Proofs of Writing for Robust Storage

Dan Dobre, Ghassan O. Karame, Member, IEEE, Wenting Li, Matthias Majuntke, Neeraj Suri, Marko
Vukoli¢

Abstract—Existing Byzantine fault tolerant (BFT) storage solutions that achieve strong consistency and high availability, are costly
compared to solutions that tolerate simple crashes. This cost is one of the main obstacles in deploying BFT storage in practice.

In this paper, we present PoWerStore, a robust and efficient data storage protocol. PoWerStore’s robustness comprises tolerating network
outages, maximum number of Byzantine storage servers, any number of Byzantine readers and crash-faulty writers, and guaranteeing
high availability (wait-freedom) and strong consistency (linearizability) of read/write operations. PoWerStore’s efficiency stems from
combining lightweight cryptography, erasure coding and metadata write-backs, where readers write-back only metadata to achieve strong
consistency. Central to PoWerStore is the concept of “Proofs of Writing” (PoW), a novel data storage technique inspired by commitment
schemes. PoW rely on a 2-round write procedure, in which the first round writes the actual data and the second round only serves to
“prove” the occurrence of the first round. PoW enable efficient implementations of strongly consistent BFT storage through metadata
write-backs and low latency reads. We implemented PoWerStore and show its improved performance when compared to state of the art
robust storage protocols, including protocols that tolerate only crash faults.

Index Terms—Byzantine fault Tolerant Storage; Proofs of Writing; Commitment schemes.

1 INTRODUCTION

Byzantine fault-tolerant (BFT) distributed protocols have at-
tracted considerable research attention, due to their appealing
promise of masking various system issues ranging from simple
crashes, through software bugs and misconfigurations, all the way
to intrusions and malware. However, the use of existing BFT
protocols is questionable in practice due to, e.g., weak guarantees
under failures [47] or high cost in performance and deployment
compared to crash-tolerant protocols [31]. This can help us derive
the following requirements for the design of future BFT protocols:
o A BFT protocol should be robust, i.e., it should tolerate
Byzantine faults and asynchrony (modeling network outages)
while maintaining correctness (data consistency) and pro-
viding sustainable progress (availability) even under worst-
case conditions that still meet the protocol assumptions. This
requirement has often been neglected in BFT protocols that
focus primarily on common, failure-free operation modes (e.g.,
[27]).

 Such a robust protocol should be efficient. For example, most
BFT protocols resort to data writebacks, in which a reader
must ensure that a value it is about to return is propagated
to a sufficient number of servers before a read completes—
effectively, this entails repeating a write after a read [6]
and results in performance deterioration. We believe that
the efficiency of a robust BFT protocol is best compared to the

e D. Dobre is with the Security and Networking, NEC Laborato-
ries Europe, Heidelberg, Baden-Wiirttemberg 69115, Germany. E-mail:
dan.dobre@neclab.eu

e G. O. Karame, W. Li is with NEC Laboratories
Heidelberg, Baden-Wiirttemberg 69115, Germany. E-mail:
san.karame,wenting.li}@neclab.eu

o M. Majuntke is with the Capgemini Deutschland, Berlin 10785, Germany.
E-mail:matthias.majuntke @ capgemini.com

e N. Suri is with the TU Darmstadt, Darmstadt 64289, Germany. E-mail:
suri@cs.tu-darmstadt.de

o M. Vukolic¢ is with IBM Research - Zurich, Riischlikon 8803, Switzerland.
E-mail: mvu@zurich.ibm.com

Europe,
{ghas-

efficiency of its crash-tolerant counterpart. Ideally, a robust
protocol should not incur significant performance and resource
cost penalty with respect to a crash-tolerant implementation,
hence making the replacement of a crash-tolerant protocol a
viable option.

In this paper, we present PoWerStore, a robust and efficient asyn-
chronous BFT distributed read/write storage protocol. The notion
of robustness subsumes [6]: (i) high availability, or wait-freedom
[28], where read/write operations invoked by correct clients always
complete, and (ii) strong consistency, or linearizability [29] of
read/write operations.

At the heart of PoWerStore is a data storage technique we
call Proofs of Writing (PoW). PoW are inspired by commitment
schemes; PoW incorporate a 2-round write procedure, where the
second round of write effectively serves to “prove” that the first
round has actually been completed before it is exposed to a reader.
The second write round in PoW is lightweight and writes only
metadata. Nevertheless, this “metadata writeback”, performed by
the writers, is powerful enough to spare readers of writing back the
entire data, allowing them to also only write metadata to achieve
strong consistency.! We construct PoW using cryptographic hash
functions and efficient message authentication codes (MACs);
in addition, we also propose an instantiation of PoW based on
polynomial evaluation.

PoWerStore’s efficiency is reflected in (i) metadata writebacks
where readers write-back only metadata, avoiding expensive data
write-backs, (ii) use of lightweight cryptographic primitives (such
as hashes and MACS), (iii) optimal resilience, i.e., ensuring
correctness despite the largest possible number ¢ of Byzantine
server failures; this mandates using 3¢ + 1 servers [40]. Moreover,
PoWerStore achieves these desirable properties with optimal
latency: namely, we show that no robust single-writer protocol,
including crash-tolerant ones, that uses a bounded number of
servers and avoids data writebacks can achieve better latency

1. As proved in [22], in any robust storage readers must “write”, i.e., modify
the state of storage servers.

than PoWerStore. More specifically, in the single writer (SW)
variant of PoWerStore, this latency is two rounds of communication
between a client and servers for both reads and writes. In addition,
PoWerStore employs erasure coding at the client side to offload
the storage servers and to reduce network traffic. Furthermore,
PoWerStore tolerates an unbounded number of Byzantine readers
and unbounded number of writers that can crash.

Finally, while our SW variant of PoWerStore demonstrates the
efficiency of PoW, for practical applications we propose a multi-
writer (MW) variant of PoWerStore (referred to as M-PoWerStore).
M-PoWerStore features 3-round writes and reads, where the third
read round is invoked only under active attacks. M-PoWerStore
also prevent writers from exhausting the timestamp domain — a
threat that was first outlined in [9].

This paper extends our previous work in [20]. More specifically,
we present additional formal technical details about PoW, and we
introduce formal proofs for the correctness of PoWerStore and M-
PoWerStore. We additionally evaluate PoWerStore and demonstrate
its superiority when compared to state of the art robust storage
protocols such as DepSky [10]. Our results show that in typical
settings, the peak throughput achieved by S-PoWerStore improves
over DepSky by 27% for READ operations and by 17% for WRITE
operations. On the other hand, our evaluation results show that
M-PoWerStoreREAD is almost 2 times faster than the existing
crash-tolerant robust atomic storage implementations.

The remainder of the paper is organized as follows. In Section 2,
we outline our system and threat model. Section 3 outlines the
main intuition behind Proofs of Writing. In Section 4, we introduce
PoWerStore and we analyze its correctness. In Section 5, we
present the multi-writer variant of PoWerStore, M-PoWerStore. In
Section 6, we evaluate an implementation of M-PoWerStore. In
Section 7, we overview related work and we conclude the paper in
Section 8.

2 MODEL

We consider a distributed system that consists of three disjoint
sets of processes: a set servers of size S = 3t + 1, where ¢ is the
failure threshold parameter, containing processes {si,...,ss}; a set
writers wi,wy,... and a set readers ry,ry, etc. The set clients is the
union of writers and readers. We assume the data-centric model
[17], [46] with bi-directional point-to-point channels between each
client and each server. Servers do not communicate among each
other, nor send messages other than in reply to clients’ messages.
In fact, servers do not even need to be aware of each other.

2.1 Threat Model

We model processes as probabilistic I/O automata [50] where
a distributed algorithm is a set of such processes. Processes that
follow the algorithm are called correct. Similar to [3], [4], [21],
[39], we assume that a setting where any number of correct writers
may fail by crashing.

We assume that an unbounded number of readers and up to ¢
servers are Byzantine [34] (or exhibit arbitrary [30]) faults. We opt
not to focus on Byzantine writers because they can always obliterate
the storage by constantly overwriting data with garbage, even in
spite of (expensive) techniques that ensure that each individual
write leaves a consistent state (e.g., [14], [24], [27], [35]. As a
consequence, with Byzantine writers and asynchronous message
schedule, the adversary can make a correct reader return arbitrary
data at will. Here, appropriate access control mechanisms could
prevent untrusted writers from having appropriate credentials to

modify data.

In summary, we assume the following threat model:

o We assume a strong adversary that can coordinate up to ¢
Byzantine servers and an unbounded number of readers.

o We assume that the adversary controls the network and as
such controls the scheduling of all transmitted messages in the
network, resulting in asynchronous communication. However,
we assume that the adversary cannot prevent the eventual
delivery of messages between correct processes.

o We assume that the adversary is computationally bounded and
cannot break cryptographic hash functions or forge message
authentication codes. In this context, we assume the existence
of a cryptographic (i.e., one way and collision resistant) hash
function H(-), and a secure message authentication function
MACy(-), where k is a A-bit symmetric key. We further assume
that each server s; pre-shares one symmetric group key with
each writer in W; in the following, we denote this key by k;.2
Note that, in this paper, we do not address the confidentiality
of the outsourced data.

2.2 Atomic Storage

We focus on a read/write storage abstraction [33] which exports
two operations: WRITE(v), which stores value v and READ(), which
returns the stored value. We assume that the initial value of a
storage is a special value L, which is not a valid input value for a
write operation. While every client may invoke the READ operation,
we assume that WRITEs are invoked only by writers.

We say that an operation (invocation) op is complete if the client
receives the response, i.e., if the client returns from the invocation.
We model executions of an algorithm using histories, which are
finite sequences of invocation and response events. In any history
H, we say that a complete operation op; follows op; (resp., opy
precedes op, denoted by op; <y op) if the invocation of op;
follows the response of op1 in that execution. A sequential history
is a history in which an invocation of op is immediately followed
by corresponding response. A sequential history S if read/write
storage is legal if every READ op,, in S returns a value written by
the last WRITE in S that precedes op,4, or L if there is no such
write. We further assume that each correct client invokes at most
one operation at a time (i.e., does not invoke the next operation
until it receives the response for the current operation).

We focus on robust storage with the strongest storage progress
consistency and availability semantics, namely linearizability
[29] (or atomicity [33]) and wait-freedom [28]. Wait-freedom is
originally defined [28] on concurrent data objects as a guarantee
that any process can complete any operation in a finite number of
steps. In our message passing model, we consider the following
analogous definition of wait-free liveness: if a correct client invokes
an operation op, then op eventually completes. Linearizability
provides the illusion that a complete operation op is executed
instantly at some point in time between its invocation and response,
whereas the operations invoked by faulty clients appear either as
complete or not invoked at all. More formally [29], a history H
is linearizable if: (1) it can be extended (by appending zero or
more response events) to some history H' which is equivalent to
some legal sequential history S, and (2) relation <g is a subset of
relation <g.

2. Sharing group keys is not a requirement for the main functionality of
the single-writer nor the multi-writer versions of PoWerStore. As we show in
Section 5, this requirement is only needed to prevent a specific type of DoS
attack where malicious readers exhaust the timestamp space.

EEE
B D

~ 7’

D >
~ - 7
\\Allc _ PN |Boh|~/

(a) Complete Write

? UG ¥
S Ex:ii

(b) Incomplete Write

Fig. 1. Complete vs. Incomplete writes (r = 1, S = 4). Alice and Bob are
readers — dashed lines depict server quorums accessed by Alice and
Bob. In a “complete” write of Figure (a), the value was previously written
(by writer Charlie) into servers 1, 3 and 4 (skipping server 2). If server 3
becomes Byzantine and “forgets” the value, it becomes impossible for
reader Alice to distinguish such a complete write from an “incomplete*”
write of Figure (b). Alice must “writeback” some information to be sure
a subsequent reader Bob has enough information about a value Alice
reads.

TABLE 1
Construction and verification costs of our POW instantiations. Here, 7 is
the failure threshold, M >> t is the modulus used in RSA signatures.
“mod. exp.” refers to modular exponentiations.

[| Construction costs | Verification costs |
Hash-based PoW 1 hash 1 hash

Polynomial-based PoW | O(|¢3|) mod. exp. O(|¢?]) mod. exp.
RSA signatures O(|M|) mod. exp. O(|M]) mod. exp.

Finally, we measure the time-complexity of an atomic storage
implementation in terms of number of communication round-trips
(or simply rounds) between a client and servers. Intuitively, a round
consists of a client sending the message to (a subset of) servers and
receiving replies. A formal definition can be found in, e.g., [23].

3 PROOFS OF WRITING

In this section, we give the main intuition behind Proofs of
Writing (PoW) and describe two possible instantiations of PoW:
(i) a hash-based variant of PoW that offers computation security,
and (ii) a polynomial evaluation-based PoW variant that provides
information theoretic guarantees.

3.1 Intuition behind PoW

A distributed storage that tolerates failures and asynchrony must
prevent clients from blocking while waiting for ¢ possibly faulty
servers to reply. As depicted in Figure 1(a), this implies that
operations by clients must return after probing a quorum of S —¢
servers. Intuitively, by looking at a strict subset of the servers,
a reader cannot obtain a global view of the system state and in
particular, differentiate a complete write from an incomplete write.

For example, in Figure 1, reader Alice reads some value already
written (say by writer Charlie), and reader Bob reads but only
subsequently, i.e., after Alice completes her read. Clearly, Bob
should return the same value as Alice. However, reader Alice
cannot tell apart a complete write (Fig. 1(a)) where one Byzantine
server (server 3) deletes the data, from an incomplete write
without Byzantine servers (Fig. 1(b)). To ensure strong consistency,
i.e., that a subsequent read by Bob does not observe stale data
(Fig. 1(b)), Alice must ensure that the data she is about to read
is propagated to a sufficient number of servers before her read
completes. Essentially, Alice must complete the write herself by
performing a data write-back, involving a full write of the data she
reads [6] in both executions. However, if she somehow knew that
the write in Figure 1(a) was in fact complete, Alice could safely
skip data writeback, since Bob would anyway observe recent data.

3

In the context of BFT storage, data write-backs by readers are
undesirable for two reasons: (i) the overhead of digital signature
schemes required to preventing malicious readers from exploiting
such write-backs to jeopardize the storage by over-writing data
with garbage, and (ii) the inherent bandwidth and latency cost
associated with writing-back data. In addition, when combined
with erasure coded storage, data write-backs are computationally
expensive since readers may need to perform erasure coding on the
data.

Essentially, since the data write-back technique is driven by
readers’ uncertainty in differentiating between a complete write
and an incomplete write, we aim at an efficient technique that
would allow readers to tell incomplete and complete writes apart.
Such a technique would allow readers to safely discard incomplete
writes altogether, obviating the need for writing-back data.

At the heart of PoWerStore is a storage technique we call Proofs
of Writing (PoW) which enables to achieve this differentiation more
efficiently. POW are inspired by commitment schemes [26]; similar
to commitment schemes, PoW consist of two rounds: (i) in the first
round, the writer commits to a random value of its choice, whereas
(ii) in the second round, the writer “opens” his commitment. This
process is sketched in Figure 2. Unlike commitment schemes,
PoW are constructed by honest writers and stored along with the
data in a set of servers, enabling them to collectively convince a
reader that the requested data has been stored in sufficiently many
correct servers. Furthermore, we show that POW can be effectively
constructed while incurring little cost when compared to digital
signatures (Table 1).

Similar to commitment schemes [26], PoW consist of two main
algorithms:

¢ < commit(s): Given a security parameter n, commit takes
as input a string s € {0, 1}" and outputs a commitment c.

e {0,1} < verify(s’,c): On input a commitment c, and a string
s', verify outputs 1 if ¢ < commit(s’) and 0, otherwise.

PoW satisfies the following security properties:

o Completeness: Honest clients always accept a correct PoW
verification. This is by construction; in fact verify(s, ¢) outputs
1 if and only if ¢ - commit(s).

« Secrecy: For any probabilistic polynomial time adversary <7,
Vs # s’ €{0,1}", o/ has a negligible advantage denoted by
€(n), where € is a negligible function of n, in distinguishing
the probability ensembles (commit(s)|c) and (commit(s)|c).

« Non-ambiguity: Vs # 5" € {0,1}", commit(s) # commit(s’).

PoW obviate the need for writing-back data, allowing readers
to write-back metadata. Metadata write-backs (i) help to prevent
malicious readers from compromising the storage, and (ii) feature
low communication latency and bandwidth usage even in worst-
case conditions. By doing so, PoW provide an efficient alternative
to digital signatures in BFT storage protocols. In what follows, we
describe two efficient instantiations of PoW using cryptographic
hashes, and polynomial evaluation; we also outline their relative
performance gains when compared to digital signatures.

3.2 PoW based on Cryptographic Hashes

We start by outlining a PoW implementation that is based on the
use of one-way collision-resistant functions seeded with pseudo-
random input.

In the first WRITE round, the writer generates a pseudo-random
nonce (sampled uniformly at random from {0, 1}", where N is a
security parameter) and writes the hash of the nonce together with
the data in a quorum of servers. In the second WRITE round, the

writer discloses the nonce and stores it in a quorum. During the
first round of a READ operation, the client collects the nonce from
a quorum and sends (writes-back) the nonce to a quorum of servers
in the second round. The server verifies the nonce by checking
that the received nonce matches the hash of the stored nonce.
If so, the server confirms the validity of the nonce by exposing
the corresponding stored data to the client. The client obtains a
PoW after receiving ¢ + 1 confirmations pertaining to a nonce, i.e.,
including at least one confirmation from a correct server.

Since the writer keeps the nonce secret until the start of the
second round, it is straightforward to show that our PoW construct
based on cryptographic hashes satisfies the completeness, secrecy,
and non-ambiguity properties. Notably, it is computationally
infeasible for the adversary to fabricate the nonce unless the first
round of WRITE has completed, and hence the data is written. Thus,
if the nonce received in the first READ round hashes to the stored
hash at # 4 1 servers (one of which is necessarily correct), then this
provides sufficient proof that the nonce has been disclosed by the
writer, which implies that the data has been written.

3.3 PoW based on Polynomial Evaluation

In what follows, we propose an alternative construction of PoW
based on polynomial evaluation. Our construct is based on the
seminal work by [44] that instantiates a threshold system based
on polynomial evaluation. Namely, assume a polynomial P(-) of

degree ¢ with coefficients {¢,...,0p} chosen at random from 27,
=

where g is a public parameter. That is, P(x) = }_ (atx/). P(-) can
j=0

be used to instantiate a threshold system in such a way that [44]:

« The knowledge of any ¢ + 1 points of P(.) makes P(.) easily
computable;

« The knowledge of any or fewer points leaves P(.) completely
undetermined (i.e., all of its possible values are equally
likely) [44].

We instantiate such a threshold system as follows: at the start

j=t
of every WRITE operation, the writer constructs P(x) = Z (o).

=0
The writer then constructs the PoW as follows: for eajch server
s;, the writer picks a random point x; on P(-), and constructs the
share (x;, P;), where P, = P(x;). As such, the writer constructs S
different shares, one for each server, and sends them to each server
s; over a secure and confidential channel. Note that since there
are at most ¢t Byzantine servers, these servers cannot reconstruct
the polynomial P(-) from their shares, even if they collude (the
polynomial is completely undetermined in this case). In the second
WRITE round, the writer reveals the polynomial P(-) to all servers.
This enables a correct server s; to establish that the first WRITE
round has been completed by checking that the share (x;,P;) is
indeed a point of P(-).

The argument of PoW relies on the assumption that the correct
servers holding shares agree on the validity of the polynomial. By
relying on randomly chosen x;, and the fact that correct servers
never divulge their share, our construction prevents an adversary
from fabricating PE) We point that, unlike our prior solution based
on cryptographic hash functions, this PoW construction provides
information-theoretic guarantees [44]. Table 1 illustrates the PoW
construction and verification costs incurred in our PoW constructs.
Owing to its reduced costs, we focus in this paper on hash-based
PoWs (Sec. 3.2).

3.4 Optimality of PoWerStore

In this section, we prove that PoWerStore features optimal
latency, by showing that writing in two rounds is necessary. In
previous work [21], it was shown that, regardless of the “length”
of a write a read needs to read in more than one round or else
the number of required servers is proportional to the number of
readers. Hence, in order to maintain a constant number of servers,
regardless the number of readers, a read needs to read in at least
two rounds.

We start by giving some informal definitions.

A distributed algorithm A is a set of automata [36], where
automaton A, is assigned to process p. Computation proceeds in
steps of A and a run is an infinite sequence of steps of A. A partial
run is a finite prefix of some run. We say that a (partial) run r
extends some partial run pr if pris a prefix of r. We say that an
implementation is selfish, if clients write back metadata to achieve
linearizability (instead of the full value) [22]. Furthermore, we say
that an operation is fast if it completes in a single round.

Theorem 3.1. There is no fast WRITE implementation I of a
multi-reader selfish robust storage that makes use of less than
4t + 1 servers.

Preliminaries. We prove Theorem 3.1 by contradiction assuming
at most 47 servers. We partition the set of servers into four distinct
subsets (we call blocks), denoted by Ti, T, T3 each of size exactly
t, and Ty of size at least 1 and at most ¢. Without loss of generality
we assume that each block contains at least one server. We say that
an operation op skips a block T;, (1 <i < 4) when all messages by
op to T; are delayed indefinitely (due to asynchrony) and all other
blocks T} receive all messages by op and reply.

Proof: We construct a series of runs of a linearizable implemen-
tation / towards a partial run that violates linearizability, i.e., that
features two consecutive READ operations by distinct readers that
return different values.

o Let run; be the partial run in which all servers are correct
except 77 which crashed at the beginning of run;. Let wr be
the operation invoked by the writer w to write a value v # L
in the storage. The WRITE wr is the only operation invoked
in run; and w crashes after writing v to 73. Hence, wr skips
blocks Ti, T> and Tj.

o Let run) be the partial run in which all servers are correct
except T4, which crashed at the beginning of run}. In run}, w
is correct and wr completes by writing v to all blocks except
Ty, which it skips.

o Let run; be the partial run similar to run’1 , in which all servers
except T, are correct, but due to asynchrony, all messages from
w to Ty are delayed. Like in run, wr completes by writing v
to all servers except Tu, which it skips. To see why, note that
wr cannot distinguish run, from run’l. After wr completes, T
fails Byzantine by reverting its memory to the initial state.

o Let runs extend run; by appending a complete READ rd,;
invoked by r;. By our assumption, / is wait-free. As such, rd;
completes by skipping 77 (because 77 crashed) and returns
(after a finite number of rounds) a value vg.

o Let runy extend run; by appending rd;. In runy, all servers
except T» are correct, but due to asynchrony all messages from
r1 to T1 are delayed indefinitely. Moreover, since 7, reverted
its memory to the initial state, v is held only by 73. Note that
r1 cannot distinguish runs from runs in which 77 has crashed.
As such, rd; completes by skipping 77 and returns vg. By
linearizability, vg = v.

WRITE READ

COMPLETE coLLECT
ACK(ts LC (i} . Gt frice
ACK(1s) N % v
03 \

1]

STORE FILTER

ts.frice, H(N

X

o U \\\\ ,,,,,,,,

Fig. 2. Example depicting the case where a candidate collected in C is
valid, then at least 7+ 1 correct servers (S, and S3) has saved Hist|ts] =
(fri,cc,N) and will return the data in FILTER step.

« Let runs be similar to runz in which all servers except T3 are
correct but, due to asynchrony, all messages from | to 77 are
delayed. Note that r; cannot distinguish runs from runz. As
such, rd; returns vg in runs, and by rung, vg = v. After rd;
completes, 73 fails by crashing.

o Let rung extend runs by appending a READ rd, invoked by
r, that completes by returning v'. Note that in runs, (i) T3
is the only server to which v was written, (ii) rd; did not
write-back v (to any other server) before returning v, and (iii)
T; crashed before rd; is invoked. As such, rd, does not find v
in any server and hence v # v, violating linearizability.

It is important to note that Theorem 3.1 allows for self-
verifying data and assumes clients that may fail only by crashing.
Furthermore, the impossibility extends to crash-tolerant storage
using less than 3t + 1 servers when deleting the Byzantine block
T, in the above proof.

4 POWERSTORE

In this section, we provide a detailed description of the PoWer-
Store protocol and we analyze its correctness. We also show that
PoWerStore exhibits optimal worst-case latency.

4.1 Overview of PoWerStore

In PoWerStore, the WRITE operation performs in two consec-
utive rounds, called STORE and COMPLETE. Likewise, the READ
performs in two rounds, called COLLECT and FILTER. For the sake
of convenience, each round rnd € {STORE, COMPLETE, COLLECT,
FILTER} is wrapped by a procedure rnd. In each round rnd, the
client sends a message of type rnd to all servers. A round completes
at the latest when the client receives messages of type rnd_ACK
from S —t correct servers. The server maintains a variable /c to
store the metadata of the last completed WRITE, consisting of
a timestamp-nonce pair, and a variable LC that stores a set of
such tuples written-back by clients. In addition, the server keeps a
variable Hist storing the history, i.e., a log consisting of the data
written by the writer’ in the STORE round, indexed by timestamp.

4.2 Write Implementation

The WRITE implementation is given in Algorithm 1. To write a
value V, the writer increases its timestamp #s, generates a nonce
N sampled uniformly at random, and computes its hash N =

3. Recall that PoWerStore is a single-writer storage protocol.

1: Definitions:
2: ts: structure num, initially zsg = 0

3: operation WRITE(V)
4: ts—ts+1

5. N« {0,1}*

6: N+« H(N)

7: STORE(ts,N,V)

8: COMPLETE(ts,N)
9 return OK

10: procedure STORE(ts,V,N)

11: {fri,...,frs} < encode(V,t+1,S5)

12: cc+ [H(fr1),...,H(frs)] -

13: for 1 <i< S do send STORE(ts, fri,cc,N) to s;
14: wait for STORE_ACK(ts) from S —¢ servers

15: procedure COMPLETE(ts,N)
16: send COMPLETE(ts,N) to all servers
17: wait for COMPLETE_ACK(ts) from S —¢ servers

Algorithm 1: Algorithm of the writer in PoWerStore.

H(N), and invokes STORE with ts, V and N. When the STORE
procedure returns, the writer invokes COMPLETE with ¢s and N.
After COMPLETE returns, the WRITE completes.

In STORE, the writer erasure codes a value (in order to offload
the storage servers and to reduce network traffic) by encoding V
into S fragments fr; (1 <i <), such that V can be recovered
from any subset of # + 1 fragments. We achieve this by combining
the use of parity fragments with Reed-Solomon coding. Here,
the writer divides V to t + 1 fragments and add S —¢ — 1 parity
fragments. Since the reader will only decode fragments from correct
servers, the decoding can tolerate up to S —t — 1 erasures and
reconstruct the data from any 7 + 1 correct fragments. Furthermore,
the writer computes a cross-checksum cc consisting of the hashes
of each fragment. For each server s; (1 <i < S), the writer sends a
STORE(ts, fr;,cc,N) message to s;. On reception of such a message,
the server writes (f7;,cc,N) into the history entry Hist[ts] and
replies to the writer (see Algorithm 2). After the writer receives
S —t replies from different servers, the STORE procedure returns,
and the writer proceeds to COMPLETE.

In COMPLETE, the writer sends a COMPLETE(¢s, N) message to
all servers. Upon reception of such a message, the server changes
the value of Ic to (zs,N) if ts > lc.ts and replies to the writer.
After the writer receives replies from S —¢ different servers, the
COMPLETE procedure returns.

4.3 Read Implementation

The READ implementation is given in Algorithm 3; it consists
of the COLLECT procedure followed by the FILTER procedure. In
COLLECT, the client reads the tuples (¢s,N) included in the set
LCU{lc} at the server, and accumulates these tuples in a set C
together with the tuples read from other servers. We call such a
tuple a candidate and C a candidate set. Before responding to the
client, the server removes obsolete tuples, i.e., tuples not greater
than the highest valid timestamp among all candidates from LC
using the GC procedure (see line 28, Alg. 2, where predicate valid
is defined in line 41). After the client receives candidates from
S —t different servers, COLLECT returns.

In FILTER, the client submits C to each server. Upon reception of
C, the server performs a write-back of the candidates in C (metadata
write-back). In addition, the server picks cp, as the candidate in

18: Definitions:
19: Ic : structure (ts,N), initially co 2 (fs9, NULL) /Nast completed write
20: LC: set of structure (ts,N), initially @ /Iset of written-back candidates
21: Hist[...] : vector of (fr,cc,N) indexed by rs, with all entries initialized to (NULL,NULL,NULL)
22: upon receiving STORE(ts, f7,cc,N) from the writer 32: upon receiving COLLECT(¢sr) from client r
23 Hist[ts] + (fr,cc,N) 33: 6e()
24: send STORE_ACK(fs) to the writer 34: send COLLECT_ACK(tsr,LCU{lc}) to client r
25: upon receiving COMPLETE(zs, N) from the writer 35: upon receiving FILTER(tsr,C) from client r
26: if s > lc.ts then Ic < (ts,N) 36: LC+ LCUC /Iwrite-back
27: send COMPLETE_ACK(ts) to the writer 37: cpy < max({c € C:valid(c)} U{co})
38: (frcc) < Tppec(Histcpy ts])
28: procedure GC() . d FILTER ACK li
20 e max({c € LC : valid(e)} U {co}) 39: send _ACK(tsr,cpy.ts, frycc) to client r
30: if ¢py.ts > lc.ts then lc < cp, 40: Predicates: o
31: LC+ LC\{ceLC:cts<lcits} 41: valid(c) 2 (H(c.N) = Hist[c.ts].N)

Algorithm 2: Algorithm of server s; in PoWerStore.

C with the highest timestamp such that valid(cy,) holds, or c¢g if
no such candidate exists. The predicate valid(c) holds if the server,
based on the history, is able to verify the integrity of ¢ by checking
that H(c.N) equals Hist[c.ts].N. The server then responds to the
client with a message including the timestamp cy,.ts, the fragment
Hist|[cpy,.ts].fr and the cross-checksum Hist[cp,.ts].cc. The client
waits until S — ¢ different servers responded and either (i) safe(c)
holds for the candidate with the highest timestamp in C, or (ii)
all candidates have been excluded from C, after which COLLECT
returns. The predicate safe(c) holds if at least 4 1 different
servers s; have responded with timestamp c.ts, fragment fr; and
cross-checksum cc such that H(fr;) = ccli]. If C # 0, the client
selects the candidate with the highest timestamp ¢ € C and restores
value V by decoding V from the ¢ 4 1 correct fragments received
for c¢. Note that although the client receives S —¢ erasure-coded
fragments, only ¢ + 1 fragments* are guaranteed to be available and
correct. Therefore, the reconstruction of V requires an erasure code
with dimension ¢ + 1. Otherwise, the client sets V to the initial
value L. Finally, the READ returns V.

4.4 Analysis

In what follows, we show that PoWerStore is robust, guarantee-
ing that READ/WRITE operations are linearizable and wait-free. We
start by proving a number of core lemmas, to which we will refer
to throughout the analysis.

Definition 4.1 (Valid candidate). A candidate c is valid if valid(c)
holds at some correct server.

Definition 4.2 (Timestamps of operations). A READ operation
rd by a correct reader has timestamp s iff the reader in rd
selected ¢ in line 53 such that c.zs = ts. A WRITE operation wr
has timestamp #s iff the writer increments its timestamp to s in
line 4.

Lemma 4.3 (Validity). Let rd be a completed READ by a correct
reader. If rd returns value V # | then V was written.

Proof: We show that if V is the value decoded in line 74, then
V was indeed written. To show this, we argue that the fragments
used to decode V were written. Note that prior to decoding V
from a set of fragments, the reader establishes the correctness of
each fragment as follows. First, in line 72, the reader chooses a

4. The dimension is # + 1 given S = 3¢+ 1 in our system model (cf. Section 2).
If S > 3¢+ 1, then the quorum of correct servers that have saved the data after a
complete WRITE is S — 2.

cross-checksum that was received from 7+ 1 servers. Since one
of these servers is correct, the chosen cross-checksum was indeed
written. Secondly, the reader checks in line 73 that each of the 7 4- 1
fragments used to decode V hashes to the corresponding entry in
the cross-checksum. By the collision-resistance of H, all fragments
that pass this check were indeed written. Therefore, if V is the value
decoded from these fragments, we conclude that V was written.

Lemma 4.4 (Proofs of Writing). If c is a valid candidate, then
there exists a set Q of ¢ + 1 correct servers such that each server
s; € Q changed Hist[c.ts] to (fri,cc,H(c.N)).

Proof: If ¢ is valid, then by Definition 4.1, valid(c) is true at
some correct server s;. Hence, H(c.N) = Hist[c.ts|.Ny holds at s;.
By the pre-image resistance of H, no computationally bounded
adversary can acquire ¢.N from the sole knowledge of H(c.N).
Hence, c¢.N stems from the writer in a WRITE operation wr with
timestamp c.ts. By Algorithm 1, line 8, the value of c¢.N is revealed
after the STORE phase in wr completed. Hence, there exists a set
Q of t + 1 correct servers such that each server s; € Q changed
Hist[c.ts] to (fri,cc,H(c.N)).

Lemma 4.5 (No exclusion). Let ¢ be a valid candidate and let
rd be a READ by a correct reader that includes ¢ in C during
COLLECT. Then c is never excluded from C.

Proof: As c is valid, by Lemma 4.4 a there exists a set Q of 7+ 1
correct servers such that each server s; € Q changed Hist|c.ts] to
(*,+,H(c.N)). Hence, valid(c) is true at every server in Q. Thus, no
server in Q replies with a timestamp ¢s < c.ts in line 39. Therefore,
at most S —r — 1 = 2¢ timestamps received by the reader in the
FILTER phase are lower than c.ts, and so c is never excluded from
C.

Lemma 4.6 (READ/WRITE Atomicity). Let rd be a completed
READ by a correct reader. If rd follows some complete
WRITE(V), then rd does not return a value older than V.

Proof: If zs is the timestamp of WRITE(V), it is sufficient to show
that the timestamp of rd is not lower than s. To prove this, we show
that 3¢’ € C such that (i) ¢’.ts > ts and (ii) ¢’ is never excluded
from C.

By the time WRITE(V) completes, 4+ 1 correct servers hold
in /c a candidate whose timestamp is zs or greater. According to

42: Definitions:

43: tsr: num, initially O

44: Q,R: set of pid, initially @

45: C:set of (ts,N), initially @

46: WIL...S]: vector of (ts, fr,cc), initially]

47: operation READ()
48: C,0,R<+0

49: tsr<—tsr+1

50: C < COLLECT(zsr)
51: C <« FILTER(zs1,C)
52: if C # 0 then

53: ¢+ ¢’ € C:highcand(¢’) A safe(c’)
54: V <~ RESTORE(c.ts)

55: elseV <+ L

56: return V

57: procedure COLLECT(tsr)

58: send COLLECT(tsr) to all servers
59: wait until |Q| > S—1

60: return C

61: upon receiving COLLECT_ACK((tsr,C;) from server s;
62: 0+« QU{i}
63: C<+CU{ceCi:cts>tso}

64: procedure FILTER(tsr,C)
65: send FILTER(tsr,C) to all servers
66: wait until |R| > S—1 A
((3c € C - highcand(c) Asafe(c)) vC = 0)
67: return C

68: upon receiving FILTER_ACK (tsn,ts, fr,cc) from server s;
69: R« RU{i}; W[i] + (ts, fr,cc)
70: C+C\{ceC:invalid(c)}

71: procedure RESTORE(?s)

72: cccd st.IRCR:R|>t+1 A\
(Vie R :Wli|l.ts =ts AW[i].cc = cc’)

73 F « {W[i].fr:i€RAWI[i|.ts=ts N\H(W

74: V< decode(F,t+1,S)

75: returnV

[i].fr)=cclil}

76: Predicates:
77: safe(c) 23R CR:|R|>t+1 A
(Vie R :Wli|l.ts=cits) N\
(Vi,j € R:Wli].cc=W|[j].cc \H(WIi].fr)=W|j].ccli])
78: highcand(c) £ (c.ts = max({c'.ts: ¢’ € C}))
79: invalid(c) 2 |{i € R: W[i].ts < c.ts}| > S —t

Algorithm 3: Algorithm of client r in PoWerStore.

lines 26, 30 of Algorithm 2, a correct server never changes Ic to
a candidate with a lower timestamp. Hence, when rd is invoked,
t+ 1 correct servers hold candidates with timestamp ¢s or greater
in lc. Hence, during the COLLECT phase in rd, some candidate
received from a correct server with timestamp ts or greater is
inserted in C. Such a candidate is necessarily valid because either
the server received it directly from the writer, or the server checked
its integrity in line 29. Let ¢’ be the valid candidate with the highest
timestamp in C. Then by Lemma 4.5, ¢’ is never excluded from C.
By line 53, no candidate ¢ such that c.ts < c’.ts is selected. Since
¢’ .ts > ts, no candidate with a timestamp lower than ts is selected
in rd.

Lemma 4.7 (READ atomicity). Let rd and rd’ be two completed
read operations by correct readers. If rd’ follows rd that returns
V, then rd’ does not return a value older than V.

7

Proof: If c is the candidate selected in rd, it is sufficient to show
that the timestamp of rd’ is not lower than c.ts. We argue that C
contains a candidate ¢’ such that (i) ¢’.ts > c.ts and (ii) ¢’ is never
excluded from C.

By the time rd completes, ¢ + 1 correct servers hold c in LC. As
¢ was selected in rd in line 53, some correct server asserted that
c is valid in line 29. According to Algorithm 2, if a correct server
excludes ¢ from LC in line 31, then the server changed Ic to a valid
candidate with timestamp c.ts or greater in line 30. Consequently,
t+ 1 correct servers hold in LC U {lc} a valid candidate with
timestamp c.ts or greater. As such, during COLLECT in rd’, a
valid candidate ¢’ such that ¢’.ts > c.ts is included in C, and by
Lemma 4.5, ¢’ is never excluded from C. By line 53, no candidate
with a timestamp lower than ¢’.zs is selected. Since ¢’.ts > c.ts, no
candidate with a timestamp lower than c.zs is selected in rd’.

Theorem 4.8 (Linearizability/Atomicity). Algorithms 1, 2 and 3
are linearizable.

Proof: To prove linearizability of history H, consider an equiva-
lent sequential history S in which all WRITES are (totally) ordered
by their timestamps selected in line 4, Fig. 1, and all reads are
(partially) ordered by the timestamp c.ts (line 53, Alg. 3), or
assigned timestamp O if they return L. If two reads rd; and rd2
are assigned the same timestamp, then we require rd; <g rd, if
rdy < Hrd,, otherwise the order of rdy and rd, in S is irrelevant.

First, note that by Lemma 4.3, S is a legal sequential history.

It is left to show that <g is a subset of <y. This clearly holds
for two WRITES, as WRITE operations which are sequential in
PoWerStore. We now show that a complete READ operation rd
by a correct reader, which follows another read/write operation
op (i.e., rd <y op) cannot return an older value (i.e., rd <g op).
We distinguish two cases: 1) rd follows a write operation, and
2) rd follows another read operation. The first case follows from
Lemma 4.6, whereas the second case follows from Lemma 4.7.

We now proceed to proving wait-free liveness.

Theorem 4.9 (Wait-free liveness). Algorithms 1, 2 and 3 satisfy
wait-free liveness.

Proof: We show that no operation invoked by a correct client
ever blocks. The wait-free liveness argument of the WRITE is
straightforward; in every phase, the writer awaits acks from the
least number S —¢ of correct servers. The same argument holds
for the COLLECT phase of the READ. Hence, in the remainder of
the proof, we show that no READ blocks in the FILTER phase. By
contradiction, consider a READ rd by reader r that blocks during
the FILTER phase after receiving FILTER_ACK messages from all
correct servers. We distinguish two cases: (Case 1) C includes a
valid candidate and (Case 2) C includes no valid candidate.

o Case 1: Let ¢ be the highest valid candidate included in C. We
show that highcand(c) A safe(c) holds. Since c is valid, by
Lemma 4.4, there exists a set Q of r + 1 correct servers such
that each server s; € Q changed Hist[c.ts] to (fri,cc,H(c.N)).
Thus, during the FILTER phase, valid(c) holds at every server
in Q. As no valid candidate in C has a higher timestamp
than c, (i) all servers s; € Q (at least ¢ + 1) responded with
timestamp c.ts, corresponding erasure coded fragment fr;,
cross-checksum cc in line 39 and (ii) all correct servers (at
least S —t) responded with timestamps at most c.ts. By (i), c is

safe. By (ii), every ¢’ € C such that ¢’.ts > c.ts became invalid
and was excluded from C, implying that ¢ is highcand.

o Case 2: Here, we show that C = (. As none of the candidates
in C is valid, during the FILTER phase, the integrity check in
line 29 failed for every candidate in C at all correct servers.
Hence, at least S —¢ servers responded with timestamp #sg.
Since ts¢ is lower than any candidate timestamp, all candidates
were classified as invalid and were excluded from C.

Theorem 4.10 (Latency). Algorithms 1, 2 and 3 feature a latency
of two communication rounds for the WRITE and two for the
READ.

Proof: By Algorithm 1, the WRITE completes after two phases,
STORE and COMPLETE, each taking one communication round. By
Algorithm 3, the READ completes after two phases, COLLECT and
FILTER, each incurring one communication round.

5 M-POWERSTORE

In what follows, we present the multi-writer variant of our
protocol, dubbed M-PoWerStore. M-PoWerStore resists attacks
specific to multi-writer setting that exhaust the timestamp domain
[9]. Besides its support for multiple writers, M-PoWerStore protects
against denial of service attacks specific to PoWerStore, in which
the adversary swamps the system with bogus candidates. While this
attack can be contained in PoWerStore by a robust implementation
of the point-to-point channel assumption using, e.g., a separate
pair of network cards for each channel (in the vein of [18]), which
prevents adversary from swamping the point-to-point channels
between correct processes, this may impact practicality.

5.1 Overview

M-PoWerStore supports an unbounded number of clients. In
addition, M-PoWerStore features optimal READ latency of two
rounds in the common case, where no process is Byzantine. Under
malicious attacks, M-PoWerStore gracefully degrades to guarantee
reading in at most three rounds. The WRITE has a latency of
three rounds, featuring non-skipping timestamps, which prevents
the adversary from exhausting the timestamp domain, i.e., from
skipping timestamps [9].

The main difference between M-PoWerStore and PoWerStore is
that, here, servers store and transmit a single candidate instead of
a (possibly unbounded) set. To this end, it is crucial that servers
are able to determine the validity of a written-back candidate
without consulting the history. For this purpose, we enhance our
original PoW scheme by extending the candidate with message
authentication codes (MACs) on the timestamp and the nonce’s
hash, one for each server, using the corresponding group key. As
such, a valid MAC proves to a server that the written-back candidate
stems from a writer, and thus, constitutes a PoW that a server can
obtain even without the corresponding history entry. Note that in
case of a candidate incorporating corrupted MACs, servers might
disagree about the validity of a written-back candidate. Hence, a
correct client might not be able to write-back a candidate to 7 4 1
correct servers as needed. To solve this issue, M-PoWerStore "pre-
writes" the MACs, enabling clients to recover corrupted candidates
from the pre-written MACs.

To support multiple-writers, WRITE in M-PoWerStore comprises
an additional distributed synchronization round, called CLOCK,

8

which is prepended to STORE. The READ performs an additional
round called REPAIR, which is appended to COLLECT. The purpose
of REPAIR is to recover broken candidates prior to writing them
back, and is invoked only under attack by a malicious adversary
that actually corrupts candidates.

Similarly to PoWerStore, the server maintains the variable Hist
to store the history of the data written by the writer in the STORE
round, indexed by timestamp. In addition, the server keeps the
variable Ic to store the metadata of the last completed write
consisting of the timestamp, the nonce and a vector of MACs
(with one entry per server) authenticating the timestamp and the
nonce’s hash.

The full WRITE implementation is given in Algorithm 4. The
implementation of the server and the READ operation are given
in Algorithm 5 and 6. In the following, we simply highlight the
differences to PoWerStore.

5.2 Write Implementation

As outlined before, M-PoWerStore is resilient to the adversary
skipping timestamps. This is achieved by having the writer authen-
ticate the timestamp of a WRITE with a key ky shared among the
writers. Note that such a shared key can be obtained by combining
the different group keys; for instance, kw < H (ki||k2||...).

To obtain a timestamp, in the CLOCK procedure, the writer
retrieves the timestamp (held in variable /c) from a quorum of
S —1 servers and picks the highest timestamp ¢s with a valid MAC.
Then, the writer increases ts and computes a MAC for #s using ky .
Finally, CLOCK returns ts.

To write a value V, the writer, (i) obtains a timestamp ¢s from the
CLOCK procedure, (ii) authenticates s and the nonce’s hash N by a
vector of MACs vec, with one entry for each server s; using group
key k;, and (iii) stores vec both in STORE and COMPLETE. Upon
reception of a STORE(f7;, cc, N, vec) message, the server writes the
tuple (fr;,cc,N,vec) into the history entry Hist[ts]. Upon reception
of a COMPLETE(ts, N, vec) message, the server changes the value
of lc to (ts,N,vec) if ts > lc.ts.

5.3 Read Implementation

The READ consists of three consecutive rounds, COLLECT,
FILTER and REPAIR. In COLLECT, a client reads the candidate
triple (¢s,N,vec) stored in variable /¢ in the server, and inserts it
into the candidate set C together with the candidates read from other
servers. After the client receives S —¢ candidates from different
servers, COLLECT returns.

In FILTER, the client submits C to each server. Upon reception
of C, the server chooses ¢y, as the candidate in C with the highest
timestamp such that valid(cy,) is satisfied, or ¢ if no such candidate
exists, and performs a write-back by setting /¢ to cp, if cp,.ts > lc.ts.
Roughly speaking, the predicate valid(c) holds if the server verifies
the integrity of the timestamp c.ts and nonce c.N either by the
MAC, or by the corresponding history entry. The server then
responds to the client with the timestamp cp,.ts, the fragment
Hist[cpy.ts]. fr, the cross-checksum Hist[cp,.ts].cc and the vector
of MACs Hist[cp,.ts].vec.

The client awaits responses from S —¢ servers and waits until
there is a candidate ¢ with the highest timestamp in C such that
safe(c) holds, or until C is empty, after which FILTER returns. The
predicate safe(c) holds if at least 7 + 1 different servers s; have
responded with timestamp c.ts, fragment fr;, cross-checksum cc
such that H(fr;) = cc[i], and vector vec. If C is empty, the client
sets V to the initial value L. Otherwise, the client selects the highest
candidate ¢ € C and restores value V by decoding V from the # + 1

80: Definitions:

81: Q: set of pid, (process id) initially @

82: ts: structure (num, pid, MACyy,\ (numl||pid)),
initially ¢so = (0,0,NULL)

83: operation WRITE(V)

84: Q0«0

85: ts+ CLOCK()

86: N« {0,1}*

87: N+« H(N)

88: vec < [MAC{ki}(fSHN)lgigS}
89: STORE(ts,V,N,vec)

90: COMPLETE(ts,N,vec)

91: return OK

92: procedure CLOCK()

93: send CLOCK(ts) to all servers

94: wait until |Q| > S—1

95: ts.num < ts.num+ 1

96: s < (ts.num,w,MAC 1\ (ts.num||w))
97: return ts

98: upon receiving CLOCK_ACK(ts, ts;) from server s;
99: Q0+« QU{i}
100: if rs; > ts A verify(ts;, ky) then ts < ts;

101: procedure STORE(ts,V,N,vec)

102: {fri,...,frs} « encode(V,t+1,5)

103: cc<« [H(fr1),...,H(frs)]

104: foreach server s; send STORE(ts, fr;,cc,N,vec) to s;
105: wait for STORE_ACK(ts) from S — ¢ servers

106: procedure COMPLETE(ts,N,vec)
107: send COMPLETE(ts,N,vec) to all servers
108: wait for COMPLETE_ACK(ts) from S —¢ servers

Algorithm 4: Algorithm of writer w in M-PoWerStore.

correct fragments received for c.

In REPAIR, the client verifies the integrity of c.vec by matching it
against the vector vec received from ¢ 41 different servers. If c.vec
and vec match then REPAIR returns. Otherwise, the client repairs ¢
by setting c.vec to vec and invokes a round of write-back by sending
a REPAIR(tsr,c) message to all servers. Upon reception of such
a message, if valid(c) holds then the server sets /¢ to ¢ provided
that c.ts > lc.ts and responds with an REPAIR_ACK message to
the client. Once the client receives acknowledgements from S —¢
different servers, REPAIR returns. After REPAIR returns, the READ
returns V. Without REPAIR subprotocol, the atomicity across READ
operations could be violated (see Lemma 5.8 in Sec. 5.4).

5.4 Analysis

We argue that M-PoWerStore satisfies linearizability by showing
that if a completed READ rd by a correct client returns V then a
subsequent READ rd’ by a correct client does not return a value
older than V.

Definition 5.1 (Valid candidate). A candidate c is valid iff valid(c)
is true at some correct server.

Definition 5.2 (Timestamps of operations). A READ operation rd
by a non-malicious reader has timestamp s iff the reader in rd
selected ¢ in line 143 such that c.ts =¢s. A WRITE operation wr
has timestamp ts iff the CLOCK procedure in wr returned ts in
line 85.

Lemma 5.3 (Validity). Let rd be a completed READ by a correct
reader. If rd returns value V # L then V was written.

109: Definitions:

110: lc: structure (ts,N, vec), initially ¢o £ (tso, NULL,NULL)

111: Hist[...]: vector of (fr,cc,N,vec) indexed by rs, with all
entries initialized to (NULL,NULL,NULL,NULL)

112: upon receiving CLOCK(zs) from writer w

113:

114:
115:
116:

117:

send CLOCK_ACK(fs,[c.ts) to writer w

upon receiving STORE(ts, f1,cc, N, vec) from writer w
Hist[ts] < (fr,cc,N,vec)
send STORE_ACK(ts) to writer w

upon receiving COMPLETE(ts,N,vec) from writer w

118: if ts > lc.ts then lc + (ts,N,vec)
119: send COMPLETE_ACK(ts) to writer w
120: upon receiving COLLECT(tsr) from client r

121: send COLLECT_ACK(tsr,lc) to client r

122: upon receiving FILTER (¢sr,C) from client r

123: ¢y < max({c € C:valid(c)}U{co})

124: if ¢py.ts > lc.ts then [c < ¢y, /Iwrite-back
125: (frce,vec) < Tfrcevec(Hist[cpy 15])

126: send FILTER_ACK({fsr,cp,.ts, fr,cc,vec) to client r

127: upon receiving REPAIR(tsr,c) from client r

128: if c.ts > lc.ts Avalid(c) then Ic < ¢ /Iwrite-back
129: send REPAIR_ACK(tsr) to client r

130: Predicates: .
131: valid(c) £ (H(c.N) = Hist[c.ts].N) V
verify(c.vecli],c.ts,H(c.N),k;)

Algorithm 5: Algorithm of server s; in M-PoWerStore.

Proof: Note that the reader protocol returns V # | only using a
RESTORE procedure of the single-writer version of PoWerStore.
(line 144). Hence proof of this lemma (Validity) is identical to the
proof of Lemma 4.3.

Lemma 5.4 (WRITE atomicity). Let op be a completed operation
by a correct client and let wr be a completed WRITE such that
op precedes wr. If ts,, and ts,,, are the timestamps of op and
wr respectively, then ts,,, > ts,).

Proof: By the time op completes, t + 1 correct servers hold in
Ic a candidate whose timestamp is ts,, or greater. According to
lines 118, 124, 128 of Algorithm 5, a correct server never updates
Ic with a candidate that has a lower timestamp. Hence, the writer in
wr obtains from the CLOCK procedure a timestamp that is greater
or equal to ts,, from some correct server s;. Let ¢ be the candidate
held in Ic by server s;, and let c.ts be the timestamp reported to the
writer. We now argue that c.ts is not fabricated. To see why, note
that prior to overwriting /c with ¢ in line 124 (resp. 128), server s;
checks that c is valid in line 123 (resp. 128). The valid predicate
as defined in line 131 subsumes an integrity check for c.ts. Hence,
c.ts passes the integrity check in line 100; according to the WRITE
algorithm, ts,,, > (c.ts.num+ 1,%,%) > c.ts > ts,p.

Lemma 5.5 (Proofs of Writing). If ¢ is a valid candidate, then
there exists a set Q of r + 1 correct servers such that each server
s; € Q changed Hist[c.ts] to (fri,cc,H(c.N),vec).

Proof: If ¢ is valid, then by Definition 5.1, valid(c) is true at
some correct server s;. Hence, either H(c.N) = Hist[c.ts|.Ny or

132: Definitions:

133: tsr: num, initially O
134: Q,R: set of pid, initially @
135: C: set of (ts,N,vec), initially @
136: W[L...S]: vector of (s, fr,cc,vec), initially ||
137: operation READ()
138: C,0,R<+0
139: tsré—tsr+1
140: C < COLLECT(tsr)
141: C < FILTER(ts1,C)
142: if C # 0 then
143: ¢+ ¢’ € C: highcand(c') Asafe(c)
144: V < RESTORE(c.ts)
145: REPAIR(c)
146: elseV «— L
147: returnV
148: upon receiving COLLECT_ACK(tsr,¢;) from server s;
149: Q0+« QU{i}
150: if ¢j.ts > tsg then C + CU{c;}
151: upon receiving FILTER_ACK (tsrts,fr,cc,vec) from server s;
152: R+ RU{i}; W[i] < (ts, fr,cc,vec)
153: C+C\{ceC:invalid(c)}
154: procedure REPAIR(c)
155: vec+vec st. IR CR:|R'|>t+1 A\
(Vi e R : Wli].ts = c.ts A\W[i].vec = vec')
156: if c.vec # vec then
157: c.vec < vec /lrepair
158: send REPAIR(ts7;c) to all servers
159: wait for REPAIR_ACK(tsr) from S —¢ servers
160: Predicates:
161: safe(c) 2 IR CR:|R|>t+1 A

(Vie R :Wli|.ts=cits) N\
(Vi,j € R:Wli].cc=W|jl.cc AkH(WIi].fr)=W|[j].cc[i]) A
(Vi,j € R : Wli].vec = W|j].vec)

Algorithm 6: Algorithm of client r in M-PoWerStore.

verify(c.vec[j],c.ts,H(c.N),k;) must hold at s;. By the pre-image
resistance of H, no computationally bounded adversary can acquire
¢.N from the sole knowledge of H(c.N). Hence, ¢.N stems from
some writer in a WRITE operation wr with timestamp c.ts. By
Algorithm 4, line 90, the value of ¢.N is revealed after the STORE
round in wr completed. Hence, there exists a set Q of 1+ 1
correct servers such that each server s; € Q changed Hist[c.ts]
to (fri,cc,H(c.N),vec).

Lemma 5.6 (No exclusion). Let ¢ be a valid candidate and let
rd be a READ by a correct reader that includes ¢ in C during
COLLECT. Then c is never excluded from C.

Proof: As c is valid, by Lemma 5.5 a there exists a set Q of t + 1
correct servers such that each server s; € Q changed Hist[c.ts] to
(%,%,H(c.N),vec). Hence, validByHist(c) is true at every server
in Q. Thus, no server in Q replies with a timestamp ts < c.ts in
line 126. Therefore, at most § —¢ — 1 = 2¢ timestamps received by
the reader in the FILTER round are lower than c.ts, and so c is never
excluded from C.

Lemma 5.7 (READ/WRITE Atomicity). Let rd be a completed
READ by a correct reader. If rd follows some complete

WRITE(V), then rd does not return a value older than V.

Proof: If zs is the timestamp of WRITE(V), it is sufficient to show
that the timestamp of rd is not lower than ¢s. To prove this, we show
that 3¢’ € C such that (i) ¢’.ts > ts and (ii) ¢’ is never excluded
from C.

By the time WRITE(V) completes, ¢ + 1 correct servers hold
in /c a candidate whose timestamp is ts or greater. According to
lines 118, 124, 128 of Algorithm 5, a correct server never changes
lc to a candidate with a lower timestamp. Hence, when rd is
invoked, ¢ + 1 correct servers hold candidates with timestamp ts
or greater in /c. Hence, during COLLECT in rd, some candidate
received from a correct server with timestamp ts or greater is
inserted in C. Such a candidate is necessarily valid by the integrity
checks in lines 123, 128. Let ¢’ be the valid candidate with the
highest timestamp in C. Then by Lemma 5.6, ¢’ is never excluded
from C. By line 143, no candidate ¢ such that c.ts < ¢’.ts is selected.
Since ¢’.ts > ts, no candidate with a timestamp lower than ts is
selected in rd.

Lemma 5.8. (READ atomicity). Let rd and rd’ be two completed
read operations by correct readers. If rd’ follows rd that returns
V, then rd’ does not return a value older than V.

Proof: If ¢ is the candidate selected in rd, it is sufficient to show
that the timestamp of rd’ is not lower than c.ts. We argue that C
contains a candidate ¢’ such that (i) ¢’.ts > c.ts and (ii) ¢’ is never
excluded from C.

As c is selected in rd in line 143 only if safe(c) holds, some
correct server verified the integrity of c.ts and c.N. In addition,
in REPAIR, the reader in rd checks the integrity of c.vec. We
distinguish two cases:

o Case 1: If c.vec passes the integrity check in line 156, then
the integrity of ¢ has been fully established. Hence, by the
time rd completes, 7+ 1 correct servers validated c in line 123
and changed [c to ¢ or to a higher valid candidate.

o Case 2: If vector c.vec fails the integrity check in line 156,
then in REPAIR, c is repaired in line 157 and subsequently
written back to ¢+ 1 correct servers. Hence, by the time rd
completes, ¢t + 1 correct servers validated ¢ in line 128 and
changed Ic to c or to a higher valid candidate.

Consequently, in the COLLECT round in rd’ a valid candidate ¢’
such that ¢’.zs > c is included in C, and by Lemma 5.6, ¢’ is never
excluded from C. By line 143, no candidate with a timestamp lower
than ¢’ is selected. Since ¢’.ts > c.ts, no candidate with a timestamp
lower than c.ts is selected in rd’.

Theorem 5.9 (Linearizability/Atomicity). Algorithms 4, 5 and 6
are linearizable.

Proof: To prove linearizability of history H, consider an equiva-
lent sequential history S in which all WRITES are (totally) ordered
by their timestamps selected in line 85, Fig. 4, and all reads are
(partially) ordered by the timestamp c.ts (line 140, Alg. 6), or
assigned timestamp O if they return L. If two reads rd; and rd2
are assigned the same timestamp, then we require rd; <g rd, if
rdy < Hrd,, otherwise the order of rd; and rd; in S is irrelevant.

First, note that by Lemma 5.3, S is a legal sequential history.

It is left to show that <g is a subset of <. For two WRITES,
this follows from Lemma 5.4. We now show that a complete
READ operation rd by a correct reader, which follows another

read/write operation op (i.e., rd <y op) cannot return an older
value (i.e., rd <s op). We distinguish two cases: 1) rd follows a
write operation, and 2) rd follows another read operation. THe first
case follows from Lemma 5.7, whereas the second case follows
from Lemma 5.8.

We now proceed to proving wait-free liveness.

Theorem 5.10 (Wait-free liveness). Algorithms 4, 5,and 6 satisfy
wait-free liveness.

Proof: We show that no operation invoked by a correct client
ever blocks. The wait-free liveness argument of the WRITE is
straightforward; in every round, the writer awaits acks from the
least number S —¢ of correct servers. The same argument holds
for the COLLECT and the REPAIR rounds of the READ. Hence, in
the remainder of the proof, we show that no READ blocks in the
FILTER round. By contradiction, consider a READ rd by reader r
that blocks during the FILTER round after receiving FILTER_ACK
messages from all correct servers. We distinguish two cases: (Case
1) C includes a valid candidate and (Case 2) C includes no valid
candidate.

e Case 1: Let ¢ be the highest valid candidate included in
C. We show that highcand(c) A safe(c) holds. Since ¢ is
valid, by Lemma 5.5, there exists a set Q of 4 1 correct
servers such that each server s; € Q changed Hist[c.ts] to
(fri,cc,H(c.N),vec). Thus, during the FILTER round, valid-
ByHist(c) holds at every server in Q. As no valid candidate in
C has a higher timestamp than c, (i) all servers s; € Q (at least
t+ 1) responded with timestamp c.ts, corresponding erasure
coded fragment fr;, cross-checksum cc and repair vector vec
in line 126 and (ii) all correct servers (at least S —¢) responded
with timestamps at most c.ts. By (i), ¢ is safe. By (ii), every
¢’ € C such that ¢’.ts > c.ts became invalid and was excluded
from C, implying that ¢ is highcand.

o Case 2: Here, we show that C = (. As none of the candidates
in C is valid, during FILTER, the integrity check in line 123
failed for every candidate in C at all correct servers. Hence,
at least S —t servers responded with timestamp zs¢. Since ts9
is lower than any candidate timestamp, all candidates were
classified as invalid and were excluded from C.

Theorem 5.11 (Non-skipping Timestamps). Algorithms 4, 5 and 6
implement non-skipping timestamps.

Proof: By construction, a fabricated timestamp would fail the
check in line 100. Hence, no fabricated timestamp is ever used in
a WRITE. The Lemma then directly follows from the algorithm of
WRITE.

Theorem 5.12 (Latency). Algorithms 4, 5 and 6 feature a latency
of three communication rounds for the WRITE and two for the
READ in the absence of attacks. In the worst case, the READ
latency is three communication rounds.

Proof: By Algorithm 4, the WRITE completes after three rounds,
CLOCK, STORE and COMPLETE, each taking one communication
round. In the absence of attacks, by Algorithm 6, the READ
completes after two rounds, COLLECT and FILTER, each taking one
communication round. Under BigMac [18] attacks the READ may
go to the REPAIR round, incurring one additional communication
round.

TABLE 2
Default parameters used in evaluation.

[Parameter | Default Value |
Failure threshold ¢ 1
File size 256 KB
Probability of Concurrency 1%
U 100% READ
‘Workload Distribution 100% WRITE

6 IMPLEMENTATION & EVALUATION

In this section, we describe an implementation modeling a
file storage protocol based on M-PoWerStore. We then evaluate
the performance of our implementation and we compare it to
DepSky [10].

6.1 Implementation Setup

Our Java implementation is based on the Grpc library [2] and
on the Backblaze library for constructing the dispersal codes [8] .
To evaluate the performance of our S-PoWerStore, we additionally
implemented a file storage abstraction based on DepSky. Recall
that DepSky is a single-writer multi-cloud key value store that
provides atomic semantics.

To evaluate the performance of M-PoWerStore we implemented
a multi-writer variant of ABD [7] and Phalanx [38]. Recall that
ABD is a crash-only atomic key-value store (n = 2¢ + 1) that writes
back the retrieved data in READ operation; Phalanx additionally
provides Byzantine fault tolerance guarantees through the use of
digital signatures. In a nutshell, Phalanx is a port of ABD to
the Byzantine fault model, with all writes authenticated (digitally
signed), and the number of servers adjusted to the Byzantine fault
model (2¢ +1 in ABD vs. 3¢ + 1 in Phalanx).

In our implementation, we adapted (n,k) Reed-Solomon coding
scheme (with JErasure library [1]) to encode the uploaded data
and tolerate up to n — k erasures. The length of code n equals to
the number of servers; and the dimension k =+ 1, where ¢ is
the number of Byzantine faulty servers and n = 3¢ 4+ 1. We relied
on SHA256 for hashing purposes, HMAC-SHA256 to implement
MAC S, and the signatures are generated with 2048-bit RSA for
DepSky and M-Phalanx. For simplicity, we abstract away the effect
of data origin authentication since it is typically handled as part of
the access control layer in all implementations.

We deployed our implementations on a private network con-
sisting of 1 machine with Xeon E5-2640 with 24 vCore and 32
GB RAM to host all servers, and 5 machines with Xeon E3-1240
V5 8 vCore and 32 GiB RAM as client nodes. In our network,
the communication between various machines was bridged using
a 1 Gbps switch. We assume a well-formed behavior from the
clients: each client invokes a new operation only after the previous
operation that it invoked is complete, i.e., a client may have at most
one pending operation. In our implementations, WRITE and READ
operations are served by a local database stored on disk.

We evaluate the peak throughput incurred in M-PoWerStore
in WRITE and READ operations with respect to the server failure
threshold #. We measure peak throughput as follows. We require
that each writer performs back to back WRITE operations; we then
increase the number of writers in the system until the aggregated
throughput attained by all writers is saturated. The peak throughput
is then computed as the maximum aggregated amount of data (in
bytes) that can be written/read to the servers per second. Unless
otherwise specified, we rely on the default parameters listed in

100 T T T T
S-PoWerStore Read ~—v—
90 [s-PowWerStore Write -+ e 1
80 | S-DepSky Regd LI A0 ¥ i
S-DepSky Write = i
70 e
—
7
E 60}]
=
& s0f)
c
% 40 b !
|
30 F e
20 E
10 } v J
50 100 150 200 250 300 350 400 450 500
Throughput(op/s)
(a) Single-writer throughput vs. latency in a LAN setting for # = 1.
180 T T T
S-PoWerStore Read ~—v— ¢
160 | S-PoWerStore Write ===« E
S-DepSky Read @
140 f S-DepSky Write :
o 120 F
S
T~ 100 f
>
2
5} 80 |
@®©
- 60 |
40 f
20 F
0 H H H H H
0 50 100 150 200 250 300

Throughput(op/s)
(c) Single-writer throughput vs. latency in a LAN setting for = 3.

140 T T
S-PoWerStore Read —v—
120 } S-PoWerStore Write »:-rv--- °?.__g
S-DepSky Read @« 3
100 ¢
w
é 80 |
>
2
o 60f
@
—
40
0
50 100 150 200 250 300 350
Throughput(op/s)
(b) Single-writer throughput vs. latency in a LAN setting for = 2.
22
20

18

16

. S-PoWerStore Read =—v—

S-PoWerStore Write
S-DepSky Read *
S-DepSky Write =

PR

14 b

Latency (ms)

12

1 15 2 25 3
Failure Threshold

(d) Single-writer latency vs the failure threshold in a simulated LAN
setting.

Fig. 3. Evaluation of S-PoWerStore vs. DepSky in a LAN setting. Data points are averaged over 10 independent runs; where appropriate, we include

the corresponding 95% confidence intervals.

Table 2 in our evaluation.

In our single-writer protocols, each writer writes data associated
with uniquely generated keys; to emulate multi-writer protocols,
all the writers and readers access the data pertaining to the same
key. For multi-writer protocols, we also allow contention over the
operations; namely, we allow a subset of writers/readers access
files with the same key. For completeness, we performed our
evaluation (7) in the Local Area Network (LAN) setting comprising
our aforementioned network and (ii) in a simulated Wide Area
Network (WAN) setting. We analyse the observed performance in
Section 6.2 for single-writer storage protocol and Section 6.3 for
multi-writer. Our results are presented in Figure 3 and Figure 5.

6.2 Evaluation Results of Single-Writer Protocols
Figures 3(a), 3(b), and 3(c) depict the latency incurred in S-
PoWerStore when compared to DepSky in the LAN setting, with
respect to the achieved throughput (measured in the number of
operations per second) with different threshold value. As shown in
Figure 3(a), both S-PoWerStore READ and WRITE achieve lower
latency and higher peak throughput when compared to DepSky.
When ¢ = 1, S-PoWerStore READ (WRITE) requires 8 ms (9 ms)
of latency and is able to reach a peak throughput of 480 op/s
(350 op/s) with file size 256KB, equivalent to 120 MB/s (87 MB/s).
Meanwhile, DepSky READ (WRITE) requires 18 ms (15 ms) for
latency and can only reach a peak throughput of 377 op/s (300 op/s).
Similar observations also hold when ¢t =2 (cf. Figure 3(b)) and

t = 3 (cf. Figure 3(c)).

Notice that S-PoWerStore outperforms DepSky due to the use
of lightweight cryptographic primitives. Namely, DepSky relies on
digital signatures in the metadata retrieval and write-back round
while S-PoWerStore only uses lightweight hash-based commitment
schemes. We also observe that for both protocols, the latency
incurred in READ and WRITE operations is rather similar, as both
operations requires two rounds of communication: one round
for data transmission and the other for metadata transmission.
However, we see that READ always achieves higher throughput
(37% more when t = 1, 22% when t = 2 and 33% when r = 3 in
S-PoWerStore) when compared WRITE operation. This is because
the READ operation just need to receive n —t erasure-coded data
partitions, while WRITE always sends n partitions to the servers.

Figure 3(d) shows the achieved latency of a single operation
with respect to the threshold 7. As t increases, the witnessed end-
to-end latency for all operations increases slightly due to the hash
computation on more data fragments that are transmitted to the
servers. For example, READ and WRITE operations in S-PoWerStore
require around 11 ms when ¢ = 3; this latency increases to 20 ms
and 17 ms, respectively, in the case of DepSky.

Similarly, we measured the latency w.r.t. throughput of both
protocols in the WAN setting. For that purpose, we rely on
NetEm [42] to emulate the packet delay variance specific to
WANSs. More specifically, we restrict the bandwidth from 1 Gbps to
100 Mbps and add a Pareto distribution to our links, with a mean

1400 T T T T T T T
S-PoWerStore Read 5 ‘
S-PoWerStore Write ¢ ;

1200 S-DepSky Read 4

S-DepSky Write =

1000 f T
—~
%)
é 800 T
>
g
Q 600 | 1
©
—

400 f 1

200 f 1

0

8 10 12 14 16 18 20 22 24

Throughput(op/s)
(a) Single-writer throughput vs. latency in a WAN setting for = 1.
3000 T T T
S-PoWerStore Read
S-PoWerStore Write
2500 | S-DepSky Re@d 2 9=
S-DepSky Write -
& 2000 |
S
= @
1500 f 3
2 *
13
©
3 1000 } ‘)
n®

9 10 11 12 13 14 15 16 17 18 19
Throughput(op/s)
(c) Single-writer throughput vs. latency in a WAN setting for ¢ = 3.

3000 T T

S-PoWerStore Read

S-PoWerStore Write
S-DepSky Read - :
S-DepSky Wiite e

2500 |

2000 |

1500 |

Latency (ms)

1000 f

500 f

14 16 18 20 22
Throughput(op/s)
(b) Single-writer throughput vs. latency in a WAN setting for t = 2.

110

108

106

104

102

100

Latency (ms)

98

96 F S-PoWerStore Read
S-PoWerStore Write
94 } S-DepSky Read 9 :

S-DepSky Write =

92

1 15 2 25 3
Failure Threshold

(d) Single-writer latency vs the failure threshold in a simulated WAN
setting.

Fig. 4. Evaluation of S-PoWerStore vs. DepSky in a simulated WAN setting. Data points are averaged over 10 independent runs; where appropriate,

we include the corresponding 95% confidence intervals.

of 20 ms and a variance of 4 ms.

Our results are depicted in Figures 4(a), 4(b), 4(c), and 4(d). We
observe that the operations now take around 100 ms in latency
due to the restricted bandwidth and the additional link latency in
all rounds. As a result, the peak throughput of READ (WRITE)
is reduced to 23 op/s (22 op/s) for S-PoWerStore and 23 op/s
(17 op/s) for DepSky when ¢t = 1. Our results suggest therefore
that, in the WAN setting, the difference between the S-PoWerStore
and DepSky becomes less significant, since the network latency
dominates the metadata computation.

6.3 Evaluation Results of Multiple-Writer Protocols

We now proceed to evaluate the performance of M-PoWerStore
comparing to M-ABD and M-Phalanx. Our results are depicted in
Figures 5 and 6. We can see that M-PoWerStore achieves the lowest
latency and highest peak throughput among all three protocols,
followed by M-ABD and M-Phalanx, respectively. For example,
when ¢t = 1 in the LAN setting, M-PoWerStore performs similarly to
S-PoWerStore and exhibits a latency of 8 ms and peak throughput of
457 op/s for READ and latency 12 ms and peak throughput 333 op/s
for WRITE. We contrast this to the 164 op/s peak throughput
achieved by M-ABD in READ (and 215 op/s in WRITE operations),
and to the 106 op/s peak throughput achieved by M-Phalanx in
READ (and 136 op/s in WRITE) (cf. Figure 5(a)).

Contrary to M-PoWerStore, M-ABD and M-Phalanx READ
operation is slower than WRITE operation since both M-ABD

and M-Phalanx need to write back the data after the read round.
M-Phalanx achieves even lower peak throughput as it further uses
digital signature in addition to data write-back.

In the WAN setting, the performance of M-PoWerStore is even
more pronounced when compared to M-ABD and M-Phalanx. For
example, when t = 1, M-ABD and M-Phalanx exhibit a READ
latency of 255 ms and 287 ms, respectively, which is more than
two times slower than that of M-PoWerStore. Namely, READ in
M-PoWerStore completes in only 90 ms (cf. Figure 5(a)). Recall
that in order to synchronize multiple writers, the WRITE operation
of the multi-writer protocols needs an additional round when
compared to the READ operation, which results in higher WRITE
latency of almost 118 ms when # = 1 (cf. Figure 5(a)). Finally, we
notice that the failure threshold has less impact on the performance
of M-PoWerStore in the WAN setting since the network latency
dominates the additional local computation cost. This is why the
latency of ABD READ is the double of that of ABD WRITE in the
WAN setting; this effect is less visible in the LAN setting where
network speed is no longer the major contributor in the overall
latency.

In Figure 7, we profile resource usage both on the client
side and server side. Here, we measure the amount of time
incurred for client-side computation, server-side computation,
and communication latency (both in LAN and WAN settings),
respectively for each operation. Our results show that M-ABD
incurs negligible computation compared to communication latency,

200 T T T T T T T T
4 M-PoWerStore Read =—6—
ot M-PoWerStore Write =@ T
-Phalanx Read &= |
- :Phalanx Write =
1or i M-ABD Read |
B 4 M-ABD Write
E 120 _: .
=
& 100 | : ! .
c ; \
g eof } .
| : }
60 [- :’ -
1"
40 f L |
2
20} % P .
0 -

0 50 100 150 200 250 300 350 400 450 500
Throughput(op/s)

(a) Multi-writer throughput vs. latency in a LAN setting for r = 1.

400

.* M-PoWerStore Read =—e—
350 | M-PoWerStore Write *---@--=
i M-Phalanx Read
300 M-Phalanx Write
M-ABD Read
n -
9 o50 b M-ABD Write
E .
& 200 f .
c H !
g H
© 150 | A
- i
100 f
50 |
0 i e S H H ©
0 50 100 150 200 250
Throughput(op/s)

(c) Multi-writer throughput vs. latency in a LAN setting for r = 3.

300 - r
M-PoWerStore Read =—6—
A M-PoWerStore Write =---@=-=
250 1 M-Phalanx Read &
H M-Phalanx Write =
M-ABD Read
| M-ABD Write
E
& 150}
c
2
©
- 100}
50 f
0 . 2 . . .
0 50 100 150 200 250 300
Throughput(op/s)
(b) Multi-writer throughput vs. latency in a LAN setting for = 2.
50 T T T
M-PoWerStore Read =——~ . 2
45 [M-PoWerStore Write === e
M-Phalanx Read s e
40r M-Phalanx Write swwwe e
M-ABD Read »-Er-t .o
% 35 M-ABD Write
S
~ 30
>
2
o 25
‘('5' 4
1 20}
15 F
10
4
5

1 15 2 25 3
Failure Threshold

(d) Multi-writer latency vs the failure threshold in a simulated LAN
setting.

Fig. 5. Evaluation of M-PoWerStore in the LAN setting. Data points are averaged over 10 independent runs; where appropriate, we include the

corresponding 95% confidence intervals.

while M-Phalanx WRITE consumes the most computation resources
both on the client side and the server side. We also see that for
M-PoWerStore the computation overhead is mostly borne on the
client side while the server-side computation is negligible. This is
the case since in M-PoWerStore the client needs to select a safe
candidate among the candidate list and perform erasure-coding.
Our results also show that the servers in M-PoWerStore require the
least communication and computational overhead; this confirms
our claim that M-PoWerStore scales better than M-ABD and M-
Phalanx. Namely, we see that the network latency dominates the
operation performance in the WAN setting. Since M-PoWerStore
uses PoW metadata write-back combining with erasure-coding
optimization, it incurs the least network latency when compared to
the other protocols, especially in READ operations.

In Figure 7(d), we profile the memory usage on the servers.
We see that M-PoWerStore requires more memory than the other
schemes since the servers need to maintain the history of the PoW.
However, since PoW only consists of metadata (i.e., nonce and the
hash of nonce), we argue that this overhead does not significantly
impact the performance when the history is properly pruned with
checkpoints. In fact, even when ¢ = 3, the total amount of memory
used by 13 servers only accounts for 1.8% of the total available
memory (i.e., 32 GB in our case).

Notice that our previous evaluation in Figure 3-6 only focuses on
single operation with full contention. In what follows, we vary the
client requests to take into account different write/read workloads

and contention levels.

We first consider different ratios of write/read operations in the
system and measure the latency incurred in these operations. More
specifically, we consider scenarios when the WRITE operations
compose of 20% and 40% respectively of the total amount of
client requests. Figures 8(a)-8(c) show that the latency of both
READ and WRITE operations in M-ABD and M-Phalanx decreases
when there are more writers in the system. This is due to the fact
that the WRITE operation is faster than READ in these schemes;
as a result, there are more system resources available to process
the requests when there are more writers. On the other hand, M-
PoWerStore WRITE latency increases only slightly while the READ
latency almost remains intact as the number of writers increase in
the system. Moreover, our results show that when the number of
servers increases, the performance of WRITE operations in M-ABD
and M-Phalanx are more affected by the READ since in these two
protocols, READ consumes more resources than WRITE, which
is even further exacerbated when the fault tolerance threshold
increases.

We also consider the case when a subset of the client requests
involves concurrent data access. In our subsequent experiments,
we allow 0%, 10%, 20% and 100% respectively of the clients to
access the same data (i.e., indexed by the same key) and measure
the differences in the peak throughput. The results are shown in
Figures 8(d)-8(f). Our results show that the contention level does
not influence the performance of all three protocols due to memory

1800 ——— ————
A M-PoWerStore Read ~—&—
1600 : : M-PoWerStore Write «---e-- 1
H M-Phalanx Read ==
1400 f H M-Phalanx Write =g 1
i M-ABD Read -
@ 1200 f Iy M-ABD Write 1
= :
1000 f J
>
2
I 800 | J
@©
— 600 | J
400 |
A
200 } R P W S o |
AT e
2 4 6 8 10 12 14 16 18 20 22 24
Throughput(op/s)
(a) Multi-writer throughput vs. latency in a WAN setting for r = 1.
4500 T T T T
M-PoWerStore Read ~—e—
4000 F 'y M-PoWerStore Write =---e--
i M-Phalanx Read =
3500 | M-Phalanx Write sau: 1
M-ABD Read
@ 000 F M-ABD Write 1
£
~ 2500 f .
>
fo 2000 f .
© H :
- 100 A&
w000
500 £ "4
i
2 4 6 8 10 12 14 16 18

Throughput(op/s)
(c) Multi-writer throughput vs. latency in a WAN setting for # = 3.

3000 T T T T T T T
A M-PoWerStore Read ~—6—
H M-PoWerStore Write ===«
2500 f M-Phalanx Read * :
M-Phalanx Write =
H M-ABD Read
@ 2000 f 4 M-ABD Write
E
& 1500 b
c i
(7] i
© A
— 1000 |
500 |
A &
2 4 6 8 10 12 14 16 18 20
Throughput(op/s)
(b) Multi-writer throughput vs. latency in a WAN setting for t = 2.
600 T T
M-PoWerStore Read =—e—
M-PoWerStore Write =---@--=
500 | M-Phalanx Read »ées 3
M-Phalanx Write swoaewe e
M-ABD Read =-gk= e
o 400 | M-ABD Write e
e | e
= | e
300 k..o
8 £
]
© o
-1 200 f
100 £
0 H H H
1 15 2 25 3

Failure Threshold

(d) Multi-writer latency vs the failure threshold in a simulated WAN
setting.

Fig. 6. Evaluation of M-PoWerStore in a simulated WAN setting. Data points are averaged over 10 independent runs; where appropriate, we include

the corresponding 95% confidence intervals.
caching.

7 RELATED WORK

HAIL [11] is a distributed cryptographic storage system that
implements a multi-server variant of Proofs of Retrievability (PoR)
[12] to ensure integrity protection and availability (retrievability)
of files dispersed across several storage servers. Like PoWerStore,
HAIL assumes Byzantine failure model for storage servers, yet the
two protocols largely cover different design space. Namely, HAIL
considers a mobile adversary and a single client interacting with the
storage in a synchronous fashion. In contrast, PoWerStore assumes
static adversary, yet assumes a distributed client setting in which
clients share data in an asynchronous fashion. Multiple clients are
also supported by IRIS [48], a PoR-based distributed file system
designed with enterprise users in mind that stores data in the clouds
and is resilient against potentially untrustworthy service providers.
However, in IRIS, all clients are pre-serialized by a logically
centralized, trusted portal which acts as a fault-free gateway for
communication with untrusted clouds. In contrast, PoWerStore
relies on the highly available distributed PoW technique, which
eliminates the need for any trusted and/or fault-free component.
Notice that data confidentiality is orthogonal to all of HAIL, IRIS
and PoWerStore protocols.

In the context of distributed storage asynchronously shared
among multiple fault-prone clients across multiple servers without
any fault-free component, a seminal crash-tolerant storage imple-

mentation (called ABD) was presented in [6]. ABD assumes a
majority of correct storage servers, and achieves strong consistency
by having readers write back the data they read. As shown in
[22], server state modifications by readers introduced in ABD are
unavoidable in robust storage such as ABD, where robustness
is characterized by both strong consistency and high availability.
However, robust storage implementations differ in the writing
strategy employed by readers: in some protocols readers write-back
data (e.g., [4], [6], [19], [23], [25], [39]) whereas in others readers
only write metadata to servers (e.g., [15], [16], [21], [22]).

Previous robust storage protocols in which readers write only
metadata, either do not tolerate Byzantine faults [15], [16], [22],
or require a total number of servers linear in number of readers
to tolerate ¢ Byzantine servers [21], and hence are prohibitively
expensive. PoWerStore is hence the first robust BFT protocol that
uses a bounded number of storage servers and has readers write
only metadata to servers.

Clearly, most distributed BFT storage implementations have been
focusing on using as few servers as possible, ideally 37 + 1, which
defines optimal resilience in the asynchronous model [40]. This was
first achieved by Phalanx [39], a BFT variant of ABD [6]. Phalanx
uses digital signatures, i.e., self-verifying data, to port ABD to
the Byzantine model, maintaining the latency of ABD, as well as
its data write-backs. However, since digital signatures introduce
considerable overhead [37], [43], protocols that feature lightweight
authentication, or no data authentication at all (unauthenticated

10000
1000 f
100
10 |

client(compute) _
[server(compute)

network(LAN) nmmm—
network(WAN)

Latency (ms)

0.1
0.01
0.001

Protocol operations

10000
1000
100
10

client(compute) =
' server(compute

network(LAN) ~
network(WAN

Latency (ms)

0.1
0.01
0.001

Protocol operations

(a) Multi-writer operation latency profiling in a LAN/WAN setting for (b) Multi-writer operation latency profiling in a LAN/WAN setting for

t=1.

10000 f
1000
100
10

1

0.1
0.01
0.001

network(LAN) — 1

client(compute) =
% network(WAN)

L server(compute) @

Latency (ms)

Protocol operations

(c) Multi-writer operation latency profiling in a LAN/WAN setting for

t=3.

t=2.
18
S 16t
% 14}
3 1.2
> 1
g 08}
) 0.6 f
€ o4l
é 02 3
< .
0 < R/ 2
6’0 0Q é?/ é?/ o) o)
Y, TR 2 2, Q. e
7 S * * & &
% QO’ L&, '% O O
% ‘90, By G*,p
% %

Protocol operations

(d) Multi-writer server memory usage profiling.

Fig. 7. Evaluation of M-PoWerStore in the LAN and WAN setting. Data points are averaged over 10 independent runs; where appropriate, we include

the corresponding 95% confidence intervals.

model) have been designed. Unfortunately, in the unauthenticated
model, optimal resilience in BFT storage incurs considerable
latency penalties: at least two rounds of communication between
clients and servers for writes [3] and at least four rounds® for reads
[19], even in the single writer case. To avoid such a considerable
overhead, some robust BFT storage protocols (e.g., PASIS [24])
store unauthenticated data across 4¢ 4- 1 servers.

Clearly, there is a big gap in efficiency (and, in particular,
communication latency and the number of servers) between storage
protocols that use self-verifying data and those that assume no
authentication. Loft [27] aims at bridging this gap and implements
erasure-coded optimally resilient linearizable storage while opti-
mizing the failure-free case. Loft uses homomorphic fingerprints
and MAC:s; it features 3-round wait-free writes, but reads are based
on data write-backs and data might be unavailable in case of heavy
read/write concurrency. Similarly, our Proofs of Writing (PoW)
incorporate lightweight authentication that is, however, sufficient
to achieve optimal latency and to facilitate metadata write-backs
while guaranteeing optimal resilience, high-availability and strong
consistency. We find PoW to be a fundamental improvement in
the light of BFT storage implementations that explicitly renounce
strong consistency in favor of weaker consistency notions due to
the high cost of data write-backs (e.g., [10]).

After the publication of our preliminary work on PoWer-

5. Under constant number of write rounds.

Store [20], several systems and storage protocols that target atomic
semantics and optimize the storage of metadata were proposed.
Hybris [49] is a multi-writer atomic key value store that stores
metadata in an atomic wait-free coordination service (Apache
ZooKeeper) and data across cloud-based key-value stores. Unlike
PoWerStore, Hybris provides only finite-write termination which
is a weaker notion that wait-freedom guaranteed by PoWerStore.
Furthermore, Hybris works in a different network model, requiring
partial synchrony, whereas PoWerStore is an asynchronous pro-
tocol. MDStore [13] and AWE [5] remove the partial synchrony
requirement from Hybris-like 2-layer architectures separating data
and metadata, and guarantee wait-freedom, but their latency is not
optimal as latency of PoWerStore. Furthermore, [15] proposes
CASGC which is basically a version of our M-PoWerStore
restricted to the crash failure model. The other notable difference
between CASGC and M-PoWerStore is that CASGC does not
incure infinite storage costs, whereas M-PoWerStore stores the
entire history of the shared object indexed by writer timestamps. It
is interesting future work to attempt to combine both approaches
and obtain a version of M-PoWerStore that does not store the entire
history of the shared object.

A separate line of research aims at a family of so-called forking
semantics (e.g., [41]), which relax atomic semantics, yet require
no trusted components whatsoever. Systems guaranteeing forking
semantics guarantee that after a single atomicity violation by the

M-PoWerStore Read —e—
M-PoWerStore Write =---e---
M-Phalanx Read »-a-
@ 40}
E .
> 35 M-ABD Write
2
5 30
S 5t
20
15 F T
@ rrrmnnnnannn—a. @em
0 20 40 60 80 100

Writer workload (%)

110
100 F M-PoWerStore Read —e— |
M-PoWerStore Write ==
% M-Phalanx Read > B
~ 80 i :
£ ‘
= 0 M-ABD Write
& 60
5
LB' 50
40
30
20
q [3
e
10
0 20 40 60 80 100

Writer workload (%)

(a) Multi-writer latency vs. writer workload in a LAN setting for (b) Multi-writer latency vs. writer workload in a LAN setting for

t=1.
200 T T T
180 M-PoWerStore Read —e—
M-PoWerStore Write -
160 M-Phalanx Read -
_ 140 M-Phalanx Write *
[4) BD Read
E 12 M-ABD Write.
& 100
g
§ 80
60
40
20— grd
0
0 20 40 60 80 100

Writer workload (%)

t=2.
450 — T s
M-POWerStore Read —e—
400 M-PoWerStore Write =---e---+ 1
- M-Phalanx Read
& 350 M-Phalanx Write *
5 i M-ABD Read
5 300 M-ABD Write
£
= 250
<4
£ 200
150
100 4 4 4
0 5 10 20 100

Contention (%)

(c) Multi-writer latency vs. writer workload in a LAN setting for (d) Multi-writer peak throughput vs. data contention in a LAN

t=3.
300
o M-Pg\WerStore Read —e—: 4
M-PoWerStore Write e

250 M-Phalanx Read .
o : M-Phalanx Wyite
€ L0 M-ABD Read
= M-ABD Write
Q.
=
S 150
o
ey
'_

100

50
0 5 10 20 100

Contention (%)

setting for r = 1.

250
| B ore Read —e—
M-PoWerStore Write -
200 M-Phatanx-Read ...
@ M-Phalanx Write s
g 15 M-ABD Read
5 M-ABD Write
Q.
Ny
S 100
<]
=
'_
50 " x 4
0 H H H
0 5 10 20 100

Contention (%)

(e) Multi-writer peak throughput vs. data contention in a LAN (f) Multi-writer peak throughput vs. data contention in a LAN

setting for t = 2.

setting for t = 3.

Fig. 8. Evaluation of M-PoWerStore in the LAN setting. Data points are averaged over 10 independent runs; where appropriate, we include the

corresponding 95% confidence intervals.

service, the views seen by two inconsistent clients can never again
converge. PoWerStore avoids the drawbacks of fork-consistent
systems (reflected in, e.g., difficulties in understanding forking
semantics and exploiting them in practice [45]), by offering easily
understandable, fully linearizable, (i.e., atomic) semantics.

8 CONCLUSION

In this paper, we presented PoWerStore, an efficient robust
storage protocol that achieves optimal latency in the single
writer setting, measured in maximum (worst-case) number of
communication rounds between a client and storage servers. We
also separately presented a multi-writer variant of our protocol

called M-PoWerStore. At the heart of both PoWerStore and M-
PoWerStore protocols are Proofs of Writing (PoW): a storage
technique inspired by commitment schemes in the flavor of [26],
that enables single-writer PoWerStore to write and read in 2 rounds
which we show optimal. The efficiency of our proposals stems from
combining lightweight cryptography, erasure coding and metadata
writebacks, where readers write-back only metadata to achieve
linearizability.

While robust BFTs have been often criticized for being pro-
hibitively inefficient, our findings suggest that efficient and robust
BFTs can be realized in practice by relying on lightweight crypto-
graphic primitives without compromising worst-case performance.

Our work has promising practical potential, for being deployed in

the context of multiple clouds [32], which views clouds from mul-
tiple providers to be seen as independently failing but potentially
untrusted. As future work, we highlight as very interesting the prob-
lem of combining crash-tolerant storage smilax to M-PoWerStore
(CASGC [15]) which does not incur unbounded storage costs, with
Byzantine fault-tolerance of M-PoWerStore. This would pave the
path to practical deployments of M-PoWerStoreacross multiple
untrusted clouds, in the context of a distributed key value store,
akin to Amazon S3, building a dependable and robust cross-cloud
storage.

REFERENCES

(1]
(2]
[3]
[4]

[3]

[6]

[7]

[8]
[91

[10]

(1]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

JErasure 0.2.0. https:/libraries.io/maven/de.uni-potsdam.hpi.jerasure:
JErasure, 2013.

GRPC. Available online at http://www.grpc.io, 2019.

Ittai Abraham, Gregory Chockler, Idit Keidar, and Dahlia Malkhi.
Byzantine Disk Paxos: Optimal Resilience with Byzantine Shared Memory.
Distributed Computing, 18(5):387—408, 2006.

Amitanand S. Aiyer, Lorenzo Alvisi, and Rida A. Bazzi. Bounded Wait-
free Implementation of Optimally Resilient Byzantine Storage Without
(Unproven) Cryptographic Assumptions. In Proceedings of DISC, 2007.
Elli Androulaki, Christian Cachin, Dan Dobre, and Marko Vukoli¢.
Erasure-coded byzantine storage with separate metadata. In Principles
of Distributed Systems - 18th International Conference, OPODIS 2014,
Cortina d’Ampezzo, Italy, December 16-19, 2014. Proceedings, pages
76-90, 2014.

Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing Memory
Robustly in Message-Passing Systems. J. ACM, 42:124-142, January
1995.

Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly
in message-passing systems. Journal of the ACM (JACM), 42(1):124-142,
1995.

Backblaze. JavaReedSolomon. Available online at https://github.com/
Backblaze/JavaReedSolomon, 2017.

Rida A. Bazzi and Yin Ding. Non-skipping Timestamps for Byzantine
Data Storage Systems. In Proceedings of DISC, pages 405-419, 2004.
Alysson Neves Bessani, Miguel P. Correia, Bruno Quaresma, Fernando
André, and Paulo Sousa. Depsky: dependable and secure storage in a
cloud-of-clouds. In Proceedings of EuroSys, pages 31-46, 2011.

Kevin D. Bowers, Ari Juels, and Alina Oprea. Hail: a high-availability
and integrity layer for cloud storage. In CCS, pages 187-198, 2009.
Kevin D. Bowers, Ari Juels, and Alina Oprea. Proofs of retrievability:
theory and implementation. In CCSW, pages 43-54, 2009.

Christian Cachin, Dan Dobre, and Marko Vukoli¢. Separating data
and control: Asynchronous BFT storage with 2t + 1 data replicas.
In Stabilization, Safety, and Security of Distributed Systems - 16th
International Symposium, SSS 2014, Paderborn, Germany, September
28 - October 1, 2014. Proceedings, pages 1-17, 2014.

Christian Cachin and Stefano Tessaro. Optimal Resilience for Erasure-
Coded Byzantine Distributed Storage. In Proceedings of DSN, pages
115-124, 2006.

Viveck R. Cadambe, Nancy A. Lynch, Muriel Médard, and Peter M.
Musial. A coded shared atomic memory algorithm for message passing
architectures. Distributed Computing, 30(1):49-73, 2017.

Brian Cho and Marcos K. Aguilera. Surviving congestion in geo-
distributed storage systems. In Proceedings of USENIX ATC, pages
4040, 2012.

Gregory Chockler, Dahlia Malkhi, and Danny Dolev. Future directions in
distributed computing. chapter A data-centric approach for scalable state
machine replication, pages 159-163. 2003.

Allen Clement, Edmund L. Wong, Lorenzo Alvisi, Michael Dahlin,
and Mirco Marchetti. Making byzantine fault tolerant systems tolerate
byzantine faults. In Proceedings of NSDI, pages 153-168, 2009.

Dan Dobre, Rachid Guerraoui, Matthias Majuntke, Neeraj Suri, and Marko
Vukoli¢. The Complexity of Robust Atomic Storage. In Proceedings of
PODC, pages 59-68, 2011.

Dan Dobre, Ghassan Karame, Wenting Li, Matthias Majuntke, Neeraj
Suri, and Marko Vukolic. Powerstore: proofs of writing for efficient
and robust storage. In 2013 ACM SIGSAC Conference on Computer and
Communications Security, CCS’13, Berlin, Germany, November 4-8, 2013,
pages 285-298, 2013.

Partha Dutta, Rachid Guerraoui, Ron R. Levy, and Marko Vukoli¢. Fast
Access to Distributed Atomic Memory. SIAM J. Comput., 39:3752-3783,
December 2010.

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

,_
W
~

—

,_
W
\O

—

[40]
[41]

[42]

[43]
[44]

[45]

[46]

[47]

[48]

[49]

[50]

18

Rui Fan and Nancy Lynch. Efficient Replication of Large Data Objects.
In Proceedings of DISC, pages 75-91, 2003.

Chryssis Georgiou, Nicolas C. Nicolaou, and Alexander A. Shvartsman.
Fault-tolerant Semifast Implementations of Atomic Read/Write Registers.
J. Parallel Distrib. Comput., 69(1):62—79, January 2009.

Garth R. Goodson, Jay J. Wylie, Gregory R. Ganger, and Michael K. Reiter.
Efficient Byzantine-Tolerant Erasure-Coded Storage. In Proceedings of
DSN, 2004.

Rachid Guerraoui and Marko Vukolié. Refined quorum systems. Dis-
tributed Computing, 23(1):1-42, 2010.

Shai Halevi and Silvio Micali. Practical and provably-secure commitment
schemes from collision-free hashing. In Proceedings of CRYPTO, pages
201-215, 1996.

James Hendricks, Gregory R. Ganger, and Michael K. Reiter. Low-
overhead Byzantine fault-tolerant storage. In Proceedings of SOSP, pages
73-86, 2007.

Maurice Herlihy. Wait-Free Synchronization. ACM Trans. Program. Lang.
Syst., 13(1), 1991.

Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A Correctness
Condition for Concurrent Objects. ACM Trans. Program. Lang. Syst.,
12(3), 1990.

Prasad Jayanti, Tushar Deepak Chandra, and Sam Toueg. Fault-tolerant
Wait-free Shared Objects. J. ACM, 45(3), 1998.

Petr Kuznetsov and Rodrigo Rodrigues. BftwS: Why? When? Where?
workshop on the theory and practice of Byzantine fault tolerance. SIGACT
News, 40(4):82-86, 2009.

Marc Lacoste, Markus Miettinen, Nuno Neves, Fernando M. V. Ramos,
Marko Vukolié, Fabien Charmet, Reda Yaich, Krzysztof Oborzynski,
Gitesh Vernekar, and Paulo Sousa. User-centric security and dependability
in the clouds-of-clouds. IEEE Cloud Computing, 3(5):64-75, 2016.
Leslie Lamport. On Interprocess Communication. Distributed Computing,
1(2):77-101, 198e6.

Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine
generals problem. ACM Trans. Program. Lang. Syst., 4(3):382-401, 1982.
Barbara Liskov and Rodrigo Rodrigues. Tolerating Byzantine Faulty
Clients in a Quorum System. In Proceedings of ICDCS, 2006.

Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output
automata. CWI Quarterly, 2:219-246, 1989.

Dahlia Malkhi and Michael K. Reiter. A High-Throughput Secure Reliable
Multicast Protocol. J. Comput. Secur., 5(2):113-127, March 1997.
Dahlia Malkhi and Michael K. Reiter. Byzantine Quorum Systems.
Distributed Computing, 11(4):203-213, 1998.

Dahlia Malkhi and Michael K. Reiter. Secure and Scalable Replication in
Phalanx. In Proceedings of SRDS, pages 51-58, 1998.

Jean-Philippe Martin, Lorenzo Alvisi, and Michael Dahlin. Minimal
Byzantine Storage. In Proceedings of DISC, pages 311-325, 2002.
David Mazieres and Dennis Shasha. Building secure file systems out of
byantine storage. In PODC, pages 108-117, 2002.

NetEm. NetEm, the Linux Foundation. Website, 2009. Available online
at http://www.linuxfoundation.org/collaborate/workgroups/networking/
netem.

Michael K. Reiter. Secure Agreement Protocols: Reliable and Atomic
Group Multicast in Rampart. In Proceedings of CCS, pages 68-80, 1994.
Adi Shamir. How to share a secret. Commun. ACM, 22(11):612-613,
November 1979.

Alexander Shraer, Christian Cachin, Asaf Cidon, Idit Keidar, Yan
Michalevsky, and Dani Shaket. Venus: verification for untrusted cloud
storage. In CCSW, pages 19-30, 2010.

Alexander Shraer, Jean-Philippe Martin, Dahlia Malkhi, and Idit Keidar.
Data-centric reconfiguration with network-attached disks. In Proceedings
of LADIS, pages 22-26, 2010.

Atul Singh, Tathagata Das, Petros Maniatis, Peter Druschel, and Timothy
Roscoe. Bft protocols under fire. In Proceedings of NSDI, pages 189-204,
2008.

Emil Stefanov, Marten van Dijk, Ari Juels, and Alina Oprea. Iris: a
scalable cloud file system with efficient integrity checks. In ACSAC, pages
229-238, 2012.

Paolo Viotti, Dan Dobre, and Marko Vukoli¢. Hybris: Robust hybrid
cloud storage. TOS, 13(3):27:1-27:32, 2017.

Sue-Hwey Wu, Scott A. Smolka, and Eugene W. Stark. Composition
and behaviors of probabilistic i/o automata. In Proceedings of CONCUR,
pages 513-528, 1994.

a<e

Dan Dobre is a Patent Examiner in European
Patent Office in Munich since 2014. He received
his PhD degree from TU Darmstadt, Germany, in
2010. Then he worked as a senior researcher
in NEC Laboratories Europe, with a focus on
fault-tolerance and distributed storage. This work
was done while Dan Dobre was working at NEC
Laboratories Europe.

Ghassan O. Karame is a Manager and Chief re-
searcher of Security Group of NEC Laboratories
Europe. He received his Masters of Science from
Carnegie Mellon University (CMU) in December
2006, and his PhD from ETH Zurich, Switzerland,
in 2011. Until 2012, he worked as a postdoctoral
researcher in ETH Zurich. He is interested in all
aspects of security and privacy with a focus on
cloud security, SDN/network security and Bitcoin
security. He is a member of the IEEE and of
the ACM. More information on his research at

http://ghassankarame.com/.

Wenting Li is a Senior Software Developer at
NEC Laboratories Europe. She received her Mas-
ters of Engineering in Communication System
Security from Telecom ParisTech in September
2011, and a dipl.ing. degree in Information Secu-
rity from Shanghai JiaoTong University in 2009.
She is interested in system security with a focus
on distributed system and loT devices.

Matthias Majuntke is an Engagement Manager
in Capgemini, Berlin. He received his PhD in
September 2012 at DEEDS Groups, Computer
Science Department, Technische Universitat
Darmstadt. Before that, he received his Diploma
degree in Computer Science from RWTH Aachen
University in 2006. This work was done while
Matthias Majuntke was working at TU Darmstadt.

Neeraj Suri received his Ph.D. from the Univer-
sity of Massachusetts at Amherst. He currently
holds the Chair Professorship in “Dependable
Systems and Software” at TU Darmstadt, Ger-
many. His earlier appointments include the Saab
Endowed Chair Professorship, faculty at Boston
University and multiple sabbaticals at Microsoft
Research. His research interests focus on design,
analysis and assessment of trustworthy (depend-
able & secure) distributed systems and software.

‘-

19

Marko Vukolié¢ joined IBM Research in January
2015 as a Research Staff Member and earlier
was a Post-Doc and Intern in IBM. Before that,
he was a faculty in EURECOM, and a visiting
professor at Systems Group @ ETH Zurich. He
obtained a Doctor of Science (PhD) degree in
Distributed Systems from EPFL in the Distributed
Programming Laboratory (LPD) in 2008. His
research interests lie in the broad area of dis-
tributed systems, more specifically fault-tolerance,
blockchain and distributed ledgers, cloud comput-

ing security and distributed storage.

