its calls to the original library. By modifying the IAT tables of the target
DD to point to the wrapper library instead of the original one, the wrapper
library (also called DLL-proxy) is interposed between the two parties. Section 7
details our implementation of DLL-proxies inside the Windows kernel.

Our kernel-mode library wrappers are used exclusively for capturing the se-
quences of functions called by a DD at runtime, when exercised by a selected
workload. Consequently, we only need to log the function names but not modify
any parameters or behavior of the wrapped kernel APIs. Therefore, the overhead
induced by the DLL-proxy is kept to minimum.

5.2 Call Strings as Code Path Abstractions

As external function calls correspond to DD code being executed as a result of
IRP requests (or other OS kernel maintenance requests), grouping them using
IRPs as boundaries is intuitive. Therefore, we introduce the notion of call string
as follows:

Definition 2 (Call String). A call string (CS) is a sequence of DD-external
function calls issued at runtime by a DD, delimited by incoming and outgoing
IRP requests.

In this paper we consider each CS an abstraction representing the code path
taken by the DD at execution time. As we use the incoming and outgoing IRP
requests as CS delimiters, each CS can be associated with a DD mode and,
subsequently, with an IRP dispatch function.

Illustrating the CS capturing method, the left part of Fig. 4 shows an abstract
representation of the WDM-compliant DD’s code with dispatch functions for
handling READ and WRITE requests. Assuming that the DD can handle only
those two IRP requests, the visited modes are defined by bit strings with length
two; the first bit is associated with READ and the second with WRITE operation.
Note that both dispatch subroutines call functions implemented externally by
other kernel libraries. Assuming that at a certain instant the DD receives the
READ request followed by an WRITE request, the log file that combines the events
recorded by monitoring the two communication interfaces is depicted on the

right side of Fig. 4. Hence, the call strings CSi and CSi+1 can be constructed
and associated with the modes < 10 > and, respectively, < 01 >.

Driver code Log file

...

Dispatch_READ{

 ...

 a = foo_1 (x, y);

 b = foo_2 (z);

 ...

}

Dispatch_WRITE{

 ...

 c = bar_1 ();

 ...

 bar_2 (x, y, z);

 ...

}...

. . .

. . .

IRP_MJ_READ (incoming, entering mode <10>)

 foo_1

 foo_2

IRP_MJ_READ (outgoing, exiting mode <10>)

IRP_MJ_WRITE (incoming, entering mode <01>)

 bar_1

 bar_2

IRP_MJ_WRITE (outgoing, exiting mode <01>)

. . .

. . .

}

} CS i+1, mode <01>

CS i, mode <10>

Fig. 4. The code path taken in a DD when
READ and WRITE requests are called.

Wrapper code

...

NTSTATUS

FASTCALL

WrapperIofCallDriver(

 IN PDEVICE_OBJECT DeviceObject,

 IN OUT PIRP Irp)

{

 PrintOut("IofCallDriver");

 return IofCallDriver(DeviceObject, Irp);

}

...

Fig. 5. A wrapper for the
NTOSKRNL::IofCallDriver API.

Consequently, the call CSs can be studied from two perspectives: (a) per
mode basis, i.e., CSs belonging to the same DD mode are compared to reveal
possible differences in the code paths taken each time the DD performs the ac-
tivity associated with the respective mode, and (b) per CS basis, i.e., all CSs
are compared among themselves to identify similarities and to group them ac-
cordingly in equivalence classes. Hence, we define the term execution hotspot as
follows:

Definition 3 (Execution Hotspot). A group of similar CSs belonging to the
same equivalence class represents an execution hotspot. The magnitude of each
hotspot is given by the sum of occurrences of the CSs contained within the equiva-
lence class.

The methodology for building kernel DD profiles presented in this paper
reveals the execution hotspots together with their magnitudes. The construction
of the equivalence classes is achieved by employing a cluster analysis algorithm,
as described in the following section.

6 Identifying Execution Hotspots: Call String Clustering
Aspects

Given the size of the pool of data collected in the monitoring phase, a data
clustering method greatly facilitates organizing and interpreting the data trends.
Cluster analysis is a multivariate technique that helps partitioning a population
of objects into equivalence classes. The partitioning decision is taken on object
similarity, i.e., similar objects are grouped together in the same cluster. The most
common clustering approaches are hierarchical and partitional. Usually slower
than hierarchical algorithms, the partitional clustering initially divides object
population in k clusters (randomly), improving the clusters at each step by

redistributing the objects. Hierarchical clustering approaches fall in two classes,
agglomerative and divisive.

Agglomerative clustering (also called bottom-up clustering) initially assigns
each object into its own cluster, at each step similar clusters are merged. The
agglomerative clustering algorithms stop when all objects are placed in a single
cluster, or when a number of k clusters (given as a parameter to the algorithm)
remain. Divisive clustering (top-down clustering) algorithms initially assign all
the objects from a given population to a single cluster, divided at every step in
two non-empty clusters. A divisive clustering algorithm stops when each object
sits in an own cluster or when a number of k clusters is reached.

In this paper we use automated agglomerative analysis to divide the CS pop-
ulation into similar clusters. We use AgNes, an agglomerative algorithm provided
by the R statistical programming environment [24]. AgNes requires as input a
matrix containing the distances between every pair of objects, in our case CSs.
It outputs a dendrogram, which is a tree-like representation of the clustering.
The Figs. 10 and 11 represent examples of such dendrograms. The CSs are rep-
resented as leaves, and branches intersect at a height equal to the dissimilarity
among the children. Cutting the dendrogram at a given height reveals the clus-
ters and the contained call sequences at the respective distance. That is, a cutoff
of the dendrogram indicates the equivalence classes that partition the CS pop-
ulation for the respective distance. For a cutoff set at 0, the equivalence classes
contain only the CSs which are identical. Therefore, the cutoff value acts as a
tunable mask for CS diversity.

6.1 Metrics to Express Call String Similarity

To obtain relevant dendrograms of the CS clusters, an appropriate similarity
metric has to be first selected. In the areas of bio-informatics and record linkage
(duplicate detection) researchers have developed a series of metrics to quantify
the relation between two strings. Depending on their application area, some
metrics express the similarity while other measure the difference (dissimilarity)
of the compared strings.

The Levenshtein distance (dL) is based on the edit distance between the
compared strings. Given two strings s1 and s2 whose distance needs to be com-
puted, Levenshtein distance express the minimum number of operations needed
to transform s1 in s2 or viceversa. The considered operations are character insert,
delete or substitution and they all have the cost of 1. Used in bio-informatics to
decide global or local alignments for protein sequences, Needleman-Wunsch and
Smith-Waterman distances are versions of the Levenshtein metric, additionally
considering gap penalties (gap = subsequence that do not match).

Jaro distance is not based on the edit distance, but instead on the number
and order of the common characters. The Jaro distance is expressed by the
following formula:

dJ =
1
3

(
m

|s1|
+

m

|s2|
+

m− t

m

)
(1)

where m is the number of matching characters and t is the number of nec-
essary transpositions. Two characters are considered matching if they are not
farther than

⌊
max(|s1|,|s2|)

2

⌋
− 1 from each other. An extension of the Jaro dis-

tance was proposed by Winkler, in order to reward with higher scores the strings
that match from the beginning (they share a common prefix).

Therefore, the Jaro-Winkler distance is defined by the formula

dJW = dJ + [0.1 · l(1− dJ)] (2)

where l is the length of the common prefix and dJ is the Jaro distance between
the strings.

Many other distance metrics exists and were evaluated for various applica-
tions [25]. We have also investigated several of them and subsequently chosen
the Levenshtein and Jaro-Winkler metrics, as we believe they express best the
distance among the CSs. Levenshtein was selected as it captures neutrally the
variability of the CSs. As we expect the CSs to contain short, repetitive subse-
quences (generated by loops in the code path) and common sequences (generated
by shared helper functions), we have also selected the Jaro-Winkler metric as it
favors similarities between CSs showing this behavior.

To balance their effects and to minimize the impact of the metric choice on
the final cluster structures, we combined them in a compound measure, a simple
weighted average:

dC =
norm(dL) + norm(dJW)

2
(3)

Our compound metric uses normalized values for both Levenshtein and Jaro-
Winkler functions, therefore 0 ≤ dC ≤ 1. Being a dissimilarity function, small
values of dC indicate high similarity between the compared CSs. The distance
matrix required by AgNes was computed using dC for expressing the distance
among every CS pairs.

6.2 Cluster Linkage Methods and Agglomeration Coefficient

Besides the distance matrix, AgNes requires that a clustering method is spec-
ified. Simple linkage merges at every step two clusters whose merger has the
smallest diameter. This method has as disadvantage a tendency to form long
cluster chains (i.e., at every step a single element is added to an existing clus-
ter). Complete linkage merges clusters whose closest member objects have the
smallest distance. This linkage method creates tighter clusters but is sensitive to
outliers. To alleviate the disadvantages of simple and complete clusterings, av-
erage linkage groups clusters whose average distance between all pairs of objects
is minimal.

AgNes provides a standard measure to express the strength of the cluster-
ing found in the population of CSs. A strong clustering tendency means larger
inter-cluster dissimilarities and lower intra-cluster dissimilarities. If d(i) is the

dissimilarity of object i to the first cluster it is merged with divided by the dis-
similarity of the last merger, the agglomeration coefficient (AC) is expressed by
AgNes as the average of all 1−d(i). With 0 ≤ AC ≤ 1, larger AC values indicate
a good cluster structure of the object population.

For our clustering analysis experiments presented in Sect. 7 we have used the
average linkage method as we believe this choice factors out best the impact of
CS distance variance among the object population.

7 Evaluating the Viability of the Execution Profiling
Methodology

For a comprehensive evaluation of the dual-interface DD profiling method pre-
sented in this paper, we have used it against the flpydisk.sys (v5.1.2600.2180),
the floppy disk driver provided by Windows XP SP2.

Figure 6 depicts our experimental setup. To capture the requests occurring
on the IRP interface of the target DD we have built a filter driver and installed it
between the monitored DD and the I/O Manager. The filter driver receives the
incoming and outgoing IRP requests, logs them to a file and forwards them to the
original recipient. As the filter driver does not rely on the implementation details
of the underlying DD, it can be used to monitor virtually any WDM-compliant
DD, as shown in practice by the experimental work in [12].

U
S

E
R

S
P

A
C

E

K
E

R
N

E
L

 S
P

A
C

E

Workload

I/O

Manager

Floppy

Driver

NTOSKRNL.EXE

HAL.DLL

IRP Interface Functional interface

Wrapper libs.

Log files

Filter

Driver

Fig. 6. Our DD monitoring strategy.

Call string list

1

Encoded

call string list

2

3

Distance

matrix

4

5 6

Distinct

call string list

Fig. 7. Our cluster analysis process.

The monitoring of the functional interface is more complex, as it requires
building a wrapper library for each of the kernel libraries imported by the
floppy driver (Fig. 6). flpydisk.sys imports functions from two kernel libraries:
NTOSKRNL.EXE (61 functions) and HAL.DLL (4 functions). After building the li-
brary wrappers, the IAT tables of the target DDs were modified in order to look
for the wrappers instead of the original libraries. Each API wrapper was built
using exclusively the function prototypes provided in the header files available
publicly from Windows DDK package. Each time the DD called a function, the

API wrapper is called instead of the original function. The API wrappers are de-
signed as extremely simple C constructs in order to minimize the computational
overhead. When a wrapper is called, the call is logged and the call parameters
are forwarded, unchanged, to the original function from the original library, as
depicted by the code snippet in Fig. 5. In this figure, IofCallDriver is the
original function implemented by NTOSKRNL.EXE and WrapperIofCallDriver is
our wrapper.

After the floppy driver is exercised by a relevant workload, the resulted log
files are analyzed offline by a software application that extracts the CSs and
constructs distance matrix files. These files are fed to the AgNes algorithm which
builds clusterings of the CSs. More precisely, the procedure followed to build the
clusterings that evaluate the CS relative similarity is depicted in Fig. 7: (1)
collect the CSs by using the monitoring logs; (2) encode each function call to an
Unicode character to be able to apply the string metrics; (3) calculate a distance
matrix containing the distances between all pairs of CSs; (4) select the distinct
CSs and count for each one the occurrence rate; (5) construct a clustering from
all distinct CSs to evaluate inter-CS similarities; (6) for each mode, construct a
clustering of CSs to reveal intra-mode paths.

Table 1. The workloads utilized to exercise the floppy driver and the overall
experimental outcomes.

Benchmarks #Called Imports #CSs Benchmark
for flpydisk.sys Total NT1 HAL2 #Modes

Total Distinct
AC

Description

Sandra 27 25 2 3 9545 51 .859 Performance benchmark
DiskTestPro 28 26 2 5 588 13 .735 Surface scan, format
BurnInTest 21 19 2 5 1438 24 .823 Reliability benchmark
Enable Disable 42 38 4 3 136 10 .388 DD load and unload
DC2 21 19 2 4 5102 9 .644 Robustness benchmark

To exercise the DD properly, we have used commercial performance and
stability benchmark applications which are designed for testing the floppy disk
drive. We have also used a robustness testing tool, DC2 (Device Path Exerciser).
DC2 is part of the DDK package and evaluates if a DD submitted for certification
with Windows is reliable enough for mass distribution. It sends the targeted
DD a variety of valid and invalid (not supported, malformed etc.) I/O requests
to reveal implementation vulnerabilities. The Table 1 lists the outcomes and
provides a comparative evaluation of the clustering strength (see Sect. 6.2).

Sandra was the workload that issued the highest number of distinct CSs (51
out of 9545), showing the highest cluster strength in the distinct CS population,
with AC = 0.859. Also, the DD visited only three modes, intuitively indicat-
ing that this workload might have the strongest tendency to reveal execution
hotspots. At the other extreme, Enable Disable only revealed 10 distinct CSs
(out of 136), but instead the calls to the external functions were the most diverse,

1 The number of functions called from NTOSKRNL.EXE.
2 The number of functions called from HAL.DLL.

38 from NTOSKRNL.EXE and 4 from HAL.DLL. As the agglomerative coefficient of
this workload is relatively small, we expect that Enable Disable has the weakest
clustering tendency.

7.1 Revealing the Execution Hotspots: MDS Plots of the CSs

To visualize the clustering tendency of the CSs generated by the used workloads
and, implicitly, the execution hotspots in floppy driver’s code, we used a mul-
tidimensional scaling (MDS) plot. MDS is a statistical technique designed to
graphically express the degree of similarity or dissimilarity between objects. The
points representing similar objects are clustered together in different regions of
the 2D-space depicted by the MDS plot, while the points representing dissimilar
objects are placed to be far apart from each other. The MDS plot in Fig. 8 is
computed using the already available distance matrices.

●●●●

●●

●●

●●

●●

●●

●●

●●

●

Sandra

DiskTestPro

Enable_Disable

BurnInTest

DC2

Fig. 8. MDS plot of the CSs for each
workload.

●

●

●

●●

●●

●●

●●

●●

●

●●

●●

●

●

ALL except DC2
DC2

●●

●

Fig. 9. MDS plot of the execution
hotspots with their magnitudes.

With a high AC, Sandra forms the biggest clusters mostly in the center of the
figure, while the areas exercised by the Enable Disable are located farther apart
from each other. This visual representation of the CSs also helped reveal another
tight cluster close to the center of the Fig. 8, generated by the BurnInTest
workload. Also, DiskTestPro’s executions form a hotspot, located in the second
quadrant of Fig. 8. Overall, the grouping of the CSs in the middle of the MDS
plot indicates that most of them share a certain degree of similarity.

Interestingly, the CSs generated by DC2 are located quite differently from
the rest of other CSs. This is explained by the fact that DC2 is a robustness
testing tool, therefore accessing areas of code seldomly visited under common
executions. To better substantiate this tendency, Fig. 9 represents the same MDS
plot, where each CS was enhanced with the magnitude of the associated CS. That

is, a bigger circle represents a high rate of occurrence of the respective CS. The
circles are scaled using a logarithmic function (size = log(magnitudeCS)) in
order to create a visual balance between CSs having very different occurrence
rates. Additionally, the execution hotspots generated by the first four workloads
from Table 1 were merged, while the hotspots generated by the robustness testing
tool DC2 were represented in gray. As DC2’s hotspots are off-centered, it becomes
apparent that the DC2 covers very few of the execution hotspots generated by
all other studied workloads.

Nevertheless, the Figs. 8 and 9 validate our methodology and graphically
motivate the usage of execution profiles as a prerequisite step for testing. We
believe that a significant amount of testing can be saved by redistributing the
effort to covering the execution hotspots. Doing so significantly reduces the test
effort, while the test adequacy remains unaffected. While test case filtering is
not the scope of this paper, we hypothesize that an iterative method based on
comparisons of test suites against an existing execution hotspot map can be
devised in order to guide this process.

7.2 Similarity Cutoffs: Testing Overhead versus Diversity Masking

The dendrograms obtained at steps 5 and 6 in Fig. 7 represent useful support for
deciding which code paths to test. To ensure high accuracy for the subsequent
testing campaigns with respect to the execution hotspots, one should develop
test cases that exercise the DD in the same manner as the workload does, or,
alternatively, use the test cases themselves as workload for exercising the DD in
the profiling phase.

We believe that the testing effort can be significantly reduced by testing
only the distinct CSs. A prioritization scheme for this procedure should consider
(and therefore be indexed by) the number of occurrences associated with each CS
(magnitudeCS). Intuitively, a subsequent test campaign can reduce its overhead
by testing only one CS per cluster. Figure 10 illustrates this concept: by setting a
similarity cutoff T = 0.2, the dendrogram is split into four clusters and five alones
(CS0, 1, 15, 22 and 23). This indicates nine code paths that must be tested: the
alones and any one CS from each of the four clusters, since all the CSs that
are contained in the cluster are considered similar. With T = 0, 24 CSs should
be tested in order to achieve complete hotspot coverage. Therefore, setting the
T = 0.2 gives an overall reduction of 62.5% of the testing cost (assuming that
the cost of testing is equally distributed among the 24 distinct CSs). In practice,
the similarity cutoff T has to be chosen as close to zero as possible, because
large values of T have a tendency to mask CS diversity. Actually, dendrograms
support the similarity threshold decision by their structure. If the CSs cluster at
very low heights, a small cutoff value will group many CSs together, significantly
reducing the test efforts without having to pay a high cost to diversity masking.

In contrast, Fig. 11 depicts the dendrograms of the CSs for each mode. In this
representation it is apparent that in the visited modes the DD was taking at least
three different paths into the code. The heights at which they cluster indicate
that the CSs are quite dissimilar, even though they are basically associated with

the same DD functionality. This reveals that the IRP dispatch subroutines are
quite complex, possibly containing multiple decision branches in the code. In the
case of the per-mode dendrograms (Fig. 11), a similarity cutoff T smaller than
the shortest cluster will reveal all the code paths taken inside the mode. Though,
to balance the testing efforts, T should be chosen anywhere between the height
of the smallest cluster and 1. With T = 1 the granularity of testing is the same
as in our previous approach [11].

0.8 0.6 0.4 0.2 0.0

Height MODE

CS0

CS15

CS19

CS20

CS1

CS2

CS7

CS16

CS4

CS13

CS17

CS14

CS3

CS5

CS6

CS9

CS10

CS8

CS11

CS12

CS18

CS21

CS22

CS23

T

0001000

0001000

0001000

0001000

0001000

0010000

0000100

0000100

0010000

0000100

0000100

0100000

0001000

0001000

0000100

0000100

0000100

0000100

0000100

0010000

0001000

0001000

0001000

1000000

Diversity masking Testing effort

0.02

Fig. 10. BurnInTest: A threshold set to
0.2 reveals a clustering with 4 clusters and
5 alones (62.5% test cost reduction).

0.5 0.4 0.3 0.2 0.1 0.0

0000100 (DEVICE_CONTROL)

Height

CS1

CS4

CS7

CS16

CS17

CS5

CS6

CS10

CS8

0.8 0.6 0.4 0.2 0.0

0001000 (WRITE)

Height

CS12

CS18

CS21

CS13

CS14

CS22

CS23

CS15

CS19

CS20

0.5 0.4 0.3 0.2 0.1 0.0

0010000 (READ)

Height

CS2

CS9

CS11

0100000 (CLOSE): CS3 only

1000000 (CREATE): CS0 only

0.54

1.0

0.18

Fig. 11. BurnInTest: The distinct
CSs called by every mode.

This represents one of the key contributions of this paper in contrast to our
previous work, where the smallest DD behavior granularity unit was the notion
of mode. Using the dual-interface approach presented in this paper, a subsequent
testing technique can take advantage of the smaller granularity offered by the
new concept of CS.

8 Discussion and Results Interpretation

Identification of Repeating Functions: Table 3 displays five distinct CSs, as
generated by the BurnInTest workload. The respective CSs are highlighted also
in Fig. 11. CS15 is formed by a call IofCompleteRequest function, followed by
ExInterlockedRemoveHeadList and KeWaitForSingleObject, repeating twice.
The distance from CS15 to CS19 is 0.54 and to CS23 is 1.0; the distance from
CS19 to CS20 is 0.18 (also depicted in Fig. 11). The low similarity values shared
by the CS15, CS19 and CS20 are mainly given by the fact that the sequences
share a common prefix and the group of two functions that repeat themselves.
These repetitions indicate the presence of short loops in the DD’s code. In par-
ticular, according to the DDK documentation, ExInterlockedRemoveHeadList

routine “removes an entry from the head of a doubly linked list” and
KeWaitForSingleObject “puts the current thread into a wait state”. CS23 is
heavily penalized when related to CS15 because the position of the only com-
mon character is not the same in the two CSs. In contrast, the distance from
CS23 to CS0 is (only) 0.83 because both CSs are very short.

Table 2. Five functions and their en-
codings (used in Table 3).

Function Name Encoding Char
IofCompleteRequest a
ExInterlockedRemoveHeadList b
KeWaitForSingleObject c
ExAcquireFastmutex d
ExReleaseFastMutex e

Table 3. Four distinct CSs issued by
the BurnInTest.

CS Name Encoding #Occurences
CS0 a 144
CS15 abcbc 2
CS19 abcbcbcbcbc 2
CS20 abcbcbcbc 1
CS23 dea 13

Figure 10 show cases when two CSs are very similar, even though they belong
to different modes (i.e., CS11 and CS12, at a distance of 0.02). We believe that
they share the same or large portions of a dispatch function. It is also possible
that they share a large amount of helper functions, inside the DD’s code. We are
currently investigating in more depth the reasons behind this observed behavior
on publicly available driver source code (the serial port driver).

Frequently Used Kernel Services: Our profiling approach reveals that
the set of functions frequently used by a DD at runtime is very small. Table
4 lists the 20 function calls that make 99.97% of all the imports called by the
flpydisk.sys at runtime in our experiments. In [1] Mendonca and Neves have
chosen a set of 20 DDK functions for fault injection experiments by inspecting
the IAT tables of all the DDs belonging to several Windows installations. Our
results show that their static approach to select kernel APIs is irrelevant in
such dynamic environments, as the set of functions called at runtime is radically
different. Therefore, we recommend that subsequent fault injection campaigns
should primarily target functions having higher runtime occurrence index.

Table 4. The function calls accounting for 99.97% of all recorded calls,
for all workloads, sorted descending on occurrence. ExAcquireFastMutex and
ExReleaseFastMutex belong to HAL.DLL, the rest to NTOSKRNL.EXE library.

Function Name #Occ. [%] Function Name #Occ. [%]
ExAcquireFastMutex 60414 18.40 MmMapLockedPagesSpecifyCache 8178 2.49
ExReleaseFastMutex 60414 18.40 MmPageEntireDriver 24 0.01
IofCallDriver 45976 14.00 MmResetDriverPaging 23 0.01
KeInitializeEvent 40777 12.42 KeGetCurrentThread 10 0.00
IoBuildDeviceIoControlRequest 40771 12.41 KeSetPriortyThread 10 0.00
ExInterlockedRemoveHeadList 22007 6.70 ObfDereferenceObject 10 0.00
ExInterlockedInsertTailList 16123 4.91 ObReferenceObjectByHandle 10 0.00
IofCompleteRequest 11562 3.52 PsCreateSystemThread 10 0.00
KeWaitForSingleObject 11032 3.36 PsTerminateSystemThread 10 0.00
KeReleaseSemaphore 11003 3.35 ZwClose 10 0.00

9 Conclusions and Future Research Directions

In this paper we have presented a driver profiling technique that monitors the
activity of a kernel driver at runtime onto two communication interfaces. Our
technique disconnects execution profiling from the source code access require-
ment, for every of the involved OS kernel components. We consider that the
driver is receiving requests on the IRP interface and start executing the IRP-
associated activity. We revealed the effect of this computation as a sequence of
calls to external functions, by monitoring the driver’s functional interface. The
CSs obtained were encoded as character strings and cross-compared for similar-
ity. The distinct CSs were found to represent a very small number of the total
number of CSs recorded during our experiments, indicating that the number of
code paths taken by a driver at runtime is very small. Moreover, we employed an
agglomerative cluster analysis technique in order to group together similar CSs
and therefore suggest areas of code where the test effort of subsequent testing
campaigns should concentrate. Using the same technique, the CSs belonging to
the same mode were investigated and showed that the code paths taken by the
driver differs even when executing the same IRP dispatch subroutine, a tendency
that reveal code branches. Moreover, the MDS plots visually disclose the ten-
dency of the CSs to cluster by revealing the execution hotspots. At the same
time, the Figs. 8 and 9 show that DC2, a robustness testing tool for drivers from
Microsoft, does not cover the execution hotspots generated by the other realis-
tic workloads. This result intuitively supports the idea to re-balance the testing
effort to the revealed execution hotspots, thus enhancing the odds to find early
the faults having a high occurrence likelihood in the field.

Current research directions include the design and implementation of a fault
injection method for testing the robustness of OS kernel drivers, based on the
concepts introduced in this paper. The selection of test cases will consider the
execution hotspots generated by a prior driver execution profiling phase, in or-
der to reduce overall testing overhead. Test prioritization schemes will also be
employed by applying the techniques described in our previous work [11, 12].
We also intend to investigate the possibility to implement state-aware robust-
ness wrappers for kernel drivers, once we will establish a method for detecting
deviations from “correct behavior”.

References

1. Mendonca, M., Neves, N.: Robustness testing of the Windows DDK. In: Depend-
able Systems and Networks (DSN). (June 2007) 554–564

2. Swift, M.M., Bershad, B.N., Levy, H.M.: Improving the reliability of commodity
operating systems. ACM Transactions on Computer Systems 23(1) (2005) 77–110

3. Ganapathi, A., Ganapathi, V., Patterson, D.: Windows XP kernel crash analysis.
In: Large Installation System Administration Conference (LISA). (2006) 12–22

4. Albinet, A., Arlat, J., Fabre, J.C.: Characterization of the impact of faulty drivers
on the robustness of the Linux kernel. In: Dependable Systems and Networks
(DSN). (2004) 867–876

5. Arlat, J., Fabre, J.C., Rodriguez, M.: Dependability of COTS microkernel-based
systems. IEEE Transactions on Computers volume 51, issue 2 (2002) 138–163

6. Chou, A., Yang, J., Chelf, B., Hallem, S., Engler, D.R.: An empirical study of
operating system errors. In: Symposium on Operating Systems Principles (SOSP).
(2001) 73–88

7. Duraes, J., Madeira, H.: Multidimensional characterization of the impact of faulty
drivers on the operating systems behavior. IEICE Transactions on Information
and Systems 86(12) (2003) 2563–2570

8. Murphy, B., Garzia, M., Suri, N.: Closing the gap in failure analysis. In: Dependable
Systems and Networks (DSN). (2006) 59–61

9. Johansson, A., Sârbu, A., Jhumka, A., Suri, N.: On enhancing the robustness
of commercial operating systems. International Service Availability Symposium
(ISAS) Springer Lecture Notes on Computer Science 3335 (2004) 148–159

10. Johansson, A., Suri, N.: Error propagation profiling of operating systems. In:
International Conference on Dependable Systems and Networks (DSN). (2005)
86–95

11. Sârbu, C., Johansson, A., Fraikin, F., Suri, N.: Improving robustness testing
of COTS OS extensions. International Service Availability Symposium (ISAS)
Springer Lecture Notes on Computer Science 4328 (2006) 120–139

12. Sârbu, C., Suri, N.: Runtime behavior-based profiling of OS drivers. Techni-
cal report, TR-TUD-DEEDS-05-02-2007 (2007), http://www.deeds.informatik.
tu-darmstadt.de/research/TR/TR-TUD-DEEDS-05-02-2007-Sarbu.pdf

13. Weyuker, E.J., Jeng, B.: Analyzing partition testing strategies. IEEE Transactions
on Software Engineering 17, Issue: 7 (July 1991) 703–711

14. Weyuker, E.J.: Using operational distributions to judge testing progress. In: ACM
Symposium on Applied Computing, New York, ACM Press (2003) 1118–1122

15. Möller, K.H., Paulish, D.: An empirical investigation of software fault distribution.
In: First International Software Metrics Symposium (METRIC). (May 1993) 82–90

16. Johansson, A., Suri, N., Murphy, B.: On the impact of injection triggers for os
robustness evaluation. In: International Symposium on Software Reliability Engi-
neering (ISSTA). (2007) 127–136

17. Ball, T., Larus, J.R.: Efficient path profiling. In: MICRO-29. (1996) 46–57
18. Larus, J.R.: Whole program paths. In: ACM SIGPLAN, 34. (1999) 259–269
19. Leon, D., Podgurski, A.: A comparison of coverage-based and distribution-based

techniques for filtering and prioritizing test cases. In: 14th International Sympo-
sium on Software Reliability Engineering (ISSRE). (2003) 442–453

20. Oney, W.: Programming the MS Windows Driver Model. Microsoft Press, Red-
mond (2003)

21. Microsoft Corporation, Visual Studio, Microsoft portable executable and
common object file format specification. Technical report, (May 2006),
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx

22. Hunt, G., Brubacher, D.: Detours: Binary interception of Win32 functions. In:
Proceedings of the 3rd USENIX Windows NT Symposium. (July 1999) 135–144

23. Vasudevan, A., Yerraballi, R.: Spike: Engineering malware analysis tools using un-
obtrusive binary-instrumentation. In: Australasian Computer Science Conference
(ACSC). (2006) 311–320

24. Ihaka, R., Gentleman, R.: R: A language for data analysis and graphics. Journal
of Computational and Graphical Statistics 5(3) (1996) 299–314

25. Cohen, W.W., Pradeep, R., E., F.S.: A comparison of string distance metrics for
name-matching tasks. In: International Joint Conference on Artificial Intelligence
(IJCAI). (2003) 73–78

	Execution Path Profiling for OS Device Drivers: Viability and Methodology
	Constantin Sârbu, Andréas Johansson and Neeraj Suri

