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Abstract
We address the problem of message-parsimonious asyn-

chronous atomic broadcast when a subset t out of n
parties may exhibit Byzantine behavior. Message parsi-
mony involves using only the optimal O(n) message ex-
changes per atomically delivered payload in the normal
case. Message parsimony is desirable for Internet-like de-
ployment environments in which message loss rates are
non-negligible. Protocol PABC, the only previously-known
message-parsimonious solution, suffered from two limita-
tions vis-à-vis the solutions with O(n2) message complex-
ity: more communication steps and the use of digital sig-
natures. We present a protocol termed AMP that for the
first time provides signature-free message parsimony while
at the same time reducing the number of communication
steps to the minimum necessary. In contrast to many previ-
ous atomic broadcast solutions, our protocol satisfies both
safety and liveness in the asynchronous model.

1. Introduction

Byzantine fault-tolerant (BFT) replication has garnered
strong interest as a means of enhancing the trustworthiness
of distributed systems. Replicating a service at geographi-
cally dispersed sites offers protection against catastrophic
failures of a single site, such as outages, intrusions, and
denial-of-service (DoS) attacks. Atomic broadcast is a fun-
damental communication primitive for the coordination of
the replicas of such a replicated service. It allows a group
of n parties to agree on a set of payload messages to de-
liver as well as on their delivery order, despite the failure
of up to t parties. Our goal is to develop atomic broadcast
protocols that are suitable for building highly available and
intrusion-tolerant services in the Internet.
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Because of the non-negligible message loss rates on the
Internet, it has been shown by Bakr and Keidar [1] and more
recently by Shraer and Keidar [14] that a broadcast protocol
with a one-to-all communication pattern among the parties
is likely to have significantly better performance than pro-
tocols that rely on the all-to-all communication pattern. In
view of this observation, Ramasamy and Cachin recently
proposed a leader-based atomic broadcast protocol (Pro-
tocol PABC) [12], based on the one-to-all communication
pattern. The protocol guarantees both safety and liveness
in asynchronous networks, circumventing the FLP impos-
sibility result [5] by relying on randomized agreement un-
der unstable or faulty conditions. The protocol is optimally
resilient (i.e., t < n/3) with an amortized message com-
plexity of O(n) in the fully asynchronous system model.
Message complexity, an important metric for analyzing the
efficiency of atomic broadcast protocols, denotes the num-
ber of protocol messages generated per atomically delivered
payload. Previously, the most efficient solutions in the asyn-
chronous model were the Byzantine Fault Tolerant or BFT
protocol by Castro and Liskov [4], the KS protocol by Kur-
sawe and Shoup [9], and the Fast Byzantine or FaB consen-
sus protocol by Martin and Alvisi [10], all of which use the
all-to-all communication pattern incurring a message com-
plexity of O(n2).

The reduced message complexity of the PABC proto-
col comes with three limitations. Firstly, even the opti-
mized version takes a minimum of seven communication
steps between the atomic broadcast and the atomic deliv-
ery of a payload, which is more than twice the number of
steps needed by the BFT protocol. Secondly, the protocol
uses digital signatures even under normal conditions. Fi-
nally, the PABC protocol overlooks the possibility of only a
finite number of payloads ever being atomically broadcast;
as a consequence, there may be runs in the PABC protocol
in which a subset of correct parties is lagging behind other
correct parties forever.

We have developed an atomic broadcast protocol that ad-
dresses the above drawbacks of the PABC protocol while
at the same time retaining its advantages, namely, message
parsimony and correctness despite asynchrony. The proto-



col is called AMP, which stands for the Authenticator-based
Message-Parsimonious protocol. Message parsimony [11]
leverages the observation that conditions are normal dur-
ing most of a system’s operation and uses only the optimal
O(n) message exchanges per atomically delivered payload
under such conditions. Normal conditions refer to a stable
network and no intrusions. Unlike the BFT protocol, and
just like the PABC protocol, our new protocol satisfies both
safety and liveness in the asynchronous model. In partic-
ular, under unstable network conditions, the deterministic
BFT protocol can generate a potentially unbounded num-
ber of protocol messages by repeatedly switching protocol
modes without making progress, thereby violating liveness.

Like the PABC protocol, the AMP protocol proceeds in
epochs, where an epoch consists of a parsimonious mode
and a recovery mode. The key idea of our solution is to re-
place the primitive used in the parsimonious mode of the
PABC protocol, namely, consistent broadcast (CB), with a
signature-free version while at the same time reducing the
number of communication steps in the parsimonious mode.
This replacement necessitates additional steps in the recov-
ery mode to ensure that safety and liveness are always satis-
fied. As failures and instability are the exception rather than
the norm in many real systems, we decided to optimize per-
formance as much as possible for the normal case, even if it
means incurring a slightly higher performance penalty dur-
ing periods of instability.

The AMP protocol substitutes digital signatures used
in the implementation of consistent broadcast with mes-
sage authenticators [4, 15] based on symmetric cryptogra-
phy. The protocol uses a minimum of five communica-
tion steps (versus the PABC protocol’s seven) between the
atomic broadcast of a payload and the payload’s atomic de-
livery. The protocol achieves the reduction in steps by using
only two (instead of the PABC protocol’s three) consecu-
tive consistent broadcast instances for each payload atomi-
cally delivered in the parsimonious mode. Unlike the PABC
protocol, the AMP protocol guarantees that even in runs in
which only a finite number of payloads are broadcast, all
correct parties eventually atomically deliver the same set of
payloads.

Table 1 compares normal-case operation of the AMP
protocol with that of the BFT, FaB, and PABC protocols
in terms of reliance on Public-Key (PK) operations, latency,
message complexity and resilience.

2. Preliminaries

2.1 System Model

We consider an asynchronous distributed system model
equivalent to the one of Cachin et al. [3] in which there are
no bounds on relative processing speeds and message de-

Table 1. Normal-Case Operation of Efficient Byzantine-
Fault-Tolerant Atomic Broadcast Protocols

Latency
Protocol PK #CB #Comm. #Msgs Resilience

Ops? Instances Steps
BFT [4] no N/A 3 2n2 + n 3t + 1

FaB [10] no N/A 2 n2 + n 5t + 1
PABC [12] yes 3 7 7n 3t + 1

AMP no 2 5 5n 3t + 1

lays. The system consists of n parties P1, . . . , Pn and an
adversary. Up to t parties are controlled by the adversary
and are called corrupted; the other parties are called correct.
We use a static corruption model, and there is an algorithm
run by a trusted dealer for generating the state information
(e.g. keys) used to initialize each party. All computations by
the parties, the adversary, and the dealer are probabilistic,
polynomial-time algorithms. As our model is based on the
formal approach in cryptography, we allow for a negligible
probability of failure in the specification of our protocols.
The system model includes a digital signature scheme that
is secure against existential forgery using chosen-message
attacks [6].

Each pair of parties is linked by an authenticated asyn-
chronous channel that provides message integrity. Message
authentication codes or MACs can be used to implement
such a channel between two parties, e.g. using HMAC [2].
For this purpose, each pair of parties share a common key.

Some protocol messages that are sent to all parties con-
tain message authenticators. A message authenticator is a
vector of MACs, one per party. The sender computes the
MAC for each party using the key it shares with that party.
To verify the authenticity of a message containing an au-
thenticator, the receiver just checks its corresponding MAC
in the authenticator.

Messages on the channels are scheduled by the adver-
sary. However, we assume that every message on a chan-
nel between two correct parties is eventually delivered. Ev-
ery protocol instance is identified by a unique string ID ,
called the tag. Formally, the local interface to our protocols
consists of input actions, which are messages of the form
(ID ,in, type, . . .), and output actions, which are messages
of the form (ID ,out, type, . . .). The parties receive and
generate protocol messages of the form (ID , type, . . .), de-
livered to other parties over the channels. Before a party
starts to process messages for an instance ID , the instance
with that ID must be initialized.



2.2 Protocol Primitives

2.2.1 Extensions of Consistent Broadcast

Standard Consistent Broadcast. Consistent broadcast
(CB) provides a way for a designated sender Ps to broad-
cast a payload to all parties and guarantees that any two cor-
rect parties that deliver the payload, deliver the same con-
tent. Formally, every broadcast protocol instance is iden-
tified by a tag ID . At the sender Ps, the CB protocol in-
stance is invoked by an input action of the form (ID ,in,
c-broadcast,m), with m ∈ {0, 1}∗. When that occurs,
we say Ps c-broadcasts m with tag ID . Only Ps executes
this action; all other parties initialize the protocol instance
with tag ID in the role of receivers. When an output action
of the form (ID ,out,c-deliver,m) occurs at a party
Pi, we say that Pi c-delivers m with tag ID .

Definition 1 (Consistent Broadcast). A protocol for CB sat-
isfies the following conditions except with negligible prob-
ability.
Termination: If a correct party c-broadcasts m with
tag ID , then all correct parties eventually c-deliver m with
tag ID .
Agreement: If two correct parties Pi and Pj c-deliver m
and m′ with tag ID , respectively, then m = m′.
Integrity: Every correct party c-delivers at most one pay-
load m with tag ID . Moreover, if the sender Ps is correct,
then m was previously c-broadcast by Ps with tag ID .

The standard protocol for implementing ordinary CB is
Reiter’s echo broadcast [13]; it involves O(n) messages,
has a latency of three communication steps, and relies on
a digital signature scheme. The sender starts the protocol
by sending the payload m to all parties; then it waits for a
quorum of dn+t+1

2 e parties to issue a signature on the pay-
load and to “echo” the payload and signature to the sender.
When the sender has collected and verified sufficient sig-
natures, it composes a final protocol message containing
the signatures and sends it to all parties. Upon receiving a
valid finalmessage with dn+t+1

2 e signatures on the same
payload, a party can c-deliver the payload.

Signature-free Consistent Broadcast We obtain a sim-
ple signature-free version of CB from the echo-broadcast
implementation simply by replacing signed echoes by echo
messages carrying authenticators. Thus, the final proto-
col message contains authenticators from dn+t+1

2 e parties.
When a party Pi receives the final protocol message, the
party checks the ith entry in each authenticator. If the ith

entries in all dn+t+1
2 e authenticators have been computed

on the same payload, then Pi can c-deliver the payload. One
can easily see that if two correct parties Pi and Pj c-deliver
m and m′ for the same c-broadcast instance, then m = m′.

Although the above implementation satisfies agreement
and integrity, any corrupt party Pi may cause the termi-
nation property of CB (stated above) to be violated even
if the designated sender Ps behaves correctly. In the
echo-broadcast implementation, when a party Pj receives
a final message from a correct Ps, Pj can immediately
c-deliver because the dn+t+1

2 e signed echoes will be valid.
However, in the signature-free implementation, when the
designated sender receives an echo message from Pi, it can
verify only the validity of its corresponding MAC in the au-
thenticator before including the echo as part of its final
message. The MACs for other parties contained in the au-
thenticator may be invalid or computed on a different pay-
load. We call such an echo message partially corrupt. Par-
tially corrupt messages are examples of malicious failures
(as opposed to muteness failures [8]); malicious failures are
exhibited only by parties that are actually corrupted by the
adversary. If partially corrupt echo messages are part of the
final message, then one or more correct parties may not
be able to c-deliver.

In fact, signature-free CB satisfies the following weaker
termination property:

Weak Termination: If no party is corrupted and some cor-
rect party c-broadcasts m with tag ID , then all correct par-
ties eventually c-deliver m with tag ID .

Dual-Mode Consistent Broadcast The CB protocol used
in the parsimonious mode of the AMP protocol is a dual-
mode protocol that operates in the signature-free mode un-
til some party complains about receiving a partially cor-
rupt final message. Upon receiving a partially corrupt
final message, the CB implementation at the recipient
party sends a pc-complaint message to the designated
sender (i.e., the AMP protocol’s leader). Even if the com-
plaining party is lying about receiving a partially corrupt
final message, it is clear at that point that there is at
least one malicious failure because only corrupt parties lie.
Upon receiving the pc-complaint message, the CB im-
plementation at the leader switches to the signature-based
echo-broadcast mode and re-sends the payload to all par-
ties, indicating that signed echoes are required. All sub-
sequent CB protocol instances will directly operate in the
echo-broadcast mode.

2.2.2 Multi-Valued Byzantine Agreement

We use a protocol for multi-valued Byzantine agreement
(MVBA) as defined by Cachin et al. [3], which allows
agreement values from an arbitrary domain instead of being
restricted to binary values. Unlike previous MVBA proto-
cols, their protocol does not allow the decision to fall back
on a default value if not all correct parties propose the same
value, but uses a protocol-external mechanism instead. This



so-called external validity condition is specified by a global,
polynomial-time computable predicate QID that is known
to all parties and is typically determined by an external ap-
plication or higher-level protocol. Each party proposes a
value that contains certain validation information. The pro-
tocol ensures that the decision value has been proposed and
that it satisfies QID .

When a party Pi starts an MVBA protocol instance with
tag ID and an input value v ∈ {0, 1}∗ that satisfies predi-
cate QID , we say that Pi proposes v for MVBA with tag ID
and predicate QID . Correct parties only propose values that
satisfy QID . When Pi terminates the MVBA protocol in-
stance with tag ID and outputs a value v, we say that it
decides v for ID .

Definition 2 (Multi-valued Byzantine agreement (MVBA)).
A protocol for multi-valued Byzantine agreement with pred-
icate QID satisfies the following conditions except with
negligible probability.
External Validity: Any correct party that decides for ID
decides v such that QID(v) holds.
Agreement: If some correct party decides v for ID , then
any correct party that decides for ID decides v.
Integrity: If all parties are correct and if some party de-
cides v for ID , then some party proposed v for ID .
Termination: All correct parties eventually decide for ID .

2.3 Definition of Atomic Broadcast

Atomic broadcast provides a “broadcast channel” ab-
straction [7], such that all correct parties deliver the same
sequence of messages broadcast on the channel. A party
Pi atomically broadcasts (or a-broadcasts) a payload m ∈
{0, 1}∗ with tag ID when an input action of the form
(ID ,in,a-broadcast,m) is delivered to Pi. Broad-
casts are parameterized by the tag ID to identify their cor-
responding broadcast channel. A party atomically delivers
(or a-delivers) a payload m with tag ID by generating an
output action of the form (ID ,out,a-deliver,m).

Definition 3 (Atomic broadcast). A protocol for atomic
broadcast satisfies the following properties except with neg-
ligible probability.
Validity: If t + 1 correct parties a-broadcast some pay-
load m with tag ID , then some correct party eventually a-
delivers m with tag ID .
Agreement: If some correct party has a-delivered m with
tag ID , then all correct parties eventually a-deliver m with
tag ID .
Total Order: If two correct parties both a-delivered dis-
tinct payloads m1 and m2 with tag ID , then they have a-
delivered them in the same order.
Integrity: For any payload m, a correct party Pj a-delivers
m with tag ID at most once. Moreover, if all parties are

correct, then m was previously a-broadcast by some party
with tag ID .

The above properties are similar to the definitions
of PABC [12], Cachin et al. [3], and Kursawe and
Shoup [9]. We do not formalize their fairness condition, al-
though our protocols satisfy an equivalent notion. We mea-
sure the latency of atomic broadcast as the minimum num-
ber of communication steps between the atomic broadcast
and the atomic delivery of a payload at all correct parties.

3 The Authenticator-Based Message-
Parsimonious Protocol (AMP)

We now describe the Authenticator-Based Message-
Parsimonious (AMP) atomic broadcast protocol. The proto-
col has a structure similar to that of the PABC protocol [12].
Like the PABC protocol, the AMP protocol is optimally re-
silient (i.e., n ≥ 3t+1) and has an amortized message com-
plexity of O(n). Unlike the PABC protocol, the AMP pro-
tocol uses dual-mode CB in the parsimonious mode. Fur-
thermore, the protocol has a latency of five communication
steps, which is two steps fewer than that of the PABC pro-
tocol.

3.1 Protocol Overview

During normal operation, a leader determines the deliv-
ery order of payloads and conveys the order to the other
parties using dual-mode CB. The parties atomically deliver
the payloads in the order chosen by the leader. If a party
observes the leader to be slow or exhibiting faulty behav-
ior, the party switches to recovery mode. When a sufficient
number of correct parties have switched to recovery mode,
the protocol ensures that all correct parties start the recov-
ery mode. The goal of the recovery mode is to start the next
epoch in a consistent state and with a new leader. The diffi-
culty lies in determining which payloads have been atomi-
cally delivered in the parsimonious mode of the past epoch.

Consistent broadcast ensures agreement among the cor-
rect parties that deliver the payload. However, a corrupted
leader may cause the fate of some payloads to be undefined
in the sense that there might be only one correct party that
has c-delivered a payload, but no way for other correct par-
ties to learn about this fact. The AMP protocol solves this
problem by (1) initializing a new CB instance only after a
payload has been c-delivered by the current CB instance
and (2) delaying the atomic delivery of a c-delivered pay-
load until one more payload has been c-delivered. In con-
trast, the PABC protocol delays atomic delivery until two
additional c-deliveries have occurred.

Upon entering recovery mode, a party requests and col-
lects signed proofs from “enough” correct parties to be able



to show (to any correct party) that its last and second-to-last
c-deliveries were indeed valid. Subsequently, a first round
of multi-valued Byzantine agreement (MVBA) ensures that
all correct parties agree on a synchronization point. Then,
the protocol ensures that the correct parties deliver all pay-
loads up to that synchronization point. To implement this
step, every party must store all payloads that were deliv-
ered in the parsimonious mode. A second MVBA instance
is used to atomically deliver at least one payload, ensuring
progress in every epoch.

3.2 Parsimonious and Recovery Modes

We now describe the parsimonious and the recovery
modes in detail. The line numbers refer to the detailed pro-
tocol description in Algorithms 1 and 2.

3.2.1 Parsimonious Mode: Algorithm 1

When a party Pi a-broadcasts a payload m, it appends m
to a local queue I and forwards m using an initiate
message to the leader Pl of the current epoch e, where l = e
mod n (lines 1.19–1.21). When this happens, we say that
Pi initiates the payload. Upon receiving the initiate
message, Pl appends m to a local FIFO buffer B (line 1.22).

The leader binds sequence numbers to the payloads that
it receives in initiate messages, and conveys the bind-
ings to the other parties through dual-mode CB. For this
purpose, all parties start with an instance of dual-mode CB
(line 1.12). The leader acts as the designated sender of the
CB instance, and the tag contains the epoch e and a se-
quence number s. Here, s starts from 0 in every epoch.
The leader c-broadcasts the next available initiated payload
(lines 1.15–1.17 and lines 1.42–1.44), and every party waits
to c-deliver some payload m. When m is c-delivered, Pi

stores it in log , but does not yet a-deliver it (line 1.29). At
this point in time, we say that Pi has committed sequence
number s to payload m in epoch e. Then, Pi a-delivers
the payload to which it has committed the sequence num-
ber s − 1 (if available, lines 1.30–1.32). It increments s
(line 1.33) and starts the next CB instance (line 1.35).

The delay of an extra c-delivery between the c-delivery
and the a-delivery of a payload m is the key to avoid-
ing undefined payloads that may be caused by a faulty
leader. However, as it is possible that no further payloads
with sequence numbers higher than s may be c-delivered,
the leader c-broadcasts a dummy payload to trigger the a-
delivery of m. The leader c-broadcasts such a dummy mes-
sage whenever a corresponding timer T expires (line 1.25);
T is activated whenever the current sequence number is
committed to a payload (line 1.28), and T is disabled when
the leader c-broadcasts a payload (line 1.41).

To guarantee that all correct parties eventually catch up
with each other in terms of a-delivered payloads, the par-

simonious mode ensures that once an a-delivery has hap-
pened at a correct party, all correct parties eventually tran-
sition to the recovery mode. That is guaranteed by the fol-
lowing scheme:

When a correct party Pi commits a sequence number
x, it (re)activates a timer T (line 1.28); if T expires
before the next c-delivery, then Pi sends a request
message carrying a uniquely identifiable dummy pay-
load m to all parties (line 1.27), requesting them to
“adopt” m and atomically broadcast m themselves.
Thereby, all correct parties send an initiate mes-
sage to the leader Pl, start the failure-detection mech-
anism (lines 1.19–1.21), and expect the leader to make
progress in terms of further c-deliveries. If t + 1 cor-
rect parties a-deliver m before the failure detection has
been triggered, then t + 1 correct parties have neces-
sarily committed a sequence number x + 1.

After at most X repetitions of the above scheme, t + 1 cor-
rect parties switch to the recovery mode. Otherwise, the
failure detection invokes the transition() function at t + 1
correct parties. In either case, all correct parties switch to
recovery mode, as explained below.

3.2.2 Transition to Recovery Mode: Algorithm 1

The protocol transitions from the parsimonious to the re-
covery mode when: (1) X payloads have been c-delivered
(line 1.38) or (2) the leader is not functioning properly. The
first condition is needed to to ensure that eventually all cor-
rect parties agree on the set of payloads a-delivered in the
parsimonious mode. The second condition is needed to pre-
vent a corrupted leader from violating liveness.

Any party that a-broadcasts a payload m calls
updateFD(initiate,m) (line 1.21); this starts a timer
unless it has already been activated. When a payload
is a-delivered during the parsimonious mode, the call to
updateFD(deliver,m) (line 1.31) checks whether I
contains further undelivered payloads, and if so, restarts the
timer. Else, the timer is disabled. When the timer expires,
FD invokes transition().

When the transition() function is invoked at a party
Pj , the party sends a transition message to all par-
ties (lines 1.53) and does not initialize any further CB
instances (line 1.34). When a correct party receives
2t + 1 transition messages, it enters recovery mode
(lines 1.50–1.52). There is a transition “amplification”
mechanism [9, 12] by which a correct party that has re-
ceived t + 1 transition messages and has not yet sent
out a transition message itself joins the other parties
by sending its own transition message.

Transition amplification ensures that when some correct
party enters recovery mode, all other correct parties eventu-
ally enter it as well. It is easy to see why. A correct party



Algorithm 1: AMP at Pi (Parsimonious Mode)
intialization:

e← 0 {current epoch}1.1
I ← [] {queue of a-broadcast but not a-delivered payloads}1.2
D ← ∅ {set of a-delivered payloads}1.3
init view()1.4

function init view():
l← (e mod n) + 1 {Pl is leader of epoch e}1.5
log ← [] {size X array of payloads c-delivered in epoch e}1.6
s← 0 {sequence number of next payload in epoch e}1.7
want transition ← false1.8
{indicates whether a transition to recovery phase is desired}
c ← 0 {number of transition messages received for Pl in epoch e}1.9
B ← [] {initiated payloads buffered at Pl}1.10
S ← D {set of c-broadcast payloads}1.11
initialize c-broadcast instance with tag ID|bind.e.s1.12
if i = l then {c-broadcast the first payload}1.13

wait until B 6= ∅1.14
m← head(B)1.15
S ← S ∪ {m}1.16
c-broadcast m with tag ID|bind.e.s1.17

upon receiving (ID, request, m)
trigger (ID, in, a-broadcast, m)1.18

upon (ID, in, a-broadcast, m)
send (ID, initiate, e, m) to Pl1.19
append(m, I)1.20
updateFD(initiate, m)1.21

upon receiving (ID, initiate, e, m) : m 6∈ S
append(m,B)1.22

upon timeout(T )
m← dummy1.23
if i = l then1.24

append(m,B)1.25
else1.26

send (ID, request, m) to all parties1.27
upon c-delivery of m with tag ID|bind.e.s : m 6∈ log

restart(T )1.28
log[s]← m1.29
if s ≥ 1 then1.30

updateFD(deliver, log[s− 1])1.31
deliver(log[s− 1])1.32

s← s + 11.33
if ¬want transition then {leader Pl is not suspected}1.34

initialize c-broadcast instance with tag ID|bind.e.s1.35
if s = X then1.36

transition()1.37
recovery()1.38

if i = l then {am the leader}1.39
wait until B 6= ∅1.40
stop(T )1.41
m← head(B)1.42
S ← S ∪ {m}1.43
c-broadcast the message m with tag ID|bind.e.s1.44

function deliver(m)
if m 6∈ {dummy} ∪D then1.45

remove(m, I)1.46
D ← D ∪ {m}1.47
output (ID, out, a-deliver, m)1.48

upon receiving (ID, transition, e) from Pj for the first time
c← c + 11.49
if c = t + 1 then1.50

transition()
if c = 2t + 1 then1.51

recovery()1.52
function transition() {called by the FD module}

send (ID, transition, e) to all parties1.53
complained ← true1.54

enters recovery mode only after receiving transition
messages from at least t+1 correct parties. These messages
will be eventually received at every correct party, which
would result in a transition amplification by every correct

Algorithm 2: AMP at Pi (Recovery Mode)
function recovery():
{/***** Part 1: build recovery sets for s− 2 and s− 1 *****/}

send (ID, proof request, e, s− 1) to all parties2.1
Rs−2 ← ∅; Rs−1 ← ∅2.2
while ¬[QID|equality.e(Rs−2, s− 2) and2.3

QID|consistency.e(Rs−1, s− 1)] do
wait for a message (ID, proof, e, Mj , Σj) from some Pj2.4
Rs−2 ← Rs−2 ∪ {(Mj [0], Σj [0])}2.5
Rs−1 ← Rs−1 ∪ {(Mj [1], Σj [1])}2.6

R ← 〈R
′
s−2, R

′
s−1〉, where R

′
s−2 and R

′
s−1 are the compacted2.7

versions of Rs−2 and Rs−1, respectively

{/***** Part 2: agree on watermark *****/}
send (ID, candidate, e, s− 1,R, σ) to all parties, where2.8

σ is a valid signature on (ID, candidate, e, s− 1)
wait for valid messages (ID, candidate, e, sj ,Rj , σj)2.9

from dn+t+1
2 e distinct parties Pj

W ← 〈(s1,R1, σ1), . . . , (sn,Rn, σn)〉2.10
propose W for MVBA with tag ID|watermark.e and predicate2.11
QID|watermark.e

wait for MVBA with tag ID|watermark.e to decide2.12
W̄ = 〈(s̄1, R̄1, σ̄1) . . . (s̄n, R̄n, σ̄n)〉
w ← max{s̄1, . . . , s̄n}2.13

{/***** Part 3: synchronize up to watermark w *****/}
pick (w, R̄, ∗) ∈ W̄ deterministically2.14
if s ≥ 1 then2.15

if s ≤ w then2.16
deliver(log[s− 1])2.17

if s = w + 1 then2.18
deliver(m̄) from R̄[1]2.19

if s > w − 2 ≥ 0 then2.20
M← {(log[k], k)} for k = 0, . . . , w − 22.21
send (ID, complete, e,M) to all2.22

while s ≤ w − 2 do2.23
wait for messages (ID, complete, e,M̄j) from t + 12.24

distinct Pj such that ∀M̄j : (m̄, s) ∈ M̄j for some m̄
deliver(m̄)2.25
s← s + 12.26

while s ≤ w do2.27
deliver(m̄) from R̄[s− w + 1]2.28
s← s + 12.29

{/***** Part 4: deliver some messages and start next epoch *****/}
send (ID, queue, e, I, σ) to all parties, where2.30

σ is a valid signature on (ID, queue, e, I)
wait for messages (ID, queue, e, Ij , σj) from2.31

n− t distinct Pj such that Ij ∩ D = ∅
Q← 〈(I1, σ1), . . . , (In, σn)〉2.32
propose Q for MVBA with predicate QID|deliver.e2.33
wait for MVBA to decide Q̄ = 〈(Ī1, σ̄1), . . . , (Īn, σ̄n)〉2.34
for m ∈

Sn
j=1 Īj \ D, in some deterministic order do2.35

deliver(m)2.36
init view()2.37
for m ∈ I do send (ID, initiate, e, m) to Pl2.38

{/***** end of recovery mode *****/}

upon receiving (ID, proof request, e, sj − 1) from Pj

for the first time for any value of sj

M ← 〈committed(sj − 2), committed(sj − 1)〉, where2.39

committed(x) =


log[x] if 0 ≤ x ≤ s− 1
⊥ otherwise

Σ[0]← {(ID, proof, e, sj − 2, M [0])}i2.40
Σ[1]← {(ID, proof, e, sj − 1, M [1])}i2.41
send (ID, proof, e, M, Σ) to Pj2.42

party that had not previously sent a transitionmessage.

3.2.3 Recovery Mode: Algorithm 2

The recovery mode can be divided into four distinct parts:

1. Every correct party Pi constructs recovery sets Rsi−2



and Rsi−1 for the second-highest and the highest se-
quence number c-delivered, respectively.

2. All correct parties agree on a common synchronization
point, a sequence number w termed watermark.

3. All correct parties synchronize up to w, i.e. they atom-
ically deliver all payloads to which sequence numbers
≤ w have been committed.

4. All correct parties a-deliver every payload that was a-
broadcast by t + 1 correct parties and switch to the
parsimonious mode of the next epoch.

To determine the synchronization point, the parties first
have to exchange information about how much progress
they have made in the parsimonious mode. As the c-
deliveries in the parsimonious mode could have been from
signature-free CB instances, Pi may not be able to directly
prove the progress it has made. For this purpose, Pi gathers
recovery sets Rsi−2 and Rsi−1 for the second-highest and
highest committed sequence numbers, respectively; these
sets can be considered as a signed “show of support” from a
sufficient quorum. To construct the recovery sets, Pi sends
a proof request message with the sequence number
of the last c-delivery (i.e., si − 1) to all parties (line 2.1).
Upon receiving a proof request message for sequence
number si − 1 from Pi, every correct party Pj responds
with a signed proof message containing the payloads to
which sequence numbers si − 2 and si − 1 were commit-
ted (lines 2.39–2.42). Subsequently, Pi constructs recov-
ery sets Rsi−2 and Rsi−1 from the proof messages re-
ceived (lines 2.3–2.7). The elements of a recovery set Rx

(where x = si−2 or si−1) are tuples of the form (mj , σj),
where mj denotes the payload to which party Pj has com-
mitted the sequence number x, and σj is a valid signature
by Pj on (ID,proof, e, x,mj). If there is no payload to
which sequence number x has been committed by Pj , then
mj has the value ⊥.

Construction of the recovery sets is complete at a party
Pi when the equality predicate holds for Rsi−2 and the con-
sistency predicate holds for Rsi−1.

The equality predicate, QID|equality.e, holds iff the
set Rsi−2 contains entries (m,σj) from t+1 distinct parties
Pj that each substantiate Pi’s claim that sequence number
si − 2 was committed to a payload m with a valid signature
σj = {(ID,proof, e, si − 2,m)}j . Formally,

QID|equality.e(R, s̃) ≡ ∃R′ ⊆ R, such that R
′

=

{(m,σj)} and |R′ | = t + 1, where σj is a valid signature
by Pj on (ID,proof, e, s̃,m) and (s̃ ≥ 0 ⇒ m 6= ⊥).

We use R
′

si−2 to denote the particular subset of Rsi−2 that
satisfies the equality predicate. R

′

si−2 is called the com-
pacted version of Rsi−2.

Every correct party Pi is able to construct Rsi−2 because
there exists a set C of t + 1 correct parties that have com-
mitted sequence number si−2. By the Agreement property

of CB, every party in C has committed sequence number
si − 2 to mi. Thus, the following property holds:

P1: At any correct party, if QID|equality.e(Rs−2, s−2)

holds for s ≥ 2, and if R
′

s−2 = {(m,σj)} is the com-
pacted version of Rs−2, then a correct party has committed
sequence number s− 2 to m.

It is easy to see that the property P1 holds: By construc-
tion, all payloads in the compacted recovery set R

′

si−2 are
the same (m), and the set contains an entry from t + 1 dis-
tinct parties (at least one of which is correct) claiming to
have committed si − 2 to that payload m.

The consistency predicate, QID|consistency.e,

holds iff the set Rsi−1 contains a subset R
′

si−1 of dn+t+1
2 e

entries from distinct parties Pj . Each entry is of the form
(mj , σj), where each σj is a valid signature by Pj on
{(ID,proof, e, si − 1,mj)}j . Here, mj can be ⊥, but
all non-⊥ payloads in the subset R

′

si−1 must be identical.
Formally,

QID|consistency.e(R, s̃) ≡ ∃R′ ⊆ R, such that R
′
=

{(mj , σj)} and |R′ | = dn+t+1
2 e, where σj is a valid sig-

nature by Pj on (ID,proof, e, s̃,mj) and (s̃ ≥ 0 ⇒
∃mj 6= ⊥) and ∀(mj 6= ⊥, σj), (mk 6= ⊥, σk) ∈ R

′
:

mj = mk.

We use R
′

si−1 to denote the particular subset of Rsi−1 that
satisfies the consistency predicate. R

′

si−1 is called the com-
pacted version of Rsi−1.

Every correct party Pi can construct Rsi−1 because there
exists a set C of at least n − t ≥ dn+t+1

2 e correct parties
such that every Pj ∈ C either has committed si−1 to mj =
mi or has not committed si− 1 yet, in which case mj = ⊥.
The recovery set Rsi−1 has the following property:

P2: Suppose that QID|consistency.e(Rsi−1, si − 1)
holds at Pi and a correct party has a-delivered a payload m
with sequence number si − 1. If mj is any non-⊥ payload
appearing in the compact recovery set R

′

si−1, then mj = m.

To see why P2 holds, consider a correct party Pk that
has a-delivered m with sequence number si − 1. Pk must
have committed sequence number si. Hence, a set C of
dn+t+1

2 e − t = dn−t+1
2 e correct parties have participated

in the CB instance si, which means that every party Pj ∈ C
previously committed sequence number si − 1. By the
Agreement property of CB, every party Pj ∈ C must
have committed si − 1 to m. By construction, |R′

si−1| =
dn+t+1

2 e, which means that |C| + |R′

si−1| > n; hence,
there exists some Pj ∈ C such that (mj , σj) ∈ R

′

si−1 and
thus R

′

si−1 contains at least one entry for m. The fact that
QID|consistency.e(Rsi−1, si − 1) holds at Pi implies

that all non-⊥ payloads that are part of R
′

si−1 are necessar-



ily for the same payload, and thus m = mj .
In the second part of the recovery mode (lines 2.8–2.13),

a watermark sequence number w is determined such that (a)
no correct party has committed sequence number w + 1 or
higher and (b) some correct party has committed sequence
number w − 1. While (a) ensures that w is high enough
such that no correct party has a-delivered a payload with
a higher sequence number, (b) guarantees that w is small
enough such that every correct party is able to deliver ev-
ery payload up to w. To determine w, every correct party
Pi sends a watermark candidate message for sequence
number si − 1, the highest sequence number Pi has com-
mitted in the parsimonious mode. The candidate mes-
sage contains the compact recovery sets R

′

si−2 and R
′

si−1

for sequence numbers si − 2 and si − 1, respectively. Sub-
sequently Pi collects dn+t+1

2 e candidate messages and
forms a watermark vector W with the following property:

P3: No correct party has a-delivered a payload with a se-
quence number larger than w, where w = max(W ) denotes
the highest sequence number for which W has an entry.

To see why P3 holds, consider a correct party Pi that
has a-delivered a payload to which sequence number w + 1
was committed. Then, dn−t+1

2 e correct parties have com-
mitted w + 1. Hence, every watermark vector W built from
dn+t+1

2 e candidate messages must necessarily contain
one entry for sequence number w+1 or higher. That would
contradict the assumption that w is the highest sequence
number for which W has an entry.

After constructing the watermark vector
Wi, every correct party Pi proposes Wi =
〈(s1,R1, σ1) . . . (sn,Rn, σn)〉 for MVBA with tag
ID |watermark.e and predicate QID|watermark.e

(line 2.11), where

QID|watermark.e(W ) ≡ W has entries
(sj ,Rj , σj) from dn+t+1

2 e distinct Pj and
∀(sj ,Rj , σj) ∈ W : σj is a valid signature by
Pj on (ID ,candidate, e, sj) and |Rj [0]| =
t + 1 and QID|equality.e(Rj [0], sj − 1) and |Rj [1]| =
dn+t+1

2 e and QID|consistency.e(Rj [1], sj).

By the validity property of MVBA, the decision W̄ will
be one of the proposed watermark vectors and satisfy the
predicate QID|watermark.e. Consequently, by property
P3, no correct party has a-delivered a payload with a se-
quence number larger than w = max(W̄ ). Based on this
observation, we argue that all correct parties a-deliver the
same sequence of payloads in epoch e.

We now focus our correctness arguments on the consis-
tency property only and refer the reader to Section 3.3 for
complete proofs that cover both safety and liveness. Con-
sistency refers to the property that if two correct parties a-
deliver payloads m and m′ with sequence number s̃ in the

parsimonious mode and in the recovery mode of epoch e
respectively, then m = m′. We distinguish three cases:
(a) s̃ ≤ w − 2, (b) s̃ = w − 1, and (c) s̃ = w, and ar-
gue that for all three cases, the third phase of the recovery
mode (lines 2.20–2.29) ensures consistency. Note that by
P3, it is safe to ignore the case where s̃ > w.

Let (w,R, ∗) ∈ W̄ . In the first case (a), property P1
implies that some correct party has committed sequence
number w − 1. Consequently, for every sequence number
s̃ ≤ w−2, t+1 correct parties have committed s̃. Consider
a correct party Pi that has a-delivered m with sequence
number s̃ in the parsimonious mode and a correct party Pj

that a-delivers payload m′ from complete messages for
m′ received from t + 1 distinct parties (lines 2.23–2.26).
Among the t+1 complete message received, at least one
message was from a correct party Pk that has committed s̃
to m′ in the parsimonious mode. On the other hand, Pi has
committed s̃ to m in the parsimonious mode. By the Agree-
ment property of CB, it follows that m = m′. Consistency
for case (b), where s̃ = w − 1, results from P1 as follows:
for every (mj , σj) ∈ R[0], some correct party has com-
mitted sequence number s̃ to mj . Let m′ be the payload
a correct party a-delivers from Rsi−2 (line 2.28). By the
Agreement property of CB, m′ = mj = m. Consistency
for case (c), where s̃ = w, follows directly from property
P2, analogous to property P1 for case (b).

Finally, in the fourth part of the recovery mode (lines
2.30–2.38), the correct parties deliver every payload atomi-
cally broadcast by t+1 correct parties to ensure the validity
property of atomic broadcast. To agree on the set of pay-
loads to atomically deliver, all correct parties execute an in-
stance of MVBA on a vector 〈(I1, σ1), . . . , (In, σn)〉 with
predicate QID|deliver.e, where

QID|deliver.e(〈I1, σ1), . . . , (In, σn)〉) ≡ for at least
n− t distinct j,

(
Ij ∩D = ∅ and σj is a valid signature by

Pj on (ID ,queue, e, Ij)
)
.

Subsequently, the correct parties switch to the parsimonious
mode of the next epoch.

3.3 Correctness of the AMP Protocol

Organization We first give a brief overview of the lem-
mas established and how they contribute to showing the cor-
rectness of AMP. Lemmas 1 and 2 correspond to the prop-
erties P1 and P2 of the compacted recovery sets, Rs−2 and
Rs−1. Lemma 3 shows that the number of payloads possi-
bly a-delivered during the parsimonious mode of an epoch
is limited to w + 1 (i.e., sequence numbers 0 to w). Lem-
mas 1–3 are used as building blocks in Lemma 6, which
proves that before starting the next epoch, all correct parties
first catch up with every a-delivery done in the preceding
epoch. Lemma 4 states that once an a-delivery has hap-



pened at a correct party, eventually all correct parties enter
the recovery mode. This feature guarantees that (unlike in
the PABC protocol) all correct parties catch up with each
other even if no further “real” payloads are a-broadcast.
Lemma 5 shows that no correct party blocks (stays forever)
in recovery mode. Lemmas 4–6 are used to show that all
correct parties agree on the set of a-deliveries in each epoch
(Lemma 7). Lemma 8 shows that all correct parties agree
on the order in which they a-deliver payloads. Finally, To-
tal Order and Agreement (Lemma 9) follow from the fact
that all correct parties agree on the sequence of payloads
a-delivered in every epoch (Lemmas 7 and 8).

Lemma 1 (Property P1). Let W̄ be the watermark vector
of epoch e, (s̄, R̄, σ̄) ∈ W̄ , and (m̄j , σ̄j) ∈ R̄[0]. If s̄ ≥ 1,
then some correct party has committed sequence number
s̄− 1 to m̄j .
Proof. By the Validity property of MVBA, the predicate
QID|watermark.e(W̄ ) holds, and hence, the equality
predicate QID|equality.e(R̄[0], s̄−1) must also be true.
By the definition of QID|equality.e, R̄[0] contains valid
signatures σ̄j on (ID,proof, e, s̄ − 1,m) from t + 1 dis-
tinct parties Pj that claim to have committed sequence num-
ber s̄−1 to payload m. This implies that some correct party
has committed s̄ − 1 to payload m. As |R̄[0]| = t + 1, for
all (m̄j , σ̄j) ∈ R̄[0], m̄j must be equal to m.

Lemma 2 (Property P2). Let (s̄, R̄, σ̄) ∈ W̄ and let (m̄i 6=
⊥, σ̄i) ∈ R̄[1]. If dn−t+1

2 e correct parties have committed
sequence number s̄ to payload m, then m̄i = m.
Proof. By the Validity property of MVBA,
QID|watermark.e(W̄ ) holds. Hence,
QID|consistency.e(R̄[1], s̄) is true. By the defi-
nition of QID|consistency.e, R̄[1] contains entries
(m̄i, σ̄i) from dn+t+1

2 e distinct parties Pi where σ̄i

is a valid signature on (ID,proof, e, s̄, m̄i) and
∀(m̄i 6= ⊥, σ̄i), (m̄j 6= ⊥, σ̄j) ∈ R̄[1] : m̄i = m̄j .
By the hypothesis, a set C of dn−t+1

2 e correct parties
have committed sequence number s̄ to payload m. As
any two sets of dn−t+1

2 e and dn+t+1
2 e elements intersect,

there exists an entry (m̄i, σ̄i) ∈ R̄[1] such that Pi ∈ C,
which implies that m = m̄i. As |R̄[1]| = dn+t+1

2 e, for all
(m̄i 6= ⊥, σ̄j) ∈ R̄[1], m̄i must be equal to m.

Lemma 3 (Property P3). Let w be the watermark of epoch
e. If dn−t+1

2 e correct parties have committed sequence
number s̃ in epoch e, then s̃ ≤ w.
Proof. Let C be any set of dn−t+1

2 e correct parties that
have committed s̃ in epoch e. The proof is by contra-
diction. Suppose that s̃ ≥ w + 1. Then, every party
Pj ∈ C sends a candidate message for sequence num-
ber sj ≥ w+1 (line 2.8). Let W̄ be the watermark vector of
epoch e. By QID|watermark.e(W̄ ), W̄ contains an entry

from dn+t+1
2 e distinct parties Pj . As |C|+ |W | > n, there

exists an entry (s̄j , R̄j , σ̄j) ∈ W̄ such that Pj ∈ C. As
s̄j ≥ w + 1, the watermark of epoch e equals max(W̄ ) ≥
w + 1 > w, a contradiction.

Lemma 4. If any correct party Pi a-delivers a payload m
in epoch e, then every correct party eventually enters the
recovery mode of epoch e.
Proof. We first show the Lemma using the two claims es-
tablished below, and then prove the two claims.
Claim 1: If t + 1 correct parties have committed sequence

number s̃ in epoch e, then every correct party eventu-
ally enters the recovery mode of epoch e.

Claim 2: If any correct party has entered the recovery
mode of epoch e, then all correct parties eventually en-
ter the recovery mode of epoch e.

If Pi a-delivers m in the parsimonious mode, then t + 1
correct parties have c-delivered m in epoch e. By Claim 1,
every correct party eventually enters the recovery mode of
epoch e. If Pi’s a-delivery of m did not happen in the parsi-
monious mode, then it must have happened in the recovery
mode of epoch e. Then, by Claim 2, all correct parties even-
tually enter the recovery mode of e.

Claim 1: Let C be any set of t + 1 correct parties that
commit sequence number s̃ in epoch e. Upon the c-delivery
of some payload with sequence number s̃, every party Pj ∈
C (re)starts a timer T (line 1.28). There are two cases to
consider: (a) every Pj ∈ C commits s̃+1 before T expires,
and (b) T expires at some party Pj ∈ C.
Case (a): If every Pj ∈ C commits sequence number s̃ + 1
before T expires, then Claim 1 can be applied recursively up
to sequence number X − 1. If t + 1 correct parties commit
sequence number X − 1, then they enter the recovery mode
at line 1.38. By transition amplification, all correct parties
eventually enter the recovery mode of epoch e.
Case (b): If any Pj ∈ C times out on T , then Pj triggers
an a-broadcast event for a dummy payload m at all cor-
rect parties (lines 1.27 and 1.18). Thus, eventually 2t + 1
correct parties a-broadcast m. If t or fewer correct parties
a-deliver m before the failure detector FD triggers, then
FD calls the transition() function at t + 1 or more cor-
rect parties. Hence, at least t + 1 correct parties sent out
a transition message (lines 1.53–1.54). By the transi-
tion amplification mechanism (line 1.50), all correct parties
eventually enter recovery mode (line 1.52). On the other
hand, if t + 1 correct parties a-deliver m before FD trig-
gers, then they have all committed sequence number s̃ + 1.
Then, as in Case (a), Claim 1 follows from the recursive
application of the hypothesis.

Claim 2: If any correct party Pi enters recovery mode
at line 1.52, then it has received a transition message
from t + 1 correct parties. Therefore, every correct party
eventually receives t+1 transitionmessages and sends



out its own transition message. By the transition am-
plification mechanism (line 1.50), all correct parties even-
tually enter the recovery mode of epoch e. If Pi has entered
recovery mode at line 1.38, then it has committed sequence
number X − 1. As X ≥ 2, t + 1 correct parties have com-
mitted sequence number X − 2. By Claim 1, all correct
parties eventually enter the recovery mode of epoch e.

Lemma 5. If all correct parties have entered the recovery
mode of epoch e, then all correct parties eventually enter
epoch e + 1.
Proof. We need to show that no correct party Pi blocks in
the recovery mode of epoch e. If Pi blocks in the recovery
mode, then it blocks at one of the following wait statements
found in part 1 (line 2.4), in part 2 (lines 2.9 and 2.12), in
part 3 (line 2.24), or in part 4 (lines 2.31 and 2.34) of the
recovery mode.
Part 1 Assume that Pi blocks at line 2.4. Thus, the
composite predicate QID|equality.e(Rs−1, si − 2) and
QID|consistency.e(Rs−1, si − 1) equals false. Pi goes
to line 2.4 only after sending a proof request message
for sequence number si − 1 (line 2.1). We distinguish the
following cases (a) si = 0, (b) si = 1, and (c) si ≥ 2,
and show that in all three cases both predicates eventually
become true, contradicting the assumption.

Case (a): If si = 0, then according to the code
in lines 2.39–2.42, every correct party responds with
a proof message carrying ⊥ and valid signatures on
(ID ,proof, e, s̃,⊥), where s̃ ∈ {−2,−1}. Thus, Pi even-
tually receives proof messages from n− t correct parties
for sequence numbers −2 and −1 carrying ⊥, such that
predicate QID|equality.e and QID|consistency.e

eventually becomes true.
Case (b): If si = 1, then Pi has committed sequence

number 0 to some payload m. In this case, every correct
party Pj (i.e., at least n − t parties) responds with a
proof message carrying ⊥ together with a valid sig-
nature on (ID ,proof, e,−1,⊥) and mj ∈ {m,⊥}
together with a valid signature on (ID ,proof, e, 0,mj).
Moreover, Pi eventually receives a proof message
for sequence number 0 carrying m. It is easy to ver-
ify that Pi collects sufficient tuples (mj , σj) such that
QID|equality.e and QID|consistency.e holds.

Case (c): As si ≥ 2, Pi has committed sequence
number si − 1. Thus, a set C of dn−t+1

2 e ≥ t + 1
correct parties have initialized CB instance with sequence
number si − 1 (line 1.35). As si ≥ 2, every party
Pj ∈ C necessarily has committed sequence number si − 2
(lines 1.29 and 1.33). By the Agreement property of CB,
every Pj ∈ C has committed sequence number si − 2
to the same payload m 6= ⊥. Thus, upon receiving a
proof request message from Pi, every Pj ∈ C gen-
erates a proof message for m and a valid signature σj =

{(ID,proof, e, si−2,m)}j . Thus, Pi eventually receives
consistent proof messages for sequence number si − 2
and payload m from every party in C and adds the tuple
(m,σj) to Rs−2. Therefore, eventually the equality equal-
ity predicate QID|equality.e(Rs−2, si − 2) holds. The
same reasoning as in Case (b) above can be applied to show
that QID|consistency.e eventually becomes true.

Part 2 Assume that a correct party Pi blocks at the wait
statement found at line 2.9. As no correct party blocks in
part one of the recovery mode, every correct party Pj sends
a candidate message at line 2.8. Thus Pi eventually re-
ceives a valid candidate message from n−t ≥ dn+t+1

2 e
correct parties and hence no correct party blocks at line 2.9.
Consequently, every correct party Pi proposes watermark
vector Wi for MVBA at line 2.11. By Termination of
MVBA, eventually Pi decides some value v and thus no
correct party blocks at line 2.12.

Part 3 If some correct party Pi blocks at the wait state-
ment found at line 2.24, then w ≥ si + 2 ≥ 2. As w ≥ 2,
Lemma 1 implies that a correct party has committed se-
quence number w− 1. Thus, a set C of t+1 correct parties
have initialized CB instance with sequence number w − 1
(line 1.35). As w − 2 ≥ 0, every party Pj ∈ C neces-
sarily has committed sequence number w − 2 (line 1.29).
Thus, the condition at line 2.20 (sj > w − 2) evaluates to
true. Therefore, every party Pj ∈ C sends a complete
message carrying every sequence number s′ ≤ w − 2 com-
mitted in epoch e and log[s′]. Thus, Pi eventually receives
consistent complete messages from every Pj ∈ C for all
sequence numbers ≤ w − 2. This ensures that no correct
party blocks at line 2.24.

Part 4 Assume that a correct party blocks at the wait
statement found at line 2.31. Every correct party Pj sends
a queue message carrying the initiation queue Ij , where
Ij ∩Dj = ∅. For any two correct parties Pi and Pj that are
in Part 4 of the recovery phase of a given epoch, Di = Dj

(by Lemma 7). Thus, eventually Pi receives a queue mes-
sage from n − t distinct parties Pj such that Ij and Di are
disjoint, a contradiction. By the Termination condition of
MVBA, no correct party blocks at line 2.34.

Lemma 6. If any correct party Pi enters epoch e + 1, then
Pi has a-delivered every payload to which dn−t+1

2 e correct
parties have committed a sequence number in epoch e.

Proof. Let s̃ be the sequence number committed to some
payload m by dn−t+1

2 e correct parties in epoch e. We have
to show that Pi a-delivers m in epoch e. Let w be the wa-
termark of epoch e. By Lemma 3, s̃ ≤ w. Let s − 1 be
the highest sequence number that Pi committed before en-
tering the recovery mode of epoch e. If s̃ < s − 1, then Pi

must have a-delivered a payload m′ to which it committed
sequence number s̃ before entering the recovery mode. By



the Agreement property of CB, m = m′. If, on the other
hand, s̃ ≥ s− 1, we distinguish the following two cases (1)
s̃ = s− 1, and (2) s̃ > s− 1.
Case (1) (s̃ = s − 1): If s̃ < w, then s ≤ w. Thus, Pi a-
delivers log[s− 1] at line 2.16. By the Agreement property
of CB, log[s−1] = m. If s̃ = w, then s = w+1, and hence,
Pi a-delivers some payload m̄ from recovery set R̄[1] for
sequence number w (line 2.19). By Lemma 2, m̄ = m.
Case (2) (s̃ > s − 1): We distinguish the following three
subcases: (2a) s̃ ≤ w − 2, (2b) s̃ = w − 1, and (2c) s̃ = w.
Case (2a) implies that s ≤ w − 2. Thus, Pi a-delivers all
payloads to which some correct party has committed a se-
quence number smaller than or equal to w − 2 at line 2.25.
Consequently, Pi a-delivers a payload m̄ to which some
correct party has committed sequence number s̃. By the
Agreement property of CB, m̄ = m. Case (2b) implies that
s ≤ w − 1, and thus, Pi a-delivers a payload m̄ from re-
covery set R̄[0] for sequence number s̃ = w − 1 at line
2.28. By Lemma 1, some correct party has committed s̃ to
m̄. Again, by the Agreement property of CB, m̄ = m. Case
(2c) implies that s ≤ w. Thus, Pi a-delivers a payload m̄
from recovery set R̄[1] for sequence number s̃ = w at line
2.28. By Lemma 2, m̄ = m.

Lemma 7. All correct parties a-deliver the same set of pay-
loads in epoch e before entering Part 4 of the recovery
mode.
Proof. We have to show that if a correct party Pi a-delivers
a payload m in epoch e, then eventually all correct parties a-
deliver m in epoch e. By the transitive application of Lem-
mas 4 and 5, all correct parties eventually enter epoch e+1.
We distinguish between the a-delivery of m in (1) the par-
simonious mode, and (2) part 3 of the recovery mode. Case
(1) implies that there exists a sequence number s̃ such that
Pi has committed s̃ to payload m and that Pi has commit-
ted sequence number s̃ + 1. Therefore a set C of dn−t+1
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correct parties have initialized CB instance with sequence
number s̃+1. Thus, every Pj ∈ C has committed sequence
number s̃ to m in epoch e. By Lemma 6, every correct party
a-delivers payload m in epoch e. Case (2): Let s̃ be the se-
quence number committed to m. It is easy to verify that
w − 1 ≤ s̃ ≤ w holds. As no correct party has a-delivered
m before Part 3 of the recovery mode, sj ≤ s̃ + 1 holds for
all correct parties Pj . If s̃ = w − 1, then all correct parties
a-deliver m from log[s− 1] (line 2.16) or R̄[0] (line 2.28).
If s̃ = w, then all correct parties a-deliver m from R̄[1]
(line 2.19 or line 2.28).

Lemma 8 (Consistency). If any two correct parties Pi and
Pj a-deliver payload m and m′, respectively, as the s̃th pay-
load (where, s̃ ≥ 0) in epoch e before entering part 4 of the
recovery mode, then m = m′.

Proof. The hypothesis implies that s̃ ≤ w. When both Pi

and Pj a-deliver m and m′ in the parsimonious mode, then

they a-deliver m and m′ from log[s̃]. By the Agreement
property of CB, m = m′.

Suppose that only Pi a-delivers m in the parsimonious
mode. We distinguish the following three cases: (1) s̃ ≤
w − 2, (2) s̃ = w − 1, and (3) s̃ = w, and show that if Pj

a-delivers m′ as payload number s̃ in the recovery mode,
then m = m′. It is clear that if Pj a-delivers m′ from
log[s̃] (line 2.16) then by the Agreement property of CB,
m = m′. Case (1): Pj a-delivers m′ from the complete
messages received from t + 1 distinct parties that claim to
have committed sequence number s̃ to payload m′. As at
least one of those is correct, by the Agreement property of
CB, m = m′. Case (2): Pj a-delivers m′ from R̄[0] at
line 2.28. By Lemma 1 (Property P1), at least one correct
party has committed s̃ to m′. By the Agreement property of
CB, m = m′. Case (3): Pj a-delivers m′ from R̄[1]. By
Lemma 2 (P2), m = m′.

Now, let us consider the case when both Pi and Pj a-
deliver m and m′ in the recovery mode. If s̃ ≤ w − 2, then
some correct party has a-delivered m in the parsimonious
mode, thus m = m′. Further, we distinguish two cases:
(1) s̃ = w − 1, and (2) s̃ = w. Case (1): Both Pi and
Pj a-deliver m and m′ either from log[s̃] or from R̄[0]. By
Lemma 1 (Property P1) and the Agreement property of CB,
m = m′. Case (2): Pi and Pj a-deliver m from R̄[1].
By the Agreement property of MVBA and the deterministic
choice of R̄[1], m = m′.

Lemma 9. AMP satisfies Agreement and Total Order.
Proof. By Lemma 7 and Lemma 8, all correct parties de-
liver the same sequence of payloads before entering part 4
of the recovery mode of epoch e. Due to the Agreement
property of MVBA and the fact that all payloads a-delivered
in part 4 are a-delivered in some deterministic order, all cor-
rect parties deliver the same sequence of payloads in epoch
e.
Lemma 10. AMP satisfies Validity.
Proof. Let e be the largest epoch number at any correct
party at the point in time when a set C of t + 1 correct par-
ties a-broadcast payload m. We will show that some correct
party Pi a-delivers m in epoch e. The proof is by contradic-
tion. Assume that no correct party a-delivers m in epoch e.
This implies that no correct party a-delivers m in the par-
simonious mode of epoch e. Therefore, the failure detector
FD will cause a timer expiry at every Pj ∈ C, and even-
tually some correct party Pi will receive a transition
message from every Pj ∈ C. The transition amplification
mechanism ensures that every correct party eventually en-
ters recovery mode of epoch e. Lemma 5 implies that every
Pj ∈ C eventually enters Part 4 (lines 2.30–2.38) of the re-
covery mode of epoch e. As m is contained in t+1 queue
messages and every vector Q consists of n − t such mes-
sages, there is at least one input for m in Q̄. Therefore, Pi

a-delivers m in epoch e, contradicting the assumption.



4 Discussion and Conclusion

Atomic Broadcast Using Consistent Broadcast The
weak specification of the Consistent Broadcast abstraction
is key to the message parsimony of the AMP and PABC
protocols. The fact that CB lacks a strong Agreement prop-
erty such as “if one correct party delivers a payload m, then
all correct parties eventually deliver m” is a double-edged
sword. The advantage lies in the fact that CB can be imple-
mented employing a centralized communication pattern, as
described. The drawback lies in the fact the CB alone can-
not be relied on to satisfy the Agreement property of atomic
broadcast. Thus, a faulty leader may choose not to involve
up to t correct parties in the atomic broadcast protocol. In
the PABC protocol, such a leader may cause some subset
of correct parties to lag behind other correct parties with-
out being able to catch up. Consequently, Agreement may
be violated. In fact, the PABC protocol satisfies a weaker
Agreement property conditioned by the fact that an infinite
number of payloads are being broadcast by some correct
party. To address this drawback, the AMP protocol uses
failure detection to guarantee that once a payload has been
a-delivered by a correct party, all correct parties eventually
switch to recovery mode. The recovery mode then ensures
that all the correct parties synchronize.

WAN Deployment Owing to non-negligible message-
loss rates in WANs, message complexity is an important
metric to consider when designing protocols for the Inter-
net. In this paper, we have presented a novel Byzantine-
fault-tolerant atomic broadcast protocol called AMP that
under normal conditions (i.e., when the network is sta-
ble and there are no intrusions) has an amortized mes-
sage complexity of O(n) per atomically delivered payload,
does not require expensive public-key cryptography, and
has a latency of only five communication steps. In con-
trast, even under the most benign conditions, the only other
asynchronous atomic broadcast protocol with O(n) mes-
sage complexity, Protocol PABC, uses digital signatures
and has a latency of seven communication steps. All other
optimally-resilient atomic broadcast protocols that we are
aware of incur a cost of O(n2) messages per atomically
delivered payload. Recently, it has been shown [14] that
a centralized communication pattern can often outperform
decentralized ones despite incurring additional communica-
tion steps. Hence, we expect our protocol to offer signifi-
cant advantages in Internet-like settings over previous work.
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