
Efficient Robust Storage using Secret Tokens∗

Technical Report TR-TUD-DEEDS-07-01-2009

Dan Dobre, Matthias Majuntke, Marco Serafini and Neeraj Suri

{dan,majuntke,marco,suri}@cs.tu-darmstadt.de

August 3, 2009

Abstract

We present algorithms that reduce the time com-
plexity and improve the scalability of robust stor-
age for unauthenticated data. Robust storage en-
sures progress under every condition (wait-freedom)
and never returns an outdated value (regularity) nor
a forged value (Byzantine fault tolerance). The algo-
rithms use secret tokens, which are values randomly
selected by the clients and attached to the data writ-
ten into the storage. Tokens are secret because they
cannot be predicted by the attacker before they are
used, and thus revealed, by the clients. Our algo-
rithms do not rely on unproven cryptographic as-
sumptions as algorithms based on self-verifying data.
They are optimally-resilient, and ensure that reads
complete in two communication rounds if readers do
not write into the storage, or in one communication
round otherwise.

1 Introduction

We study the problem of efficiently implementing a
robust storage for unauthenticated data from Byzan-
tine storage components. Robust storage is an ab-
straction which supports read and write operations
that are always live (wait-freedom) and read oper-
ations that never return an outdated or a spurious
value (regularity). A robust algorithm uses passive

∗Research funded in part by EC Inspire, Microsoft Research
and DFG GRK 1362 (TUD GKmM)

storage components called base objects (or objects)
that may suffer Nonresponsive-arbitrary faults [1].
Robust storage implementations for unauthenticated
data are attractive because they do not incur the
overhead of cryptography and they are invulnerable
to cryptographic attacks. Existing unauthenticated
algorithms with optimal resilience and optimal time-
complexity [2–6] have a much higher (worst-case)
read latency compared to algorithms storing self-
verifying data, using digital signatures [7–9]. This is
critical because many practical workloads are dom-
inated by read operations. Therefore, the natural
question arises if it is also possible to achieve mini-
mal read latency without fundamentally strengthen-
ing the assumptions of the system model.

In this paper we propose two robust storage imple-
mentations for unauthenticated data with optimal re-
silience and optimal time complexity. The first algo-
rithm supports unbounded readers and features con-
stant read complexity. The second algorithm features
fast reads, i.e., every read operation terminates after
one round of communication with the base objects.
Our algorithms circumvent the lower bounds estab-
lished in [2, 4] by using secret tokens. A secret token
(briefly token) is a value randomly selected by the
client and attached to the messages sent to the base
objects. The secrecy property of a token selected by
a correct client is that the adversary can not generate
its value before the client actually uses the token.

Secret tokens are useful because they prevent faulty
base objects from simulating client operations (read
or write) that have not yet been invoked but will ac-

1

tually occur at some later point. However, tokens are
weaker than signatures, because they cannot prevent
a faulty base object from successfully forging a value
that is never written. Consider for instance the lower
bound of reading from a safe storage with optimal
resilience [4]. It states that with t faulty objects, a
read that does not modify the base objects takes at
least t + 1 communication rounds before it can read
a value. In each read round, a different malicious
object simulates a concurrency with the same write,
thereby triggering a new read round. With secret to-
kens, the second read round definitely reveals which
value can be returned and the read terminates.

The assumption that tokens are secret can be vio-
lated with some probability. However, this probabil-
ity can be arbitrarily reduced, for example, by uni-
formly and independently generating random tokens
of k bits and by increasing the value of k. Note that
in practice, assumptions in general hold only with a
certain probability, e.g., the assumption that no more
than t base objects fail.

Our first algorithm does not require readers to
modify the base objects. As a consequence, it sup-
ports an unbounded number of possibly malicious
readers. Every read completes after two communi-
cation rounds, which we show to be a tight bound.
Thus, the algorithm improves on the read complex-
ity of t + 1 rounds established for unauthenticated
storage with optimal resilience when readers do not
write [4]. Our second algorithm guarantees that ev-
ery read is fast, i.e. it terminates after a one com-
munication round by allowing readers to modify the
base objects. The general lower bound of two rounds
for reading from a robust storage with optimal re-
silience [2] is circumvented using tokens which are
written by readers into the storage.

An alternative approach to the use of secret tokens
to reduce the time-complexity is the use of cryptog-
raphy, namely digital signatures [7–9]. Digital sig-
natures generally require the generation of a secret
(e.g. private) key, which entails the generation of a
random bit string. Secret tokens have the following
advantages over signatures: (1) no certification and
key pre-distribution/sharing is needed, eliminating
the need for a PKI and/or a trusted dealer; (2) no un-
proven assumptions such as the hardness of factoriza-

tion or of discrete logarithm computation are needed;
(3) the assumption of a computationally bounded ad-
versary is not needed; (4) sampling of secret tokens
can be done offline or asynchronously, without im-
posing an overhead in the critical execution path of
the algorithm as done if signatures are used. Our
algorithms are also designed to gracefully degrade
their properties if the secrecy of the tokens is violated,
whereas existing authenticated protocols do not dis-
cuss the system behaviors if signatures can be forged
by the adversary.

1.1 Previous and Related Work

The different types of read/write storage safe, reg-
ular and atomic (in increasing strength) have been
introduced by Lamport [10]. The study of reliable
distributed storage using faulty storage components
was initiated in [11] for the crash model and was ex-
tended to the Byzantine model in [7]. Since then,
several Byzantine resilient distributed storage algo-
rithms have been developed. However, only a few
of them exhibit the features of robustness and opti-
mal resilience. For instance, some implementations
do not ensure wait-freedom [12] but weaker termina-
tion guarantees, such as obstruction-freedom [13] in-
troduced in [14], or finite-writes [4]. Other works im-
plement only weaker safe storage semantics [1,2,4,7].
Safe storage may return arbitrary values under con-
currency.

Distributed storage has also been studied in a
model where active base objects are able to push
messages to subscribed clients and that are able to
communicate with each other [15–17]. In our work
we consider passive base objects which are only able
to respond to client requests and do not commu-
nicate. Different works assume a stronger model
where data is authenticated (called self-verifying
data) [7–9], typically using digital signatures. As dis-
cussed, such solutions entail a certification and a key
pre-distribution phase, they are often based on un-
proven assumptions, they are not secure against com-
putationally unbounded adversaries and they entail
a noticeable computation overhead.

Lower bounds have shown that protocols using the
optimal number of 3t + 1 base objects [15] require at

2

least two rounds to implement both read and write
operations [2,4]. If readers are not allowed to modify
the state of the base objects, the read latency is linear
in the number of the base objects [4]. Our algorithms
have a write complexity of two rounds, which is op-
timal. The read lower bounds mentioned above are
circumvented using secret tokens.

The authors of [3, 5] study the best case complex-
ity of robust atomic storage. However, reads are not
bounded wait-free, requiring an unbounded number
of rounds in the worst case. Recent works have stud-
ied amnesic distributed storage [5,6,18,19]. Amnesic
storage algorithms do not store the entire history of
written values in the base objects [19].

1.2 Summary of Contributions

We now briefly summarize our contributions.

(1) We show that secret tokens can be used to re-
duce the read complexity of unauthenticated storage
with optimal resilience from O(n) rounds [4], where
n is the number of base objects, to just two commu-
nication rounds. The resulting algorithm supports
a possibly unbounded number of malicious readers.
Our implementation is gracefully degrading. Even if
the secrecy of tokens is violated, the algorithm pre-
serves the safety properties of regular storage.

(2) We show that if readers do not write, then the
cost of two communication rounds of the read op-
eration is a lower bound for every unauthenticated
storage algorithm with optimal resilience. The lower
bound of [4] does not hold in a model that allows the
use of secret tokens. Therefore, the time complexity
of our first algorithm is optimal.

(3) Under the assumption that readers can mod-
ify the base objects, we exhibit an implementation in
which every read completes after one communication
round. The read lower bound of two communication
rounds [2] is circumvented also in this case by using
secret tokens. This algorithm is also gracefully de-
grading. It preserves wait-freedom and never returns
a forged value. It may however return an outdated
value if the secrecy of tokens is violated.

2 System Model and Defini-

tions

We consider an asynchronous distributed system con-
sisting of a collection of clients, interacting with a fi-
nite collection of n storage elements (called base ob-
jects). Clients are divided into a singleton writer pro-
cess and a (possibly infinite) set of reader processes.
When needed, the number of readers is denoted by r.
Up to t < ⌊n/3⌋ base objects can be nonresponsive-
arbitrary [1]. Any number of reader processes can
suffer Byzantine failures and the writer may fail by
crashing. Clients communicate with the base objects
by message-passing using point-to-point reliable com-
munication channels. Base objects do not communi-
cate with each other and do not push messages to
clients.

We assume the existence of a function GetToken

used by clients that takes no arguments and outputs
a value in {0, 1}∗ and has the following property:
Secrecy: The adversary cannot generate the ith out-
put of function GetToken before the ith invocation of
GetToken.

This assumption can be implemented by sampling
a value (called token) randomly, uniformly and inde-
pendently from {0, 1}k. With 2k different tokens and
large k (in practice a few bytes suffice), the probabil-
ity of creating a token before learning it is negligibly
small.

A storage abstraction is a data structure with an
initial value v0 and two operations: write(v), which
stores v 6= v0 in the storage and read, which returns
the value from the storage. We say that an operation
op is complete in a run if the run contains a response
step for op. For any two operations op and op′, when
the response step of op precedes the invocation step
of op′, we say op precedes op′. If neither op nor op′

precedes the other then they are concurrent.

A regular storage returns the value of the last com-
plete write preceding read, or of some concurrent
write. A safe storage behaves like a regular one only
if no write overlaps the read. Else, it may return
arbitrary values.

The time-complexity (or latency) of a distributed
storage algorithm is defined as the number of com-

3

munication round-trips from the clients to the base
objects and back.

3 An Implementation Support-

ing Unbounded Readers

Our first algorithm uses n ≥ 3t + 1 base objects to
implement a multi-reader single-writer (MRSW) reg-
ular storage and features optimal time complexity for
both operations (see Section 3.4). In the following we
give a detailed description of the algorithm.

3.1 Overview

Both read and write operations take at most two
rounds. In each round, the client sends a message to
all objects. Each round terminates at the latest after
receiving matching replies from n− t correct objects.
A value is written in two consecutive phases, called
pre-write and write phase. In the first read round,
the reader samples a set of candidates such that the
value returned after the second round is among them.
In the second round, the reader collects from the ob-
jects copies of the values in the candidate set, until
it finds a value to return.

The base objects maintain the array history[0 . . .]
used by the base objects to keep track of the val-
ues written. The entry history[ts].pw stores a
timestamp-value pair tsval of the form 〈ts, v〉 and
history[ts].w the pair 〈tsval, token〉. The initial to-
ken value is the empty token denoted ǫ. Variable ts
stores the timestamp of the last written value. The
variables of an object are collectively called fields.

In the pre-write phase, of write(v), the writer: (1)
increases its timestamp ts, (2) assigns the timestamp-
value pair 〈ts, v〉 to its variable pw and (3) writes
pw to n − t objects’ history[ts].pw fields (short pw
field). In the write phase, the writer (1) saves the
previously written value w in the variable wp, (2)
invokes GetToken and assigns its output to variable
w.token, (3) assigns pw to w.tsval and (4) writes
both w and wp to n− t correct objects’ history[ts].w
and history[ts − 1].w fields (short w fields). The
write implementation and the algorithm of the base
objects are given in Figures 1 and 2 respectively.

In the following we detail the read implementation
since it is more involved and constitutes the main
focus of this paper.

3.2 READ Implementation

The full algorithm of the readers can be found in
Figure 3. As mentioned earlier, read performs in
two rounds. In the first round, the reader collects
from n − t base objects the latest and the second
latest values written w and wp and adds them to
the set of return candidates C. For this purpose the
reader sends a message rd1 to all objects (line 18)
and awaits n− t matching responses of type rd1 ack
(line 20).

In the second round, the reader gathers copies of
the candidate values in C from the history of pw and
the w fields of the base objects until it finds a can-
didate it can safely return. For this purpose, in the
second round (1) the reader adds the timestamps of
the candidates in C to a set TS (line 21) and (2) sends
a message rd2 to all objects (line 22). Upon reception
of a rd2 message, each correct object constructs two
sets PW and W , and for each timestamp ts ∈ TS
it adds to PW and W the corresponding value from
the history[ts].pw and history[ts].w fields, if present.
Finally, it sends a rd2 ack message containing PW
and W back to the reader. When the reader receives
a matching rd2 ack message from base object i for
the first time, it records PW and W in its variables
PW [i] and W [i], and removes all candidates from C
which are incomplete (lines 23–25). If a value c is in-

complete then it is missing from n− t objects’ history
of w fields. In this case, the write of c does not
precede read and thus c can be disregarded with-
out violating regularity. The reader keeps waiting for
additional rd2 ack messages until there is a candi-
date c ∈ C such that no candidate in C has a higher
timestamp (i.e., predicate highCand(c) holds) and c
is stored at t + 1 base objects in the pw or w field
(i.e., predicate safe(c) holds).

Our implementation guarantees that the condition
in line 26 is eventually satisfied in every read. In
the following we give a rough intuition of why this is
true (the detailed proof can be found in Section 3.3).

Observe that C 6= ∅ because the second-last writ-

4

Initialization:
ts← 0; w ← 〈〈0, v0〉, ǫ〉1

write(v)
/* Pre-write Phase */
inc(ts)2

pw← 〈ts, v〉3

send pw〈ts, pw〉 to all objects4

wait for reception of pw ack〈ts〉 from n− t objects5

/* Write Phase */
wp ← w6

w.token← GetToken()7

w.tsval ← pw8

send wr〈ts, w, wp〉 to all objects9

wait for reception of wr ack〈ts〉 from n− t objects10

return ack11

Figure 1: Algorithm of the writer.

ten value reported by a correct object is never incom-

plete. Assume by contradiction that read never com-
pletes, i.e. there is a candidate c ∈ C such that c is
never eliminated from C and c is never safe. Consider
the following two cases. Case (1): c is reported in the
first read round after the pre-write phase of c.tsval
has completed. In this case, c.tsval is pre-written to
t + 1 correct objects before any of them is accessed
by the second read round. Hence t + 1 correct ob-
jects eventually report c.tsval from their pw history
and c becomes safe. Case (2): c is reported during
the first read round before the pre-write phase of
c.tsval has completed. Clearly, c is reported by a
malicious object. By the Secrecy assumption, the to-
ken used by the adversary is different from the token
which is indeed written together with c.tsval. Hence,
no correct object reports c and c is eliminated from
C. Therefore, each value either becomes safe or is
removed from the set of candidates.

It is important to note that the algorithm imple-
ments a regular storage even if the Secrecy assump-
tion does not hold. Specifically, the proof of reg-
ularity below does not rely on the inability of the
adversary to guess the token.

3.3 Correctness

Lemma 1 (Regularity). The read operation either
returns the latest value written before read is in-
voked or one that is written concurrently with read.

Proof. Note that if read returns a value c.tsval.val,
then safe(c) holds. This implies that t + 1 objects
respond with c.tsval and some of these is correct.
Hence, either c.tsval has been written or is 〈0, v0〉.
We now show that read does not return values older
that the latest write preceding read.

If no write completes before read then we are
done. Else, let r be a read invocation and w =
write(v) be the last write that completes before r

is invoked. Let ts be the timestamp associated with
v. We need to show that if c.tsval.val is returned,
then c.tsval.ts ≥ ts.

We assume by contradiction that c.tsval.ts < ts.
Since w precedes r, the write phase of 〈ts, v〉 com-
pletes at t + 1 correct objects before any of them
is accessed by r. Therefore, these t + 1 objects re-
port to the first round of r values with timestamp ts
or higher. Since read waits for n − t responses, it
receives a response from one of these t+1 correct ob-
jects. Let i denote this object and let c′ be the value
with the lowest timestamp of the two values reported

5

Initialization:
ts← 0; history[0].pw← 〈0, v0〉; history[0].w ← 〈pw, ǫ〉1

upon reception of pw〈ts′, pw〉 from writer2

history[ts′].pw← pw3

send pw ack〈ts′〉 to writer4

upon reception of wr〈ts′, w, wp〉 from writer5

if ts′ > ts then ts← ts′6

history[ts′].w ← w; history[ts′ − 1].w← wp7

send wr ack〈ts′〉 to writer8

upon reception of rd1 〈tsr〉 from reader j9

send rd1 ack〈tsr, history[ts].w, history[ts− 1].w〉 to reader j10

upon reception of rd2 〈tsr, TS〉 from reader j11

PW ← {history[ts′].pw : ts′ ∈ TS}12

W ← {history[ts′].w : ts′ ∈ TS}13

send rd2 ack〈tsr, PW, W 〉 to reader j14

Figure 2: Algorithm of the base objects.
Predicates:

safe(c) , |{i ∈ Q : c.tsval ∈ PW [i] ∨ c ∈W [i]}| ≥ t + 1
incomplete(c) , |{i ∈ Q : c 6∈W [i]}| ≥ n− t
highCand(c) , c ∈ C : (∀c′ ∈ C : c.tsval.ts ≥ c′.tsval.ts)

read()
C ← TS ← Q← ∅15

PW [i]←W [i]← ∅, 1 ≤ i ≤ n16

/* Round 1 */
inc(tsr)17

send rd1〈tsr〉 to all objects18

repeat

if received rd1 ack〈tsr, w, wp〉 then C ← C ∪ {w, wp}19

until received rd1 ack〈tsr, ∗〉 from n− t objects20

TS ← {c.tsval.ts : c ∈ C}21

/* Round 2 */
send rd2〈tsr, TS〉 to all objects22

repeat

if received rd2 ack〈tsr, PW, W 〉 from object i then23

Q← Q ∪ {i}; PW [i]← PW ; W [i]←W24

C ← C \ {c ∈ C : incomplete(c)}25

until (received rd2 ack〈tsr, ∗〉 from n− t objects) ∧26

(∃c ∈ C : safe(c) ∧ highCand(c))
return c.tsval.val27

Figure 3: Algorithm of the readers.

6

by i such that c′.tsval.ts ≥ ts. We show that c′ is
not incomplete. Assume the contrary.

By definition of incomplete, c′ is missing from the
history of n− t objects. There are two cases to con-
sider. If c′ is reported in w, then by the choice of c′,
it holds that c′.tsval = 〈ts, v〉. Otherwise, c′ is re-
ported in wp, which implies that write(c′.tsval.val)
precedes the second round of r. In both cases c′ has
been stored in the history of w fields of t + 1 correct
objects before the second read round starts. Hence,
c′ is missing from the history of w fields of at most
n − t − 1 objects, a contradiction. Consequently, c′

is not incomplete and is never removed from the set
C of candidates. As c′.tsval.ts ≥ ts > c.tsval.ts, c
is not highCand, contradicting the assumption that r

returns c.tsval.val.

Lemma 2 (Wait-freedom). read and write oper-
ations are wait-free.

Proof. As the write operation waits for at most n−t
objects to respond and by assumption there are n− t
correct objects, it never blocks. We now show that
the read operation does not block.

We assume by contradiction that read blocks in
line 23. We consider the time after which all correct
objects (at least n−t) have responded. We first show
that C 6= ∅. Let c be the second-last value written to
a correct object and reported in wp (line 19). Observe
that write(c.tsval.val) is complete before the second
round of r starts. Therefore c is missing from the
history of at most n − t − 1 objects and thus, c is
never eliminated from C.

We now show that for all c ∈ C, safe(c) holds. As-
sume by contradiction that there exists c ∈ C and c
is not safe. We distinguish the following two cases:
Case (1): c is reported in the first round by some cor-
rect object. This implies that c.tsval is pre-written
to t + 1 correct objects before any of them is read
in the second round. Therefore, these t + 1 correct
objects respond with c.tsval in PW and c is safe.
Case (2): only malicious objects respond with c in
the first read round. If no correct object reports c
in the second read round, then c is incomplete and
hence c 6∈ C. Else, if some correct object reports
c′ = c, then c′.token = c.token. By the Secrecy prop-
erty, the malicious base objects report c only after the

write of c′ has invoked GetToken. As the pre-write
phase precedes the invocation of GetToken, c.tsval is
pre-written to t + 1 correct objects before the second
read round starts and therefore c is safe.

Theorem 1. The Algorithm appearing in figures 1,
2 and 3 wait-free implements a MRSW regular stor-
age.

Proof. Follows directly from Lemma 1 and Lemma 2.

Efficiency After having proved the correctness, we
now discuss the efficiency of the algorithm. As the
algorithm stores the history of written values in the
base objects, the storage requirements depend on the
number of write operations. Note that, if readers do
not write, storing less values is an open problem [19].
The messages used are of constant size except the sec-
ond read round messages which are O(n). Observe
that neither the storage requirements of the base ob-
jects nor the communication complexity (i.e. mes-
sage size) depends on the number of readers in the
system. Thus, the algorithm is scalable, supporting a
possibly unbounded number of malicious clients. As
announced, the time-complexity of both reads and
writes is of two rounds in the worst case.

In the following we show that the round-complexity
of the algorithm is tight.

3.4 Optimality: Fast Reads Must

Write

In this section we give a rough intuition of why
the presented algorithm has optimal time-complexity.
Due to space limitations, we make only a statement
of the result. A detailed proof can be found in ap-
pendix A.1.

Theorem 2. There is no fast read implementation
of a single-reader single-writer (SRSW) safe storage
from 4t base objects if the reader does not modify
the base objects’ state.

This result, together with the lower bound of two
rounds for the write [4], imply that our first algo-
rithm exhibits optimal time-complexity.

7

Our proof derives from three indistinguishable
runs. In the first run, read is concurrent with
write, all correct base objects have responded and
the faulty objects have crashed. In the second run,
write precedes read but the faulty objects are ma-
licious and hide the written value from the reader,
simulating the concurrency of the first run. In the
third run, no value is written and the malicious base
objects forge the value of the writer. The reader finds
itself in a situation in which it cannot distinguish be-
tween the second and the third run. If the reader
returns a value, then it returns the same value in
both runs, which violates safety either in the second
or the third run. Else if the reader waits for more
base objects, then it would block in the first run,
which violates liveness.

4 An Implementation of Fast

READs

The second algorithm we present in this paper also
uses n ≥ 3t+1 base objects and implements a MRSW
regular storage. The main difference to the previous
algorithm is that every read operation completes af-
ter one communication round.

4.1 Overview

In each round the client (reader or writer) sends a
message to all objects and waits until it has received
matching replies from at most n− t correct objects.
Like in the previous algorithm, a value is written
in two phases, a pre-write and a subsequent write
phase. Unlike in the previous algorithm, in the pre-
write phase, in addition to writing data, the writer
also reads control data from the base objects. Read-
ers write control data and read data written by the
writer.

The base objects maintain in addition to the his-
tory of written values an array tsrtoken[1...r] which is
updated by the readers. The entry tsrtoken[j] stores
a timestamp-token pair of the form 〈tsr, token〉,
where tsr is the most recent timestamp of reader j
and token the corresponding token value.

In the pre-write phase, of write(v), the writer:
(1) increases its timestamp ts, (2) stores the last pre-
written value in pwp (3) assigns the timestamp-value
pair 〈ts, v〉 to its variable pw, (4) writes pw and w to
t +1 correct objects’ history[ts].pw and history[ts−
1].w fields, (5) reads the objects’ tsrtoken[∗] fields
written by the readers and (6) for each reader j adds
tsrtoken[j] to the set Tsrtokens[j]. In the write
phase, the writer (1) assigns 〈pw, T srtokens〉 to vari-
able w and (2) writes both w and pwp to t+1 correct
objects’ history[ts].w and history[ts − 1].pw fields.
The algorithm of the writer appears in Figure 4.

In the following we detail the read implementation
and the interaction with the base objects, which is
slightly more involved.

4.2 READ Implementation

The full algorithm of the base objects is given in Fig-
ure 5 and that of the readers in Figure 6. As men-
tioned earlier, read completes in one communication
round. The reader (1) increments its timestamp tsr,
(2) selects a secret token token and (3) sends a mes-
sage rd containing tsr and token to all objects. Upon
reception of rd from reader j, each correct object
(1) stores 〈tsr, token〉 in tsrtoken[j], (2) computes a
timestamp tsmax such that any higher timestamped
value stored has been written concurrently with read

and (3) sends a message rd ack containing three val-
ues with timestamps tsmax − 1, tsmax and tsmax + 1
(if available) back to the reader. When the reader
receives a rd ack message from object i for the first
time, it stores the value with timestamp tsmax in
w[i] and adds w[i] to the set of candidates C. The
other two values are added to PW [i]. In addition it
removes all incomplete candidates from C. A candi-
date is incomplete when n − t objects have reported
candidates with lower timestamps. Observe that the
choice of tsmax as candidate is crucial: (a) values with
higher timestamps can be safely disregarded without
violating regularity and (b) the value corresponding
to tsmax is stored in t + 1 correct objects’ pw field
before any of them is read. The latter property is
critical because otherwise, a candidate might never
become safe. The termination condition is the exis-
tence of a candidate which is both highCand and safe.

8

Initialization:
Inittsrtokens[j]← ∅, 1 ≤ j ≤ r1

ts← 0; pw← 〈0, v0〉; w← 〈pw, Inittsrtokens〉2

write(v)
/* Pre-Write Phase */
Tsrtokens← Inittsrtokens3

inc(ts)4

pwp ← pw5

pw← 〈ts, v〉6

send pw〈ts, pw, w〉 to all objects7

repeat

if received pw ack〈ts, tsrtoken〉 from object i then8

Tsrtokens[j]← Tsrtokens[j] ∪ {tsrtoken[j]}, 1 ≤ j ≤ r9

until received pw ack〈ts, ∗〉 from n− t objects10

/* Write Phase */
w← 〈pw, T srtokens〉11

send wr〈ts, pwp, w〉 to all objects12

wait for reception of wr ack〈ts〉 from n− t objects13

return ack14

Figure 4: Algorithm of the writer.

Our implementation guarantees that this condition is
eventually satisfied in every read. We now give an
intuition of why this is true.

Recall that, for every candidate c it holds that c is
pre-written to t+1 correct objects before any of them
is read. We now explain why. The negation thereof
implies that at least t + 1 correct objects store the
timestamp-token pair of read before c is pre-written
to them. At least one of them reports the token in
the pre-write phase, such that c and all higher times-
tamped values are stored together with the token in
the write phase. Consequently, all correct objects (at
least n − t) report to read only values with lower
timestamps and c is eliminated from C. It is not dif-
ficult to see that if the correct base objects report the
entire pw history, then every candidate would even-
tually become safe. Our approach simulates this be-
haviour, but the correct objects send at most three
values, with consecutive timestamps centered around
tsmax. The reasoning behind it is the following: if
some candidate is lower than the first, then it is not

highCand. Else, if it is higher than the third, then it
is removed from C.

4.3 Correctness

Lemma 3 (Regularity). The read operation either
returns the latest value written before read is in-
voked or one that is written concurrently with read.

Proof. Observe that if read returns a value c.val,
then safe(c) holds. This implies that t + 1 objects
respond with c and some of these is correct. Hence,
either c has been written or is 〈0, v0〉. We now show
that read does not return values older than the latest
write preceding read.

If no write completes before read then we are
done. Else, let r be a read invocation of reader j
and w = write(v) be the last write that completes
before r is invoked. Let ts be the timestamp associ-
ated with v. We need to show that if c.val is returned,
then c.ts ≥ ts.

We assume by contradiction that c.ts < ts.

9

Initialization:
Inittsrtokens[j]← ∅; tsrtoken[j]← 〈0, ǫ〉, 1 ≤ j ≤ r1

history[0].pw← 〈0, v0〉; history[0].w ← 〈〈0, v0〉, Inittsrtokens〉2

upon reception of pw〈ts, pw, w〉 from writer3

history[ts].pw← pw; history[ts− 1].w← w4

send pw ack〈ts, tsrtoken〉 to writer5

upon reception of wr〈ts, pwp, w〉 from writer6

history[ts− 1].pw← pwp; history[ts].w← w7

send wr ack〈ts′〉 to writer8

upon reception of rd〈tsr, token〉 from reader j9

if tsr > tsrtoken[j].tsr then tsrtoken[j]← 〈tsr, token〉10

tsmax ← max{ts : tsrtoken[j] 6∈ history[ts].w.T srtokens[j]}11

w← history[tsmax].w.tsval12

PW ← {history[tsmax − 1].pw, history[tsmax + 1].pw}13

send rd ack〈tsr, PW, w〉 to reader j14

Figure 5: Algorithm of the base objects.
Predicates:

safe(c) , |{i ∈ Q : c ∈ PW [i] ∪ {w[i]}}| ≥ t + 1
incomplete(c) , |{i ∈ Q : w[i].ts < c.ts}| ≥ n− t
highCand(c) , ∀c′ ∈ C : c.ts ≥ c′.ts

read()
C ← Q← ∅15

PW [i]← ∅; w[i]← ⊥, 1 ≤ i ≤ n16

inc(tsr)17

token← GetToken()18

send rd〈tsr, token〉 to all objects19

repeat

if received rd ack〈tsr, PW, w〉 from object i then20

Q← Q ∪ {i}; PW [i]← PW ; w[i]← w; C ← C ∪ {w}21

C ← C \ {c ∈ C : incomplete(c)}22

until (received rd ack〈tsr, ∗〉 from n− t objects) ∧23

(∃c ∈ C : safe(c) ∧ highCand(c))
return c.val24

Figure 6: Algorithm of the readers.

10

Let 〈tsr, token〉 be the timestamp-token pair of r.
Since w precedes r, GetToken is invoked by r af-
ter w is complete. If some malicious object reports
〈tsr, token′〉 to w, then the Secrecy assumption im-
plies that token 6= token′. Therefore, w does not
include 〈tsr, token〉 in the set Tsrtokens[j] corre-
sponding to 〈ts, v〉. Furthermore, the write phase
of 〈ts, v〉 completes at t + 1 correct base objects be-
fore any of them is accessed by r. As 〈tsr, token〉 6∈
Tsrtokens[j], these t+1 correct objects report values
with timestamp ts or higher from their w field.

Let c′ be the value with the lowest timestamp re-
ceived from the w field of any of the t+1 objects. As r

waits for at least n−t objects to respond, such a value
exists. We show that c′ is not incomplete. Assume the
contrary. By definition of incomplete, n − t objects
must report values with timestamps lower than c′.ts
from their w field. At least one of these is a correct
object i among the t+1 updated by w. By the choice
of c′, w[i].ts ≥ c′.ts. Therefore, c′ is not incomplete

and is never removed from the set C of candidates.
As c′.ts ≥ ts > c.ts, c is not highCand, contradicting
the assumption that c is returned by r.

Lemma 4 (Wait-freedom). read and write oper-
ations are wait-free.

Proof. As the write operation waits for at most n−t
objects to respond and by assumption there are n− t
correct objects, it never blocks. We now show that
the read operation does not block.

We assume by contradiction that read blocks in
line 23. We consider the time after which all correct
objects (at least n−t) have responded. We first show
that C 6= ∅. Let c be the t+1st highest value reported
in the w field of a correct object. Clearly, c is not
incomplete and thus it is not removed from C.

Let c ∈ C be the highest value reported in the
w field of a correct object. We show that (1)
highCand(c) holds and (2) safe(c) holds.

Step (1): If c is not highCand, then there exists
c′ ∈ C and c′.ts > c.ts. By the choice of c, there
are n − t correct objects i that report values w[i]
such that w[i].ts < c′.ts. This implies that c′ 6∈ C, a
contradiction.

Step (2): Observe that t + 1 correct objects have
stored c in their pw field before any of them replies
to read. Else, no correct object would reply with
c in the w field (line 11). Let i be any of these
correct objects. We assume by contradiction that
c 6∈ PW [i]∪{w[i]}. Let tsmax be the timestamp com-
puted by object i in line 11. If c.ts − 1 ≤ tsmax ≤
c.ts + 1, then c is reported either from PW [i] or w[i]
and we are done. Observe that, since c is pre-written
to i together with the last written value (with times-
tamp c.ts− 1), it holds that tsmax ≥ c.ts− 1. There-
fore, the only remaining case is tsmax > c.ts+1. This
implies that c′ exists such that tsmax > c′.ts > c.ts.
Since the value with timestamp tsmax is pre-written
to t + 1 correct objects before they are read, c′ is
written to t + 1 correct objects before they are read.
Hence, c′ or a higher timestamped value is not in-

complete, contradicting the assumption that c is high-

Cand.

Theorem 3. The Algorithm appearing in figures 4,
5 and 6 wait-free implements a MRSW regular stor-
age.

Proof. Follows directly from Lemma 3 and Lemma 4.

Efficiency We now discuss the efficiency of the al-
gorithm. Like in the previous algorithm, the stor-
age requirements depend on the number of write op-
erations. In addition, the base objects store up to
n · r timestamp-token pairs together with each value
written to them. Messages exchanged between the
reader and the base objects are of constant size. The
write messages pw ack (respectively wr) contain r
(respectively n · r) timestamp-token pairs. The time-
complexity of the read is one communication round
in the worst case, which is clearly optimal. Every
write completes after two rounds which is also op-
timal [4].

5 Conclusion

The algorithms presented effectively circumvent
lower bounds established for unauthenticated stor-
age by using secret tokens. The first algorithm sup-

11

ports unbounded readers and features constant read
complexity. The second algorithm features fast reads,
i.e., every read terminates after one round of commu-
nication with the base objects. Even if the secrecy
assumption of the token is violated both algorithms
are gracefully degrading. The first algorithm fully
preserves regularity and the second algorithm never
blocks and never returns a forged value. However, the
probability of property violation is negligibly small if
the token space is large enough. The algorithms are
secure against a computationally unbounded adver-
sary because tokens are purely random and therefore
they cannot be computed.

Both algorithms require base objects to store all
the values they receive from the writers. If readers do
not write, storing less values is an open problem [19].
Concerning the second algorithm, a sophisticated ar-
bitration mechanism as shown in [6] is needed to over-
come this problem, which goes beyond the scope of
the paper. Although some very practical storage sys-
tems [20] rely on the same assumption this might
raise issues of storage exhaustion and needs careful
garbage collection.

References

[1] Jayanti, P., Chandra, T.D., Toueg, S.: Fault-
tolerant wait-free shared objects. J. ACM 45(3)
(1998) 451–500

[2] Guerraoui, R., Vukolić, M.: How fast can a very
robust read be? In: PODC ’06: Proceedings
of the twenty-fifth annual ACM symposium on
Principles of distributed computing, New York,
NY, USA, ACM (2006) 248–257

[3] Guerraoui, R., Levy, R.R., Vukolić, M.: Lucky
read/write access to robust atomic storage. In:
DSN ’06: Proceedings of the International Con-
ference on Dependable Systems and Networks
(DSN’06). (2006) 125–136

[4] Abraham, I., Chockler, G., Keidar, I., Malkhi,
D.: Byzantine disk paxos: optimal resilience
with byzantine shared memory. Distributed
Computing 18(5) (2006) 387–408

[5] Guerraoui, R., Vukolić, M.: Refined quorum sys-
tems. In: PODC ’07: Proceedings of the twenty-
sixth annual ACM symposium on Principles of
distributed computing. (2007) 119–128

[6] Dobre, D., Majuntke, M., Suri, N.: On the
time-complexity of robust and amnesic stor-
age. In: OPODIS ’08: Proceedings of the 12th
International Conference on Principles of Dis-
tributed Systems, Berlin, Heidelberg, Springer-
Verlag (2008) 197–216

[7] Malkhi, D., Reiter, M.: Byzantine quorum sys-
tems. Distrib. Comput. 11(4) (1998) 203–213

[8] Cachin, C., Tessaro, S.: Optimal resilience for
erasure-coded byzantine distributed storage. In:
DSN ’06: Proceedings of the International Con-
ference on Dependable Systems and Networks
(DSN’06), Washington, DC, USA, IEEE Com-
puter Society (2006) 115–124

[9] Liskov, B., Rodrigues, R.: Tolerating byzantine
faulty clients in a quorum system. In: ICDCS
’06: Proceedings of the 26th IEEE International
Conference on Distributed Computing Systems,
Washington, DC, USA, IEEE Computer Society
(2006) 34

[10] Lamport, L.: On interprocess communication.
part II: Algorithms. Distributed Computing 1(2)
(1986) 86–101

[11] Attiya, H., Bar-Noy, A., Dolev, D.: Sharing
memory robustly in message-passing systems. J.
ACM 42(1) (1995) 124–142

[12] Herlihy, M.: Wait-free synchronization. ACM
Trans. Program. Lang. Syst. 13(1) (1991) 124–
149

[13] Hendricks, J., Ganger, G.R., Reiter, M.K.: Low-
overhead byzantine fault-tolerant storage. In:
SOSP ’07: Proceedings of twenty-first ACM
SIGOPS symposium on Operating systems prin-
ciples, New York, NY, USA, ACM (2007) 73–86

[14] Herlihy, M., Luchangco, V., Moir, M.:
Obstruction-free synchronization: Double-ended

12

queues as an example. In: ICDCS ’03: Proceed-
ings of the 23rd International Conference on Dis-
tributed Computing Systems, Washington, DC,
USA, IEEE Computer Society (2003) 522

[15] Martin, J.P., Alvisi, L., Dahlin, M.: Minimal
Byzantine Storage. In: Proceedings of the 16th
International Symposium on Distributed Com-
puting (DISC 2002), LNCS 2508. (2002) 311–
325

[16] Bazzi, R.A., Ding, Y.: Non-skipping timestamps
for byzantine data storage systems. In: DISC.
(2004) 405–419

[17] Aiyer, A., Alvisi, L., Bazzi, R.A.: Bounded wait-
free implementation of optimally resilient byzan-
tine storage without (unproven) cryptographic
assumptions. In: DISC. (2007)

[18] Abraham, I., Chockler, G., Keidar, I., Malkhi,
D.: Wait-free regular storage from byzantine
components. Inf. Process. Lett. 101(2) (2007)

[19] Chockler, G., Guerraoui, R., Keidar, I.: Am-
nesic Distributed Storage. In: Proceedings of the
21st International Symposium on Distributed
Computing (DISC’07). (2007)

[20] Goodson, G.R., Wylie, J.J., Ganger, G.R., Re-
iter, M.K.: Efficient byzantine-tolerant erasure-
coded storage. In: DSN ’04: Proceedings of
the 2004 International Conference on Depend-
able Systems and Networks (DSN’04), Washing-
ton, DC, USA, IEEE Computer Society (2004)
135

A Appendix

A.1 Fast Reads Must Write

In this section we prove that fast read implementa-
tions require the reader to modify the state of the
base objects. The proof uses similar arguments as
the lower bound proof in [2] and is illustrated in Fig-
ure 7. We partition the set of base objects into four

distinct subsets T1, T2, T3, T4 each of size t. The ini-
tial state of every correct base object is denoted as
σ0. A round rnd of an operation is depicted by a line
of rectangles. A rectangle in a line corresponding to
some round rnd of operation op means that all base
objects in the corresponding block have received the
message from the client in round rnd of operation op
and have sent a reply message.

Theorem 4. There is no fast read implementation
I of a SRSW safe storage from 4t base objects if the
reader does not modify the base objects’ state.

Proof. To exhibit a contradiction, we construct a run
of the safe implementation I that violates safety. We
exhibit a run in which some read returns a value
that was never written.

• Let R1 be the run in which all objects are correct
except T4 that crashes at a later point. Further-
more, let rd be the read operation by reader
r. After T1 sends rd ack to r, object T1 is still
in the initial state σ0. Before rd reads from an-
other object, a write operation wr is invoked
by the correct writer to write a value v 6= v0 to
the storage. By the assumption that I is wait-
free, wr completes in R1, say at time t1 after
invoking a finite number m of rounds. Due to
asynchrony all messages sent by the writer to T3

during w remain in transit. We refer to the state
of base object T2 at time t1 as σ1. At some time
after t1, object T4 crashes. Due to asynchrony,
all messages exchanged between r and T2 and
T3 are delayed until after t1. By our assumption
on wait-freedom of I, r completes after receiving
read ack messages from correct objects T1, T2,
and T3 and returns some value vr skipping T4.

• Let R2 be the run similar to run R1, except that
in R2: (1) read rd is invoked only after wr com-
pletes (after t1) and (2) object T1 is malicious
and at t1 before replying to r, forges its state
to σ0, the initial state of correct objects. Other
messages are delivered as in R1. Note that wr
cannot distinguish run R2 from R1 and there-
fore wr completes in R2 at t1. Note also that,
rd is invoked after wr completes, so safety im-
plies that rd must return v. However, note that

13

T1 T3T2 T4

σ0σ0

σ0 σ1

rndm

rnd1

rnd1rd() = vr

rndm

rnd1

σ1

rnd1

wr(v)

σ0

T1 T3T2 T4

wr(v)

T1 T3T2 T4

σ0 σ0σ0

σ1

rd() = vr rnd1rd() = vr rnd1

= v = v

R1 R2 R3

Figure 7: Illustration of the proof of Theorem 4

in R1 and R2 the reader receives in rd the identi-
cal messages and, since the processes do not have
access to a global clock, r cannot distinguish R2

from R1. Therefore, in R1 and R2, rd returns
the same value, i.e. by safety vr must equal v.

• Finally, we consider the run R3 in which wr is
never invoked, but T2 is malicious and forges its
state to σ1 at the beginning of the run. read

rd is invoked in R3 as in R2. Since, upon re-
ceiving read ack messages from T1, T2, and T3,
the reader receives identical information as in
run R2, the reader cannot distinguish R2 from
R3, and rd completes in R3 and returns vr = v.
However, by safety, in R3, rd must return v0.
Since v 6= v0, safety is violated in R3.

14

	Introduction
	Previous and Related Work
	Summary of Contributions

	System Model and Definitions
	An Implementation Supporting Unbounded Readers
	Overview
	READ Implementation
	Correctness
	Optimality: Fast Reads Must Write

	An Implementation of Fast READs
	Overview
	READ Implementation
	Correctness

	Conclusion
	Appendix
	Fast Reads Must Write

