
HP: Hybrid Paxos for WANs�
Dan Dobre, Matthias Majuntke, Marco Serafini and Neeraj Suri

{dan,majuntke,marco,suri}@cs.tu-darmstadt.de

Abstract

Implementing a fault-tolerant state machine boils down

to reaching consensus on a sequence of commands. In wide

area networks (WANs), where network delays are typically

large and unpredictable, choosing the best consensus pro-

tocol is difficult. During normal operation, Classic Paxos

(CP) requires three message delays, whereas Fast Paxos

(FP) requires only two. However, when collisions occur,

due to interfering commands issued concurrently, FP re-

quires four extra message delays. In addition, FP uses

larger quorums than CP. Therefore, CP can outperform FP

in many situations.

We present Hybrid Paxos (HP), a consensus protocol that

combines the features of FP and CP. HP implements gener-

alized consensus, where collisions are caused only by inter-

fering commands. In the absence of collisions HP requires

two message delays, and only one extra message delay oth-

erwise. Our evaluation shows that when collisions are rare,

the latency of HP reaches the theoretical minimum. When

collisions are frequent, HP behaves like CP.

1 Introduction

WAN replication offers protection against catastrophic

failures of a single site and can be used to enhance the re-

silience of critical services. Implementing a deterministic

service in a fault-tolerant manner boils down to reaching

consensus on a sequence of system commands.

In the standard state-machine approach, a sequence of

instances of a consensus protocol are used to choose the se-

quence of client commands, where the ith instance chooses

the ith command. In this paper we consider generalized

consensus [18], where a single instance of consensus is used

to choose an increasing history of commands. A history

is an equivalence class of command sequences, where two

command sequences are equivalent iff executing them pro-

duces the same state and output. The underlying observa-

tion is that often commands commute, so it does not matter

in which order they are executed.�Research funded in part by Inco-Trust, Microsoft Research and DFG

GRK 1362 (TUD GKmM).

The consensus problem is stated in terms of proposers

that propose commands, acceptors that choose an increas-

ing command history and learners that learn what history

has been currently chosen. In a client/server system, clients

might play the roles of proposer and learner and servers

might play the role(s) of acceptor (and learner). A leader

is elected among the acceptors to coordinate their actions.

In a WAN environment, where network delays are large

and unpredictable, the latency of a consensus protocol mat-

ters. Latency is defined as the number of message delays

between when a client proposes a command and when that

command is learned by a learner.

Consensus protocols which attain the optimal la-

tency [20] are the well known Classic Paxos (CP) [17] and

the more recent Fast Paxos (FP) [18]. Their message pat-

terns are illustrated in Figure 1. In normal operation, CP

requires three message delays. The communication pat-

tern during normal operation is Client Ñ Leader Ñ Ac-

ceptorsÑ Learners. FP saves one message delay by hav-

ing the clients send their proposals directly to the accep-

tors, bypassing the leader. This works fine if the accep-

tors receive the same sequence of interfering commands.

However, when commands are proposed concurrently, com-

mands may be accepted in interfering orders, resulting in no

command being chosen. In order to guarantee progress, FP

then runs a collision recovery procedure, which adds four

message delays. Thus, if collisions are frequent, FP has a

significantly higher latency and a lower throughput than CP.

We found that even in the absence of collisions, depend-

ing on the the layout of clients and servers, CP can outper-

form FP (for many clients). This comes from the fact that

in order to be fast, FP needs larger quorums than CP, called

fast quorums [20].

When clients have direct access to a local replica, the re-

cently developed consensus protocolMencius [21] has been

shown to outperformCP. However often, clients and servers

are not co-located. When clients are using a remote service

replicated for disaster tolerance, none of the mentioned pro-

tocols has the final say.

1

1a 1b

2a

Leader

Acceptors

Client

Acceptors

Client

Leader

2b

2a

2b

1a
1b

2a

2b

Normal operation (Fast Paxos)

Fast mode Recovery from collisions

chosen

Normal operation (CP)Recovery (all protocols)

Phase2Phase1

propose

2b

2bFast

2bFast

propose

Figure 1. Paxos message patterns

Paper Contributions In this paper we present a general-

ized consensus protocol called Hybrid Paxos (HP). HP is

essentially CP with an additional “fast mode” that enables

fast learning in the absence of collisions. In presence of col-

lisions, HP requires three message delays as CP does. These

latencies are optimal [20] and they are attained using a lin-

ear number of messages and the optimal number of 2f � 1

servers, where f is the bound on crash-failures. Compared

toMencius, HP uses weaker synchrony assumptions, result-

ing in higher availability in WANs.

We show for the first time that generalized consensus can

be used in practice to build efficient replicated services. The

key to efficiency is that fast learning must not impact the

bottleneck, which in CP is the leader. Additional messages

in HP are exchanged only between clients (which are both

proposers and learners) and acceptors. Thus, HP exploits

the relative underutilization of the acceptors and offers a

better latency up to 70% of the peak throughput of CP.

In addition, fast learning is enabled only if spare capacity

is available. This is done by adaptively switching it on and

off based on the load. Our evaluation using Emulab [26]

shows that the latency of HP reaches the theoretical mini-

mum. In the presence of collisions and with increasing load,

HP behaves like CP.

Motivation

There is no clear winner with Fast and Classic Paxos

We argue that the quorum size matters by showing that even

in the absence of collisions, CP can outperform FP.

We have sampled delays among Planetlab [3] nodes and

used them to simulate the normal operation (best case) of

CP and FP in four different WAN settings (Table 1). The

client distribution is as follows: 56% are located in the US,

38% in Europe, and 6% in Asia. All topologies use 11

servers. FP requires a fast quorum (9 servers), while CP

only requires a (majority) quorum. The simulation results in

Figure 2 suggest that: (a) in many settings, some clients are

better off using FP and others prefer CP and (b) the crash of

a single server can turn a setting beneficial for FP into one

beneficial only for CP. Thus, there exist practical settings

where neither of the two protocols always outperforms the

other.

Table 1. WAN server layout (11 servers)
Topology Europe World CLUS-5(4)

Leader Site Hungary Japan Switzerland

Backups Europe Global Europe

1 with 5 (4) nodes,
Clusters No No

3 with 2 nodes

Quorums 6 servers for CP, 9 servers for FP

In the Europe setting, servers are located at 11 different

sites in Europe. For most clients, the distance between them

and the servers is close to uniform. Thus, the FP pattern

leads to good results: 28% of the clients observe that FP

is at least 10% faster than CP, and 10% of the clients even

observe a 20% improvement. However, 12% of the clients

find that CP is 10% better, as they do not have good con-

nectivity with three additional servers required by FP. This

supports observation (a).

0.6

0.5

0.4

0.3

0.2

0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Im
p
ro

v
e
m

e
n
t
fa

c
to

r

 C
P

 o
v
e
r

F
P

F

P
 o

v
e
r

C
P

Fraction of clients observing improvement

Europe
CLUS-5
CLUS-4

World

Figure 2. Improvement factor of FP over CP

and vice versa

The World setting models a world-wide setting in which

acceptors are spread over the US, Europe and Asia, and the

leader is located in Asia. In this scenario the advantage of

the FP pattern is even clearer: 75% of the clients observe

a 10% improvement over CP, and for 20% of the clients

the improvement is ¡ 35%. The reason is the additional

message delay to reach the leader, which is large for most

of the clients. However, there are some clients which prefer

CP: 6% find it to be 20% more efficient than FP, supporting

2

observation (a). This is essentially the fraction of Asian

clients which can quickly reach the leader.

The CLUS topology considers the case when servers are

clustered at four different sites in Europe, providing cheap

distaster tolerance. The only distinction between the CLUS-

5 and CLUS-4 is that in the latter, one node in the largest

cluster is crashed (Table 1). Before the crash, a fast quorum

(9 servers) can be reached by contacting three sites. Note

that for 13% of the clients, FP outperforms CP by at least

10%. Two sites are sufficient for CP to sample a quorum

(6 servers). However, after the crash FP accesses all sites.

This results in a shift of the performance profile, with CP

dominating FP for 50% of the clients, supporting observa-

tion (b).

2 System Model and Definitions

We consider a distributed system consisting of n servers

and any number of clients. For simplicity, we assume re-

liable FIFO channels. Further we consider a crash-stop

model in which clients and servers fail only by crashing and

nonfaulty servers never crash. 1 We assume that at most a

minority of servers fails, which is necessary to solve con-

sensus [7]. The system is asynchronous, with no bounds on

message delay or processor speed. However, each server

has access to a failure detector Ω, that eventually outputs at

all servers the same nonfaulty server [6].

Mathematical Preliminaries In the generalized consen-

sus problem [18] a single consensus instance is performed

on a monotonically increasing and partially ordered set of

commands, called command history. A command history,

or history for brevity, is defined as an equivalence class of

command sequences. Two command sequences are equiva-

lent iff they can be transformed into one another by permut-

ing its elements such that the order of every pair of interfer-

ing commands is preserved. Two commands are interfering

if it matters in which order they are executed. Else, they are

called commutable.

Histories are constructed by appending a command se-

quence σ to the initially empty history K using the special

append operator . The resulting history is K σ. Histo-

ries K σ and K τ are equal iff σ and τ are equivalent

sequences.

The prefix relation � is defined as a partial order on the

set of histories. For two histories h and h1, h � h1 iff there
is a command sequence σ such that h σ � h1. We say that

h is a prefix of h1 (or equivalently that h1 is an extension

of h). A history h is isomorphic to a directed graph Gphq
whose nodes are the commands. There is an edge between

1The algorithm can be easily extended to a model in which crashed

nodes may recover [1] and links are fair-lossy [2]. This however, lies out-

side the scope of the paper.

any two interfering commands ci and cj from ci to cj in

Gphq iff i j in h. For two histories h and h1, it holds that
h � h1 iff the graph Gphq is a prefix of the graph Gph1q.
Gphq � Gph1q iff h � h1.

A lower bound of a set H of histories is a history that is

a prefix of every element in H . The greatest lower bound

(glb) of H is a lower bound of H that is an extension of

every lower bound of H . We write the glb of H as
�

H

and we let h[h1 equal[th, h1u for any two histories h and

h1. The least upper bound (lub) is defined in the analogous

manner. We write lub of H as
�

H and and we let h \ h1
equal \th, h1u. Intuitively, the glb (resp. lub) of a set of

histories is the largest common prefix (resp. the smallest

common extension).

We define two histories h and h1 to be compatible iff

they have a common upper bound,i.e., there is some history

g with h � g and h1 � g. A set of historiesH is compatible

iff every pair of histories in H are compatible.

Consensus Properties Generalized consensus ensures

that if any two command histories are learned, then they are

compatible (Consistency). To rule out choosing a default

value, it must hold that if history h is chosen then there ex-

ists a proposed command sequence σ, such that h � K σ

(Nontriviality). Finally, if a learner process learns history h,

then h was chosen (Conservatism). Liveness requires that if

command c is proposed, then eventually some history con-

taining c is learned (Progress).

3 Generalized Consensus and Paxos

In this section we review Paxos and describe it as con-

sensus on a growing command history [18]. When needed,

we differentiate between FP and CP. This description serves

as a basis for HP which is introduced in Section 4.

In the client/server system that we consider, clients are

both proposers and learners. The servers are acceptors and

cooperate to choose a single command history. Acceptors

query theΩ failure detector that elects a leader among them.

Safety is guaranteed even if no leader or multiple leaders are

elected, but a unique leader is required to ensure progress.

Paxos operates on a set of round numbers. The round num-

bers are partitioned among the potential leaders such that

each leader has its disjoint set of round numbers.

As mentioned in the introduction, Paxos assumes prede-

fined sets of acceptors called quorums. The requirement for

CP is that any two quorums intersect. FP requires larger

quorums, called fast quorums, and the requirement is that

the intersection of any fast quorum FQ and any quorum is

larger than n � |FQ|.
Following the Paxos protocol description [17], we divide

the acceptor and leader actions in Phase 1 and Phase 2 ac-

tions. Phase 1 actions are executed when a new round is

3

started (e.g. after a leader crash). Phase 2 actions (1) com-

plete the choosing all the histories that failed to be chosen in

an earlier round and (2) they are repeatedly executed during

normal operation.

We now describe the algorithms’ actions below (see also

Fig. 1 as an illustration). Note that the focus lies on con-

sensus, and therefore the execution of commands is omitted

from the description.

Phase1: Start a new round

(1a) Leader l picks a new round number r from its set of

round numbers and sends a x“1a”, ry message to all

acceptors.

(1b) When acceptor a receives a x“1a”, ry message from

leader l, if it has not yet received a message

with a higher round number, then it replies with ax“1b”, r, . . . y2 message. We say that a has moved

to round r and considers r as its current round from

now on. Moreover, a stops accepting proposals from

clients.

If a has already received a message with round number

r1 ¡ r then it sends a message to the leader, indicat-

ing that it is ignoring the x“1a”, ry message. (Upon

receiving such a message the leader performs step (1a)

with a round number ¡ r1 if it still believes to be the

leader.)

Phase2: Complete earlier rounds

(2a) If leader l has received x“1b”, r, . . . y messages from

a quorum of acceptors, then it sends a x“2a”, r, hy
message to the acceptors where h is the history that

has been determined from the received “1b” messages.

Further, the leader adopts h as the history currently

chosen. The rule of picking h depends on the type

of protocol and is described later (see Sections 3.1

and 4.2.1).

(2b) If acceptor a receives a x“2a”, r, hy message in its

current round r (i.e. it has not yet received any mes-

sage with a higher round number), it stores h as the

accepted history and sends a x“2b”, r, hy message to

every learner. Next, a starts accepting proposals from

clients.

(Learn) If a learner receives identical x“2b”, r, h cy mes-

sages from a quorum, then it learns that history h c is

chosen.

2Note that “. . . ” will be replaced by protocol specific information later.

Normal operation CP

(Propose c) Client cl sends a x“propose”, cy message to

the leader.

(2aCP) When the leader receives a x“propose”, cy mes-

sage from client cl, it appends command c to h and

sends a x“2a”, r, h cy message to the acceptors.

(2bCP) If acceptor a receives a x“2a”, r, h cy message

from the leader in its current round r (i.e. it has not

yet received anymessage with a higher round number),

then it accepts hc and sends a x“2b”, r, hcymessage

to all learners. Learning is done as described in the

(Learn) step.

Normal operation FP

(ProposeFP c) Client cl sends x“propose”, cy messages to

the acceptors.

(2bFast) If acceptor a receives a x“propose”, cy message

from client cl, then a appends c to its command his-

tory h and sends x“2bFast”, r, h cy messages to the

learners and to the leader.

(Collision Handling) If the leader receives identicalx“2bFast”, r, h cy messages from a fast quorum, it

indicates to the learners that h c is chosen by sendingx“chosen”, r, h cymessages to the learners. Else, the

leader initiates collision recovery, which entails start-

ing a new round (Phase 1) and recovering from earlier

rounds (Phase 2).

(Fast Learn) If a learner receives identicalx“2bFast”, r, h cy messages from a fast quo-

rum, or equivalently a x“chosen”, r, h cy message

then it learns that h c is chosen. “Slow” learning is

done as in (Learn).

3.1 The rule of picking a history

We now explain the core of the Paxos protocol and why

it satisfies Consistency. For this purpose, we now infor-

mally describe the rule of picking a history based on thex“1b”, r, . . . y messages received by the leader in step (2a).

A formal and complete treatment appears in an earlier work

by Lamport [18].

Invariant Paxos maintains the following invariant for

safety: if a history h is chosen in round r and a history

h1 is chosen in a higher numbered round, then h � h1. Intu-
itively, Consistency follows from this invariant and the fact

that once a quorum of acceptors has joined a higher num-

bered round, no history can be chosen in previous rounds

anymore.

4

2b
2a

Client

Leader

Acceptors

Normal operation (HP)

propose

2b
2bFast

Figure 3. HP message pattern

Pick classic In CP, if a history h has been chosen then

learning implies that a quorum of acceptors has accepted

h. In step (1b), each acceptor reports the history it has ac-

cepted. By the quorum intersection property, at least one ac-

ceptor reports h. The picking rule is to select the lub among

the reported histories. Is is not difficult to see that h � lub.

Pick fast In FP, if a history h has been chosen, then fast

learning implies that a fast quorum FQ has accepted h. In

step (1b), each acceptor reports the history it has accepted.

Let Q be the set of all reported histories collected by the

leader in step (2a). By the intersection property of FQ with

a quorum, Q contains at least n � |FQ| � 1 (possibly in-

compatible) extensions of h and at most n� |FQ| histories
which are not extensions of h. Hence, there is a majority

subset M � Q containing the extensions of h. The goal

is now to find a history which is an extension of h using

this knowledge. First, the glb is computed for every major-

ity subset M � Q. As all majorities intersect, the glbs are

pairwise compatible. Next, the leader picks the lub of these

glbs. Note that one of the glbs is an extension of h, and

therefore h � lub.

4 The HP Protocol

As mentioned in the introduction, HP is essentially CP

with an integrated “fast mode”, which allows fast learning

in the absence of collisions. Therefore, the progress prop-

erty of HP is inherited from CP. Hence, throughout the sec-

tion, we will focus on safety.

The roles played by clients and servers and their interac-

tion are the same as in Paxos (see Section 3). Phase 1 and 2

do not change and so they are as depicted in Figure 1. Fig-

ure 3 illustrates the message pattern of HP during normal

operation.

4.1 Overview

We now briefly summarize the main differences between

HP and Paxos.

First, fast learning is refined to accommodate that learn-

ing and fast learning are done in parallel, such that a learner

can learn the quickest outcome. A naı̈ve composition would

fail, as two incompatible histories could be learned in the

(Fast Learn) and (Learn) steps. We prevent this problem

by replacing fast learning with hybrid learning. The idea

of hybrid learning is that a learner waits for a fast quorum

of identical “2bFast” and “2b” messages, of which at least

one is of type “2b”. Note that hybrid learning is fast because

the leader is an acceptor (see Figure 3).

Secondly, the rule of picking a history in step (2a) is ex-

tended accordingly. In HP, each acceptor keeps two separate

histories, a classic history updated by “2a” messages and a

fast history updated by client proposals. Both histories are

reported to the leader in step (1b). The leader applies the

picking rules as described in Section 3.1 to each type sep-

arately. Resulting are two histories h and fh, where fh is

determined by the fast histories. The final history is deter-

mined as the lub of h and the largest prefix of fh which is

compatible with h.

4.2 The Protocol

We now describe the actions of the HP protocol during

normal operation. The focus lies on highlighting the dif-

ference to CP. A complete description in pseudocode and

proofs can be found in the full paper [9].

Phase 1 and 2 actions as well as actions (2aCP), (2bCP)

and (Learn) are actions of the HP protocol. Since they do

not change, they are not listed below.

Normal Operation

(ProposeHP c) Client cl executes the actions (Propose c)

and (ProposeFP c).

(2bFastHP) If acceptor a receives a x“propose”, cy mes-

sage from client cl, then a appends c to the local fast

history fh and sends x“2bFast”, r, fh cy messages

to the learners. (Note that the difference to action

(2bFast) is that c is appended to the fast history, and

that no “2bFast” messages are sent to the leader).

(Hybrid Learn) If a learner receives identicalx“2bFast”, r, fh cy messages from a fast quo-

rum and one x“2b”, r, h cymessage and h � fh then

it learns that h c is chosen. “Slow” learning is done

as in (Learn).

4.2.1 The rule of picking a history

We now explain the rule of picking a history in HP just as

we did for Paxos. We will widely reuse the steps in Sec-

tion 3.1 and refer to them when needed.

In HP, the x“1b”, r, . . . y messages report two separate,

accepted histories, the (classic) history and the fast history.

The leader uses the reported (classic) histories to pick a his-

tory h as described in Pick classic. Next, the leader uses

5

the reported fast histories to pick a history fh as described

in Pick fast. Note that each of the histories satisfies the in-

variant. History h is an extension of any history learned in

the (Learn) step and fh is an extension of any fast history

learned in the (Hybrid Learn) step.

Pick hybrid We now explain the key difference between

HP and Paxos. To be safe, ideally we would pick the lub

of h and fh and initialize the acceptors with lub in phase

(2a). However, if h and fh are incompatible, then their lub

is undefined. Therefore, the idea is (1) to determine the

largest prefix pfh of fh which is compatible with h and (2)

to pick the lub of pfh and h. This would be safe only if we

can guarantee that any history lh learned in step (Hybrid

Learn) is a prefix of pfh.

We will now argue that this is the case. We know that

lh is a prefix of fh. By the choice of pfh, all prefixes of

fh which are compatible with h are also prefixes of pfh.

Thus, it suffices to show that lh is compatible with h. Hy-

brid learning implies that some acceptor has accepted lh as

(classic) history. Thus, lh is a prefix of some history sent by

the leader in a “2a” message. Clearly, this holds for h too.

Any two histories sent by the leader (of the same round)

are prefixes of each other. So, if max is the largest of the

two histories, then max is a common extension of lh and h.

Thus, lh and h are compatible.

4.2.2 Implementation Considerations

Now that we have argued about the correctness (safety) of

HP, in this section we describe how HP can be tweaked to

be practical. We have identified a set of optimizations and

listed them below.

O1 The leader does not have to send the entire history hc in
step (2aCP), it suffices to send c. When an acceptor receives

c in a “2a” message, the FIFO property implies that it has

already received h.

If the state machine is implemented at the servers, then

there is no reason to send the entire history to the clients.

All a client needs to learn is (a) the execution result of its

last issued command and (b) that the history producing the

result is chosen.

O2 The solution to (a) is to have the servers speculatively

execute commands. Specifically, when the leader receives

a proposal from a client, it immediately executes the com-

mand and includes the result in the “2b” message it sends

back to the client. Speculation at the leader avoids rollbacks

and history replays during normal operation.

O3 In order to attain (b) without sending the history, we re-

place the histories in the “2b” and “2bFast” messages with

history digests. Two history digests are equal iff the corre-

sponding histories are equal. Thus, in the (Learn) and (Hy-

brid Learn) step, clients check history digests for equality.

Intuitively, a history digest function takes as arguments a

history h and a command c contained in that history. It then

computes the smallest prefix of h containing c and returns

the digest thereof. We refer the reader to the full paper [9]

for an incremental digest implementation based on hashing.

O4 If the classic and fast histories diverge during normal

operation, the protocol as described above prevents hybrid

learning. A simple solution would be to periodically start a

new round. However, this imposes a considerable overhead.

Therefore, the idea is to have each acceptor locally align the

fast history fh to the classic history h as follows. Periodi-

cally, fh is replaced with the lub of h and the largest prefix

of fh that is compatible with h. We know from Section

4.2.1 that this is safe.

O5We have optimized HP to adapt to a changing workload.

Specifically, HP uses a double threshold (Thigh, Tlow) such

that when the load increases above Thigh (resp. decreases

below Tlow) the fast mode is switched off (resp. switched

on). Changes in the load are monitored by the leader, who is

counting proposals per time unit. The leader simply tells the

clients (in “2b” messages) to stop (respectively start) send-

ing commands to the acceptors.

4.3 Discussion

In this section, we provide a comparison of HP and FP

in terms of their performance during normal operation. We

argue that the cost of collision recovery in FP outweights the

gain obtained from fast learning. The original FP paper [19]

says: “If collisions are very rare, then starting a new round

might be best. If collisions are too frequent, then classic

Paxos might be better than Fast Paxos.”

The latency of HP and FP equals two message delays in

the absence of collisions. In the presence of collisions, HP

requires three message delays and FP requires six. Hence, if

FP is recovering from collisions only 25% of the time, then

there is no (average) gain from fast learning.

The message complexity of HP is 4n messages per re-

quest. FP requires 3n� 1 messages in the absence of colli-

sions and p6� lqn messages otherwise, where l is the num-

ber of learners. If we consider that l � n ¥ 3, and FP is

recovering from collisions only 12% of the time, then FP

has a higher (average) message complexity. Even without

collisions, in FP the leader collects “2bFast” messages and

checks if collisions occured, thus becoming the bottleneck.

Our experiments with HP have revealed that with in-

creasing load, the collision rate is growing faster than the

server capacity utilization rate. For instance, we have ob-

served that the servers are still underutilized when the rate

of hybrid learning drops under 50% (with 99% commutable

commands). In this situation, FP would spend ¡ 50% of

the time recovering from collisions, thus performing poorly

compared with HP.

6

5 Evaluation

This section explores the performance characteristics of

HP and compares it with existing approaches. As argued in

Section 4.3 above, we expect HP to outperform FP in most

situations, and therefore we omit a direct comparison. We

substantiate our claim by showing that HP’s latency often

attains the theoretical minimum. We compare HP with CP

and show that it performs significantly better under low to

medium load and equally well under high load. Where ap-

propriate, we also compare HP with Mencius [21].

5.1 Experimental Settings

We have implemented a simple banking system in which

multiple clients share a bank account. Clients can deposit

or withdraw money. The state consists of the balance of the

shared account, and clients can issue withdraw or deposit

commands. Executing withdraw $100 subtracts $100 in a

state with at least $100 and produces $100 as output. Ex-

ecuting deposit $20 adds $20 and produces OK as output.

Note that any two deposit commands are commutable be-

cause executing them in either order has the same effect.

However, when one of the two operations is a withdraw, the

order matters.

A scenario is modeled in which clients frequently de-

posit small amounts of money and less frequently withdraw

larger amounts. Where the rate of withdraw commands

matters, we use “HP-x” to denote runs of the HP protocol,

where on average, one out of x commands is a withdraw.

We use “CP3” (respectively “CP4”) to denote the specific

CP protocol where a command can be learned by a client

after three (respectively four) message delays; CP4 relates

to CP without speculation.

We ran experiments in the Emulab testbed [26] and

we implemented all protocols in Java using the Neko [25]

framework. The protocols are evaluated in a system with

five servers (f � 2) except for fault-scalability, where the

number of servers is scaled up to 21 (f � 10).

Client and server nodes are connected by links with a

one-way delay of 20ms and a bandwidth of 100 Mbps. The

chosen delays are comparable to the “Europe”WAN setting

analyzed in section 1. The chosen network bandwidth mod-

els modern high-end WAN links such Geant2 [13]. Server

nodes are 600 Mhz PCs with 256 MB memory running Fe-

dora 6.

5.2 Latency

Figure 4(a) shows the average latency of of HP under

low and medium load as the rate of withdraw operations is

varied between 0% and 100%. Note that the withdraw rate

corresponds to the probability of collisions. For a withdraw

rate of 0.5% and load offered by 100 clients, HP has a 32%

lower latency than CP3. This is close to the theoretical min-

imum. For a withdraw rate of 100% and load offered by

10 clients (between 0.1 and 0.2 Kops), HP still features a

latency of 20% below the optimum of CP3.

Figure 4(b) compares the latency and throughput of HP-

500, CP3, CP4 with and without request batching (of 20

commands) as we vary the offered load. As illustrated, un-

der low load, batching at the leader increases the latency of

CP4 and CP3 but not that of HP because most commands

(¡ 90%) are chosen in the fast mode. On the other hand,

batching increases peak throughput. In fact, with batching

all protocols converge to the same peak throughput. Start-

ing from a throughput of 6 Kops, the curves of HP and CP3

coincide because the fast mode is switched off.

Figures 4(c) and 4(d) illustrate the effectiveness of adap-

tive switching by means of a dynamic workload. The work-

load is organized as follows: 50% of the commands are sent

under moderate load generated by 100 clients and 50% un-

der high load generated by 1000 clients between t � 68

and t � 98. Figure 4(c) compares the average latency of

HP with that of CP3 and CP4. We have measured the la-

tency of HP with and without adaptive switching. The lat-

ter is referred to as nonadaptive. Figure 4(c) clearly shows

that during the high load burst, the nonadaptive version of

HP performs worst among all protocols. The explanation

is the following. Batching offloads the leader and the ac-

ceptors become the bottleneck nodes because they process

more messages. In contrast, the adaptive version shows a

short spike after the load burst starts and a short tail af-

ter the burst ends. These can be attributed to conservative

thresholds. Overall, the adaptive version of HP features the

minimum latency of all protocols. Figure 4(d) compares the

cumulative latency distribution of the four protocols under

the same workload and confirms that adaptive HP performs

best both under moderate and high load.

The experiments presented so far have been conducted in

a setting in which the network is always timely. We now add

a Pareto distribution to each link using the NetEm [15] util-

ity. The one-way network delay now varies between 20ms

and 60ms. Pareto is a heavy tailed distribution, which mod-

els the fact that wide-area links are usually timely (e.g. 80%

of the time) but can present high latency occasionally.

Figure 5(a) compares the latency and throughput of HP-

500, CP3, CP4 with batching as we vary the offered load.

The trends are the same as in a situation with no network

variance. An important point is that all protocols have lower

peak throughputs, including the unreplicated system. High

variance results in packet reordering and packet retransmis-

sion at the transport protocol level (TCP), causing addi-

tional load in the bottleneck node. HP outperforms CP3

up to 60% of the peak throughput. Up to a throughput

of 1 Kops, HP and the unreplicated system have compa-

7

 40

 45

 50

 55

 60

 65

 70

 75

 80

0.1 0.2 0.5 1 2 5 10 20 50 100

L
a

te
n

c
y
 (

m
s
)

Rate of withdraw operations in %

CP3 (100 cl, 1.8 Kops)
HP(200 cl, 3 Kops)

HP (100 cl, 2.3 Kops)
HP (50 cl, 1.1 Kops)
HP(20 cl, 0.5 Kops)
HP(10 cl, 0.2 Kops)

(a) Latency versus withdraw rate

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

L
a

te
n

c
y
 (

m
s
)

Throughput (Kops/sec)

HP-500 (B=20)
HP-500 (B=1)

CP3 (B=20)
CP4 (B=20)
CP4 (B=1)

Unreplicated

(b) Latency versus throughput

 60

 80

 100

 120

 140

 160

 180

 200

 50 60 70 80 90 100 110 120 130 140

L
a

te
n

c
y
 (

m
s
)

Time (seconds)

HP-500 (adaptive)
HP-500 (nonadaptive)

CP3
CP4

(c) Average latency under a changing load (B = 20)

 0

 20

 40

 60

 80

 100

 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

C
D

F

Latency (ms)

HP-500 (adaptive)
HP-500 (nonadaptive)

CP3
CP4

(d) Latency CDF under a changing load (B = 20)

Figure 4.

rable latencies. The performance profile of HP is somewhat

surprising because with high network variance, the likeli-

hood of collisions increases. E.g., under a link variance of

40ms, if two interfering commands are sent within 40ms

from each other, they might be accepted in different orders.

Figure 5(b) supports the above observation showing that

under network variance, the latency of HP converges much

faster to that of CP3. Nevertheless, under low load and a

small fraction of withdraws, HP shows a latency improve-

ment of up to 40% over CP3, which is more than the theo-

retical maximum latency reduction of 1{3. An explanation

could be that the longer it takes to run an instance of a pro-

tocol, the more likely it is to depend on a slow link in the

critical path. In this particular case, this effect adds to the la-

tency of CP3 and explains the measured latency difference.

Figure 5(c) compares the latency of HP-500, CP3 and

Mencius [21] as more servers are added to the system. We

are simulating a lightly loaded scenario with 20 clients.

With Mencius, a server has to wait for all other servers to

skip or to propose a command. For a fair comparison, all

commands are commutable and thus Mencius can commit

in only one message roundtrip after receiving a reply from

all servers, which is optimal. Mencius’ dependency on slow

links grows as more servers are added and therefore its la-

tency increases. In contrast, the latency of HP and CP3 re-

mains roughly constant (CP3’s latency even drops) because

they wait for the fastest quorum. These results suggest that

the latency of CP and HP strongly depends on how large is

the fraction of nodes that form a quorum. We observe that

the latency oscillates (and even drops) with this fraction.

5.3 Throughput

We show now that the lower latency of HP does not come

at the cost of lower throughput compared to CP.

Figure 6(a) shows the throughput of HP-500, CP3 and

CP4 with and without batching as the number of clients in-

creases. All protocols scale equally well when batching is

used; CP4 without batching scales poorly. Figure 6(b) com-

pares the peak throughputs of HP (that equals CP3), CP4

and Mencius as the number of faulty servers tolerated in-

creases. The throughput of Mencius is scaled down from

3GHz machines to ours (600MHz) using a factor of 1{4.
The results show that HP outperforms all other protocols

except in the case of f � 2 with batching, when its peak

throughput is comparable to CP4. The fault scalability of

HP is superior to that of CP4 with and without batching.

For f � 10 with batching, HP features 73% of the peak

throughput for f � 2. In contrast, CP4’s peak throughput

drops down to 50%.

8

 80

 100

 120

 140

 160

 180

 200

 220

 240

 0 1 2 3 4 5 6 7 8 9 10

L
a

te
n

c
y
 (

m
s
)

Throughput (Kops/sec)

HP-500
CP3
CP4

Unreplicated

(a) Latency versus throughput (B = 20)

 70

 75

 80

 85

 90

 95

 100

 105

 110

 115

 120

 125

 130

 135

 140

0 0.1 0.2 0.5 1 2 5 10 20 50 100

L
a

te
n

c
y
 (

m
s
)

Rate of withdraw operations in %

CP3 (10 cl, 0.1 Kops)
HP (100 cl,1.2 Kops)
HP (50 cl, 0.6 Kops)
HP (20 cl, 0.3 Kops)
HP (10 cl,0.2 Kops)

(b) Latency vs. withdraw rate

 70

 80

 90

 100

 110

 120

 130

 1 2 3 4 5 6 7 8 9 10

L
a

te
n

c
y
 (

m
s
)

Number of tolerated faults

HP-500
CP3

Mencius (all commutable)

(c) Latency as f increases (20 clients)

Figure 5. Effect of network variance

6 Related Work

In the asynchronous model, the possibility of a single

crash makes deterministic consensus impossible [12]. It has

been shown that the FLP result can be circumvented by ad-

ditional timing assumptions [11]. Chandra and Toueg [7]

have introduced the concept of failure detectors, encap-

sulating timing assumptions, and Ω [6] has been shown

to be the weakest failure detector for solving consensus.

In his seminal Paxos paper [17], Lamport describes how

to build a replicated state machine from consensus. Un-

like many other consensus algorithms, Paxos is a perfect

 0

 2

 4

 6

 8

 10

 12

 14

 300 600 900 1200 1500 1800 2100 2400

T
h

ro
u

g
h

p
u

t
(K

o
p

s
/s

e
c
)

Number of clients

HP-500 (B=20)
HP-500 (B=1)

CP3 (B=20)
CP4 (B=20)

CP4 (B=1)
Unreplicated

(a) Throughput as the number of clients increases.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

f=2 f=3 f=5 f=10

P
e

a
k
 T

h
ro

u
g

h
p

u
t

(K
o

p
s
/s

e
c
)

H
P

 (
B

=
1

)

C
P

4
 (

B
=

1
)

H
P

 (
B

=
2

0
)

C
P

4
 (

B
=

2
0

)

M
e

n
c
iu

s
 (

B
=

5
,

s
c
a

le
d

 f
ro

m
 [

2
1

])

H
P

 (
B

=
1

)

C
P

4
 (

B
=

1
)

H
P

 (
B

=
2

0
)

C
P

4
 (

B
=

2
0

)

M
e

n
c
iu

s
 (

B
=

5
,s

c
a

le
d

 f
ro

m
 [

2
1

])

H
P

 (
B

=
1

)

C
P

4
 (

B
=

1
)

H
P

 (
B

=
2

0
)

C
P

4
 (

B
=

2
0

)

H
P

 (
B

=
1

)

C
P

4
 (

B
=

1
)

H
P

 (
B

=
2

0
)

C
P

4
 (

B
=

2
0

)

(b) Throughput as f increases.

Figure 6.

candidate for latency-critical applications because the read

phase is done for infinitely many consensus instances to-

gether. Lamport’s recent work on Fast Paxos [19] is based

on the observation that the latency of CP can be further re-

duced if clients directly propose commands. At the heart

of FP lies the idea of one-step consensus [4]. Pedone et

al. [23, 24] have developed latency-efficient atomic broad-

cast algorithms based on the execution of a sequence of one-

step consensus instances. The mentioned protocols suffer

from collisions (which results in degraded latency) when

multiple commands are sent at about the same time. In

our prior work [10] we have developed consensus protocols

tackling this problem and degrading gracefully in the pres-

ence of collisions. Guerraoui and Raynal [14] have devel-

oped a gracefully degrading consensus protocol that quickly

chooses a value accepted by a fixed quorum. Charron-Bost

and Schiper [8] present a consensus protocol with the mini-

mum latency of FP and CP but only in failure-free runs.

Pedone and Schiper [22] have introduced the problem of

generic broadcast, where one message delay can be saved

by delivering messages in different but equivalent order.

Recent work by Lamport on generalized consensus [18]

borrows ideas from this work and extends FP to solve con-

sensus on a growing set of partially ordered commands.

Zielinski [27] proposes a protocol that combines FP and

9

CP into a latency-optimal generic broadcast protocol. The

protocol is not resilience optimal and incurs the expense of

quadratic messages. Mencius [21] is a state machine repli-

cation protocol based on CP. The goal of Mencius is to re-

duce the load at the leader in order to prevent it from be-

coming a bottleneck. The main idea is to partition the set

of consensus instances among several leaders. To reduce

latency, Mencius assumes that each client has a local area

connection with some leader. However, this cannot be guar-

anteed in a general system setting. Further, the system can

only make progress if all leaders are correct. Therefore an

eventually perfect failure detector [7] is assumed. These are

all assumptions we do not make.

An earlier version of this work first introducing the con-

cept of Hybrid Paxos is also discussed in some work by

Junqueira et al. [16]. They study, by performing network

simulations, when CP has a lower latency than FP.

Camargos et al.[5] developed a generalized consensus

protocol that aims at improving the availability of CP by

allowing multiple leaders to coexist. Under collisions, the

protocol faces similar problems as FP and requires collision

resolution. In contrast HP eliminates collision resolution,

improving the latency and throughput of FP in stable runs.

7 Conclusion

We have developed Hybrid Paxos, a generalized consen-

sus protocol that features minimal latency and maximum

throughput in most situations. The core idea of HP is to add

fast learning to CP. HP is to our knowledge the first gener-

alized consensus protocol that attains the optimal latency of

two message delays in the absence of collisions and three

otherwise. Moreover, it has optimal latency, resilience and

number of messages. We have shown that generalized con-

sensus is a practical approach to replication in a WAN. Our

experimental results demonstrate that HP can outperform

state of the art protocols.

Acknowledgements We thank Flavio Junqueira for the

inputs and discussions that helped to significantly enhance

the paper.

References

[1] M. K. Aguilera, W. Chen, and S. Toueg. Failure detec-

tion and consensus in the crash-recovery model. In Proc.

of DISC, pages 231–245, 1998.
[2] A. Basu, B. Charron-Bost, and S. Toueg. Simulating reliable

links with unreliable links in the presence of process crashes.

In Proc. of WDAG, pages 105–122, 1996.
[3] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin,

S. Muir, L. Peterson, T. Roscoe, T. Spalink, and M.Wawrzo-

niak. Operating system support for planetary-scale network

services. In Proc. of NSDI, pages 253–266, 2004. et al.

[4] F. V. Brasileiro, F. Greve, A. Mostefaoui, and M. Raynal.

Consensus in one communication step. In Proc. of PACT,

pages 42–50, 2001.

[5] L. J. Camargos, R. M. Schmidt, and F. Pedone. Multico-

ordinated agreement protocols for higher availabilty. NCA,

pages 76–84, 2008.

[6] T. D. Chandra, V. Hadzilacos, and S. Toueg. The Weakest

Failure Detector for Solving Consensus. In Proc. of PODC,

pages 147–158, 1992.

[7] T. D. Chandra and S. Toueg. Unreliable failure detectors for

reliable distributed systems. JACM, (2):225–267, 1996.

[8] B. Charron-Bost and A. Schiper. Improving fast paxos: be-

ing optimistic with no overhead. In Proc. of PRDC, 2006.

[9] D. Dobre, M. Majuntke, M. Serafini, and N. Suri. Hp: Hy-

brid paxos for wans. 2009. http://www.deeds.

informatik.tu-darmstadt.de/dan/ghp.pdf.

[10] D. Dobre and N. Suri. One-step consensus with zero-

degradation. In Proc. of DSN, pages 137–146, 2006.

[11] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the

presence of partial synchrony. JACM, (2):288–323, 1988.

[12] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibil-

ity of distributed consensus with one faulty process. JACM,

(2):374–382, 1985.

[13] Geant2. Pan-european backbone network. Website.

http://www.geant2.net.

[14] R. Guerraoui and M. Raynal. The information structure of

indulgent consensus. IEEE Trans. Comput., 53(4), 2004.

[15] S. Hemminger. Network emulation with netem. In Proc. of

LCA, 2005.

[16] F. Junqueira, Y. Mao, and K. Marzullo. Classic paxos vs.

fast paxos: caveat emptor. In HotDep workshop, Berkeley,

CA, USA, 2007. USENIX Association.

[17] L. Lamport. The part-time parliament. ACM Trans. Com-

puter Systems, (2):133–169, 1998.

[18] L. Lamport. Generalized consensus and paxos. InMSR-TR-

2005-33, 2005.

[19] L. Lamport. Fast paxos. Distrib. Comp., 19(2), 2006.

[20] L. Lamport. Lower bounds for asynchronous consensus.

Dist. Comp., 19(2), 2006.

[21] Y.Mao, F. P. Junqueira, and K.Marzullo. Mencius: Building

efficient replicated state machine for wans. In OSDI, 2008.

[22] F. Pedone and A. Schiper. Handling message semantics with

generic broadcast protocols. Dist. Comp., 15(2), 2002.

[23] F. Pedone and A. Schiper. Optimistic atomic broadcast: A

pragmatic viewpoint. Journal of Theoretical Computer Sci-

ence, 291(1):79–101, 2003.

[24] F. Pedone, A. Schiper, P. Urbán, and D. Cavin. Solving

agreement problems with weak ordering oracles. In Proc.

of EDCC, pages 44–61, 2002.

[25] P. Urbán, X. Defago, and A. Schiper. Neko: A single en-

vironment to simulate and prototype distributed algorithms.

In Proc. of Information Networking, pages 503–511, 2001.

[26] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,

M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An inte-

grated experimental environment for distributed systems and

networks. In Proc. of OSDI, pages 255–270, 2003.

[27] P. Zielinski. Optimistic generic broadcast. In Proc. of DISC,

pages 369–383, 2005.

10

