
Profiling the Operational Behavior of OS Device Drivers∗

Constantin Sârbu†, Andréas Johansson‡, Neeraj Suri†, Nachiappan Nagappan§

Technische Universität Darmstadt† Volvo Technology Corporation‡ Microsoft Research§

Darmstadt, Germany Göteborg, Sweden Redmond, USA
{cs,suri}@cs.tu-darmstadt.de andreas.olof.johansson@volvo.com nachin@microsoft.com

Abstract

As the complexity of modern Operating Systems (OS) in-
creases, testing key OS components such as device drivers
(DD) becomes increasingly complex given the multitude of
possible DD interactions. If representative operational ac-
tivity profiles of DDs within an OS could be obtained, these
could significantly improve the understanding of the actual
operational DD state space towards guiding the test efforts.

Focusing on characterizing DD operational activities,
this paper proposes a quantitative technique for profiling
the runtime behavior of DDs using a set of occurrence and
temporal metrics obtained via I/O traffic characterization.
Such profiles are used to improve test adequacy against
real-world workloads by enabling similarity quantification
across them. The profiles also reveal execution hotspots in
terms of DD functionalities activated in the field, thus al-
lowing for dedicated test campaigns. A case study on actual
Windows drivers substantiates our proposed approach.

1 Introduction
In order to support a wide variety of hardware peripher-

als and new applications, commercial off-the-shelf (COTS)
OSs are biased in their support for adaptability rather than
service reliability. The OS interface to the hardware devices
is represented by the device drivers (DD).

Recent research [1,2,5,6,18,21] has shown that unfortu-
nately DDs constitute a dominant cause of OS failures. As
DDs are often released without time-consuming exhaustive
testing, they usually exhibit a higher defect density com-
pared to the OS kernel [4]. Moreover, DDs are typically de-
livered as binaries constraining potential testing campaigns
to black-box strategies.

On this basis an important consideration is the DD test-
ing under “field” conditions. While multiple sophisticated
static testing techniques for DDs exist [3,10,14], the choice
of a relevant workload is key to exercise a DD in its actual

∗This research has been supported, in part, by Microsoft Research, NoE
ReSIST and DFG TUD GK-MM.

operational domain. Although the operational profile of a
DD is difficult to capture (and later to reproduce for testing),
once obtained it can bring significant advantages over static
testing techniques by identifying the triggered functional-
ities, their sequence and occurrence patterns. Subsequent
test campaigns can primarily target code more likely to be
executed in the field, therefore decreasing the time required
to find the defects with high operational impact. Conse-
quently, developers and system integrators are required to
envision workloads that realistically mimic the manner in
which the DD (or the whole system) will be used [22], i.e.,
the DD’s operational profile. The more accurate the profile,
the more effective a test campaign can be developed to test
the DD state space.

Focusing on generating operational profiles to guide
OS/DD testing, our approach is based on monitoring the
interface between the OS kernel and the DDs. At this inter-
face the flow of I/O requests is captured and used to build a
state model of the DD. The state of a DD is represented by
the set of DD functionalities in execution at a specified time
instant. The transitions between states are triggered by I/O
requests. The resulting behavioral model is used to discover
execution hotspots in terms of most frequently used states
of the system and to compare workloads.

Paper Contributions and Organization. This paper
proposes and subsequently develops:

a) a profiling technique for DDs via I/O traffic charac-
terization;

b) a set of occurrence- and time-based quantifiers for
accurate DD state profiling;

c) a ranked set of states and transitions to assist execu-
tion hotspot discovery;

d) a state-based methodology for accurate workload ac-
tivity characterization and comparison;

Additionally, being non-intrusive and based on black-
box principles, our framework is portable and easy to im-
plement in DD profiling scenarios where no access to the
source code of either OS kernel, workload applications or
target DDs is available.

1

The paper is organized as follows: Section 2 presents the
related work, Section 3 discusses the system and DD mod-
els and describes a representation of a driver’s operational
profile. The quantifiers for characterizing DD runtime be-
havior are developed in Section 4. The experimental evalu-
ation of our approach is presented in Section 5 along with a
discussion on the findings in Section 6.

2 Related Work
SWIFI (Software-Implemented Fault Injection) is a tech-

nique widely used to assert the robustness of black-box DDs
[5, 7, 10]. In industry, the main OS developers periodically
release improved specifications and tools to minimize the
risk of launching faulty DDs [3] and make efforts towards
determining the “requisite” amount of testing [14, 15]. Un-
fortunately, in spite of considerable advancements in DD
testing [1, 2, 4–6, 21], DDs are still a prominent cause of
system failures.

Musa’s work [12] on reliability engineering suggests that
overall testing economy can be improved by prioritizing
testing activities on the functionalities with higher impact
on the component’s runtime operation. Along the same
lines, Weyuker [23, 24] recommends focusing on testing
those functionalities with high occurrence probabilities. Re-
sults from the area of software defect localization show that
faults have a tendency to cluster in certain parts of the OS
code [4, 11]. Thus, a strategy aimed at clustering the code
into functionality-related parts and then testing based on
their operational occurrence is desired, especially when the
resources allocated for testing are limited. Weyuker [22]
underlines the necessity to test COTS components in their
new operational environments even though they were tested
by their producers or third-party testers.

Rothermel et al. [17] empirically examined several veri-
fication techniques showing that prioritization can substan-
tially improve fault detection. Specifically, they believe
that “in a testing situation in which the testing time is un-
certain (...) such prioritization can increase the likelihood
that, whenever the testing process is terminated, testing re-
sources will have been spent more cost effectively in relation
to potential fault detection than they might otherwise have
been”. Accordingly, this paper helps focusing testing onto
the states of the driver-under-test based on their occurrence
and temporal likelihoods to be reached in the field.

McMaster and Memon [9] introduced a statistical
method for test effort reduction based on call stacks
recorded at runtime. While their approach captures the dy-
namic program behavior, it is specific to single-threaded,
user-space programs not being directly applicable to DDs
(as they run in an arbitrary thread context). Leon and
Podgurski [8] evaluated diverse techniques for test-case fil-
tering using cluster analysis on large populations of pro-
gram profiles, highlighting them as a useful basis for test

effort reduction.

3 Driver State Definition via I/O Traffic
This section introduces our system model and the neces-

sary technical background used to explain our state model
for DDs. Figure 1 represents a typical computer system
equipped with a COTS OS supporting a set of applications
(the workload) that use services provided by the OS.

...Appl. 1

Driver 1

System Services

Other OS

Components

I/O

Manager

Hardware layer

USER

KERNEL

HW

...

Driver 2

Driver 3 Driver d

Appl. aAppl. 2
System

Workload

SPACE

SPACE

SPACE

OS

Figure 1. The considered OS system model.

This paper focuses on the communication interface be-
tween I/O Manager and drivers located within the OS ker-
nel space. The I/O Manager is a collection of OS structures
responsible for mediating the flow of I/O requests between
the applications and the responsible DDs. A driver is an in-
dependent OS component handling the communication with
one or more equivalent peripherals.

While our approach is applicable for generic DDs and
OSs, we utilize Windows XP SP2 DDs as representative
case studies for the proposed concepts. In Windows, DDs
act on I/O requests initiated by the I/O Manager directly or
on behalf of user applications. In this paper, the commu-
nication interface between the I/O Manager and the DDs
is used to characterize the activity of a DD. At this level
Windows uses the shared memory communication scheme
specified by the Windows Driver Model (WDM) [15].

WDM-compliant DDs follow mandated rules governing
design, initialization, power and memory management etc.
Each DD must implement a minimal standard interface. Of
major interest for our approach is that WDM requires the
DD code to be internally organized in dispatch routines,
each being responsible for handling a specific I/O Request
Packet (IRP) type. The current WDM specification defines
28 IRP types, each of them associated with a specific oper-
ation (e.g., CREATE, READ, WRITE, CLOSE, etc.).

3.1 Driver Modes and Transitions

The state of a DD is characterized by the handled IRP
requests. That is, a DD is idle from the initialization in-
stant until the first IRP request is received. The DD is in the
“processing IRPa” state from the instant when IRPa is re-
ceived and until the DD announces its completion. We call
this relaxed state “driver mode”. In each mode, the DD ex-
ecutes a subroutine specific to the type of the received IRP,

2

as specified by the WDM [15].
Some IRPs are processed concurrently by the DD, i.e.,

processing IRPb can start before IRPa is completed (as-
suming that IRPa was initiated before IRPb). To the cur-
rent extent of our experimental work we have never encoun-
tered situations when more than one IRPs of the same type
are processed at once. Hence, in [19] we defined the mode
of a driver D as follows:

Def. 1 (Driver Mode). The mode of a driver D is defined
by a tuple of predicates, each assigned to one of the n dis-
tinct IRP types supported by the driver:
MD : < PIRP1 PIRP2 .. PIRPi

.. PIRPn
>, where

PIRPi
=

 1, if D is currently performing the functio-
nality triggered by the receival of IRPi

0, otherwise

As the driver mode is a binary tuple of size n, the total
state space size (the total number of modes) for the driver
D in our model is 2n.

Def. 2 (Operational Profile). The operational profile (OP)
of a DD with respect to a workload is the set of modes vis-
ited in the time interval spanning the workload execution.

Our previous experimental investigations showed that
the size of the OP is a small fraction of the total set of modes
(NOP � 2n), irrespective of the workload.

As the I/O Manager serializes both the sending and re-
ceival of IRPs, only one bit changes at a time. Thus, a DD
can only switch to modes whose binary tuples are within
Hamming distance of 1 from the current mode. Conse-
quently, there are n transitions possible from each mode,
implying the total number of transitions in our model to
be n · 2n. As the number of transitions traversed for a
workload represents only a subset of the total transitions
(TOP � n · 2n) [19], the actual state space that needs con-
sideration is significantly reduced. If needed, such a DD’s
OP can also be used to proactively discover new modes by
forcing the leaf-modes to traverse non-transited edges (e.g.,
for robustness testing).

3.2 Characterizing a Driver’s Behavior

In our prior work we experimentally identified the OP
of the serial port DD provided with Windows XP SP2 [19].
The results revealed that the reached modes and transitions
and the obtained OP are consistent across different runs.
Moreover, the OP of the studied DD has a very small foot-
print (only 1.6% of the modes were visited and 0.3% of the
transitions were traversed). Though small and stable, the
applicability of the OP for operational profiling purposes
is limited as it divides the modes and transitions into only
two subsets (i.e., gives only binary information: visited and
non-visited). Unfortunately, this is insufficient for a proper

characterization of the runtime activity as the ability to dis-
tinguish among the visited modes and transitions is missing.

In the next section we enhance the captured operational
profiles by introducing additional metrics for an accurate
characterization of the driver’s runtime behavior. We start
from the hypothesis that the higher detail level of the OP
quantification permits discovery and assessment of the ex-
isting execution hotspots in driver’s code.

4 Quantifiers for Runtime Behavior
Accurate methods for characterizing the operational be-

havior of a software (SW) component are desirable for es-
tablishing effective testing methods. Hence, this section
presents a set of quantifiers for the operational phase of a
DD that are developed for differentiating among the modes
and the transitions of the OP. Using them, one can observe
and analyze the relative frequencies of the visited modes
and transitions, revealing execution hotspots.

The metrics presented in this section are useful as they
provide accurate workload characterization from the DD’s
perspective. For instance, capturing the driver’s activ-
ity in the field can be used for workload assessments,
usage/failure data collection or post-mortem debugging.
Moreover, different workloads can be compared to statisti-
cally reveal the DD modes with higher probability of being
reached in the field.

The developed metrics have a statistical meaning in the
context of the workload for which they were assessed.
Within this perspective, the OP can be used to detect a fail-
ure of a DD by observing a population of runs of the se-
lected workload and finding the OP which deviates from
the rest of the runs in terms of one (or multiple) quantifiers.
Section 5.3 illustrates the workload comparison procedure
enabled by our approach.

For testing purposes, our measures can be used to com-
pare from a quantitative viewpoint the effects of single test
cases or test suites on the driver-under-test. If the intent of
testing is higher DD code coverage at lower costs, one can
select the test cases (suites) having the highest coverage in
terms of reached driver modes. Hence, while still reaching
the same DD functionalities, the size of test case pool can be
reduced to a least necessary minimum. Section 5.4 provides
an illustration of the test space reduction of our method.

4.1 Occurrence-based Quantifiers

Two important characteristics of the runtime behavior of
a DD are the occurrence weights for both modes and tran-
sitions. They reflect the DD’s preference to visit the mode
(or transition) to which these quantifiers are bound. To ex-
press them, we first define as prerequisite notions the tran-
sition and mode occurrence counts for a given workload w.
We define a driver’s OP as a digraph with the set of modes
M = {MD

1 ,M
D
2 , . . .} as vertices and the set of transitions

T = {t1, t2, . . .} as edges. Each transition from T maps to

3

ordered pairs of vertices (MD
i ,M

D
j), withMD

i ,M
D
j ∈M ,

i 6= j and the modes MD
i and MD

j are within a Hamming
distance of 1 from each other.

Def. 3 (Transition Occurrence Count: TOCti,j
). The oc-

currence count for transition ti,j ∈ T , originating in mode
MD

i and terminating in mode MD
j (MD

i ,M
D
j ∈ M and

i 6= j) is the total number of recorded traversals from mode
MD

i to mode MD
j .

Def. 4 (Mode Occurrence Count: MOCj). The occur-
rence count of mode MD

j ∈M is the number of times mode
MD

j was visited during the execution of workload w.

MOCj =
NOP∑
i=1

TOCti,j
(1)

Note that both the occurrence counters expressed above
are defined for the duration of the workload w. Counter
variables associated with each mode and transition can be
used to store their values. The TOC and MOC counters are
utilized to develop subsequent quantifiers accurately spec-
ifying the operational behavior of DDs, namely the mode
occurrence weight and the transition occurrence weight.

Def. 5 (Mode Occurrence Weight: MOWi). The occur-
rence weight of mode MD

i ∈M represents a quantification
of a driver’s preference to visit the mode MD

i relatively to
all other sojourned modes of the OP (NOP), for the work-
load w.

MOWi =
MOCi

NOP∑
i=1

MOCi

(2)

This metric is similar to the metric used for development
of operational profiles for building reliable SW components
proposed by Musa [12]. In contrast to [12], our quantifier
is specific to profiling the runtime behavior of kernel-mode
DDs and its significance is coupled with the specific work-
load for which it was computed. If the chosen workload
accurately mimics the manner in which the DD is used in
the field, the obtained mode quantifiers accurately express
the field conditions.

Using this metric in profiling the runtime behavior of a
DD helps building test priority lists. For instance, the modes
with higher MOW value represent primary candidates for
early testing, as higher values of this quantifier indicate the
functionalities of the DD which are most frequently exe-
cuted. For the idle mode (i.e., when the DD is not executing
any IRP-related activity) this measure indicates the percent-
age of mode sojourns that put the DD in an idle state, i.e.,
waiting for IRP requests.

Similarly to MOW but referring instead to the transitions
between modes, we define the transition occurrence weight

for each traversed transition belonging to the DD’s OP for a
given workload.

Def. 6 (Transition Occurrence Weight: TOWti,j
). The

occurrence weight of transition ti,j ∈ T , originating in
mode MD

i and terminating in mode MD
j (MD

i ,M
D
j ∈ M

and i 6= j) is the quantification of driver’s preference to
traverse the transition ti,j when leaving the mode MD

i .

TOWti,j =
TOCti,j

MOCi
(3)

Thus, the occurrence weight associated with transition
ti,j indicates the probability that this transition is actu-
ally followed when leaving the mode MD

i . Note that the
probability of following a certain transition depends on the
current mode. This information is relevant for estimating
which mode is to be visited next, given that there is a one-
hop transition in the OP between the current mode and the
one whose reachability is to be calculated.

2

1000 0100 0001 0010

1110 1101 1011 0111

1100 1010
1001

0011 0110 0101
50

8

15 25

Figure 2. An example for calculating
TOWt1001,1011 .

For instance, let us consider the situation depicted in Fig-
ure 2, where only the modes and the outgoing transitions of
interest are shown, together with their TOC values as edge
labels. The mode 1001 is current and the MOC1001 = 50.
TOCt1001,1011 = 8. Therefore, TOWt1001,1011 = 8

50 =
0.16. This indicates that the transition between 1001 and
1011 has been traversed 16% of the times the mode 1001
was left.

4.2 A Time-based Quantifier for Modes

To increase the accuracy of DD profiling not only the
spatial dimension should be considered but also the tem-
poral dimension. We consider time not just an artifact of
the device’s inherent slowness but a very important aspect
of the computation, as longer execution time reveals more
defects (shown by many defect estimators in the field, e.g.,
the Musa-Okumoto model [13]). Therefore, we introduce a
quantifier that accounts for the relative amount of time spent
by the DD executing in each mode. As we consider the tran-
sitions between modes as instantaneous events, defining a
corresponding temporal measure for edges is superfluous.

4

An indication of the overall time spent by the DD in each
mode can reveal valuable information about the latencies
of various IRP-related activities of a DD, being helpful for
guiding a testing campaign. If the DD spends a relatively
large amount of time in a certain mode, that mode can be
considered important for a subsequent testing campaign al-
though the respective mode has a very low occurrence count
(and, implicitly MOW). For instance, the DDs managing
disk or tape drives spend large amounts of time in modes
associated with READ or WRITE operations, irrespective of
their sojourn rate. To capture this behavior we introduce a
new OP quantifier, the mode temporal weight, to be used in
conjunction with the mode occurrence weight for a multi-
variate characterization of driver modes.

Def. 7 (Mode Temporal Weight: MTWi). The tempo-
ral weight of the mode MD

i ∈ M is the ratio between the
amount of time spent by the driver in mode MD

i and the
total duration of the workload w.

4.3 A Compound Quantifier for Modes
An accurate characterization of the runtime behavior of

a DD needs to consider both the occurrence and time-based
metrics, on a stand-alone basis and in combination. In order
to facilitate combinations of the two metrics, we propose a
compound measure that captures these dimensions of the
profiled DD, namely the mode compound weight.

Def. 8 (Mode Compound Weight: MCWi). Let λ be a
real number, 0 ≤ λ ≤ 1. The compound weight of a mode
MD

i ∈M is given by the expression:

MCWi(λ) = λMOWi + (1− λ)MTWi (4)

By varying λ, this measure can be biased towards either
occurrence or temporal dimension, to best accommodate the
needs of the tester. For instance, to emphasize the temporal
aspect λ should take values closer to 0, while the occurrence
dimension is highlighted by values of λ that approach 1.

5 Experimental Evaluation
To validate the profiling approach and the associated

metrics, we conducted a series of experiments that inves-
tigate the following research questions:

Q1: Can the metrics be used for comparing the effects
of different workloads on DDs?

Q2: How can the OP quantifiers be applied in practice
for test space reduction?

To answer these questions, the following subsections
show how the rankings based on execution quantifiers are
obtained (Section 5.2), how workloads are compared among
each other (Sections 5.3) and how are our OPs usable for
test space reduction (Section 5.4).

To capture the IRP flow, we have built a lightweight “fil-
ter driver” interposed between the I/O Manager and a DD

of our choice (Figure 3). This mechanism is widely used by
many OSs for modifying the functionality of existing DDs
or for debugging purposes. Our filter driver acts as a wrap-
per for the monitored DD, only logging the incoming (from
I/O Manager to DD) and outgoing (from DD to I/O Man-
ager) IRPs. The IRP communication flow is then forwarded
unmodified to the original recipient. As for each IRP only a
call to a kernel function is needed for logging it, we expect
the computation overhead of our filter driver to be marginal.

Interposing our filter driver between the I/O Manager
and a selected DD is done using the standard driver instal-
lation mechanisms offered by Windows. Hence, it is com-
pletely non-intrusive and does not require knowledge about
the wrapped DD. The insertion and removal of the filter
driver require only disabling and re-enabling the target DD
but no machine reboot. Moreover, due to its conformance to
WDM, we used (sans modifications) the same filter driver to
monitor all DDs whose runtime behavior were investigated
in this paper.

...

IRP Requests

Workload
USER

KERNEL

HW

SPACE

IRP

Logs

HW Device

Online: Offline:

Kernel Debugger

F
il

te
r

<-- Original IRP Flow -->

I/O

Manager

WDM

Driver

Quantified OP

SPACE

SPACE

OS
OP-Builder

IRP

Logs

Figure 3. The experimental setup; the online
(monitoring) and offline (analyzing) phases.

To compute the OPs for different DDs, we have built
a tool (OP-Builder) that processes the logs and outputs
the DD’s OP, together with all runtime quantifiers. The
figures 4–6 are obtained using directly the outputs of
the OP-Builder tool. For our experiments we utilized
a Pentium4@2.66Ghz machine with 512Mb of DDRAM,
equipped with Windows XP Professional 5.01.2600 SP2.
To build the filter driver we have used Windows Server 2003
DDK. For logging the kernel messages sent by the filter
driver we have used Sysinternal’s DebugView tool.

5.1 Studied Drivers and Workloads

In this paper we present a systematic evaluation
of five diverse types of WDM-compliant DDs: a
serial port driver (serial.sys), a CDROM driver
(cdrom.sys), an ethernet card driver (sysnic.sys), a
floppy driver (flpydisk.sys) and a parallel port driver
(parport.sys). All DDs are provided (and digitally
signed) by Microsoft, except the sysnic.sys, which is

5

Table 1. The workloads utilized to exercise the DDs and the overall experimental outcomes.
Generated IRPs VisitedDriver Short Benchmark

Issued Types Modes Edges
Benchmark Description (Duration)

cdrom.sys C1 BurnInTest-Audio 1336 3 out of 9 4 6 Audio CD test mode (7’40”)
C2 BurnInTest-Data 71012 2 out of 9 3 4 Data CD read and verify mode (1’3”)
E1 BurnInTest 2480 4 out of 28 5 8 TCP/UDP full duplex (5’3”)

sysnic.sys E2 DevMgr-Disable 6 1 out of 28 2 2 Disable ethernet from Device Manager(1”)
E3 DevMgr-Enable 114 6 out of 28 7 12 Enable ethernet from Device Manager (2”)
F1 BurnInTest 2946 5 out of 6 6 10 Various pattern read and write (5’3”)
F2 Sandra Benchmark 19598 5 out of 6 9 16 Performance benchmark filesize: 512b - 256kb (23’40”)
F3 DC2 50396 4 out of 6 5 8 MS Device Path Exerciser (32”)

flpydisk.sys F4 DevMgr-Disable 10 1 out of 6 2 2 Disable drive from Device Manager (0.01”)
F5 DevMgr-Enable 400 3 out of 6 4 6 Enable drive from Device Manager (17”)
F6 F1 – F5, sequentially 63396 5 out of 6 6 10 Sequential execution of F1–F5 (31’)
F7 F1 ‖ F2 (run I) 12298 5 out of 6 15 34 Concurrent execution of F1+F2 (18’40”)
F8 F1 ‖ F2 (run II) 21884 5 out of 6 15 34 Concurrent execution of F1+F2 (27’50”)

parport.sys P1 DC2 48530 6 out of 6 7 12 MS Device Path Exerciser (5.7”)
serial.sys S1 BurnInTest 11568 6 out of 6 9 16 COM1 loop-back test (5’)

provided by the SiS Corporation. To properly exercise the
chosen DDs, we selected a set of benchmark applications
generating comprehensive, deterministic workloads for the
targeted DDs. For each experiment we analyzed the col-
lected logs, we constructed the OP graphs as in Figure 4
and we calculated the OP quantifiers defined in Section 4.

Besides commercial benchmarks that test the perfor-
mance and reliability of the peripherals under various con-
ditions, it is worth mentioning that we have also addition-
ally used the Device Path Exerciser (DC2) tool. DC2 is a
robustness testing tool that evaluates if a DD submitted for
certification with Windows is reliable enough for mass dis-
tribution. It sends the targeted DD a variety of valid and in-
valid (not supported, malformed etc.) I/O requests to reveal
implementation vulnerabilities. DC2 requests are sent in
synchronous and asynchronous modes and in large amounts
over short time intervals to disclose timing errors. In our ex-
periments we exercised the parallel port and the floppy disk
driver with a comprehensive set of the DC2 tests.

The results of experimenting with the chosen DDs are
summarized in Table 1. Due to space restrictions we limit
the scope to a detailed study only for the flpydisk.sys
driver. In the full spectrum of our experiments all the other
mentioned DDs also showed the effectiveness of our OP
profiling method [20].

5.2 Case Study: the flpydisk.sys Driver

Figure 4 depicts the OP of the flpydisk.sys driver,
as exercised by the F2 workload (see Table 1). Each node
contains the mode name, MOW and MTW values (the lat-
ter in square brackets). Similarly, the TOW value of each
transition is attached to the respective directed edge. For
simplicity, the occurrence counters of modes (MOC) and
transitions (TOC) are not shown in the graph.

In Figure 4 the darker gray hemispheres represent higher
MOW or MTW values, revealing the DD functionalities fre-
quently executed and the ones with longer execution times,
respectively. The mode 000000was predominantly visited

CR E ATE | CL OSE | R E AD | WR ITE | DE V ICE _CONTR OL | POWER

000000
.4956

[.2424]

000010
.1163

[.0007]

.2347

000100
.3349

[.6599]

.6669

001000
.0382

[.0970]

.0770

010000
.0053

[.0000]

.0107

100000
.0053

[.0000]

.01071 .9866

000110
.0020

[.0000]

.0060

010100
.0012

[.0000]

.0037

100100
.0012

[.0000]

.0037

1 1 1

1 1 1

000010
.1163

[.3007]

MOW

Mode name

.111

TOW

MTW

Meaning of the bits

Priority Rank

000100

1 2 3 4 5 6 7 8

000110
001000 000010

010000 100000 010100 100100

000010 001000

λ = 0.25

λ = 0.5

λ = 0.75

Figure 4. The OP for F2 and three prioritiza-
tion cases. Darker shades and thicker lines
indicate higher weights (execution hotspots).

under the workload, indicating that the DD was idle almost
25% of the time (low driver load). Most of the time (66%)
was spent by the DD executing the functionality of the mode
000100. This result is intuitive, as this mode is associated
with the slow WRITE operation of the floppy disk drive.

Depending on the testing purpose, the balance factor λ
(see Eq. 4, MCW) can be tuned to guide test prioritization.
Varying λ from 0 to 1 is equivalent to move emphasis from
MTW to MOW. The table in Figure 4 represents the test
priority ranking based on MCW of the modes when λ is
0.25, 0.5 and 0.75 (rank 1 has the highest priority). For
instance, when λ = 0.5 (equal balance between MOW and
MTW weights is desired), the mode 000100 is identified
as a primary candidate for testing, followed by 001000 and
000010. In contrast, a λ = 0.75 (when MOW dominates
MTW) keeps the same mode on the first priority rank but
swaps the order of the second and the third modes. All other

6

modes keep their ranking irrespective of the value of λ.
Our approach also reveals the mode sojourn sequences,

enabling the observation of the temporal evolution of the
DD. This representation exposes the functionalities in exe-
cution at any instant enabling testers to reproduce the IRP
sequence that brings the DD in a mode of interest (i.e., to
create effective test cases).

5.3 Comparing Driver Runtime Behaviors
Continuous post-release service provision is problem-

atic mainly due to the limited capacity of the in-house test-
ing to accurately reproduce the entire spectrum of possi-
ble workloads. To estimate the difference between the be-
havior seen during in-house testing and field behavior, a
comparison of the operational profiles can be performed.
Ideally, a minimal difference ensures post-release test ade-
quacy [22], though measuring it is non-trivial. It requires
detailed knowledge about the field workload and a set of
metrics to express the deviation. Assuming that several OPs
of the DD are available, our runtime behavior quantifiers
can be used to outline their relative deviation.

We present a comparative study of two workloads for the
floppy disk driver, workloads F7 and F8 (see Table 1). For
F7, we first started the F2 workload, followed after few min-
utes by the start of F1. For F8, we swapped the start order.
Both F1 and F2 are performance benchmarks that create,
read, write and delete files on the floppy disk. Both F1 and
F2 complete successfully when run concurrently despite the
fact that F7 is 9 minutes and 9586 IRPs shorter than F8.

We observed that F7 and F8 share the same OP struc-
ture (exactly the same modes and transitions were visited –
see [20]). We note that considering only the structure of the
OP graphs when comparing workloads is not effective for
runtime behavior profiling, as the level of provided detail
is limited. For instance, it is impossible to differentiate be-
tween a workload executing multiple READ operations and
a workload accessing this operation only once. This fact
recommends using the OP quantifiers for a more accurate
comparison.

Figure 5 shows a side-by-side representation of the
MCW (λ = 0.5) values for each mode, as generated by the
F7 and F8 workloads. Similarly, Figure 6 depicts the TOW
values side-by-side for each traversed transition. The values
above the bars represent the absolute difference between the
MCW values of each mode, and between TOW values for
each transition. In both figures the small difference between
the two OPs is apparent, despite of an almost double amount
of issued IRPs for F8 relative to F7. The largest devia-
tions among MCW values are for modes 000010 (0.024)
and 001100 (0.015), an indication that F7 executed more
READ + WRITE operations and less DEVICE CONTROL
in contrast with F8.

Even though the same modes and transitions were vis-
ited under both workloads, the distance between TOW val-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

000100 000000 001000 000010 001100 000110 001010

0.003

0.002

0.004
0.024 0.015

0.003 0.001

M
o

d
e

 C
o

m
p

o
u

n
d

 W
e

ig
h

t
[M

C
W

]

Visited Modes (the modes with MCW(.5) < 0.02 not depicted)

MCW(.5) under workload F7
MCW(.5) under workload F8

CREATE | CLOSE | READ | WRITE | DEVICE_CONTROL | POWER

 - IRPs issued F7: 12298
 - IRPs issued F8: 21884
 - Duration F7: 18’40”
 - Duration F8: 27’50”A

tt
ri

b
u

te
s:

Figure 5. MCW comparison for F7 and F8.

0

 0.2

 0.4

 0.6

 0.8

1

000100>000000

000010>000000

000000>000100

000110>000100

001100>000100

001010>001000

001000>000000

001100>001000

001000>001100

000110>000010

001000>001010

000000>000010

000010>000110

000000>001000

001000>101000

000100>000110

000010>001010

000100>001100

001000>011000

000010>010010

000100>010100

000010>100010

000000>100000

000100>100100

000000>010000

0
.0

2
2

0
.0

8
2

0
.1

4
0

0
.0

1
5

0
.0

3
8

0
.0

2
4

0
.2

8
0

0
.0

3
8

0
.1

7
9

0
.0

1
5

0
.0

7
5

0
.1

0
6

0
.0

5
2

0
.0

3
3

0
.0

1
8

0
.0

1
0

0
.0

1
8

0
.0

0
8

0
.0

0
8

0
.0

0
4

0
.0

0
3

0
.0

0
8

0
.0

0
0

0
.0

0
1

0
.0

0
0

Tr
a

n
si

ti
o

n
 O

cc
u

re
n

ce
 W

e
ig

h
t

[T
O

W
]

Traversed Transitions [from > to] (the transitions with TOW=1 not depicted)

TOW under workload F7
TOW under workload F8

CREATE | CLOSE | READ | WRITE | DEVICE_CONTROL | POWER

- Duration F8: 27’50”A
tt

ri
b

s.
: - IRPs issued F7: 12298

- IRPs issued F8: 21884
- Duration F7: 18’40”

Figure 6. TOW comparison for F7 and F8.

ues show a wider distribution than the MCW values. Fig-
ure 6 indicates the transition 001000>000000 (the bars
pointed by the arrow in Figure 6) having the largest differ-
ence between TOW values of F7 and F8, with 0.280 bias to-
wards F8. This transition is traversed when the READ oper-
ation finishes. A closer inspection reveals that F7 compen-
sates this difference with higher TOW values of the other
transitions originating in 001000, i.e., transitions to the
modes 001100, 001010 and 101000. As these modes
are located on a lower level than 001000, this reveals a
certain tendency of F7 to start the concurrent execution of
WRITE, DEVICE CONTROL or CREATE while still run-
ning READ operations. This behavior might disclose po-
tential problems related to concurrency handling or indicate
places for optimizations.

Therefore, for comparing the effects of several work-
loads on a DD, the Euclidean distance between MCW val-
ues of each mode or between TOW values of each transition
can be evaluated. Moreover, if the distance is smaller than
a given threshold, then the compared workloads are con-
sidered equivalent. This constitutes valuable feedback for
ascertaining the adequacy of a testing campaign versus op-
erational usage.

We use multidimensional scaling (MDS) plots to graph-
ically display the distances between the workloads used to
exercise the flpydisk.sys driver. MDS is a statistical
technique used to visually express the degree of similarity
(or dissimilarity) among objects belonging to a population,
each object being characterized by a set of attributes. For
each attribute a distance matrix is computed among the ob-

7

jects. To evaluate the similarity among the objects, the dis-
tance matrices associated with each object attribute are ag-
gregated in a weighted average. The MDS plot is computed
using this average. For the MDS plot depicted in Figure
7 we have used the Euclidean distance among the MCW
values of the corresponding modes visited by each work-
load. Similarly, Figure 8 is computed using the Euclidean
distance among the TOW values of the corresponding tran-
sitions for each workload. For instance, the closeness be-
tween two points in Figure 7 indicates that the associated
workloads have visited the same modes, generating similar
MCW values for each of them.

Figure 7 shows the MDS plot of the workloads F1 - F8,
where the attributes of the objects are the MCW values of
every sojourned modes of the OPs (i.e., 15 modes, see Ta-
ble 1), with a λ = 0.5. If a workload did not visit a certain
mode in our experiments, the MCW value of that attribute
is zero. The MDS plot in Figure 7 reveals that the DC2 is
most similar to F4 and F5, two workloads that are represen-
tative for the operations performed when the floppy driver
is loaded and unloaded from the OS. The comparison be-
tween the modes of the F7 and F8 presented in Figure 5 is
confirmed by the MDS plot, as the points associated with
the two workloads are very close to each other.

F1

F6

F7

F8 F2

F4

F5

−0.04 −0.02 0.00 0.02 0.04 0.06

F3

4
0.

0
−

2
0.

0
−

0
0.

0
2
0.

0
4
0.

0

Figure 7. The dis-
tance among work-
loads (modes only).

−0.2 −0.1 0.0 0.1 0.2

1.
0
−

0.
0

1.
0

2.
0

F7

F4

F8

F1

F2

F6

F5

F3

Figure 8. The dis-
tance among work-
loads (edges only).

To examine how the workloads compare from the per-
spective of the traversed edges, in Figure 8 we have consid-
ered as object attributes the TOW values of every transition
of the OPs. Here, the F7 and F8 are farther away from the
rest of the workloads. This effect is explained by the fact
that F7 and F8 actually traverse all the 34 transitions that
act as attributes of the objects in this plot, while the rest of
the workloads only traverse a small subset of them.

As we mentioned before, for the MDS plots in Figures 7
and 8 we assigned equal weights to modes and transitions,
respectively. Actually, to accurately ascertain how close a
testing campaign is from the manner the DD is exercised un-
der realistic workloads, one should assign heavier weights
to the modes and to the transitions carrying the most of in-
terest when the inter-object distances are computed.

Therefore, using the DD state quantifiers introduced in
this paper, multidimensional scaling analysis can be suc-
cessfully used on the data provided by our OPs to quan-
tify the relative similarities among several workloads (for
instance, field workloads vs. in-house testing workloads).
This reveals new possibilities for statistical measurement of
test coverage in terms of execution patterns.

5.4 Test Space Reduction Aspects

To evaluate the test-space reduction enabled by our cur-
rent profiling approach, we compared it with our previous
method [19], considering both modes and transitions that
need be covered by a testing campaign. Table 2 lists the
overall improvement introduced by the current approach.

First-pass reduction: For the Figures 9 and 10 we have
selected for each DD the workload that exercised in our
experiments the largest set of modes and transitions, re-
spectively. For instance, for the floppy disk driver we se-
lected the workload F7, as it issues IRPs belonging to 5 dis-
tinct types. This indicates a theoretical state space size of
25 = 32 modes and 2 · 25 = 64 transitions. Out of this set,
only 15 modes (46.87%) and 34 transitions (53.12%) were
visited (see Table 1, columns 5–7). In Figures 9 and 10, we
call this early reduction step first-pass reduction.

0

5

15

10

32 Theorethical state

1st Pass

2nd Pass, for 95%

cdrom.sys (C1) sysnic.sys (E3) flpydisk.sys (F7) parport.sys (P1) serial.sys (S1)

space

coverage

#
 M

o
d

e
s

2 2

4
5

1

Figure 9. Test space reduction for modes.

0

10

20

30

40

64

cdrom.sys (C1) sysnic.sys (E3) flpydisk.sys (F7) parport.sys (P1) serial.sys (S1)

Theorethical state

1st Pass

space

#
 T

ra
n

s
it

io
n

s 2nd Pass, for 95%
coverage

4
7 7

19

12

Figure 10. Test space reduction (transitions).

While the first-pass reduction solely divides the theoret-
ical state space into two classes (visited and non-visited),
this paper goes beyond that by utilizing the newly intro-
duced execution quantifiers for modes and for transitions.
They permit a finer differentiation among the visited modes
(and among the traversed transitions), offering subsequent
testing campaigns a richer insight about the modes and tran-
sitions that need consideration. In Figures 9 and 10 this step
is called second-pass reduction and it is based on the rela-
tive ranking among modes and transitions, respectively. The
process of obtaining such rankings is discussed in Section

8

5.2 and depicted by Figure 4.

Second-pass reduction using priority rankings: To
explain the mechanism of the second-pass reduction, we
introduce a threshold T specifying the desired test cover-
age level. Onwards, the word “coverage” means the cover-
age of the modes and transitions in our model. In relation
with the ranking of modes (or transitions, respectively), T
gives the reduction of the second-pass. For example, if a
test coverage of 95% is desired for the visited modes under
the workload F7, then they are selected from a list ranked
using their MCW values. Figure 11 depicts the cumula-
tive MCW value of the modes visited under F7. The modes
are ordered in decreasing MCW order, from left to right.
Therefore, when the example coverage goal is 95% of the
visited modes, the first five leftmost modes (marked in the
figure) are selected. This gives a reduction of 66.66% com-
pared to the first-pass presented in [19]. When for instance
a stricter 99% coverage of visited modes is desired, three
more modes are selected, still giving a 46.66% reduction
relative to the first-pass.

000100

001000

000010

001100

000110

001010
010100

100000
010000

100100
101000

010010
011000

100010

C
o

v
e

ra
g

e
 o

f
st

a
te

 s
p

a
ce

1

.95

.90

.85

.80

.75

.70

.65

MOW (lambda = 0.5)

Figure 11. Cumulative coverage for F7;
modes are ordered in decreasing MOW order
from left to right.

Figure 11 indicates that the most visits are concentrated
to a very small number of modes. This trend also holds
for the transitions, indicating a high reduction in modes and
transitions selected by the second-pass, also when the de-
sired coverage is high. Therefore, this mechanism of select-
ing the modes of interest based on the rankings given by the
execution quantifiers can be tuned using the threshold T to
best fit coverage goals. Figures 9 and 10 depict the second-
pass reduction of modes (and transitions, respectively) for
95% testing coverage. Table 2 lists the reduction for each
of the workloads considered in Figures 9 and 10.

Table 2. Test space reductions of the second-
pass relative to the first-pass (T = 95%).

Quantifier C1 [%] E3 [%] F7 [%] P1 [%] S1 [%]
MCW 50.00 42.85 66.66 85.71 77.77
TOW 33.33 41.66 44.11 41.66 25.00

Hence, when testing resources are limited, we believe
that the testing effort can efficiently be scoped for the de-
sired coverage level in order to first cover the modes and
transitions associated with high likelihoods to be reached in
the field. Assuming that the test effort is equally distributed
among the visited modes, this result indicates that a signif-
icant reduction in the amount of testing is possible, without
affecting its adequacy. While the test case creation and pri-
oritization are out of the scope of this paper, we believe that
existing test methods can effortlessly take advantage of the
new insights offered by our profiling methodology.

5.5 Experiment Issues and Lessons Learnt

Our experiments showed that some workloads issue
large amounts of IRPs per time unit, an example being the
DC2 workload. This puts high pressure on the monitoring
mechanisms, introducing the risk that important behavioral
information may be lost. Our tracking filter driver has been
built with great care to ensure that no IRPs are lost, and
we have verified offline all traces to ensure that no invalid
transitions are made (two bits in the mode are changed) and
that all IRP pairs are matched. The same issue holds for the
kernel debugger (see Figure 3), which is unable to track all
IRPs when the arrival rate is extremely high. A discussion
with the developers of the debugger revealed that the IRPs
are stored in a temporary buffer. When the buffer is full,
new IRPs are simply dropped. We are currently working on
an improved version of the logging mechanism, which cir-
cumvents the problem. Note that for data presented in Table
1 is complete with respect to the tracked IRPs.

6 Summary and Discussion
Based on a non-intrusive state capture framework, our

efforts provide accurate metrics and guidance for profiling
and quantifying the runtime behavior for kernel-mode DDs.
The presented experiments show the applicability of our ap-
proach to capturing the runtime behavior of actual DDs be-
longing to diverse classes. Summarizing, the empirical in-
vestigation performed in this paper shows the utility and the
relevance of our state quantifiers for DD testing, as they:
• reveal driver state sojourn patterns without access to
source code of the DDs;
• enable workload characterization and comparison
for selecting the most appropriate workload for in-house
testing;
• assist test prioritization decision based on quantified
DD runtime profiles;
• reduce the space size for testing activities based on
“tunable” coverage scenarios.

In this respect, our metrics do provide a useful quantifi-
cation of the runtime behavior of a DD. As our OP quanti-
fiers are statistical in nature, their relevance is directly pro-
portional to the completeness of the workload used for ob-

9

taining them. Therefore, the choice of the workload used
when building the OP is important and the monitoring phase
should be long and diverse enough such that relevant behav-
ior is captured. Such behavior is best captured if the mon-
itoring is performed in the field, for instance during beta-
testing or post-release monitoring. We have chosen com-
mercial benchmarks to exercise our DDs as we believe they
generate a mix of I/O requests with enough variety to be
representative for the way DDs are used in the field.

Besides DD profiling, our state-aware DD monitoring
method is relevant for failure data collection as well. As
many OS failures are caused by faulty DDs, adding state in-
formation to the collected crash reports can aid debugging
by revealing the DD state history.

From the testing perspective, our approach primarily
provides a method to gain insight into the behavior of the
driver-under-test at runtime. It is not intended as a tool
for finding bugs. The main purpose is to quantify a DD’s
state sojourn behavior in order to guide testing towards cer-
tain subroutines, but it doesn’t reveal where the fault lies.
By prioritizing the test activities using the metrics proposed
in this paper, testers can increase the likelihood of finding
sooner the existing faults.

As the DDs considered for case studies are specific to
Windows-family OSs, we believe that the presented meth-
ods can already be used with Vista kernel-mode DDs as they
follow a super-set of the WDM specifications (the KMDF
- Kernel-Mode Driver Framework [16]). Given the em-
pirical nature of the presented experiments, we are aware
that the validity of the results is currently limited to WDM-
compliant DDs. Therefore, we are currently studying the
porting of our approach to other OSs.

Using the lessons learnt from our DD monitoring ap-
proach, we are also considering to develop a technique for
tuning an existing DD test tool to primarily cover the exe-
cution hotspots. The selection of test cases will consider the
information obtained from a prior driver profiling phase in
order to reduce the overall testing overhead. This will also
help identifying modes which are insufficiently tested and
assess the impact of this fact on DD robustness, together
with an investigation of the possibility to correlate known
Windows failures to DD OPs.

References
[1] A. Albinet, J. Arlat, and J.-C. Fabre. Characterization of the

impact of faulty drivers on the robustness of the linux kernel.
In Proc. DSN, pp. 867–876, 2004.

[2] J. Arlat, J.-C. Fabre, and M. Rodriguez. Dependability of
COTS microkernel-based systems. IEEE Trans. on Comput-
ers, volume 51, issue 2:138–163, 2002.

[3] T. Ball, B. Cook, V. Levin, and S. Rajamani. SLAM and
static driver verifier: Technology transfer of formal methods
inside Microsoft. In IFM, pp. 1–20, 2004.

[4] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. R. Engler. An
empirical study of operating system errors. Proc. SOSP, pp.
73–88, 2001.

[5] J. Duraes and H. Madeira. Multidimensional characteriza-
tion of the impact of faulty drivers on the operating sys-
tems behavior. IEICE Trans. on Information and Systems,
86(12):2563–2570, 2003.

[6] A. Ganapathi, V. Ganapathi, and D. Patterson. Windows xp
kernel crash analysis. In Proc. LISA, pp. 12–22, 2006.

[7] A. Johansson and N. Suri. Error propagation profiling of
operating systems. In Proc. DSN, pp. 86–95, 2005.

[8] D. Leon and A. Podgurski. A comparison of coverage-based
and distribution-based techniques for filtering and prioritiz-
ing test cases. In Proc. ISSRE, pp. 442–453, 2003.

[9] S. McMaster and A. M. Memon. Call stack coverage for test
suite reduction. In ICSM, pp. 539–548, 2005.

[10] M. Mendonca and N. Neves. Robustness testing of the Win-
dows DDK. In Proc. DSN, pp. 554–564, 2007.

[11] K.-H. Möller and D. Paulish. An empirical investigation of
software fault distribution. In Proc. METRICS, pp. 82–90,
1993.

[12] J. D. Musa. Software Reliability Engineering.: More Reli-
able Software Faster and Cheaper. 2nd edition, 2004.

[13] J. D. Musa and K. Okumoto. A logarithmic Poisson exe-
cution time model for software reliability measurement. In
Proc. ICSE, pp. 230–238, 1984.

[14] N. Nagappan, L. Williams, J. Osborne, M. Vouk, and
P. Abrahamsson. Providing test quality feedback using static
source code and automatic test suite metrics. In Proc. ISSRE,
pp. 10–18, 2005.

[15] W. Oney. Programming the MS Windows Driver Model. Mi-
crosoft Press, 2003.

[16] P. Orwick and G. Smith. Developing Drivers with the Win-
dows Driver Foundation. Microsoft Press, 2007.

[17] G. Rothermel, R. Untch, C. Chu, and M. Harrold. Priori-
tizing test cases for regression testing. Trans. on Software
Engineering, 26:929–948, 2001.

[18] D. Simpson. Windows XP embedded with ser-
vice pack 1 reliability. http://msdn2.microsoft.com/en-
us/library/ms838661.aspx, Microsoft Corp., 2003.

[19] C. Sârbu, A. Johansson, F. Fraikin, and N. Suri. Improv-
ing robustness testing of COTS OS extensions. In ISAS,
Springer LNCS 4328, pp.120–139, 2006.

[20] C. Sârbu and N. Suri. Runtime behavior-based pro-
filing of OS drivers. http://www.deeds.informatik.tu-
darmstadt.de/research/TR/TR-TUD-DEEDS-05-02-2007-
Sarbu.pdf, TR-TUD-DEEDS-05-02-2007, 2007.

[21] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the
reliability of commodity operating systems. ACM Trans. on
Computer Systems, 23(1):77–110, 2005.

[22] E. Weyuker. Testing component-based software: A caution-
ary tale. IEEE Software, 15, Issue: 5:54–59, 1998.

[23] E. J. Weyuker. Using operational distributions to judge test-
ing progress. In ACM Symposium on Applied Computing,
pp. 1118–1122, 2003

[24] E. J. Weyuker and B. Jeng. Analyzing partition testing
strategies. IEEE Trans. on Software Engineering, 17, Issue:
7:703–711, 1991.

10

	Introduction
	Related Work
	Driver State Definition via I/O Traffic
	Driver Modes and Transitions
	Characterizing a Driver's Behavior

	Quantifiers for Runtime Behavior
	Occurrence-based Quantifiers
	A Time-based Quantifier for Modes
	A Compound Quantifier for Modes

	Experimental Evaluation
	Studied Drivers and Workloads
	Case Study: the flpydisk.sys Driver
	Comparing Driver Runtime Behaviors
	Test Space Reduction Aspects
	Experiment Issues and Lessons Learnt

	Summary and Discussion

