
On Equivalence Partitioning of Code Paths inside OS Kernel Components∗

Constantin Sârbu†, Nachiappan Nagappan‡ and Neeraj Suri†

Technische Universität Darmstadt† Microsoft Research‡

Darmstadt, Germany Redmond, WA, USA
{cs,suri}@cs.tu-darmstadt.de nachin@microsoft.com

Abstract

Commercial-off-the-shelf operating systems (COTS OSs)
are increasingly chosen as key building blocks in embedded
system design due to their rich feature-set available at low
costs. Unfortunately, as the complexity of such OSs increases,
testing key OS components such as device drivers (DD) to en-
sure continuous service provision becomes increasingly chal-
lenging. Despite the improving test efforts targeting DDs, they
still represent a significant cause of system outages as the test
coverage is invariably limited by the inability to exhaustively
assess and cover the operational states. Consequently, if rep-
resentative operational execution profiles of DDs within an
OS could be obtained, these could significantly improve the
understanding of the actual operational DD state space and
help focus the test efforts onto the execution hotspots.

Focusing on characterizing DD operational activities
while assuming no access to source code, our work enables
profiling the runtime behavior of DDs solely based on I/O-
and functional-call tracking. Such profiles are used to im-
prove test adequacy against real-world workloads by en-
abling similarity quantification across them. The profiles also
reveal execution hotspots in terms of functionalities activated
in the field, allowing for dedicated test campaigns.

1 Introduction
An OS acts as a mediator between the hardware and

software applications, providing for overall system services.
However, the support for an ever increasing set of features and
peripherals often overrides the needed emphasis on enhancing
OS robustness. The OS interface to peripheral devices is im-
plemented by specific software kernel components, termed as
device drivers (DDs). Unfortunately, DDs are also the pri-
mary cause of OS service failures despite sustained testing ef-
forts [9]. A basic explanation is the tight interaction required
across the DD and the critical kernel structures resulting in
inter-related failures. Moreover, as DDs are nowadays imple-

∗This research has been supported, in part, by Microsoft Research, EU
Genesys and DFG TUD GK-MM.

mented as add-on components, they are usually delivered as
black-box level binaries and loaded on demand, at runtime.
Consequently, the need for black-box testing techniques to
help identify DD weakness areas in the operational mode is
rapidly increasing, especially for embedded system design.

Our work focuses on techniques for profiling the execu-
tion behavior of kernel-mode DDs without assuming access
to their source code. Such profiles highlight the operational
paths of a DD for a given workload, helping uncover code
areas warranting concentrated testing efforts. The communi-
cation interfaces between the OS and the DD are monitored,
revealing the subroutines invoked at runtime by the selected
DD. As background work towards DD state profiling, in [6]
we proposed a DD monitoring and analysis scheme using only
the interface specification in order to build a state model for a
DD and highlight its execution patterns. In [7] we defined
a set of occurrence- and time-based quantifiers for the so-
journed DD states and also proposed a methodology for test
prioritization. In [8] we presented a methodology for finding
execution hotspots in DDs. While in our previous work he
have used equivalence partitioning of the code paths followed
by DDs at runtime, the thrust in this paper is on identifying
the key aspects of this clustering procedure to further enhance
its value and usefulness for testing.

Related Work. Several approaches have used Software
Implemented Fault Injection (SWIFI) techniques to test black-
box OS extensions. The location of injection probes and the
triggering instance of the actual fault injection are either em-
pirically or randomly chosen [3]. Though, in the area of de-
fect localization in software, research showed that faults tend
to cluster in certain parts of the OS code [1]. Thus, strate-
gies aimed at revealing the functionality-related code parts
and testing them based on their operational occurrence is de-
sired, especially when the resources allocated for testing are
limited [10], as they could find earlier the bugs likely to occur
in the field.

2 OS and DD Profiling: Preliminary Results
As a conceptual basis for the proposed equivalence par-

titioning, our prior work [8] had explored OS profiling. In
Windows (used as a case study in our experiments) a DD im-

plements a set of highly specialized routines, each being exe-
cuted upon receipt of a specific I/O request from the OS. They
piggyback back and forth request parameters and operation
results between the OS and the DD responsible for handling
the respective I/O call types (eg., READ, WRITE, CREATE,
etc.).

U
SE

R
SP

A
C

E
K

ER
N

EL
 S

PA
C

E

Workload

I/O
Manager

Device
Driver

Lib2.EXE

Lib1.DLL

I/O Call Interface Functional Interface

Wrappers

Log files

Filter
Driver

Figure 1. Our DD wrapping strategy.
Our DD profiling approach is non-intrusive as the moni-

toring of the selected DD is using wrappers installed on the
communication interfaces between the OS kernel and the DD.
On the I/O call interface, a filter driver intercepts and logs the
I/O traffic, consisting in I/O calls sent by the OS kernel to the
DD (incoming) and by the DD back to the OS (outgoing). On
the functional interface customized wrappers capture the calls
to functions implemented in driver-external kernel libraries
which are called at runtime, as the DD is executing (Figure
1). Hence, the functional calls act as probes already present
in the source code, revealing the code path taken by the DD at
runtime. For performance and reliability reasons, Microsoft
encourages the extensive use of functions and macros imple-
mented in the existing kernel libraries (i.e., synchronization
primitives, thread management etc.) [4, 5]. Hence, the DD
code abounds with calls to external functions, validating the
use of this information source for operational mode profiling.

After the monitoring phase, the log files contain blocks of
external function calls, delimited by incoming and outgoing
I/O calls. Knowing that each I/O call type triggers the exe-
cution of a specific I/O dispatch routine of the DD, the se-
quences of functional calls represent abstractions of the code
paths followed at runtime by the monitored DD.

3 The Equivalence Partitioning Approach

From a testing perspective it is important to identify the
code areas activated in the operational mode, thus permit-
ting to accurately focus and prioritize subsequent testing ac-
tivities. In [8] we distributed the code paths in equivalence
classes based on their relative similarity (i.e., similar paths
were grouped together) in order to emphasize the code areas
exercised by a certain workload. To reduce the testing effort
without losing adequacy, we conjecture that only one code
path per cluster needs be tested. Our prior experimental re-
sults show that the code paths taken at runtime tend to differ

significantly even if the DD is executing in the same mode1.
This is indicative of the high DD code complexity, warranting
our current effort toward providing testing assistance via me-
thodical construction of the clusters. Early results indicate the
following as being the key issues:

a. The similarity cutoff - the distance value among the
intra-cluster objects (i.e., the degree of similarity among the
objects of the same cluster). A small value results in many
clusters containing fewer code paths (i.e., high testing over-
head), while a too large value groups together code paths shar-
ing little similarity, masking path diversity and thus reducing
the adequacy of testing.

b. The similarity metric - the distance quantifier express-
ing the difference between any two code paths. It should prop-
erly capture and reward accordingly the features of the code
paths being compared. In [8] we have empirically used as sim-
ilarity quantifier an equally-weighted average of Levenshtein
and Jaro-Winkler similarity metrics [2], as the emphasis was
on presenting a valid methodology for DD profiling and not
necessarily on its effectiveness for reducing testing effort.

To support an appropriate choice for the similarity met-
ric, one of the research questions we currently investigate
is which code constructs generate the ascertained similarity
classes. Currently, we distinguish three primary similarity
patterns (SP)2 between any two captured DD code paths:
SP1: [xyabcz and mabcno] - share a common substring

(very often the same prefix); we believe that the same helper
(or initialization) routine is performed by both runs;

SP2: [xyabcz and mnabcabcabcabco] - a common sub-
string is repeated multiple times; we believe this is generated
by a loop in the DD code;

SP3: [abc and xyzmno] - independent code paths; they
should not be grouped in the same cluster as they need to
be covered by different test cases.

Another research question that needs answering is how to
decide which is the best-candidate code path for testing from
each cluster, as the random choice might not always yield op-
timal results. For instance, if a cluster contains four code paths
out of which only three are very similar to each other, a ran-
dom choice might elect the fourth one for testing, thus reduc-
ing the effectiveness of the equivalence partitioning as a test
reduction abstraction.

4 Identification of Frequently Used Kernel
Services

Beside enabling execution hotspot discovery inside DDs,
an interesting side-effect of our experimental work is reveal-
ing the set of kernel functions called by the targeted DD at
runtime and the sequence thereof. These functions are OS
services implemented in kernel libraries dynamically linked to
the DD. As multiple kernel components intensively (and con-

1For the definition of driver mode see [6, 7]
2In the following, each character represents the encoding of a driver-

external function called at runtime; for actual examples see Table 1.

currently) use the same set of kernel services, failures of such
OS functions might lead to overall system failure. Hence, the
information regarding the call frequency of the kernel services
is useful for OS developers as it highlights the functionalities
whose reliability and performance is critical.

Our preliminary DD profiling efforts show that the set of
functions frequently used at runtime by a DD is relatively
small. For instance, for the floppy disk driver studied in [8],
only 20 functions make 99.97% of all the called functions, see
Table 1.

Table 1. Twenty function calls accounting for
99.97% of the calls recorded for the floppy disk
driver (Windows XP SP2), sorted in descending
order on occurrence.

Function Name #Occ. [%]
1 ExAcquireFastMutex 60414 18.40
2 ExReleaseFastMutex 60414 18.40
3 IofCallDriver 45976 14.00
4 KeInitializeEvent 40777 12.42
5 IoBuildDeviceIoControlRequest 40771 12.41
6 ExInterlockedRemoveHeadList 22007 6.70
7 ExInterlockedInsertTailList 16123 4.91
8 IofCompleteRequest 11562 3.52
9 KeWaitForSingleObject 11032 3.36
10 KeReleaseSemaphore 11003 3.35
11 MmMapLockedPagesSpecifyCache 8178 2.49
12 MmPageEntireDriver 24 0.01
13 MmResetDriverPaging 23 0.01
14 KeGetCurrentThread 10 0.00
15 KeSetPriortyThread 10 0.00
16 ObfDereferenceObject 10 0.00
17 ObReferenceObjectByHandle 10 0.00
18 PsCreateSystemThread 10 0.00
19 PsTerminateSystemThread 10 0.00
20 ZwClose 10 0.00

This partial result indicates also that an approach aiming
at testing the robustness of the OS kernel services should not
select the targeted functions randomly (for instance, such a
random strategy is used in [3]). Instead, the targeted functions
should be selected as a result of a profiling step similar to
the profiling presented in our experimental studies in order to
focus testing onto the services which are actually called by the
DD in the operational phase. We believe that such a procedure
saves testing resources while increases the test adequacy and
also the likelihood to find earlier the most relevant defects for
the operational mode.

5 Discussion and Current Work Directions
By simultaneously monitoring the communication inter-

faces of a selected DD (the “I/O Call” and “Functional” inter-
faces in Figure 1), we identified the distinct code paths taken
by the DD without requiring access to its source code. As the
captured code paths share a significant amount of similarity,
they can be grouped in equivalence classes. The equivalence
classes represent useful abstractions (execution hotspots) as
they considerably simplify DD testing: if one code path from
a cluster is tested, then all other code paths belonging to the
same cluster are also considered tested.

The monitoring of the functional call interface of a DD

revealed also another class of execution hotspots. This is rep-
resented by the set of intensely used kernel services imple-
mented in OS libraries, therefore external to the monitored
DD. The information (frequency, sequence, patterns, etc.)
about the execution hotspots of the kernel libraries involved
in the communication with the DDs might reveal fundamen-
tal defects in OS structures, as well as lead to performance or
reliability enhancements.

To answer the research questions mentioned in this paper
and to expand our approach as a tool for DD profiling and test-
ing in the absence of the source code, a detailed analysis of the
presented equivalence partitioning aspects has to be pursued.
Hence, we are currently examining the source code of several
DDs to identify the coding patterns that generate the observed
behavior.

Using the lessons learnt from our DD profiling approach,
we are also developing techniques for tuning existing DD
test campaigns to primarily cover the identified execution
hotspots. The selection of test cases should consider the infor-
mation about the followed code paths obtained in the profiling
phase, in order to reduce the overall testing overhead.

Also, we intend to map the obtained code paths to the con-
trol flow graphs of the DDs. This serves as validation of our
black-box profiling methodology by quantifying its capacity
to disclose the followed code paths. At the same time, we
conjecture that this evaluative approach provides for a proper
comparison of the available black- and white-box test meth-
ods for DDs from the code coverage perspective.

References
[1] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. R. Engler. An

empirical study of operating system errors. In SOSP, pp. 73–88,
2001.

[2] W. W. Cohen, R. Pradeep, and S. E. Fienberg. A comparison of
string distance metrics for name-matching tasks. In IJCAI, pp.
73–78, 2003.

[3] M. Mendonca and N. Neves. Robustness testing of the windows
ddk. In Dependable Systems and Networks (DSN), pp 554–564,
2007.

[4] W. Oney. Programming the MS Windows Driver Model. Mi-
crosoft Press, 2003.

[5] P. Orwick and G. Smith. Developing Drivers with the Windows
Driver Foundation. Microsoft Press, 2007.

[6] C. Sârbu, A. Johansson, F. Fraikin, and N. Suri. Improving
robustness testing of COTS OS extensions. In ISAS, Springer
LNCS 4328, pp. 120–139, 2006.

[7] C. Sârbu, A. Johansson, N. Suri, and N. Nagappan. Profiling the
operational behavior of OS device drivers. In ISSRE, 2008 (to
appear).

[8] C. Sârbu, A. Johansson, and N. Suri. Execution path profil-
ing for OS device drivers: Viability and methodology. In ISAS,
Springer LNCS 5017, pp. 90–107, 2008.

[9] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the
reliability of commodity operating systems. ACM Transactions
on Computer Systems, 23(1):77–110, 2005.

[10] E. J. Weyuker. Using operational distributions to judge testing
progress. In ACM Symposium on Applied Computing, pp. 1118–
1122, 2003.

	Introduction
	OS and DD Profiling: Preliminary Results
	The Equivalence Partitioning Approach
	Identification of Frequently Used Kernel Services
	Discussion and Current Work Directions

