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Abstract As the complexity of modern Operating Systems (OS) increases, testing key OS components such as
device drivers (DD) becomes increasingly complex given the multitude of possible DD interactions. Currently,
DD testing entails a broad spectrum of techniques, where static (requiring source code) and dynamic (requiring the
executable image) and static-dynamic testing combinations are employed. Despite the sustained and improving test
efforts in the field of driver development, DDs still represent a significant cause of system outages as the coverage
is invariably limited by test resources and release time considerations. The basic factor is the inability to exhaus-
tively assess and then cover the operational states, leading to releases of inadequately tested DDs. Consequently,
if representative operational activity profiles of DDs within an OS could be obtained, these could significantly
improve the understanding of the actual operational DD state space and help focus the test efforts.

Focusing on characterizing DD operational activities while assuming no access to source code, this paper
proposes a quantitative technique for profiling the runtime behavior of DDs using a set of occurrence and temporal
metrics obtained via I/O traffic characterization. Such profiles are used to improve test adequacy against real-world
workloads by enabling similarity quantification across them. The profiles also reveal execution hotspots in terms
of DD functionalities activated in the field, thus allowing for dedicated test campaigns. A case study on actual
Windows XP and Vista drivers using various performance and stability benchmarks as workloads substantiates our
proposed approach.

Keywords Operating System - Device Driver - Runtime Behavior - Operational Profile - Empirical Studies

1 Introduction

Currently, the largest (and also the most evolving) part of an OS is its interface to the hardware devices, as rep-
resented by the device drivers. Recent research (Albinet et al 2004; Arlat et al 2002; Duraes and Madeira 2003;
Ganapathi et al 2006; Simpson 2003; Swift et al 2005) has shown that unfortunately DDs constitute a dominant
cause of OS failures. Under a feature-driven market pressure, DDs are often released without exhaustive testing,
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usually exhibiting a higher defect density compared to the more mature OS kernel (Chou et al 2001). Moreover,
DDs are typically delivered as binaries constraining potential testing campaigns to black-box strategies. In ad-
dition, the set of loaded drivers used for testing is likely different than in deployed systems. Consequently, the
coverage obtained from the limited test configurations may not accurately match the wider spectrum of deployed
system configurations.

On this basis an important consideration is the DD testing under “field” conditions. While multiple sophisti-
cated static testing techniques for DDs exist (Ball et al 2004; Mendonca and Neves 2007; Nagappan et al 2005), the
choice of a relevant workload is key to exercise a DD in its actual operational domain. Although the operational
profile of a DD is difficult to capture (and later to reproduce for testing), once obtained it can bring significant
advantages over static testing techniques by identifying the functionalities actually executed, their sequence and
occurrence patterns. Using this valuable information, we believe that subsequent test campaigns can primarily
target code likely to be executed in the field, therefore decreasing the time required to find the defects with high
operational impact. Consequently, developers and system integrators are required to envision workloads that re-
alistically mimic the manner in which the DD (or the whole system) will be used (Weyuker 1998), i.e., the DD’s
operational profile. The more accurate the profile, the more effective a test campaign can be developed to test the
DD state space.

Focusing on generating operational profiles to guide DD testing, our approach is based on monitoring the
interface between the OS kernel and the DDs. At this interface, I/O traffic is captured and analyzed to build
a state model of the DD. The state of a DD is represented by the set of DD functionalities observed to be in
execution at specified instants. The transitions between states are triggered by incoming and outgoing (i.e., from a
DD’s perspective) I/0 requests. The resulting behavioral model is used to discover execution hotspots in terms of
frequently visited states of the DD and to compare workloads.

Paper Contributions and Organization. This paper proposes and subsequently develops:

a) a profiling technique for DDs via I/O traffic characterization;

b) a set of occurrence- and time-based quantifiers for accurate DD state profiling;

c) aranked set of states and transitions to assist execution hotspot discovery;

d) a state-based methodology for accurate workload activity characterization and comparison;

Additionally, being non-intrusive and based on black-box principles, our framework is portable and easy to
implement in DD profiling scenarios where no access to the source code of either OS kernel, workload applications
or target DDs is available. As an effort to validate the presented theoretical aspects, an empirical evaluation of actual
Windows XP and Vista DDs is presented as case study.

Overall, the work in this paper focuses on providing a general operational state profiling framework for DDs.
In addition, our work is an effort towards an improved DD test paradigm and not a test method per se (developing
a comprehensive stand alone testing framework is not the intent of the current paper though is a subject of our
ongoing research).

The paper is organized as follows: Section 2 presents the related work, Section 3 discusses the system and
DD models and describes a representation of a driver’s operational profile. The quantifiers for characterizing DD
runtime behavior are developed in Section 4. The experimental approach is presented in Section 5, along with
detailed case studies in Section 6. Section 7 discusses the experimental issues and Section 8 provides a discussion
on the overall findings.

2 Related Work

Software-Implemented Fault Injection (SWIFI) is a technique widely used to assert the robustness of black-box
DDs (Duraes and Madeira 2003; Johansson and Suri 2005; Mendonca and Neves 2007). In industry, the main OS
developers periodically release improved specifications and tools to minimize the risk of launching faulty DDs
(Ball et al 2004) and make efforts towards determining the “requisite” amount of testing (Oney 2003; Nagappan
et al 2005). Unfortunately, in spite of considerable advancements in DD testing (Albinet et al 2004; Arlat et al 2002;
Chou et al 2001; Swift et al 2005; Ganapathi et al 2006; Duraes and Madeira 2003), DDs are still a prominent cause
of system failures, as generally, test case selection and the code coverage thereof is problematic.

Musa’s work (Musa 2004) on reliability engineering suggests that the overall testing economy can be improved
by prioritizing testing activities on specific functionalities with higher impact on the component’s runtime opera-
tion. Similarly, Weyuker (Weyuker 2003; Weyuker and Jeng 1991) recommends focusing on testing functionalities



with high occurrence probabilities. Results from the area of software defect localization show that faults tend to
cluster in the OS code (Moller and Paulish 1993; Chou et al 2001). Thus, a strategy aimed at clustering the code
into functionality-related parts and then testing based on their operational occurrence is desirable, especially when
the resources allocated for testing are limited. Weyuker (Weyuker 1998) underlines the necessity to test COTS
components in their new operational environments even though they were tested by their developers or third-party
testers.

Rothermel et al. (Rothermel et al 2001) empirically examined several verification techniques showing that
prioritization can substantially improve fault detection. Specifically, they assert that “in a testing situation in which
the testing time is uncertain (...) such prioritization can increase the likelihood that, whenever the testing process
is terminated, testing resources will have been spent more cost effectively in relation to potential fault detection
than they might otherwise have been”. Accordingly, this work helps focusing testing onto the states of the driver-
under-test based on their occurrence and temporal likelihoods to be reached in the field.

McMaster and Memon (McMaster and Memon 2005) introduced a statistical method for test effort reduction
based on the call stacks recorded at runtime. While their approach effectively captures the dynamic program be-
havior, it is specific to single-threaded, user-space programs, though not directly applicable to DDs (as they run in
an arbitrary thread context). Leon and Podgurski (Leon and Podgurski 2003) evaluated diverse techniques for test-
case filtering using cluster analysis on large populations of program profiles, highlighting them as a prerequisite
for test effort reduction.

Auvritzer and Larson (Avritzer and Larson 1993) proposed an approach to describe the load of a large telecom
system. They introduce a load testing technique called Deterministic Markov State Testing for describing the
operational model of a telecommunication system. The incoming and completion of five types of telephone calls
define the state of the system. However, as the work was driven by the necessity to test the given telecommunication
system, knowledge of the system internals was intensively used, thus limiting the usability of the method to other,
specific system. In contrast to their method, our approach is generalized to OS add-on components and to DDs.

While the proportion of lines of kernel code corresponding to drivers is on the rise mostly due to higher OS
support for peripherals (Swift et al 2005), the need for novel driver-specific testing approaches and tools is also
increasing. As a consequence, various paradigms were successfully applied to testing OS code and in particu-
lar to DDs. Notable runtime testing tools include Rational’s PURIFY (Rational 2008) and Microsoft’s Driver
Verifier (Microsoft Corp. 2008). Such tools instrument a binary image with a set of checks, thus enabling
the examination of the respective binary’s runtime behavior. The checks are designed to detect illegal activity of
the instrumented binary, avoiding potential system corruption. Specifically designed for Windows DDs, Driver
Verifier isincluded in XP and Vista releases and continually enhanced with each new version of the OS. The
major weakness of the runtime instrumentation tools resides in the dependency on the quality of the checks (i.e., if
a condition goes unchecked, no corruption is signaled).

Using a different paradigm, multiple other research efforts target source code to detect errors at compile time,
thus aiming at a better coverage of the DD than that offered by the binary instrumentation methods. For instance,
this approach is used at Microsoft by the SDV/SLAM tool (Ball et al 2006) which checks if an “abstracted” (i.e.,
simplified) version of the DDs follow the rules stated by the OS kernel’s API. The “abstract DD” is run inside a
“hostile” execution environment, and a symbolic model checker is used to validate its activity against a set of rules.
The abstracted image of the DD is used instead of the real image in order to keep the number of DD states within
manageable limits for the model checker, this inducing a limitation of the coverage for the real DD.

To protect faulty DDs affecting the rest of the OS, another paradigm assumes running the DD in isolation.
Examples include tools like Nooks (Swift et al 2002) or SafeDrive (Zhou et al 2006). This approach supposes that
the execution of the real driver (or a slightly modified version thereof) inside a virtual execution environment. All
execution traces of the targeted DD are monitored to prevent potential failures thereof to propagate to the rest of
the OS, but this comes at a high performance overhead.

As a preliminary basis for the concepts presented in this paper, in our previous work (Sarbu et al 2006) we
introduced a monitoring approach for state identification considering the functionality currently serviced, as seen
from the OS — driver interface. In a parallel effort to characterize the operational behavior of DDs (Sarbu et al 2008),
we identified the DD parts which are activated at runtime by using a methodology that permits (a) identification of
the code paths followed by the DD in the operational mode and (b) clustering thereof in terms of relative sequence
similarity. In a pre-testing phase, the parameters of the resulted clustering were analyzed and tuned to reveal the
minimal subset of code paths that must be taken by a subsequent test campaign. Under the assumption that the test
effort is equally distributed among the followed code paths (i.e., testing any two code paths is equally hard), we



showed that by covering only a subset of execution paths the testing effort can substantially be reduced without
sacrificing adequacy.

3 Driver State Definition via I/O Traffic

We now introduce our system model and the background behind the state model for DDs. Fig. 1 represents a typical
computer system equipped with a COTS OS supporting a set of applications (the system workload) using services
provided by the OS.

1 1 System
[ oot 1L avpt2 1. [ Aophs ] workioad| USERSPACE
System Services Layer
Other /0 Driver 1 Driver 2 OS KERNEL
OS Kernel Manager SPACE
Components Driver3 | . Driverd
Hardware Layer HW SPACE

Fig. 1 The considered system model

This paper focuses on the communication interface between the I/O Manager and the DDs located within
the OS kernel space. The I/O Manager is a collection of OS structures responsible for mediating the flow of /O
requests between the applications and the responsible DDs. A DD is an independent OS component handling the
communication with one or more equivalent peripherals.

For instance, a user application reads the content of a file stored on the local hard-disk. A read request is
issued and passed to the OS by means of standardized functions defined by the System Services layer. Next, the
request is handled by the I/O Manager which transforms it into a command for the driver associated with the local
hard-disk. The driver accesses the hard-disk controller, and the controller instructs the disk drive’s heads to move
to the proper position and start reading data. The disk driver stores read data in a buffer which is made available to
the application that initially issued the read request.

While our approach is applicable for generic DDs and OSs, we utilize Windows XP SP2 DDs as representative
case studies for the proposed concepts. In Windows, DDs act on I/O requests initiated by the I/O Manager directly
or on behalf of user applications. In this paper, the communication flow between the I/O Manager and the DDs is
analyzed to characterize the activity of a DD. At this level Windows uses a shared memory communication scheme
as specified by the Windows Driver Model (WDM) (Oney 2003).

According to WDM, the /O Manager builds a request data structure and populates it with the parameters
necessary for the driver to start resolving the request. Next, the [/O Manager informs the responsible driver that a
request is available. When the driver finishes executing the code associated with resolving the request, it fills the
result fields of the structure and passes it back to the I/O Manager. The I/O Manager unpacks the data structure
and forwards the results to the user space application that requested the I/O. The data structure used for passing the
request between the I/O Manager and drivers are called I/O Request Packets (IRP). The current WDM specifications
define 28 IRP types, each of them associated with a certain operation supported by the driver (e.g., CREATE,
READ, WRITE, CLOSE, etc.).

WDM-compliant DDs follow mandated rules governing design, initialization, power and memory management
etc. Each DD must implement a minimal standard interface. Of major interest for our approach is that WDM
requires the DD code to be internally organized in dispatch routines, each being responsible for handling a spe-
cific type of IRP. The set of dispatch routines supported by the driver can be easily discovered by examining
the OS kernel structure describing the driver, i.e., the DRIVER_OBJECT. A standard method (Driverlnit) of the
driver executes after the driver has been loaded into the kernel. Among other actions, Driverinit fills a field of
the DRIVER_OBJECT structure with pointers to the supported dispatch routines. Hence, simply by inspecting the
DRIVER _OBIJECT structure the set of supported IRP types can be identified.



3.1 The State of a Driver

From a testing perspective, the ability to precisely pinpoint which functionality the system-under-test executes at
any specific instant is of critical importance as a basis for observability. This is not a trivial task when testing OSs
(or components thereof) as they are complex and dynamic, entailing a high level of non-determinism and often
being delivered without source code. These constraints constantly challenge the software testing community to
investigate new methods to define and accurately capture the state of such a system.

3.2 Driver Modes and Transitions

The state of a DD is characterized by the handled IRP requests. As we assume no access to the driver’s source
code, we are constrained to use a relaxed definition of state to accommodate only the available information (i.e.,
the observable communication at the interface of the driver). Onwards, we define this relaxed state as the “driver
mode”. Hence, a DD is idle from the initialization instant until the first IRP request is received. The DD is in the
“processing I RP;” state from the instant when I RP; is received and until the DD announces its completion. In
each mode, the DD executes a dispatch routine specific to the type of the received IRP, as specified by the WDM
(Oney 2003).

Some IRPs are processed concurrently by the DD, i.e., processing I RP; can start before /RF; is completed
(assuming that JRP; was initiated before IRP; but its activity is not finished yet). To the current extent of our
experimental work we have never encountered situations when more than one IRPs of the same type are processed
at once. Hence, in (Sarbu et al 2006) we defined the mode of a driver D as follows:

Definition 1 (Driver Mode) The mode of a driver D is defined as a n-tuple of predicates, each assigned to one of
the n distinct IRP types supported by the driver:

D
M": < PIRP1 PIRP2 . PIRPi . PIRPH >, where

p | 1, if D is currently performing the functionality triggered by the receival of I RP;
IRP: =3 0, otherwise
As the driver mode is a binary tuple of size n, the total state space size (the total number of modes) for the
driver D is 2™.

Definition 2 (Operational Profile) The operational profile (OP) of a DD with respect to a workload is the set of
modes visited in the time interval spanning the workload execution.

Our previous experimental investigations (Sarbu et al 2006) showed that the size of the OP is a small fraction
of the total set of modes (Nop < 2"), irrespective of the workload.

To illustrate the presented concepts of modes, transitions and operational profile of a DD let us consider an
example. Fig. 2 depicts the state space of a hypothetical driver supporting four distinct IRPs, i.e., CREATE, READ,
WRITE and CLOSE. The leftmost bit is set while the driver performs the functionality associated with CREATE,
the second leftmost bit is set while the driver performs READ and so forth. Note that the driver can execute several
activities of different types concurrently, in which case the binary string contains several bits set. In Fig. 2 we shade
the subset of modes visited by the driver for a hypothetical workload.

As implied by the definition of driver mode, transitions between modes are triggered by receiving and com-
pleting I/O requests. As the I/O Manager serializes both the sending and receival of IRPs, only one bit can change
at a time. Thus, a DD can only switch to modes whose binary tuples are within Hamming distance of 1 from the
current mode. Consequently, there are n transitions possible from each mode, implying the total number of transi-
tions in our model to be n - 2". As the number of transitions traversed for a workload represents only a subset of the
total transitions (Top < n - 2™) (Sarbu et al 2006), the actual state space that needs consideration is significantly
reduced. If needed, such a DD’s OP can also be used to pro-actively discover new modes by forcing the DD to
traverse non-transited edges (e.g., for robustness testing).



Operational profile
(visited modes) 0000

e’

CREAIE CLOSE

Fig. 2 An example of state space and OP for a driver supporting four distinct IRP types

3.3 Characterizing a Driver’s Behavior

In our prior work we experimentally identified the OP of the serial port DD provided with Windows XP SP2 (Sarbu
et al 2006). The results revealed that the reached modes and transitions and the obtained OP are consistent across
different runs. Moreover, the OP of the studied DD has a very small footprint (only 1.6% of the modes were visited
and 0.3% of the transitions were traversed). Though small and stable, the applicability of the OP for operational
profiling purposes is limited as it divides the modes and transitions into only two subsets (i.e., gives only binary
information: visited and non-visited). Unfortunately, this is insufficient for a proper characterization of the DDs
activity as the ability to distinguish among the visited modes and transitions is missing.

In the next section we enhance the captured OPs by introducing additional metrics for an accurate characteriza-
tion of the DD’s runtime behavior. We start from the hypothesis that the higher detail level of the OP quantification
permits discovery and assessment of the existing execution hotspots in DD’s code. This assumption is justified for
testing black-box device drivers as the information about their runtime behavior is implicitly limited. For instance,
when information about the runtime behavior of the driver permits prioritization, a robustness testing strategy can
first target the modes and transitions which were least visited, under the assumption that the functionalities utilized
more commonly were already tested by the driver’s developers. Similarly, under the same assumption, the modes
where the driver is concurrently executing several functionalities triggered by IRPs are also good candidates for
robustness testing.

4 Quantifiers of Runtime Behavior

An accurate characterization of the operational behavior of a software (SW) component is desirable for establishing
effective testing methods. Our interest focuses on COTS device drivers, SW components known for their limited
observability at runtime. As test completeness is hard to reach for drivers mainly due to their complexity, testers
usually choose to primarily test the key functionalities (Mendonca and Neves 2007). Even when it is assisted by
tools with certain degrees of automation, this selection remains a process based on the tester’s subjective experience
in prioritization.

Hence, this section presents a set of quantifiers developed for differentiating among the visited modes and
transitions of a DD’s OP. Using them, the relative frequencies of the visited modes and transitions can be observed
and analyzed, revealing execution hotspots. The metrics presented in this section are useful as they provide accurate
workload characterization from the DD’s perspective. For instance, capturing the DD’s activity in the field can
be used for workload assessments, usage/failure data collection or post-mortem debugging. Moreover, different
workloads can be statistically compared to reveal the DD modes with higher probability of being reached in the
field.

From a testing perspective, the metrics associated with the DD modes indicate how often and how much time
is spent in each mode. Both represent valuable information about the operational mode of a DD, guiding the



subsequent test campaigns through enabling inter-mode priority rankings. These rankings are tunable to the main
purpose of the test activity. For instance, if the goal is early discovery of the defects with high probability to occur
in the field, then the test campaign should start by first covering the mostly visited DD mode, and continue in the
decreasing order of the sojourn rate of the remaining modes until all of them are covered or the resources allocated
for testing are depleted.

In this paper we also introduce metrics for transitions among the modes belonging to an OP. While we believe
that the need for mode quantifiers for testing is intuitive (modes are abstract representations for the DD code),
the arguments supporting the development of transition quantifiers are easier understood via a simple example. For
instance, assuming that a tester wants to test the mode 0011 in Fig. 2. To “drive” the DD into that mode, one needs
to design a test case which calls a WRITE followed by a CLOSE I/O call. A simple issue of the two commands
in this sequence might not be sufficient as the DD might finish the WRITE operation before the CLOSE is called.
If this happens, the test is applied to the current mode 0001 (instead of the targeted 0011!). Please note that the
test parameters alone cannot guarantee that the desired mode is reached, a decisive timing aspect is also involved.
Our transition quantifiers probabilistically capture this aspect, enabling the development of complex test cases (i.e.,
sequences of I/O calls instead of singletons). Hence, they permit computing the probability to reach the mode of
interest depending on the current mode. Specifically, after each hop in a sequence of I/O calls, this probability is
re-calculated in terms of the current mode.

The developed metrics have a statistical meaning in the context of the workload for which they were assessed.
Within this perspective, the OP can be used to detect deviations from the expected behavior of a DD by observing a
population of runs of the selected workload and finding the OP which diverges from the rest of the runs in terms of
one (or multiple) quantifiers. Section 6.3 illustrates the workload comparison procedure enabled by our approach.

For testing purposes, our metrics can be used to quantitatively compare the effectiveness of test cases (or
test suites) on the driver-under-test. For instance, if the DD code is not available, one can select the test cases
(suites) having the highest coverage in terms of reached driver modes. Hence, while still reaching the same DD
functionalities, the size of test case pool can be reduced to a least necessary minimum by removing the redundant
test cases. Section 6.4 illustrates of the test space reduction of our method. We believe that access to the DD source
code might reveal additional information about the relation between the mode coverage and code coverage and our
current research interests include an extensive study of this relation. Also, Table 5 in Section 6 contains guidelines
for computing, using and interpreting the quantifiers, based on our empirical expertise accumulated in the process
of collecting and analyzing operational behaviors of Windows DDs.

4.1 Occurrence-based Quantifiers

Two important characteristics of the runtime behavior of a DD are the occurrence weights for both modes and
transitions. They reflect the DD’s likelihood to visit the mode (or transition) to which these quantifiers are bound.
To express them, we first define as prerequisite notions the transition and mode occurrence counts for a given
workload w. We define a driver’s OP as a digraph with the set of modes M = {M{P, MP ...} as vertices and the
set of transitions 7' = {t1, t2, ...} as edges. Each transition from 7" maps to an ordered pair of vertices (M, M jD )s
with MP M JD € M, i # j and the modes M} and M. jD within a Hamming distance of 1 from each other.

Definition 3 (Transition Occurrence Count: TOCtl.,].) The occurrence count for transition ¢; ; € T', originating
in mode M and terminating in mode M P (M}?, M}” € M and i # j) is the total number of recorded traversals
from mode M} to mode M. JD .

Definition 4 (Mode Occurrence Count: A/ OC';) The occurrence count of mode M 7D € M is the number of
times mode M ]D was visited during the execution of workload w.

Nop
MOC; = > TOC, (D

i=1

Note that both the occurrence counters expressed above are defined for the duration of the workload w. Counter
variables associated with each mode and transition can be used to store their values. The TOC and MOC counters
are utilized to develop subsequent quantifiers accurately specifying the operational behavior of DDs, namely the
mode occurrence weight and the transition occurrence weight.



Definition 5 (Mode Occurrence Weight: 1/ OW,) The occurrence weight of mode M € M represents a quan-
tification of a driver’s likelihood to visit the mode MiD relatively to all other sojourned modes of the OP (Nop),
for the workload w.

MOC;

Nop
Z MOC;

1=1

MOW; = 2)

This metric is similar to the metric used for development of OPs for building reliable SW components proposed
by Musa (Musa 2004). In contrast to (Musa 2004), our quantifier is specific to profiling the runtime behavior of
kernel-mode DDs and its significance is coupled with the specific workload for which it was computed. If the
chosen workload accurately mimics the manner in which the DD is used in the field, the obtained mode quantifiers
accurately express the field conditions.

Using this metric in profiling the runtime behavior of a DD helps building test priority lists. For instance, the
modes with higher MOW value represent primary candidates for early testing, as higher values of this quantifier
indicate the functionalities of the DD which are most frequently executed. For the idle mode (i.e., when the DD is
not executing any IRP-related activity) this quantifier indicates the percentage of mode sojourns that put the DD in
an idle state, i.e., waiting for IRP requests.

Similar to MOW but referring instead to the transitions between modes, we define the transition occurrence
weight for each traversed transition belonging to the DD’s OP for a given workload.

Definition 6 (Transition Occurrence Weight: TOWtw.) The occurrence weight of transition ¢; ; € T, origi-
nating in mode 1/” and terminating in mode M (MP, MP € M and i # j) is the quantification of driver’s
likelihood to traverse the transition ¢; ; when leaving the mode M P .

TOC,,,

TOWe., = 100,

3
Thus, the occurrence weight associated with transition ¢; ; indicates the probability that this transition is actu-
ally followed when leaving the mode M P . Note that the probability of following a certain transition depends on
the current mode. This information is relevant for estimating which mode is to be visited next, given that there is a
one-hop transition in the OP between the current mode and the one whose reachability is to be calculated.

foa) 1) 600}
15
(19) @)

For instance, consider the situation depicted in Fig. 3, where only the modes and the outgoing transitions of
interest are shown, together with their TOC values as edge labels. The mode 1001 is current and the M OCgo1 =
50. TOC4, 401 101, = 8. Therefore, TOWy, .0, 101, = 25 = 0.16. This indicates that the transition between 1001
and 1011 has been traversed 16% of the times the mode 1001 was left (i.e., 16% probability that the mode 1011
will be visited next when the mode 1001 is current).

Fig. 3 Calculating TOW<¢,01 1011

4.2 A Time-based Quantifier for Modes

To increase the accuracy of DD profiling, both spatial and temporal dimensions need to be considered. We regard
the duration of a DD’s activity not just an artifact of the device’s inherent slowness but as an important aspect of



the computation, as longer execution time reveals more defects (shown by many defect estimators in the field, e.g.,
the Musa-Okumoto model (Musa and Okumoto 1984)). Therefore, we introduce a quantifier that accounts for the
relative amount of time spent by the DD executing in each mode. As we consider the transitions between modes
as instantaneous events, defining a corresponding temporal metric for edges is superfluous.

The overall time spent by the DD in each mode reveals valuable information about the latencies of various
IRP-related activities of a DD. If the DD spends a relatively large amount of time in a certain mode, that mode can
be considered important for a subsequent testing campaign although the respective mode has a very low occurrence
count (and, implicitly MOW). For instance, the DDs managing “slow” devices as disks or tape drives spend large
amounts of time in modes associated with READ or WRI TE operations, irrespective of their sojourn rate. To capture
this behavior we introduce a new OP quantifier, the mode temporal weight, to be used in conjunction with the mode
occurrence weight for a multivariate characterization of driver modes.

Definition 7 (Mode Temporal Weight: M'T'W,;) The temporal weight of the mode MZ»D € M is the ratio between
the amount of time spent by the driver in mode M’ and the total duration of the workload w.

4.3 A Compound Quantifier for Modes

An accurate characterization of the runtime behavior of a DD needs to consider both the occurrence and time-
based metrics, on a stand-alone basis or in combination. In order to facilitate combinations of the two metrics,
we propose a compound quantifier capturing these dimensions of the profiled DD’s activity, namely the mode
compound weight.

Definition 8 (Mode Compound Weight: M/ CW,) The compound weight of a mode M € M is given by the
expression (where A € R0 < A < 1):

MCW;(\) = AMOW; + (1 — A MTW, (@)

By varying ), this quantifier can be biased towards either occurrence or temporal dimension as needed for
the test requirements. For instance, to emphasize the temporal aspect A should take values closer to 0, while the
occurrence dimension is highlighted by values of A that approach 1.

5 Experimental Evaluation

To validate the profiling approach and the associated metrics, we conducted a series of experiments that investigate
the following research questions:

Q1: Can the OP quantifiers be used to compare the effects of different workloads on DDs?
Q2: What is the magnitude of test space reduction introduced by the usage of our OP quantifiers?

To answer these questions, the following subsections show how the rankings based on execution quantifiers
are obtained (Section 6.2), how workloads are compared among each other (Sections 6.3) and how are our OP
quantifiers usable for test space reduction (Section 6.4).

5.1 Experimental Setup and Analysis Strategy

To capture the IRP flow, we have built a lightweight “filter driver” interposed between the I/O Manager and a DD of
our choice (Fig. 4). This mechanism is widely used by many OSs for modifying the functionality of existing DDs or
for debugging purposes. Our filter driver acts as a wrapper for the monitored DD, only logging the incoming (from
I/0 Manager to DD) and outgoing (from DD to I/O Manager) IRPs. The IRP traffic is then forwarded unmodified
to the original recipient. As for each IRP only a call to a kernel function is needed for logging it, we expect the
computation overhead of our filter driver to be marginal.

Interposing our filter driver between the I/O Manager and a selected DD is done using the standard driver
installation mechanisms offered by Windows. Hence, it is non-intrusive and does not require knowledge about the
wrapped DD. The insertion and removal of the filter driver require only disabling and re-enabling the target DD
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Fig. 4 The experimental setup; the online (monitoring) and offline (analyzing) phases

but no machine reboot. Moreover, due to its conformance to WDM, we used (sans modifications) the same filter
driver to monitor all DDs whose runtime behaviors were investigated in this paper.

To compute the OPs for different DDs, we have designed a tool (OP-Builder) that processes the logs and outputs
the DD’s OP, together with all runtime quantifiers. The figures 2629 are obtained using directly the outputs of
the OP-Builder tool. For our experiments we utilized a Pentium4 @2.66Ghz machine with 512Mb of DDRAM,
equipped with Windows XP Professional 5.01.2600 SP2. To build the filter driver we have used Windows Server
2003 DDK. For logging the kernel messages sent by the filter driver we have used Sysinternal’s DebugView tool
(Russinovich 2008).

5.2 Studied Drivers and Workloads

To put our work in context with Windows DDs, we first describe the different driver types as specified by WDM
(Oney 2003). WDM uses a layered architecture of drivers similar to the one depicted in Fig. 5. Each hardware
device has at least two associated DDs, the function driver and the bus driver. The former handles most of the
work being done in order to manage the associated peripheral properly, while the latter manages the communication
bus which connects the peripheral to the rest of the computing system (i.e., ISA, PCI, USB etc.). Some devices
have additional layers, consisting of filter drivers which wrap the function driver. A filter driver is responsible for
modifying the behavior of the main function driver and it can be located either above or below it. WDM does not
limit the number of filter drivers a hardware device can have. This mechanism permits incremental changes to the
main behavior of the function driver, thus enabling modifications that would otherwise require source code access.

Additionally, the function drivers come in two flavors, depending on their implementation, as monolithic and
as combinations of a class driver and a minidriver. A monolithic driver encapsulates all of the functionality needed
to support a hardware device. The same functionality can also be modularly implemented as a combination of
a class- and a mini-driver. In this case, the class driver manages the entire generic class of devices, while the
minidriver handles only the vendor-specific functional characteristics of a certain device. Usually, the class drivers
are provided by Microsoft and writing the minidriver is generally the hardware manufacturer’s task.

As the case studies presented in this paper are valid for WDM-compliant drivers, they are readily transferrable
to Vista drivers, too. For its latest commercial operating system (Vista) Microsoft introduced the Windows Driver
Foundation (WDF) (Orwick and Smith 2007). WDF defines two main driver categories, the user-mode drivers
(User-Mode Driver Framework - UMDF) and the kernel-mode drivers (Kernel-Mode Driver Framework - KMDF).
As KMDF represent an extension of the earlier WDM, our case studies on WDM drivers hold also for Vista’s
KMDF-compliant drivers.

Currently, most of the drivers available for Windows operating systems are belonging to the WDM and KMDF
classes, with the balance of the sheer number of DDs slowly moving from WDM towards KMDF drivers as Vista’s
popularity is increasing. The error reporting facility of Windows Vista enabled Microsoft’s researchers to estimate
the unique devices attached to Vista systems to 390000, while the DD population is increasing every day with 25
new and 100 revised DDs on average (Orgovan 2008).
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Currently, the DDs onto which our approach cannot be directly applied are the drivers for display and video
capture adapters, printers, scanners and SCSI storage adapters, but these represent very few cases reported to the
total universe of Windows DDs. The vast majority of Windows drivers is still represented by WDM/KMDF DDs
(Microsoft 2006), emphasizing the applicability of our profiling methodology presented in this paper.

Workload
(user space)

1/0 Manager

Hardware device

Upper filter driver P

_ - i | Monolithic driver

Function driver ;
: or
\ i
\ : Class driver
Lower filter driver N
N\ | Minidriver |
\

~—‘ Bus driver

Fig. 5 Driver layering in WDM. Arrows represent the I/O traffic between a user-space application (workload) performing I/O and an associated
hardware device. The function driver can be implemented as either a monolithic driver or as a class driver - minidriver combination.

In this paper we present a systematic evaluation of five diverse types of WDM-compliant DDs: a serial
port driver (serial.sys), a CDROM driver (cdrom. sys — both for XP and Vista), an ethernet card driver
(sisnic.sys),afloppydriver (flpydisk. sys —bothfor XP and Vista) and a parallel port driver (parport.sys).
All DDs are provided (and digitally signed) by Microsoft, except the sisnic. sys, which is provided by the SiS

Corporation.

The drivers selected for the experimental evaluation presented in this paper span all the different driver types
described earlier. Table 1 lists their main features.

Table 1 The studied device drivers and their characteristics. The first column contains the short name used onwards to refer to the respective
DDs, differentiating among DDs profiled under the Windows XP or Vista OSs.

Short Executable Image (Version) 1]\)/131‘1aged Used as Features
evice
cdrom _XP cdrom.sys (5.1.2600.2180)
DVD drive Class driver, provides ac- PnP, power management and media change
cdromvVista | cdrom.sys (6.0.6000.16386) VD gopC/[]s) ROMs and | notification (autorun)

. Sits on top of the floppy disk controller in
floppy XP fipydisk.sys (5.1.2600.2180) Floppy Block-device, legacy the driver stack mediating the communica-
£loppy Vista | fipydisk.sys (6.0.6000.16386) drive driver (monolithic) tCl:lrlls ?:lltt;t :;eﬂ (1)1;16); l;:;/;]:(l Ciaft)i)cl?;lron which

Parallel port function | PnP, power management, WMI, raw access
driver and parallel port bus | to all parallel devices. Can share the access
parallel XP | parport.sys (5.1.2600.2180) Parallel port | driver to all parallel ports on the system and detects
all parallel enumerable devices connected to
the port
Function driver for legacy | PnP, power management, WMI. Controls
PnP COM ports or as | interrupts and communication with device
serial XP serial.sys (5.1.2600.2180) Serial port | a lower-level filter driver | hardware (monolithic). Used in conjunction
for PnP devices requiring | with serenum. sys (which acts as a device
16550 UART interface upper filter for serial.sys
ethernet XP sisnic.sys (1.16.00.05) Ethernet No information available (distributed as binary only by the SiS Corp.)

card
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Table 2 The workloads utilized to exercise the DDs and their experimental attributes, in terms of generated I/O traffic and operational profile
size. The OPs captured for all the benchmark—driver-OS combinations listed in this table are presented in detail in Section 6.1.

Short | Benchmark Driver Short Tesued I[RPSTypes Mo dZ;SI[teg; dges Description / Duration [min:sec]
C1 BurnInTest-Audio cdrom XP 1336 3outof 9 4 6 Audio CD test mode [07:40]
C2 BurnInTest-Data 71012 2 outof 9 3 4 Data CD read and verify mode [01:03]
C3 BurnInTest-Audio cdrom Vista 2170 5 out of 9 6 10 Audio CD test mode [03:50]
C4 BurnInTest-Data 51034 5out of 9 6 10 Data CD read and verify mode [01:02]
F1 BurnInTest 2946 5outof 6 6 10 Various pattern read and write [05:03]
F2 Sandra Benchmark 19598 5outof 6 9 16 Perf. benchmark various filesize [23:40]
F3 DC2 50396 4 out of 6 5 8 MS Device Path Exerciser [00:32]
F4 DevMgr-Disable floppy-XP 10 1 outof 6 2 2 Device Manager — disable drive [00:0.01]
F5 DevMgr-Enable 400 | 3outof6 4 6 Device Manager — enable drive [00:17]
Fé6 F1 — F5, sequentially 63396 | Soutof6 6 10 Sequential execution of F1-F5 [31:00]
F7 F1 | F2 (run ) 12298 | Soutof 6 15 34 Concurrent execution of F1+F2 [18:40]
F8 F1 || F2 (run IT) 21884 | 5outof 6 15 34 Concurrent execution of F1+F2 [27:50]
F9 BurnInTest 3008 6 out of 6 7 12 Various pattern read and write [05:03]
F10 DevMgr-Disable floppy-Vista 10 | 3outof6 4 6 Device Manager — disable drive [00:.004]
F11 DevMgr-Enable 245 6 out of 6 7 12 Device Manager — enable drive [00:0.03]
P1 DC2 parallel XP 48530 6 out of 6 7 12 MS Device Path Exerciser [00:5.7]
S1 BurnInTest serial XP 11568 6 out of 6 9 16 COMI loop-back test [05:00]
El BurnInTest 2480 | 4 outof 28 5 8 TCP/UDP full duplex [05:03]
E2 DevMgr-Disable ethernet _XP 6 | 1outof28 2 2 Device Manager—dis. Ethernet [00:01]
E3 DevMgr-Enable 114 | 6outof 28 7 12 Device Manager—enable Ethernet [00:02]

To properly exercise the chosen DDs, we selected a set of benchmark applications generating comprehensive,
deterministic workloads for the targeted DDs. For each experiment we analyzed the collected logs, constructed the
OP graphs as in Fig. 26 and calculated the OP quantifiers defined in Section 4.

Besides commercial benchmarks testing the performance and reliability of the peripherals under various con-
ditions, it is worth mentioning that we have additionally used the Device Path Exerciser (DC2) tool. DC2 is a
robustness testing tool that evaluates if a DD submitted for certification with Windows is reliable enough for mass
distribution. It sends the targeted DD a variety of valid and invalid (not supported, malformed etc.) I/O requests to
reveal implementation vulnerabilities. DC2 requests are sent in synchronous and asynchronous modes and in large
amounts over short time intervals to disclose timing errors. In our experiments we exercised the parallel port and
the floppy disk driver with a comprehensive set of the DC2 tests.

The results of experimenting with the chosen DDs are summarized in Table 2. In the full spectrum of our
experiments all the other mentioned DDs also showed the effectiveness of our OP profiling method. The detailed
results are presented in Section 6.1.

6 Data and Analysis
6.1 Detailed Experimental Results

In this section we present the detailed results of the experiments listed in Table 2, in terms of the obtained OPs.
All the figures in this section (Fig. 6-25) are structurally similar, the information contained in the nodes of the
OP graphs is (see mode 000 in Fig. 6, from top to bottom): (a) Mode name (e.g., 000); (b) MCW value (e.g.,
0.5008) and (¢) MTW value (e.g., 0.9951). Similarly, the transitions are marked with the TOW weight (see
transition 000 — 001 in Fig. 6).

6.1.1 Operational Profiles of the cdrom_XP Driver

For the workload C1 (Fig. 6) 1336 IRPs were generated, belonging to 3 types (CREATE, CLOSE and DE-
VICE_CONTROL) out of a total of 9 types supported by the cdrom_XP driver. The most accessed driver operation
was CREATE, the other two were only called 8 times each.

Figure 7 illustrates the behavior of the cdrom_XP driver under the workload generated by the BurnInTest
application by testing a data CD media. 71012 IRPs were generated in total, belonging to 2 types (READ and
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CREATE | CLOSE | DEVICE_CONTROL | Meaning of the bits READ | DEVICE_CONTROL |« Meaning of the bits

Fig. 6 cdrom_XP profile for the workload C1: BurnInTest - Audio Fig. 7 cdrom_XP profile for the workload C2: BurnInTest - Data

DEVICE_CONTROL). READ was the most accessed driver operation under this workload, the driver spending
here 82.35% of the total experiment time (1 minute and 3 seconds).

6.1.2 Operational Profiles of the cdrom_Vista Driver

‘ CREATE | CLOSE | READ | DEVICE_CONTROL | CLEANUP ‘ Meaning of the bits CREATE | CLOSE | READ | DEVICE_CONTROL | CLEANUP ‘ Meaning of the bits

2 |—eant

Fig. 8 cdrom_vista profile for the workload C3: BurnInTest - Fig. 9 cdrom_Vista profile for the workload C4: BurnInTest -
Audio Data

Under Vista, we re-used the same workloads that were used to exercise the cdrom.sys DD under Windows XP.
Though, we observed large differences in both shapes and quantifiers of the obtained OPs from figures 6 and 7
versus the figures 8 and 9.

These differences can be explained by the fact that different I/O Manager units build the I/O traffic for the
responsible DD, as we are dealing with different OSs. For instance, the cdrom_Vista DD received five types of
IRPs from the Vista I/O Manager on behalf on both C3 and C4 workloads, while under Windows XP only three
and respectively, two distinct types were issued (see Table 2). By comparing figures 6 and 8 in terms of issued
IRPs, it becomes apparent that the cdrom_Vista DD received two distinct IRPs (READ and CLEANUP) more
than the cdrom_XP DD. Figures 7 and 9 show the same trend, this time three distinct IRPs (CREATE, CLOSE
and CLEANUP) were additionally issued for the cdrom_Vista DD but not for the cdrom_XP DD.

As Burnln Test benchmark completed successfully both under Vista and XP, the differences in the captured
OPs indicate that the internal structures of the two versions of the cdrom.sys DDs is also very different, although
the same functionality is provided by both DDs.

6.1.3 Operational Profiles of the et hernet_XP Driver

We exercised the ethernet driver (ethernet _XP) with three workloads. First we have used BurnInTest benchmark
(Fig. 10), followed by disabling the driver from the Windows Device Manager (Fig. 11) and then re-enabling it
(Fig. 12). Therefore, figures 11 and 12 illustrate the activity performed by the driver at loading and unloading. This
discloses the execution of the functionalities executed very seldomly (i.e., only at load and unload of the DD), but
which are critical for the correct and dependable performance of the DD.

While the disable operation requires only the execution of the activity performed by a single IRP (CLOSE),
the enable operation is more complicated, six IRPs are called, all of them in conjunction with the PNP activity. As
both Enable and Disable operations require the PNP operation to be executed, it indicates the high importance this
IRP type has for the management of the driver in the OS.



14

onp Meaning of the bits

Meaning of the bits

CREATE | CLOSE | DEVICE_CONTROL | CLEANUP ‘47

Fig. 11 ethernet_XP profile for the workload E2: Device Man-
Fig. 10 ethernet_XP profile for the workload E1: BurnInTest ager - Disable driver

‘ CREATE | CLOSE | DEVICE_CONTROL | CLEANUP | SYSTEM_CONTROL | PNP ‘M"g of the bits

Fig. 12 ethernet _XP profile for the workload E3: Device Manager - Enable driver

6.1.4 Operational Profiles of the £1oppy_XP Driver

This section presents and discusses the OPs obtained for the f1oppy_XP DD by exercising it with the F1-F8
workloads, as described in Table 2. The same f1oppy_XP DD along with the mentioned workloads are also the
subjects of a different study (further presented in Section 6.3) aimed at revealing the ability to compare workload
effects using our OP quantifiers.

The OPs induced by the workloads F1 and F2 onto the £1oppy_XP driver are illustrated by the figures 13 and
14. The same two workloads were also selected to run concurrently, generating the F7 and F8 workloads.

BurnInTest accessed five IRP types without concurrent executions of the associated functionalities (Fig. 13)
in the time interval spanning the experiment. In contrast, Sandra benchmark called exactly the same IRP types,
but in a manner that put the driver in three additional modes located on the level 2 in the OP graph (Fig. 14 - the
modes 00011, 01010 and 10010). In all these three modes, the floppy disk driver accessed CREATE, CLOSE
and DEVICE_CONTROL in conjunction with the WRITE operation. Therefore, mode 00010 (WRITE) is both
the most accessed and the mode where the driver spent most of the time.

Meaning of the bits

CREATE | CLOSE | READ | WRITE | DEVICE_CONTROL ‘<7

Meaning of the bits

CREATE | CLOSE | READ | WRITE | DEVICE_CONTROL ‘47

Fig. 14 f£loppy_XP profile for the workload F2: Sandra bench-
Fig. 13 floppy-XP profile for the workload F1: BurnInTest mark
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However, the behavior of the £ 1 oppy_XP DD was counter-intuitive. DC2 is a robustness test tool and given the
fact that it generated a very large number of IRPs for the short interval of time it ran (50396 IRPs in 32 seconds), we
had expected a large number of modes to be visited. Interestingly, the number of modes sojourned under DC2 (Fig.
15) was less than those for the workloads F1 and F2. Moreover, no modes associated with concurrent execution of
driver functionality were visited. This might be an indication that the DC2 waits until the driver finishes the current
test then resets the device settings in order to restart a new robustness test. This assumption is supported by the
large number of times the mode responsible for DEVICE_CONTROL operations is accessed.

Interestingly, for the floppy disk driver both the enable and disable operations are using different IRPs than
the ethernet driver. Instead issuing PNP requests for disabling it, the I/O Manager calls CLOSE to disable the
floppy-XP driver (Fig. 16). Also, for enabling the driver (Fig. 17), only three IRP types are used (CREATE,
CLOSE, DEVICE_CONTROL), an additional call to PNP is not required. We believe that these major differences,
in the manner in which drivers are loaded and unloaded from the OS, originate in the functional and architectural
variety among drivers following the WDM specifications.

CREATE | CLOSE | READ | DEVICE_CONTROL

Meaning of the bits i i
CLOSE | Meaning of the bts

Fig. 15 floppy-XP profile for the workload F3: DC2 (Device Fig. 16 f£loppy-XP profile for the workload F4: Device Manager
Path Exerciser) - Disable driver

Figure 18 is a graphic representation of the OP when the workloads F1 to F5 were executed sequentially. This
is an attempt to study the runtime behavior of the £1oppy_XP driver over longer periods of time, while the driver
is subjected to multiple tasks. The driver executed mostly DEVICE_CONTROL operations in terms of number of
sojourns to the respective mode, while WRITE was the most expensive operation in terms of time spent running
the functionality associated with it.

M f the bit:
CREATE | CLOSE | DEVICE_CONTROL |« c2ing OF theBits CREATE | CLOSE | READ | WRITE | DEVICE_CONTROL
00000
0.5000 £
0.1858.
0.0146/1.0000 Q. K . .0000

Fig. 17 £1oppy-XP profile for the workload F5: Device Manager Fig. 18 floppy_XP profile for the workload F6: Sequential exe-
- Enable driver cution of F1-F5 workloads

Meaning of the bits
| eant

The concurrent executions of F1 and F2 revealed that exactly the same modes and transitions were visited
irrespective of the order in which the workloads were started. We now present the obtained OPs (Fig. 19 and 20).
A detailed analysis and a quantitative comparison of these two workloads is presented in Section 6.3.

6.1.5 Operational Profiles of the f1oppy_Vista Driver

As for the cdrom.sys DD, we conducted a detailed profiling of the operational behavior also for the floppy disk DD,
under Windows Vista and XP. The trend observed by comparing the two CDROM device drivers was confirmed
by the comparison of the OPs of the floppy disk drivers installed under the two OSs. In general, under Vista more
distinct IRP types are issued than under Windows XP, while the benchmarks produced the same results.



16

CREATE | CLOSE | READ | WRTE | DEVICE_CONTROL ‘.M"Q of the bits

Fig. 19 f1loppy_XP profile for the workload F7: Concurrent execution of F1 and F2 (run I)

‘ CREATE | CLOSE | READ | WRTE | DEVICE_CONTROL ‘M”g of the bits

Fig. 20 floppy-XP profile for the workload F8: Concurrent execution of F1 and F2 (run II)

For the floppy_Vista DD, on behalf of the BurnInTest benchmark, the Vista’s I/O Manager issued addi-
tionally to the XP’s /O Manager the CLEANUP IRP (see figures 13 and 21). The structure of the OP graph is
similar in these two figures, only modes located on the first level were visited for both floppy disk DDs.

‘ CREATE | CLOSE | READ | WRITE | DEVICE_CONTROL | CLEANUP ‘ Meaning of the bits

Fig. 21 floppy-Vista profile for the workload F9: BurnInTest

By comparing the OPs obtained for Disable operations (workloads F4 and F10, figures 16 and 22), we observed
that two more distinct IRP types were issued for £ 1oppy_Vista than for £ loppy_XP, hinting at a more complex
mechanism for unloading DDs in Vista than in Windows XP, even though exactly the same number of IRPs were
issued under both OSs (see Table 2).

In contrast to the DD unload mechanism, by comparing the install routines of the two OSs (figures 17 and 23),
we observed that Vista is much faster than XP (0.03 seconds for Vista versus 17 seconds for XP). The number of
issued IRPs under XP was reduced in Vista to almost half, even though the distinct types they belong to contains
three more in Vista (QUERY _INFORMATION, CLEANUP and PNP).

6.1.6 Operational Profiles of the parallel_XP Driver

Figure 24 illustrates the behavior of the parallel_XP under the effect of the DC2 robustness tool. Similar to the
OP captured in Fig. 15 for the £ 1oppy_XP DD, DC2 only accessed modes located on the first level in the case of
the parallel_XP, too. For the parallel port, DC2 additionally called the QUERY _INFORMATION, CLEANUP
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CREATE | CLOSE | QUERY_INFORMATION | DEVICE_CONTROL | CLEANUP | PNP Meaning of the bits

CLOSE | CLEANUP | PNP Meaning of the bits
| Meani

Fig. 22 floppy-Vista profile for the workload F10: Device Fig. 23 floppy-Vista profile for the workload F11: Device
Manager - Disable driver Manager - Enable driver

and INTERNAL_DEVICE_CONTROL, but it did not call the READ IRP. Overall, the functionality associated with
the DEVICE_CONTROL operation was mostly visited, indicating that the setting and getting of device capabilities
represents an important activity from the perspective of the DC2 robustness test tool.

‘ CREATE | CLOSE | QUERY_INFORMATION | DEVICE_CONTROL | INTERNAL_DEVICE_CONTROL | CLEANUP ‘ . Meaning of the bits

Fig. 24 parallel_XP profile for the workload P1: DC2 (Device Path Exerciser)

6.1.7 Operational Profiles of the serial_XP Driver

Figure 25 graphically represents the OP recorded for the serial_XP driver under the BurnInTest workload. Only
two modes (0100001 and 1000001) were visited on the second level, most of the mode sojourns being made
to the modes associated with READ (0010000) and WRITE (0001000) operations. The most of execution time
was also spent in the WRITE mode.

6.2 A Prioritization Case Study: the £1oppy_XP Device Driver

Figure 26 depicts the OP of the f1oppy_XP driver, as exercised by the F2 workload (see Table 2). Each node
contains the mode name, MOW and MTW values (the latter in square brackets). Similarly, the TOW value of each
transition is attached to the respective directed edge. For simplicity, the occurrence counters of modes (MOC) and
transitions (TOC) are not shown in the graph.

In Fig. 26 the darker gray hemispheres represent higher MOW or MTW values, revealing the frequently exe-
cuted DD functionalities and the ones with longer execution times, respectively. The mode 000000 was predom-
inantly visited under the workload, indicating that the DD was idle almost 25% of the time (low driver load). Most
of the time (66%) was spent by the DD executing the functionality of the mode 0001 00. This result is intuitive,
as this mode is associated with the slow WRITE operation of the floppy disk drive.

Depending on the testing purpose, the balance factor A (see Eq. 4, MCW) can be tuned to guide test prioritiza-
tion. Varying A from O to 1 is equivalent to move emphasis from MTW to MOW. The table in Fig. 26 represents
the test priority ranking based on MCW of the modes when A is 0.25, 0.5 and 0.75 (rank 1 has the highest priority).
For instance, when A = 0.5 (equal balance between MOW and MTW weights is desired), the mode 000100 is
identified as a primary candidate for testing, followed by 001000 and 000010. In contrast, a A = 0.75 (when
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CREATE | CLOSE | READ | WRTE | DEVICE_CONTROL | CLEANUP | POWER ‘M"g of the bits

1.0000 |{0.0399

Fig. 25 serial_XP profile for the workload S1: BurnInTest

CREATE | CLOSE |READ |WRITE | DEVICE_CONTROL | POWER ‘ﬁ"g of the bits

Priority Rank| 1 2 3 4 5 6 7 8
A=0.25

A=0.5 000100 001000 | 000010 010000 | 100000 | 000110 | 010100 | 100100
A=0.75 000010 | 001000

Fig. 26 The OP for F2 and three prioritization cases; the figure is content-wise similar to Fig. 14, with the difference that here we visually
emphasized the execution hotspots by using darker shades and thicker lines

MOW dominates MTW) keeps the same mode on the first priority rank but swaps the order of the second and the
third modes. All other modes keep their ranking irrespective of the value of \.

Our approach also reveals the mode sojourn sequences, enabling the observation of the temporal evolution of
the DD. This representation exposes the functionalities in execution at any instant, enabling testers to reproduce
the IRP sequence that brings the DD in a mode of interest (i.e., to create effective test cases).

Fig. 27 illustrates the temporal evolution of F2 with different time windows. The upper part of Fig. 27 de-
picts driver evolution over the entire experiment duration (23 minutes and 40 seconds), where dots indicate mode
sojourns. This representation reveals distinct execution patterns. For instance, the modes 000110, 010100,
100100 are visited only seldomly and also follow three times the same sojourn pattern. For better insight, the
lower part of the figure shows the mode sojourn pattern in a selected 60us time frame. This representation exposes
the functionalities in execution at any instant enabling testers to reproduce the IRP sequence that brings the driver
in a mode of interest (i.e., to create effective test cases).

6.3 Comparing Driver Runtime Profiles

Continuous post-release service provision is problematic mainly due to the limited capacity of the in-house testing
to accurately reproduce the entire spectrum of possible workloads. To estimate the difference between the behavior
seen during in-house testing and field behavior, a comparison of the OPs can be performed. Ideally, a minimal
difference ensures post-release test adequacy (Weyuker 1998), though measuring it is not trivial without detailed
knowledge about the field workload and a set of metrics to express the deviation. Assuming that several OPs of the
DD are available, our runtime behavior quantifiers can be used to outline their relative deviation.
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Fig. 27 Mode sojourn pattern for F2. Note that the DD is executing only in a single mode at any instant even if the upper part of the figure
might suggest the opposite; this fact is more visible in the lower figure, where the sojourn pattern of a very short interval of time is presented,
with transitions among modes depicted as vertical dotted lines.

We present a comparative study of two workloads for the floppy disk driver, workloads F7 and F8 (see Table
2). For F7, we first started the F2 workload, followed after a few minutes by F1. For F8, we swapped the start order.
Both F1 and F2 are performance benchmarks that create, read, write and delete files on the floppy disk. Both F1
and F2 completed successfully when run concurrently despite the fact that F7 is 9 minutes and 9586 IRPs shorter
than F8.

We observed that F7 and F8 share the same OP structure (exactly the same modes and transitions were visited —
see figures 19 and 20). We note that considering only the structure of the OP graphs when comparing workloads is
not effective for runtime behavior profiling, as the level of provided detail is limited. For instance, it is impossible
to differentiate between a workload executing multiple READ operations and a workload accessing this operation
only once. This fact recommends using the OP quantifiers for a more accurate side-by-side comparison.

Fig. 28 shows a side-by-side representation of the MCW (A = 0.5) values for each mode, as generated by
the F7 and F8 workloads. Similarly, Fig. 29 depicts the TOW values side-by-side for each traversed transition.
The values above the bars represent the absolute difference between the MCW values of each mode, and between
TOW values for each transition. In both figures the small difference between the two OPs is apparent, despite of
an almost double amount of issued IRPs for F8 relative to F7. The largest deviations among MCW values are for
modes 000010 (0.024) and 001100 (0.015), an indication that F7 executed more READ + WRITE operations
and less DEVICE_CONTROL in contrast with F8.
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Fig. 28 MCW comparison for F7 and F§
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Even though the same modes and transitions were visited under both workloads, the distance between TOW
values show a wider distribution than the MCW values. Fig. 29 indicates the transition 001000>000000 (the bars
pointed by the arrow in Fig. 29) having the largest difference between TOW values of F7 and F8, with 0.280 bias
towards F8. This transition is traversed when the READ operation finishes and the DD returns to the idle mode.
A closer inspection reveals that F7 compensates this difference with higher TOW values of the other transitions
originating in 001000, i.e., transitions to the modes 001100, 001010 and 101000. As these modes are located
on a lower level than 001000, this reveals a certain tendency of F7 to start the concurrent execution of WRITE,
DEVICE_CONTROL or CREATE while still running READ operations. This behavior might disclose potential
problems related to concurrency handling or indicate places for optimizations.

Therefore, for comparing the effects of several workloads on a DD, the Euclidean distance between MCW
values of each mode or between TOW values of each transition can be evaluated. Moreover, if the distance is
smaller than a given threshold, then the compared workloads are considered equivalent. This constitutes valuable
feedback for ascertaining the adequacy of a testing campaign versus operational usage.

We use multidimensional scaling (MDS) plots to graphically display the distances between the workloads used
to exercise the £1oppy-_XP driver. MDS is a statistical technique used to visually express the degree of similarity
(or dissimilarity) among objects belonging to a population, each object being characterized by a set of attributes.
For each attribute a distance matrix is computed among the objects. To evaluate the similarity among the objects,
the distance matrices associated with each object attribute are aggregated in a weighted average. The MDS plot is
computed using this average. For the MDS plot depicted in Fig. 30 we have used the Euclidean distance among
the MCW values of the corresponding modes visited by each workload. Similarly, Fig. 31 is computed using the
Euclidean distance among the TOW values of the corresponding transitions for each workload. For instance, the
closeness between two points in Fig. 30 indicates that the associated workloads have visited the same modes,
generating similar MCW values for each of them.

Fig. 30 shows the MDS plot of the workloads F1 - F8, where the attributes of the objects are the MCW values
of every sojourned modes of the OPs (i.e., 15 modes, see Table 2), with a A = 0.5. If a workload did not visit a
certain mode in our experiments, the MCW value of that attribute is zero. The MDS plot in Fig. 30 reveals that the
DC?2 is most similar to F4 and F5, two workloads that are representative for the operations performed when the
floppy driver is loaded and unloaded from the OS. The comparison between the modes of the F7 and F8 presented
in Fig. 28 is visually confirmed by the MDS plot, as the points associated with the two workloads are very close to
each other.

To examine how the workloads compare for the traversed edges, in Fig. 31 we have considered as object
attributes the TOW values of every transition of the OPs. Here, F7 and F8 are located farther away from the rest of
the workloads. This effect is explained by the fact that F7 and F8 actually traverse all the 34 transitions that act as
attributes of the objects in this plot, while the rest of the workloads traverse only a small subset.

As mentioned before, for the MDS plots in figures 30 and 31 we assigned equal weights to modes and transi-
tions, respectively. To accurately ascertain how close a testing campaign is from the manner the DD is exercised
under realistic workloads, one should assign heavier weights to the modes and to the transitions carrying the most of
interest when the inter-object distances are computed. For instance, Fig. 32 shows the relative similarity among the
workloads when only the initial mode (000000) and the mode associated with DEVICE_CONTROL (000010)
are considered as object attributes, all the rest of the modes being ignored (all considered workloads visit these two
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modes). The MDS plot in Fig. 33 is computed when weight is assigned only to the transitions between the same
two modes.

While in Fig. 32 the spatial configuration remains the same as in Fig. 30 (despite the fact that F1, F2, F6 and
F7 cluster closer to each other), the positions change dramatically in Fig. 33 as compared to Fig. 31. The closeness
between F3 and F6 reveals that DC2 generates an execution pattern which is very similar to the one recorded for
F6. Therefore, using the DD state quantifiers introduced in this paper, multidimensional scaling analysis can be
successfully used on the data provided by our OPs to quantify the relative similarities among several workloads (for
instance, field workloads vs. in-house testing workloads). This reveals new possibilities for statistical measurement
of test coverage in terms of execution patterns.

Interestingly, our MDS plots revealed the tendency of DC2 to cluster closer to the workloads that are associated
with driver maintenance activities, F4 and F5. Given that DC2 is a tool for testing the robustness and security of
drivers, this tendency indicate that the Enable and Disable are exercising driver functionalities considered to be
potentially harmful by Microsoft’s developers. Moreover, it is reasonable that DC2 shows dissimilarity with the
other workloads, which are mostly associated with floppy disk driver’s customary operations.

6.4 Test Space Reduction — Tunability for Mode Coverage

To evaluate the test-space reduction enabled by our current profiling approach, we compared it with our previous
method (Sarbu et al 2006), considering both modes and transitions that need be covered by a testing campaign.
Table 3 lists the overall improvement introduced by the current approach.
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First-pass reduction: In figures 34 and 35, for each DD, we have selected the workload that exercised the
largest set of modes and transitions, respectively. For instance, for the £1oppy_-XP DD we selected the workload
F7, as it issues IRPs belonging to five distinct types out of the six types supported by the respective DD. This
indicates a theoretical state space size of 26 = 64 modes and 6-2% = 384 transitions. From this set, only 15 modes
(23.44%) and 34 transitions (8.85%) were visited (see Table 2, columns 5-7). In figures 34 and 35, we call this
early reduction step first-pass reduction.
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Fig. 34 Test space reduction (modes)
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Fig. 35 Test space reduction (transitions)

While the first-pass reduction solely divides the theoretical state space into two classes (visited and non-
visited),we additionally utilize the newly introduced execution quantifiers for modes and for transitions. They
permit a finer differentiation among the visited modes (and among the traversed transitions), offering subsequent
testing campaigns a richer insight about the modes and transitions that need consideration. In figures 34 and 35
this step is called second-pass reduction and it is based on the relative ranking among modes and transitions,
respectively. The process of obtaining such rankings is discussed in Section 6.2 and depicted by Fig. 26.

Second-pass reduction using priority rankings: To explain the mechanism of the second-pass reduction,
we introduce a threshold 7' specifying the desired test coverage level. Onwards, the word “coverage” refers to
the coverage of the modes and transitions in our model. In relation with the ranking of modes (or transitions,
respectively), T' gives the reduction of the second-pass. For example, if a test coverage of 95% is desired for the
visited modes under the workload F7, then they are selected from a list ranked by their MCW weights. Fig. 36
depicts the cumulative MCW value of the modes visited under F7. The modes are ordered in decreasing MCW
order, from left to right. Therefore, when the example coverage goal is 95% of the visited modes, the first five
leftmost modes (marked in the figure) are selected. This gives a test space reduction of 66.66% compared to the
first-pass presented in (Sarbu et al 2006). When a stricter 99% coverage of visited modes is desired, three more
modes are selected, still giving a 46.66% reduction relative to the first-pass.

Fig. 36 indicates that the most visits are concentrated to a very small number of modes. This trend also holds
for the transitions, indicating a high reduction in modes and transitions selected by the second-pass, also when
the desired coverage is high. Therefore, this mechanism of selecting the modes of interest based on the rankings
given by the execution quantifiers can be tuned using the threshold 7" to best fit coverage goals. Figures 34 and 35
depict the second-pass reduction of modes (and transitions, respectively) for 95% testing coverage. Table 3 lists
the reduction for each of the workloads considered in figures 34 and 35.
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Table 3 Test space reductions of the second-pass relative to the first-pass (T' = 95%)

[ Quantifier | C1[%] | E3[%] | F7[%] | P1(%] | SL[%] | C4[%] | F9[%] |

MCW 50.00 42.85 66.66 85.71 77.77 66.66 42.86
TOW 33.33 41.66 44.11 41.66 25.00 40.00 8.33

Hence, when testing resources are limited, we believe that the testing effort can efficiently be scoped for the
desired coverage level in order to first cover the modes and transitions associated with high likelihoods to be
reached in the field. Assuming that the test effort is equally distributed among the visited modes, this result indicates
that a significant reduction in the amount of testing is possible, without affecting its adequacy. While the test case
creation and prioritization are out of the scope of this paper, we believe that existing test methods can effortlessly
take advantage of the new insights offered by our profiling methodology.

We are currently investigating technical methods to automate test case generation based on the state space
identified by our profiling methods. The goal is to take a “real-world” workload and using its OPs to automatically
create a set of focused test cases for the considered DD.

7 Experimental Aspects
7.1 Validity Caveats

External threats to validity. We discuss here the issues that can potentially limit the generalization of the exper-
imental approach for a wider population of objects. The drivers chosen for our experiments are WDM-compliant
DDs and therefore do not represent a random selection, as they were chosen from the set of drivers installed on
the host machine. However, we believe that they are representative for the population of Windows XP DDs as
the WDM drivers constitute the main type of drivers available for this OS (Oney 2003). To reduce this threat we
selected as diverse DDs as possible (see Table 2). Also, the filter driver used to monitor the selected DD’s runtime
activity was kept general enough to be ported on virtually any WDM-compliant DD. The representativeness of the
workloads chosen to exercise the DDs does not impact the validity of the experiments presented in this paper as we
are not attempting to completely profile the field behavior of the DDs. We only propose a general methodology to
quantify its behavior. Instead, the workloads listed in Table 2 were selected as they trigger a wide set of specified
driver functionalities. However, for obtaining accurate OPs we recommend collecting the OP in the field (e.g.,
during a beta-testing campaign involving many users); when this is not possible, a wide selection of workloads for
the target driver has to be used to ensure accuracy of the OP quantifiers.

The OP-Builder, the software tool created for offline log parsing and analysis was found not to scale to ex-
tremely large log files. This limitation is due to an inefficient object management of the JVM which leads to
memory leaks. However, this has no impact on the results presented in this paper but we are aware that the re-
usage of our tools in larger DD profiling projects may require handling this issue, possible by running it in other
(better) JVMs or, ultimately, porting it to other programming language.

Internal threats to validity. The internal threats to validity of the presented experimental results represent con-
ditions influencing the dependent variables of the experiments. The main threats to internal validity are represented
in our experiments by confounding and instrumentation.
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Confounding occurs whenever an extraneous variable changes along with the independent variable, preventing
the inference of a causal relationship between the independent and dependent variables. To avoid this threat to the
validity of our experiments, we have carefully ensured that no other active process accessed the target DD in the
experiment’s time window. To detect and filter out the I/O calls not belonging to the considered workload—DD pair
before proceeding with OP analysis, we accordingly marked the messages intended for logging.

Instrumentation threat is produced by changes introduced to the studied system by the measurement instrument
itself. To reduce this internal threat, we have restarted each DD (the DD’s code was removed and then reinstalled
in the OS kernel) after each experimental run. Also, to keep our approach as non-intrusive as possible, only the
filter driver was inserted into the target OS kernel on the I/O requests’ path. With its code written with efficiency
in mind, the filter driver only captures, logs and then forwards the IRP traffic. Table 4 lists the average overheads
introduced by the filter driver for the drivers presented in this study. Each driver was exercised with the DC2 testing
tool from Microsoft. It was run 64 times with and 64 times without the filter driver installed in the driver stack. We
measured two temporal parameters of each run: (a) elapsed time and (b) CPU time. The elapsed time represents
the total duration of a run (i.e., calculated from the moment when the process starts until it finishes), while the CPU
time is the total time spent by the DC2 process in the CPU (i.e., executing computing-intensive operations).

The results presented in Table 4 show that our filter driver induces a minimal overhead in terms of elapsed time
averaging 2.7% increase, despite the fact that the CPU time increase is on average almost 22% higher than without
our filter driver installed. However, this apparently high impact is actually insignificant as our workload is mostly
I/O intensive, and the CPU time represents only 6% of the total elapsed time. The data presented in Table 4 also
show that the increase is similar across all the studied drivers, indicating the fact that the overhead introduced by
our filter driver is stable irrespective of the type of the driver that it is installed upon. Interestingly, for the DDs
profiled under Vista (cdrom_Vista and floppy_Vista) the influence of the filter driver was higher than for
the corresponding XP DDs.

Table 4 The overheads introduced by the filter driver in terms of elapsed time, process time and system call invocations for all the studied
drivers. The data represents averages over 128 runs of each driver, 64 with and 64 without the filter driver installed.

Elapsed Time CPU Time
Driver Issued TRPs w/o Filter | w/ Filter Increase w/o Filter | w/ Filter Increase
to [ms] t1[ms] | - %100 [%] |tz [ms] t3 [ms] % %100 [%]
cdrom_XP 16578 5418 5428 +0.18 276 340 +23.18
cdrom_Vista 4094 1600 1685 +5.31 120 140 +16.67
floppy-XP 10334 3010 3087 +2.55 165 208 +26.06
floppy_-Vista 10362 3070 3308 +7.75 234 289 +23.50
parallel _XP 12530 4896 4929 +0.67 205 253 +23.41
serial_XP 2112 1230 1238 +0.65 86 98 +13.95
ethernet_XP 12504 3516 3585 +1.96 186 236 +26.88
AVERAGE 9787.7 3248.5 3322.6 +2.72 181.7 2234 +21.95

7.2 The Effort Required to Profile and Analyze the Operational Activity of Device Drivers

Development Effort. The primary effort in obtaining the experimental data (presented in Section 6) was spent
in implementing the filter driver and the OP-Builder tool (see Fig. 4). Due to the constraints imposed by WDM
and DDK (Oney 2003), the filter driver was programmed using plain C. In contrast, OP-Builder was programmed
using Java.

The SLOC (source lines of code) metric gives an insight about the effort required to build the tools. SLOC
counts the number of physical lines of code, whereas the blank and comment lines are not counted (for a detailed
definition see Wheeler (2001)). Hence, the filter driver has a SLOC count of 378, while the OP-Builder has a
SLOC count of 1317. The required amount of work estimates to approximatively one person—month for the filter
driver and a little over four person—months for developing the OP-Builder tool (we have used the COCOMO metric
(Boehm 1981) to estimate the development cost).

Usage Effort. As the tools developed for monitoring and analyzing purposes are supposed to be widely portable
across the population of WDM-compliant DDs as possible, we expect that their re-usage effort is kept to a mini-
mum. No re-compilation of the tools is required for analyzing each DD, the configuration parameters are imple-



25

mented as editable text files. Hence, the usage effort is represented only by tool configuration. In the case of the
filter driver, the name of the target-DD has to be specified in a configuration file, while for the OP-Builder tool
one must list the supported IRP calls in a text file. Several students were asked to run profiling sessions for several
drivers, after they were instructed how to use the tools. Thanks to the high degree of automation and simplicity of
the configuration mechanisms, all the students were able to successfully produce OPs for the given set of DDs in a
few minutes of work.

Analysis Effort. The OP-Builder tool takes log files containing I/O traffic information as inputs and produces
OP graphs as outputs. The OP graphs are represented in DOT language, thus they can be viewed using Graphviz
(Simionato 2004) or other open-source graph visualization tools, helping further test decisions. The analysis pro-
cess is extremely fast, the OP-Builder tool can process log files at an average speed of 25000 IRPs per second.
The longest time required by the log-analysis stage in our experiments was around three seconds, namely for the
C1 workload (see Table 2).

7.3 Experimental Issues

Our experiments showed that some workloads issue large amounts of IRPs per time unit, an example being the DC2
workload. This puts high pressure on the monitoring mechanisms, introducing the risk that important behavioral
information may be lost. This happens due to the DebugView kernel debugger (see Fig. 4), which is unable to
track all IRPs when the arrival rate is extremely high. A discussion with the developers of the debugger revealed
that the IRPs are stored in a temporary buffer. When the buffer is full, new IRPs are dropped. We are currently
working on an improved version of the logging mechanism which circumvents this problem. Our filter driver has
been built with great care to ensure that no IRPs are lost, and we have verified offline all traces to ensure that no
invalid transitions are made (two bits in the mode are changed) and that all IRP pairs are matched. Note that the
data presented in Table 2 is complete with respect to the tracked IRPs.

Summarizing the experiences gained from our efforts, Table 5 represents a collection of suggestions intended
to further improve the testing of DDs by applying the OP introduced quantifiers.

Table 5 Suggestions for proposed metric usage toward improved DD test campaigns.

» Filter driver: build a filter driver (or reuse ours) to monitor the I/O traffic between I/O Manager and the DD of interest; keep it as
simple as possible, to avoid negative impact on system performance and reliability.

» Quantifiers: verify the log-files generated by the filter driver for lost IRPs to ensure the validity of the obtained data; using the
validated logs, compute the OP quantifiers (as presented in Section 4) for each mode and transition of the OP.

» Choosing \: ) is a coefficient designed to enable tuning the test priority toward often visited modes or toward modes where the
DD spent large time amounts; vary A according to test interest and use the obtained MCW values to prioritize the test campaign.

» Seldomly sojourned modes: the modes with small values of MOW or MTW should not be overlooked in testing, as their activities
are usually crucial for DD’s service provision, being associated with management of the DD.

» Find patterns: carefully inspect the execution pattern to identify I/O sequences relevant for DD testing (and build test cases
accordingly).

» Compare workloads: to express the relative similarity among several workloads, measure the Euclidean distance of the mode and
transition weights and define a equivalence threshold; for weights smaller than the threshold, the workloads are said to be equivalent.
» Capture field workloads: when possible, capture the DD’s OP in the field and compare it with the workload used in-house for
testing to improve the adequacy of the test process.

8 Summary, Discussion and Future Work

Based on a non-intrusive state capture framework, our efforts provide accurate metrics and guidance for profiling
and quantifying the runtime behavior for kernel-mode DDs. The presented experiments show the applicability
of our approach to capturing the runtime behavior of actual DDs belonging to diverse classes. Summarizing, the
empirical investigation performed in this paper shows the utility and the relevance of our state quantifiers for DD
testing, as they:

e reveal driver state sojourn patterns without access to source code of the DDs;
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¢ enable workload characterization and comparison for selecting the most appropriate workload for in-house
testing;

e assist test prioritization decision based on quantified DD runtime profiles;

e reduce the space size for testing activities based on “tunable” coverage scenarios.

In this respect, our metrics do provide a useful quantification of the runtime behavior of a DD. As our OP
quantifiers are statistical in nature, their relevance is directly proportional to the completeness of the workload
used for obtaining them. Therefore, the choice of the workload used when building the OP is important and the
monitoring phase should be long and diverse enough such that relevant behavior is captured. Such behavior is best
captured if the monitoring is performed in the field, for instance during beta-testing or post-release monitoring. We
have chosen commercial benchmarks to exercise our DDs as we believe they generate a mix of I/O requests with
enough variety to be representative for the way DDs are used in the field.

Besides DD profiling, our state-aware DD monitoring method is relevant for failure data collection as well. As
many OS failures are currently caused by faulty DDs, adding state information to the collected crash reports can
aid debugging by revealing the DD state history.

From the testing perspective, our approach primarily provides a methodology to gain insight into the behavior
of the driver-under-test at runtime. It is not intended as a tool for finding bugs. Its main purpose is to quantify
a DD’s state sojourn behavior in order to guide testing towards certain subroutines, but it does not reveal where
the fault lies. By prioritizing the test activities using the metrics proposed in this paper, testers can increase the
likelihood of finding sooner the “expensive” faults (i.e., the faults with higher probabilities to be activated after the
release of the DD).

To substantiate the value and the portability of the presented profiling methodology, various DDs belonging
to the latest Windows OS-family (XP SP2 and Vista SP1) were considered for case studies in conjunction with
a comprehensive set of performance and stability benchmarks. Moreover, we compared the versions of the same
drivers installed under the two OSs by using the same benchmarks and with same configuration parameters. Thus,
we observed that the profiled Vista drivers were more complex than their XP counterparts in terms of activated
functionality. We believe this added complexity is an artifact of the evolution of XP’s WDM specifications into
the newer KMDF (Kernel-Mode Driver Framework (Orwick and Smith 2007)). Given the empirical nature of the
presented experiments, we are aware that the validity of the results is currently limited to WDM- and KMDF-
compliant DDs. Therefore, we are studying the porting of our approach to other OSs.

Using the lessons learnt from our DD monitoring approach, we are also considering to develop a technique for
tuning an existing DD test tool to primarily cover the execution hotspots. The selection of test cases will consider
the information obtained from a prior DD profiling phase in order to reduce the overall testing overhead. This will
also help identifying modes which are insufficiently tested and assess the impact of this fact on DD robustness,
together with an investigation of the possibility to correlate known Windows failures to DD OPs.

We intend to perform a detailed analysis of the presented state-based driver model in order to answer the
question if increasing the detail richness of the collected data would help improve the accuracy of the model while
keeping the abstraction level of a black-box. Another current research direction is a quantitative study of driver-
relevant workloads that considers using the metrics introduced in this paper to characterize workloads from a DD’s
perspective. This information would help guiding the choice of an adequate workload for a given testing campaign.
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