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1 Introduction
An Operating System (OS) acts as a mediator between

the hardware and software applications, providing for over-
all system services. However, with a tendency to support
an ever increasing set of features and peripherals, the OS
robustness emphasis often garners less attention. The OS
interface to peripheral devices is implemented by specific
SW components, termed as device drivers (DDs). Unfor-
tunately, DDs also form the primary cause of OS system
service failures despite sustained testing efforts. A basic
explanation is the tight interaction required across the DD
and the critical kernel structures resulting in inter-related
failures. Moreover, as DDs are nowadays implemented as
add-on components, they are usually delivered as black-box
level binaries which are loaded on demand. Consequently,
the need for black-box testing techniques to help identify
DD weakness areas is increasingly important.

Our work focusses on techniques for profiling the execu-
tion behavior of kernel-mode DDs without assuming access
to their source code. Such profiles highlight the operational
paths of a driver for a given workload, helping uncover op-
erational areas warranting concentrating testing efforts. The
I/O communication interface between the OS and the DDs is
monitored, revealing the subroutines invoked at runtime by
the selected DD. As background work, in [3] we proposed
a DD monitoring and analysis scheme using only the inter-
face specification in order to build a state model for a DD
and highlight its execution patterns. In [5] we defined a set
of occurrence- and time-based quantifiers for the sojourned
driver states and also proposed a methodology for test pri-
oritization. In [4] we presented a mechanism for finding
execution hotspots in DDs.

Related Work. Several approaches have used Soft-
ware Implemented Fault Injection (SWIFI) techniques to
test black-box OS extensions. The location of injection
probes and the triggering instance of the actual fault injec-
tion are either empirically or randomly chosen. Though, in
the area of defect localization in software, research showed
that faults tend to cluster in certain parts of the OS code
[2]. Thus, a strategy aimed at clustering the code into

functionality-related parts and then testing them based on
their operational occurrence is desired, especially when the
resources allocated for testing are limited [6]. In [1] Avritzer
and Larson proposed an approach to describe the load of a
large telecom system that considered a state-based model to
guide stress testing.

2 State Identification Basis for Device Drivers
In contrast, our proposed approach is specific to kernel-

mode DDs, being also non-intrusive as the monitoring of the
selected DD is using wrappers installed on the I/O commu-
nication interface between the OS kernel and a selected DD.
Figure 1 depicts the chosen wrapping strategy.
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Figure 1. Our DD state identification strategy.

On the communication interface to the I/O Manager the
OS kernel sends to the DD I/O requests generated by the
activity of a workload. To capture the flow of requests at this
interface, we have built a “filter driver” that is responsible
for hijacking the I/O flow between the I/O Manager and the
DD and recording it to log files. Offline, the log files are
parsed and a state model of the driver’s runtime activity is
built in terms of visited states. We call this set of visited
states the “operational profile” (OP) of the selected driver.

In Windows (used as a case study in our experiments)
a DD can be assimilated to a toolbox. It contains a set of
highly specialized subroutines, each being executed upon



receipt of a specific I/O request. These requests are is-
sued by the OS kernel and are termed “I/O Request Packets”
(IRPs). They piggyback back and forth request parameters
and operation results between the I/O Manager and the DD
responsible for handling the respective I/O operation.

Our work [3,5] provides state identification methods with
regard to the functionalities currently in execution. Using
IRP receival and termination as state transition triggers, the
“driver mode” is defined [3] as a tuple of predicates, each
assigned to one of the n distinct IRP types supported by the
DD (Windows XP SP2 defines 28 IRP types) as:

MD : < PIRP1 PIRP2 .. PIRPi
.. PIRPn

>, where

PIRPi
=

 1, if the DD is currently performing the func-
tionality triggered by the receival of IRPi;

0, otherwise.

In [5] we introduced a series of quantifiers measuring the
occurrence rate and the temporal weight of each DD mode,
as a base for (a) driver state profiling and (b) test case priori-
tization. Under the assumption that each DD mode requires
the same amount of test coverage, our quantifiers permit
rankings based on mode occurrence weights as in Figure
2, where darker shades indicate higher weights.
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Figure 2. The OP for the floppy disk driver.

3 Preliminary Experimental Results
To validate the presented approach, we have conducted a

series of experiments to monitor the operational behavior of
diverse DDs provided with Windows XP SP2. The follow-
ing observations result:
• DD profile aids test space identification: the set of

visited DD modes and traversed transitions is very small,
irrespective of the DD and the workload used. This obser-
vation provides for significant reduction of the test effort
required to cover them, by selecting only the test cases that
reach the modes of the obtained OP (i.e., test case filtering).
• State quantifiers help state discrimination: very few

of the visited modes have high weights, warranting the us-
age of test case prioritization schemes based on the ranking
among different modes belonging to the driver’s OP. For

instance, the modes with higher occurrence and temporal
weights can be tested first (see Figure 2, the darker modes).

4 Discussion and Future Work
Using the lessons learnt from our monitoring approach,

we are developing techniques for tuning an existing DD
test campaign to primarily cover the identified execution
hotspots. The selection of test cases should consider the
information obtained from a prior driver profiling phase, in
order to reduce the overall testing overhead. To expand our
approach as a proper tool for driver profiling and testing in
the absence of the source code, a more detailed analysis of
the results presented above has to be pursued.

One of the research questions we currently investigate is
how to forcibly bring the system into the modes of interest.
As DDs perform in an arbitrary thread context and under
the permanent influence of interrupts from the hardware de-
vices, their runtime behavior is hard to predict. Especially
for the modes where more than one IRP is active this is not
a trivial endeavor, as the DD might finish the processing for
one IRP before the other ones start. For instance, in Figure
2, the mode 010100 cannot be reached if the WRITE op-
eration finishes before CLOSE is received. Hence, a simple
test case that first calls WRITE followed immediately after
by CLOSE might not necessarily bring the driver into the
desired mode.

A possible solution might be to use the same workload
that generated the driver’s OP profile also for testing. As
soon as a predecessor of the the desired mode is reached, the
parameters of the intercepted IRPs have to be changed on-
the-fly and then fed to the DD iff the malformed IRP leads
the DD into the mode of interest. This approach requires the
development of mechanisms that detects the current state
and keeps track of it at runtime. Such idea might work if the
actual mechanisms for changing the IRP requests’ parame-
ters and state awareness are kept to a very low overhead in
order not to disrupt the IRP sequencing.
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[3] C. Sârbu, A. Johansson, F. Fraikin, and N. Suri. Improving
robustness testing of COTS OS extensions. In Proc. ISAS,
Springer Verlag LNCS 4328, pp. 120–139, 2006.
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