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Abstract. We consider wait-free implementations of a regular read/
write register for unauthenticated data using a collection of 3t + k base
objects, t of which can be subject to Byzantine failures. We focus on am-
nesic algorithms that store only a limited number of values in the base
objects. In contrast, non-amnesic algorithms store an unbounded num-
ber of values, which can eventually lead to problems of space exhaustion.
Lower bounds on the time-complexity of read and write operations are
currently met only by non-amnesic algorithms. In this paper, we show for
the first time that amnesic algorithms can also meet these lower bounds.
We do this by giving two amnesic constructions: for k = 1, we show that
the lower bound of two communication rounds is also sufficient for every
read operation to complete and for k = t + 1 we show that the lower
bound of one round is also sufficient for every operation to complete.
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1 Introduction

Motivated by recent advances in the Storage-Area Network (SAN) technology,
and also by the availability of cheap commodity disks, distributed storage has
become a popular method to provide increased storage space, high availabil-
ity and disaster tolerance. We address the problem of implementing a reliable
read/write distributed storage service from unreliable storage units (e.g. disks),
a threshold of which might fail in a malicious manner. Fault-tolerant access to
replicated remote data can easily become a performance bottleneck, especially
for data-centric applications usually requiring frequent data access. Therefore,
minimizing the time-complexity of read and write operations is essential. In this
paper, we show how optimal time-complexity can be achieved using algorithms
that are also space-efficient.

An essential building block of a distributed storage system is the abstraction
of a read/write register, which provides two primitives: a write operation, which
writes a value into the register, and a read operation which returns a value pre-
viously written [1]. Much recent work, and this paper as well, focuses on regular
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registers where read operations never return outdated values. A regular register
is deemed to return the last value written before the read was invoked, or one
written concurrently with the read (see [1] for a formal definition). Regular reg-
isters are attractive because even under concurrency, they never return spurious
values as sometimes done by the weaker class of safe registers [1]. Furthermore,
they can be used, for instance, together with a failure detector to implement
consensus [2].

The abstraction of a reliable storage is typically built by replicating the data
over multiple unreliable distributed storage units called base objects. These can
range from simple (low-level) read/write registers to more powerful base objects
like active disks [3] that can perform some more sophisticated operations (e.g. an
atomic read-modify-write). Taken to the extreme, base objects can also be imple-
mented by full-fledged servers that execute more complex protocols and actively
push data [4]. We consider Byzantine-fault tolerant register constructions where
a threshold t < n/3 of the base objects can fail by being non-responsive or by re-
turning arbitrary values, a failure model called NR-arbitrary [5]. Furthermore, we
consider wait-free implementations where concurrent access to the base objects
and client failures must not hamper the liveness of the algorithm. Wait-freedom
is the strongest possible liveness property, stating that each client completes its
operations independent of the progress and activity of other clients [6]. Algo-
rithms that wait-free implement a regular register from Byzantine components
are called robust [7]. An implementation of a reliable register requires the (client)
processes accessing the register via a high-level operation to invoke multiple low-
level operations on the base objects. In a distributed setting, each invocation of a
low-level operation results in one round of communication from the client to the
base object and back. The number of rounds needed to complete the high-level
operation is used as a measure for the time-complexity of the algorithm.

Robust algorithms are particularly difficult to design when the base objects
store only a limited number of written values. Algorithms that satisfy this prop-
erty are called amnesic. With amnesic algorithms, values previously stored are
not permanently kept in storage but are eventually erased by a sequence of values
written after them. Amnesic algorithms eliminate the problem of space exhaus-
tion raised by (existing) non-amnesic algorithms, which take the approach of
storing the entire version history. Therefore, the amnesic property captures an
important aspect of the space requirements of a distributed storage implementa-
tion. The notion of amnesic storage was introduced in [7] and defined in terms of
write-reachable configurations. A configuration captures the state of the correct
base objects. Starting from an initial configuration, any low-level read/write op-
eration (i.e., one changing the state of a base object) leads the system to a new
configuration. A configuration C ′ is write-reachable from a configuration C when
there is a sequence consisting only of (high-level) write operations that starting
from C, leads the system to C ′. Intuitively, a storage algorithm is amnesic if,
except a finite number of configurations, all configurations reached by the algo-
rithm are eventually erased by a sufficient number of values written after them.
Erasing a configuration C ′, which itself was obtained from a configuration C,



means to reach a configuration C ′′ that could have been obtained directly from
C without going through C ′. This means that once in C ′′, the system cannot
tell whether it has ever been in configuration C ′. For instace, an algorithm that
stores the entire history of written values in the base objects is not amnesic.
In contrast, an algorithm that stores in the base objects only the last l written
values is amnesic because after writing the l + 1st value, the algorithm cannot
recall the first written value anymore.

1.1 Previous and Related Work

Despite the importance of amnesic and robust distributed storage, most imple-
mentations to date are either not robust or not amnesic. While some relax wait-
freedom and provide weaker termination guarantees instead [2, 8], others relax
consistency and implement only the weaker safe semantics [2,5,9,10]. Generally,
when it comes to robustly accessing (unauthenticated) data, most algorithms
store an unlimited number of values in the base objects [10–12]. Also in systems
where base objects push messages to subscribed clients [4, 13, 14], the servers
store every update until the corresponding message has been received by every
non-faulty subscriber. Therefore, when the system is asynchronous, the servers
might store an unbounded number of updates. A different approach is to as-
sume a stronger model where data is self-verifying [9, 15, 16], typically based
on digital signatures. For unauthenticated data, the only existing robust and
amnesic storage algorithms [17, 18] do not achieve the same time-complexity as
non-amnesic ones. Time-complexity lower bounds have shown that protocols us-
ing the optimal number of 3t + 1 base objects [4] require at least two rounds to
implement both read/write operations [2, 10]. So far these bounds are met only
by non-amnesic algorithms [12]. In fact, the only robust and amnesic algorithm
with optimal resilience [17] requires an unbounded number of read rounds in the
worst case. For the 4t + 1 case, the trivial lower bound of one round for both
operations is not reached by the only other existing amnesic implementation [18]
that albeit elegant, requires at least three rounds for reading and two for writing.

1.2 Paper Contributions

Current state of the art protocols leave the following question open: Do amnesic
algorithms inherently have a non-optimal time complexity? This paper addresses
this question and shows, for the first time, that amnesic algorithms can achieve
optimal time complexity in both the 3t + 1 and 4t + 1 cases. Justified by the
impossibility of amnesic and robust register constructions when readers do not
write [7], one of the key principles shared by our algorithms is having the readers
change the base objects’ state. The developed algorithms are based on a novel
concurrency detection mechanism and a helping procedure, by which a writer
detects overlapping reads and helps them to complete. Specifically, the paper
makes the following two main contributions:

– A first algorithm, termed DMS, which uses 4t + 1 base objects, described in
Section 3. With DMS, every (high-level) read and write operation is fast, i.e.,



it completes after only one round of communication with the base objects.
This is the first robust and amnesic register construction (for unauthenti-
cated data) with optimal time-complexity.

– A second algorithm, termed DMS3, which uses the optimal number of 3t+ 1
base objects, presented in Section 4. With DMS3, every (high-level) read
operation completes after only two rounds, while write operations complete
after three rounds. This is the first amnesic and robust register construction
(for unauthenticated data) with optimal read complexity. Note also that,
compared to the optimal write complexity, it needs only one additional com-
munication round.

Table 1 below summarizes our contributions and compares DMS and DMS3 with
recent distributed storage solutions for unauthenticated data.

Table 1. Distributed storage for unauthenticated data

Worst-Case Time-complexity
Protocol Resilience Read Write Amnesic Robust

Abraham et al. [18] 4t + 1 3 2
√ √

DMS 4t + 1 1 1
√ √

Guerraoui and Vukolić [10] 3t + 1 2 2 ×
√

Byzantine Disk Paxos [2] 3t + 1 t + 1 2
√

×
Guerraoui et al. [17] 3t + 1 unbounded 3

√ √

DMS3 3t + 1 2 3
√ √

2 System Model and Preliminaries

2.1 System Model

We consider an asynchronous shared memory system consisting of a collection
of processes interacting with a finite collection of n base objects. Up to t out of
n base objects can suffer NR-arbitrary failures [5] and any number of processes
may fail by crashing. Each object implements one or more registers. A register is
an object type with value domains Val, an initial value v0 and two invocations:
read, whose response is v ∈ Vals and write(v), v ∈ Vals, whose response is ack.
A read/write register is single-reader single-writer (SRSW) if only one process
can read it and only one can write to it; a register is multi-reader single-writer
(MRSW) if multiple processes can read it. Sometimes processes need to perform
two operations on the same base object, a write (of a register) followed by a read
(of a different register). To reduce the number of rounds, we collapse consecu-
tive write/read operations accessing the same base object to a single low-level
operation called write&read. The write&read operation can be implemented in
a single round, for instance using active disks [3] as base objects1.
1 Note that since write&read is not an atomic operation, it can be implemented from

simple read/write registers and thus the model is not strengthened.



2.2 Preliminaries

In order to distinguish between the target register’s interface and that of the
base registers, throughout the paper we denote the high-level read (resp. write)
operation as read (resp. write). Each of the developed protocols uses an under-
lying layer that invokes operations on different base objects in separate threads
in parallel. We use the notation from [2] and write invoke write(Xi,v) (resp.
invoke x[i] ← read(Xi)) to denote that a write(v) operation on register Xi

(resp. a read of register Xi whose response will be stored in a local variable x[i])
is invoked in a separate thread by the underlying layer. The notation invoke
x[i]← write&read(〈Yi, v〉, Xi) denotes the invocation of an operation write&read
on base object i, consisting of a write(v) on register Yi followed by a read of reg-
ister Xi (whose response will be stored in x[i]).

As base objects may be non-responsive, high-level operations can return while
there are still pending invocations to the base objects. The underlying layer keeps
track of which invocations are pending to ensure well-formedness, i.e., that a
process does not invoke an operation on a base object while invocations of the
same process and on the same base object are pending. Instead, the operation
is denoted enabled. If an operation is enabled when a pending one responds,
the response is discarded and the enabled operation is invoked. See e.g. [2] for a
detailed implementation of such layers.

We say that an operation op is complete in a run if the run contains a response
step for op. For any two operations op1 and op2, when the response step of op1

precedes the invocation step of op2, we say op1 precedes op2. If neither op1 nor
op2 precedes the other then the two operations are said to be concurrent.

In order to better convey the insight behind the protocols, we simplify the
presentation in two ways. We introduce a shared object termed safe counter and
describe both algorithms in terms of this abstraction. Although easy to follow,
the resulting implementations require more rounds than the optimal number.
Thus, for each of the protocols we explain how with small changes these rather
didactic versions can be “condensed” to achieve the announced time-complexity.
The full details of the optimizations can be found in our publicly available tech-
nical report [19]. Secondly, for presentation simplicity we implement a SRSW
register. Conceptually, a MRSW register for m readers can be constructed using
m copies of this register, one for each reader. In a distributed storage setting,
the writer accesses all m copies in parallel, whereas the reader accesses a single
copy. It is worth noting that this approach is heavy and that in practice, cheaper
solutions are needed to reduce the communication complexity and the amount
of memory needed in the base objects.

We now introduce the safe counter abstraction used in our algorithms. A
safe counter has two wait-free operations inc and get. inc modifies the counter
by incrementing its value (initially 0) and returns the new value. Specifically, the
kth inc operation denoted inck returns k. get returns the current value of the
counter without modifying it. The counter provides the following guarantees:

Validity: If get returns k then get does not precede inck.



Safety: If inck precedes get and for all l > k get precedes incl, then get
returns k.

Note that under concurrency, a safe counter might return an outdated value, but
never a forged value. In the absence of concurrency, the newest value is returned.

We now explain the intuition behind our algorithms. Both algorithms use the
safe counter introduced above to arbitrate between writer and reader. During
each read (resp. write) operation, the reader (resp. writer) executes inc to
advance the counter (resp. get to read the counter). The values returned by the
counter’s operations are termed views. By incrementing its current view, a read
announces its intent to read from the base objects. A subsequent invocation
of get by the writer returns the updated view. When the writer detects a
concurrent read, indicated by a view change, it freezes the most recent value
previously written. Freezing a value v means that v may be overwritten only if
the read operation that attempts to read v has completed. We note that the
read operation that caused a value v to be frozen does not violate regularity by
returning v because all newer values were written concurrently with the read.
However, reads must not return old values previously frozen. This is necessary
to ensure regularity and it is done by freezing a value v together with the view
of the read due to which v is frozen. A read whose view is higher than the
one associated with v knows that it must pick a newer value. A read operation
completes when it finds a value v to return such that (a) v is reported by a
correct base object and (b) v is not older than the latest value written before
the read is invoked.

3 A Fast Robust and Amnesic Algorithm

We start by describing an initial version of protocol DMS that uses the safe
counter abstraction. It is worth noting that the algorithm requires more rounds
than the optimum, but it conveys the main idea. Next, we explain the changes
applied to DMS to obtain an algorithm with optimal time-complexity.

3.1 Protocol Description

We present a robust and amnesic SRSW register construction using a safe
counter and 4t + 1 regular base registers, out of which t can incur NR-arbitrary
failures. Figure 1 illustrates a simple construction of the safe counter used. The
description of the counter is omitted for the sake of brevity. The shared objects
used by DMS are detailed in Figure 2 and the algorithm appears in Figure 3.

The write performs in two phases, (1) a write phase where it first writes a
timestamp-value pair to n− t registers and (2) a subsequent read phase, where
it executes get to read the current view. In case a view change occurs between
two successive writes, the value of the first write is frozen. Recall that once
frozen, a value is not erased before the next view change. Similarly, the read
consists of (1) a write phase, where it first executes inc to increment the current



Fig. 1. Safe counter from 4t + 1 safe registers Yi ∈ Integers.

Predicates:

safe(c) ,
|{i : c′ ∈ y[i] ∧ c′ ≥ c}| ≥ t + 1

Local variables:
y[1 . . . n] ∈ Integers
k ∈ Integers, initially 0

get()
for 1 ≤ i ≤ n do y[i]← ⊥
for 1 ≤ i ≤ n do

invoke y[i]← read(Yi)
wait for n− t responses
return max{c ∈ Integers : safe(c)}

inc()
k ← k + 1
for 1 ≤ i ≤ n do

invoke write(Yi, k)
wait for n− t responses
return k

view and (2) a subsequent read phase, where it reads at least n− t registers. To
ensure that read never returns a corrupted value, the returned value must be
read from t+1 registers, a condition captured by the predicate safe. Moreover, to
ensure regularity, read must not return old values written before the last write
preceding the read. This condition is captured by the predicate highestCand.

We now give a more detailed description of the algorithm. As depicted in
Figure 2, each base register consists of three value fields current, prev and frozen
holding timestamp-value pairs, and an integer field view. The writer holds a
variable x of the same type and uses x to overwrite the base registers. Each
write operation saves the timestamp-value pair previously written in x.prev.
Then, it chooses an increasing timestamp, stores the value together with the
timestamp in x.curr and overwrites n − t registers with x. Subsequently, the
writer executes get. If the view returned by get is higher than the current
view (indicating a concurrent read), then x.view is updated and the most recent
value previously written is frozen, i.e., the content of x.prev is stored in x.frozen
(line 14, Figure 3). Finally, write returns ack and completes. It is important
to note that the algorithm is amnesic because each correct base object stores at
most three values (curr, prev and frozen).

The read first executes inc to increment the current view, and then it reads
at least n−t registers into the array x[1...n], where element i stores the content of
register Xi. If necessary, it waits for additional responses until there is a candidate
for returning, i.e., a read timestamp-value pair that satisfies both predicates safe
and highestCand. A timestamp-value pair c is safe when it appears in some field
curr, prev or frozen of t+1 elements of x, ensuring that c was reported by at least
one correct register. Enforcing regularity is more subtle. Simply waiting until the
highest timestamped value read becomes safe might violate liveness because it
may be reported by a faulty register. To solve this problem, we introduce the
predicate highestCand. A value c is highestCand when 2t+1 base registers report
values that were written not after c, which implies that newer values are missing
from t + 1 correct registers. As any complete write skips at most t correct
registers, all values newer than c were written not before read is invoked and
consequently, they can be discarded from the set of possible return candidates.

We now explain with help of Figure 4 why reads are wait-free. We con-
sider the critical situation when multiple writes are concurrent with a read.



Fig. 2. Shared objects used by DMS.

Types:

TSVals , Integers × Vals, with selectors ts and val

Shared objects:
- regular registers Xi ∈ TSVals3 × Integers with selectors curr, prev,
frozen and view, initially 〈〈0, v0〉, 〈0, v0〉, 〈0, v0〉, 0〉
- safe counter object Y ∈ Integers, initially Y = 0

Fig. 3. Robust and amnesic storage algorithm DMS (4t + 1)

Predicates (reader):

readFrom(c, i) , (c = x[i].curr ∧ x[i].view < view) ∨
(c = x[i].frozen ∧ x[i].view = view)

safe(c) , |{i : c ∈ {x[i].curr, x[i].prev, x[i].frozen}}| ≥ t + 1
highestCand(c) , |{i : readFrom(c′, i) ∧ c′.ts ≤ c.ts}| ≥ 2t + 1

Local variables (reader):
view ∈ Integers, initially 0
x[1 . . . n] ∈ TSVals3 × Integers

read()
for 1 ≤ i ≤ n do x[i]← ⊥1

view ← inc(Y )2

for 1 ≤ i ≤ n do invoke x[i]← read(Xi)3

wait until n− t responded ∧ ∃c ∈ TSVals: safe(c) ∧ highestCand(c)4

return c.val5

Local variables (writer):
newView, ts ∈ Integers, initially 0
x ∈ TSVals3 × Integers, initially 〈〈0, v0〉, 〈0, v0〉, 〈0, v0〉, 0〉

write(v)
ts ← ts+16

x.prev← x.curr7

x.curr← 〈ts, v〉8

for 1 ≤ i ≤ n do invoke write(Xi, x)9

wait for n− t responses10

newView ← get(Y )11

if newView > x.view then12

x.view ← newView13

x.frozen← x.prev14

return ack15



Specifically, we consider the kth read (henceforth readk), whose inc results in
k (henceforth inck), and the last write that still reads a view lower than k,
i.e., the corresponding get returns a view lower than k. Note that by the safety
property of the counter, inck does not precede get and thus c is stored in 2t+1
correct registers before any of them is read. A key aspect of the algorithm is
to ensure that no matter how many writes are subsequently invoked, c never
disappears from all fields of those 2t + 1 correct registers, as long as readk is
still in progress. Essentially this holds because the subsequent write re-writes
c to all registers and it also freezes c to ensure that future writes do the same.
In this process, c migrates from curr to prev and from prev to frozen where it
stays until the next view change. Therefore, c eventually becomes safe. But what
if c is not highestCand? In this situation, at least t + 1 correct registers report
timestamp-value pairs higher than c. We note that if any of them had stored c in
its frozen field, then it would report c. This implies that none of these registers
has stored c in its frozen field and thus, also none of these registers has stored a
timestamp-value pair higher than ch in its curr field. Therefore, ch is reported
by t + 1 correct registers, and hence it is safe. Note that ch is also highestCand
because only faulty registers report values with higher timestamps.

Fig. 4. Correctness argument of the read operation in DMS
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We now explain how the fast algorithm is derived from DMS. The princi-
ple underlying the optimization is to condense one round of write to the base
objects and a subsequent round of read of the base objects into a single round
of write&read. For this purpose we disregard the safe counter abstraction and
directly weave inc and get (Fig. 1) into read and write (Fig. 3) respectively.
As a result, the reader advances the view and reads the base registers in one
round. Likewise, the writer stores a value in the base registers and reads the
view in a single round. The reader code (Fig. 3) is modified as follows: vari-
able view is incremented locally, and line 3 is replaced with the statement for
1 ≤ i ≤ n do invoke x[i] ← write&read(〈Yi, view〉, Xi). Similarly, in the writer



code (Fig. 3), line 9 is replaced with the statement for 1 ≤ i ≤ n do invoke
y[i]← write&read(〈Xi, x〉, Yi). Additionally in line 11, instead of executing get,
the writer picks the t + 1st highest element of y.

We now informally argue that the optimization is correctness preserving. As
in the above example, we consider readk and the last write that reads a view
lower than k. Recall that the write operation stores c in 2t + 1 correct base
objects and each of them responds with the current view it has stored. The
writer then picks the t + 1st highest view reported. We argue that t + 1 correct
base objects have stored c before any of them respond to readk. This would
imply that c is safe. As the write operation reads a view lower than k, out
of the 2t + 1 correct base objects accessed by it, at most t report k. Thus, the
remaining t + 1 objects are accessed by readk only after c was written to them.
Applying the above arguments, it is not difficult to see that c is never erased from
t + 1 correct registers before readk completes, and thus it eventually becomes
safe. Regarding regularity, again, arguments similar to above can be used. A
formal proof of the optimized algorithm can be found in the full paper [19]. The
remainder of this section is concerned with the correctness of DMS.

3.2 Protocol Correctness

Lemma 1 (Regularity). Algorithm DMS in Figure 3 implements a regular
register.

Proof. We show that the read operation always returns the value of the latest
write preceding the read, or a newer written value. Suppose that c.val is
the value returned by readk. We assume by contradiction that there exists
a value ch.val such that ch.ts > c.ts and write(ch.val) precedes readk. As
write(ch.val) is complete, n − 2t correct registers have stored ch or a higher
timestamp-value pair before any of them is read. The fact that c.val is returned
implies that c is highestCand. Thus, there are at least 2t + 1 registers Xi and
values c′ with timestamp c′.ts ≤ c.ts such that readFrom(c′,i) is true. Note that
one of them is a correct register Xi updated with ch. As values are written with
monotonically increasing timestamps, by definition of readFrom, necessarily c′

is read from x[i].frozen and x[i].view = k. However, because the counter is
valid, the first time a write operation reads view k is only after the write of
ch.val. Thus, in view k only timestamp-value pairs ch or higher are frozen, a
contradiction. �

Lemma 2 (Wait-freedom). Algorithm DMS in Figure 3 implements wait-free
read and write operations.

Proof. The write operation is nonblocking because it never waits for more than
n − t responses. Showing that reads are also live is more subtle. To derive a
contradiction, we assume that readk blocks at line 4 and show that there exists
a candidate for returning. We consider the time after which all correct base
objects (at least 3t + 1) have responded. We choose c as the 2t + 1st lowest
timestamp-value pair readFrom a correct register. Note that c is highestCand by



construction because values with timestamps ≤ c.ts are readFrom 2t + 1 correct
registers (set L). Also, we note that values with timestamps ≥ c.ts are readFrom
t + 1 correct registers (set R). In the following, we distinguish the cases where
the write of c.val reads a view equal to k (case 1), or lower than k (case 2).
Note that by the validity of the counter, only views ≤ k are returned. Case 1
implies that (a) only timestamp-value pairs lower than c are frozen, and (b) c
is the highest timestamp-value pair readFrom the curr field of a correct register.
Together (a) and (b) imply that c is the highest timestamp-value pair readFrom
a correct register. Thus, for all registers Xi ∈ R (≥ t + 1), readFrom(c′,i) implies
that c′ = c and hence, c is safe. We now consider case 2 where write(c.val)
reads a view lower than k. This implies that c or a higher timestamp-value pair
is frozen in view k. If t + 1 registers in L were updated with c before they
are read, then they would report c either from their curr or their frozen field,
and clearly c would be safe. Therefore, c is missing from t + 1 correct registers.
Thus, write(c.val)’s write phase (lines 9–10) does not precede readk’s read
phase (lines 3–4). By the transitivity of the precedence relation, inck (line 2)
precedes get (line 11). By the safety of the counter, write(c.val) reads view k,
a contradiction. �

Theorem 1 (Robustness). The algorithm in Figure 3 wait-free implements a
regular register.

Proof. Immediately follows from Lemma 1 and 2.

4 A Robust and Amnesic Algorithm with Optimal
READ-Complexity and Resilience

Similar to the previous section, we describe an initial version of DMS3 that uses
a safe counter. The algorithm requires more rounds than the optimum but it
is easier to understand because most of its complexity is hidden in the counter
implementation. Then, we overview the changes necessary to obtain the optimal
algorithm. The full details of the optimized DMS3 such as the pseudocode and
proofs can be found in our technical report [19]. We proceed in a bottom-up
fashion and describe the counter implementation first.

4.1 A Safe Counter with Optimal Resilience

We present a safe counter with operations inc and get using 3t+1 base objects
i ∈ {1 . . . n}, where t base objects can be subject to NR-arbitrary failures. The
types and shared objects used by the counter are depicted in Figure 5 and
the algorithm appears in Figure 6. Each base object i implements two regular
registers: a register Ti holding a timestamp written by get and read by inc, and
a second register Yi consisting of two fields pw and w, modified by inc and read
by get. While the pw field stores only the counter value, the w field stores the
counter value together with a high-resolution timestamp [20]. A high-resolution
timestamp is a timestamp-array with n entries, one for each base object.



Fig. 5. Shared objects used by the safe counter (3t + 1)

Additional Types:

TSs , Integers array of size n, Integers[n]
TSsInt , TSs × Integers with selectors hrts (high-resolution timestamp)
and cnt

Shared objects:
- regular registers Yi ∈ Integers × TSsInt with selectors pw and w,
initially Yi = 〈0, 〈[0, . . . , 0], 0〉〉
- regular registers Ti ∈ Integers, initially 0

The get operation performs in two phases. The first phase reads from the
base objects until n − t registers Yi have responded and all responses are non-
conflicting. This condition is captured by the predicate conflict. When two base
objects i and j are in conflict, then at least one of them is malicious. In this
situation, the get operation can wait for more than n − t responses without
blocking, effectively filtering out responses from malicious base objects. Next, the
get operation uses the responses to build a candidate set from values appearing
in the w field of Yi. In the second phase, the get operation chooses an increasing
timestamp ts and overwrites n−t registers Ti with ts; at the same time it re-reads
the registers Yi until n− t of them have responded and there exists a candidate
to return. This condition is captured by the predicates safe and highCand. If no
candidate can be returned (because of overlapping inc operations), get returns
the initial counter value 0.

Similarly, the inc operation performs in two phases, a pre-write and a write
phase. The pre-write phase accesses n− t base objects i, overwriting the pw field
of Yi with an increasing counter value and reading the individual timestamps
stored in Ti into a single high-resolution timestamp. Subsequently, in the write
phase, inc stores the counter value together with the high-resolution timestamp
in the w field of n− t registers Yi and returns.

We now show that the algorithm in Figure 6 wait-free implements a safe
counter. We do this by showing that the two following properties are satisfied:

Validity: If get returns k then get does not precede inck.
Safety: If inck precedes get and for all l > k get precedes incl, then get

returns k.

Lemma 3 (Validity). The counter object implemented in Figure 6 is valid.

Proof. If the initial value is returned then we are done. Else only a value c.cnt = k
is returned such that c is safe. This implies that t + 1 base objects report values
k or higher either from their pw or w fields. As not all of them are faulty, there
exists a correct object Yi and a value l ≥ k such that l was indeed written to Yi.
As inck precedes incl (or it is the same operation) and get does not precede
incl, it follows that get does not precede inck. �

Lemma 4 (Safety). The counter object implemented in Figure 6 is safe.



Fig. 6. Safe counter algorithm (3t + 1)

Local variables (inc):
y ∈ Integers × TSsInt, initially 〈0, 〈[0, . . . , 0], 0〉〉
cnt ∈ Integers, initially 0 //counter value
hrts[1 . . . n] ∈ Integers, initially [0, . . . , 0] //high-resolution timestamp

inc()
cnt← cnt + 11

y.pw← cnt2

for 1 ≤ i ≤ n do invoke hrts[i]← write&read(〈Yi, y〉, Ti)3

wait for n− t responses4

y.w.hrts← hrts5

y.w.cnt← cnt6

for 1 ≤ i ≤ n do invoke write(Yi, y)7

wait for n− t responses8

return ack9

Predicates (get):

conflict(i, j) , y[i].w.hrts[j] ≥ ts
safe(c) , |{i : max{PW [i]} ≥ c.cnt ∨ (∃c′ ∈W [i] ∧ c′.cnt ≥ c.cnt)}| > t
highCand(c) , c ∈ C ∧ (c.cnt = max{c′.cnt : c′ ∈ C})

Local variables (get):
PW [1 . . . n] ∈ 2Integers, W [1 . . . n] ∈ 2TSsInt, C ∈ 2TSsInt

y[1 . . . n] ∈ Integers× TSsInt ∪ {⊥}
ts ∈ Integers, initially 0

get()
for 1 ≤ i ≤ n do y[i]← ⊥; PW [i]←W [i]← ∅10

C ← ∅11

ts← ts + 112

for 1 ≤ i ≤ n do invoke y[i]← read(Yi)13

repeat
check14

until a set S of n− t objects responded ∧ ∀i, j ∈ S : ¬conflict(i, j)15

C ← {y[i].w : |{j : y[j].w 6= y[i].w}| ≤ 2t}16

for 1 ≤ i ≤ n do invoke y[i]← write&read(〈Ti, ts〉, Yi)17

repeat18

check19

C ← C \ {c ∈ C : |{i : ∃c′ ∈W [i] ∧ c′ 6= c}| ≥ 2t + 1}20

until n− t responded ∧ ∃c ∈ C: (safe(c) ∧ highCand(c)) ∨ C = ∅21

if C 6= ∅ then return c.cnt else return 022

check
if Yi responded then

PW [i]← PW [i] ∪ {y[i].pw}
W [i]←W [i] ∪ {y[i].w}



Proof. Let inck be the last operation preceding the invocation of get. Further-
more, for all l > k, get precedes incl. By assumption, c.cnt = k was written to
the w field of t + 1 correct objects before get is invoked. Therefore, c is added
to the candidate set C (line 16) and because at most 2t objects respond without
c, it is never removed. Furthermore, t + 1 correct objects eventually report c
in the second get round and c becomes safe. As there are no concurrent inc
operations, eventually 2t+1 correct objects report values k or lower from their w
field and hence all ch where ch.cnt > k are removed from C. Thus, c eventually
becomes both safe and highCand and c.cnt = k is returned. �

Lemma 5 (Wait-freedom). The counter object implemented in Figure 6 is
wait-free.

Proof. As the inc operation never waits for more than n− t responses, clearly it
never blocks. In the following we prove that the get operation does not block (1)
at line 15 and (2) at line 21. We assume by contradition that the get operation
blocks. Case (1): as the get operation never updates a correct base object with
ts before the second round, correct base objects are never in conflict with each
other and thus the get operation does not block at line 15. Case (2): The get
operation blocks at line 21. Therefore, there exists c ∈ C and c is not safe. Let
c.cnt = k. If some correct base object has reported c in its w field in the first
round of get, then t + 1 correct base objects report k or higher in their pw field
in the second round and thus c is safe. Therefore, we assume that no correct
base object reports c in w in the first round. If no correct object reports c in
w in the second round, then 2t + 1 correct base objects respond with c′ 6= c in
their w field and c is removed from C. In the following we assume that some
correct object reports c in w in the second round. Let F (|F | > 0) denote the
set of faulty objects that report c in their w field in the first round. Let X
(|X| ≥ 0) be the set of correct base objects i such that Yi reports to the second
get round a value lower than k in both fields pw and w. This implies that the
pre-write phase of inc at Yi does not precede the second get round reading
Yi (see Fig. 7 (a)). By the semantics of write&read, the second get round has
updated Ti with ts before reading Yi (line 17). Similarly, the first round of inc
has pre-written k to Yi before reading Ti (line 3). By transitivity, the second get
round has completed the update of Ti before the first inc round has read Ti, and
thus Ti reports ts (Fig. 7 (a)). Let X ′ = {j ∈ X : c.hrts[j] = ts}, that is, the
objects in X that have actually responded to the first inc round. Note that for
all i ∈ F and for all j ∈ X ′, conflict(i, j) is true. Hence, the 2t + 1− |F | objects
that have responded without c in their w field in the first round of get do not
include any object in X ′. Overall, after the second get round, 2t+1−|F |+ |X ′|
base objects have responded without c in their w field. If |F | ≤ |X ′| then c is
removed from the set of candidates C (line 20), a contradiction. Therefore, we
consider the case |F | > |X ′|. Out of the t + 1 correct base objects updated by
the pre-write phase of inc, t + 1−|X ′| respond with a timestamp lower than ts.
Consequently, for every such base object i, get has completed updating Ti with
ts not before inc reads Ti (see Figure 7 (b)). By the semantics of write&read



and by the transitivity of the precedence relation, register Yi has stored k in its
pw field before the second get round reads Yi. Hence, at least t + 1− |X ′|+ |F |
base objects report values k or higher. As |F | > |X ′|, t + 1 base objects report
k or a higher value, and thus c is safe, a contradiction. �

Fig. 7. Safe counter correctness argument
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Theorem 2. The Algorithm in Figure 6 wait-free implements a safe counter.

Proof. Follows directly from Lemma 3, 4 and 5. �

4.2 The DMS3 Protocol

Protocol Description

In this section we present a robust and amnesic SRSW register construction from
a safe counter and 3t + 1 regular base registers, out of which t can be subject to
NR-arbitrary failures. We now describe the write and read operations of the
DMS3 algorithm illustrated in Figure 8.

The write operation performs in three phases, (1) a pre-write phase (lines 7–
9) where it stores a timestamp-value pair c in the pw field of n− t registers, (2) a
read phase (line 10), where it calls get to read the current view and (3) a write
phase (lines 14–16), where it overwrites the w field of n − t registers with c. If
the read phase results in a view change, the most recent value previously written
is frozen together with the new view. This is done by updating the view field
and copying the value stored in w to the frozen field (lines 11–13). The reader
performs exactly the same steps as in DMS (see Section 3).

We now explain with help of Figure 9 why reads are wait free. Similar to
the description of DMS in Section 3, we consider readk and the last write that
reads a view lower than k. Note that inck does not precede get and thus, c is
stored in the pw field of t + 1 correct registers before they are read. Also, the
w field of t + 1 correct registers is updated with c. As the subsequent write



Fig. 8. Robust and amnesic storage algorithm DMS3 (3t + 1)

Shared objects:
regular registers Xi ∈ TSVals3 × Integers, with selectors pw, w, frozen
and view, initially Xi = 〈〈0, v0〉, 〈0, v0〉, 〈0, v0〉, 0〉

Predicates (reader):

readFrom(c, i) , (c = x[i].w ∧ x[i].view < view) ∨
(c = x[i].frozen ∧ x[i].view = view)

safe(c) , |{i : c ∈ {x[i].pw, x[i].w, x[i].frozen}}| ≥ t + 1
highestCand(c) , |{i : readFrom(c′, i) ∧ c′.ts ≤ c.ts}| ≥ 2t + 1

Local variables (reader):
view ∈ Integers, initially 0
x[1 . . . n] ∈ TSVals3 × Integers ∪ {⊥}

read()
for 1 ≤ i ≤ n do x[i]← ⊥1

view ← inc(Y )2

for 1 ≤ i ≤ n do invoke x[i]← read(Xi)3

wait until n− t responded ∧ ∃c ∈ TSVals: safe(c) ∧ highestCand(c)4

return c.val5

Local variables (writer):
ts, newView ∈ Integers, initially 0
x ∈ TSVals3 × Integers, initially 〈〈0, v0〉, 〈0, v0〉, 〈0, v0〉, 0〉

write(v)
ts ← ts+16

x.pw ← 〈ts, v〉7

for 1 ≤ i ≤ n do invoke write(Xi, x)8

wait for n− t responses9

newView← get(Y )10

if newView > x.view then11

x.view ← newView12

x.frozen← x.w13

x.w ← 〈ts, v〉14

for 1 ≤ i ≤ n do invoke write(Xi, x)15

wait for n− t responses16

return ack17



encounters a view change, c is written to the frozen field of t+1 correct registers,
where it stays until readk completes. Hence, c is sampled from t + 1 correct
registers’ pw, w or frozen field and thus it is safe. Note that c is also highestCand
because only faulty registers report newer values.

Fig. 9. Correctness argument of the read operation in DMS3
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With DMS3, the high-level operations have a non-optimal time-complexity.
We now explain how the optimized version is obtained by collapsing individual
low-level operations. More precisely, a write operation and a consecutive read
operation are merged together to a write&read operation. The safe counter ab-
straction is disregarded and the counter operations inc and get are weaved into
read and write respectively. Recall that the counter operations consist of two
rounds each. In the write implementation, the pre-write phase and the first
round of get are collapsed. Note that the three-phase structure of the write
is preserved in that the writer reads the current view before it moves to the
write phase. Similarly, in the read implementation, the second inc round and
the read phase are merged together. Overall, this results in a time-complexity
of three rounds for the write and two rounds for the read.

We now informally argue that the optimization is correctness preserving. As
above, we consider readk and the last write that reads a view lower than k.
We argue that t + 1 correct base registers have stored c in their pw field before
any of them is read. This would imply that c is safe. The fact that the write of
c.val reads a view lower than k implies that k is missing from at least 2t+1 base
objects. We know from the safe counter algorithm in the previous section that
if only 2t base objects respond without k, then k is never removed from the set
of candidates. As the safe counter implementation is wait-free, k is eventually
read, contradicting the initial assumption. Therefore, 2t+1 base objects respond
without k, and thus there are t + 1 correct base objects among them that are
accessed by (the read phase of) readk only after c was pre-written to them. By
applying similar arguments as above, it is not difficult to see that c does not



disappear from any of the t + 1 correct base objects before readk completes.
This would imply that c eventually becomes safe. For a formal treatment we
refer the interested reader to our full paper [19]. The remainder of this section
is concerned with the correctness of DMS3.

Protocol Correctness

Lemma 6 (Regularity). Algorithm DMS3 in Figure 8 implements a regular
register.

Proof. Identical to the proof of Lemma 1. �

Lemma 7 (Wait-freedom). Algorithm DMS3 in Figure 8 implements wait-
free read and write operations.

Proof. The write operation is nonblocking because it never waits for more than
n− t responses. To derive a contradiction we assume that readk blocks at line 4
and show that there exists a candidate for returning. We consider the time after
which all correct base objects (at least 2t + 1) have responded. We choose c
as the highest timestamp-value pair readFrom a correct register. Note that c is
highestCand by construction because values with timestamps ≤ c.ts are readFrom
2t+ 1 correct registers. In the following, we distinguish the cases where the view
read by the write of c.val is equal to k (case 1) or it is lower than k (case
2). Note that by the validity of the counter, only views ≤ k are returned. Case
1: Let Xi be a correct register such that readFrom(c, i). Since by assumption
x[i].view = k, c is readFrom the frozen field of Xi. However, in view k only
timestamp-value pairs lower than c are frozen, a contradiction. Now we consider
case 2, where the write(c.val) reads a view lower than k. This implies that
inck does not precede get. As the pre-write phase (lines 8–9) precedes get
(line 10), and inck (line 2) precedes the read phase (lines 3–4), by transitivity,
the pre-write phase also precedes the read phase (see Figure 9). Thus, t + 1
correct registers have stored c in their pw field before they are read. What is
left to show is that no subsequent write erases c from all fields of those t + 1
correct registers. Note that in view k, only timestamp-value pairs c or higher a
frozen. Thus, if c was stored in the w field of t + 1 correct registers before they
are read, then c would be safe. Hence, c is missing from t+ 1 correct registers’ w
field. Consequently, write(c.val)’s write phase (lines 15–16) does not precede
readk’s read phase (lines 3–4). By transitivity, the subsequent write reads
view k and freezes c. Note that c is erased from pw only after c was previously
stored in w (line 14). Furthermore, c is erased from w only after it was stored
in frozen (line 13). As k is the last view, by the validity of the safe counter, c is
never erased from frozen. �

Theorem 3 (Robustness). Algorithm DMS3 in Figure 8 implements a robust
register.

Proof. Immediately follows from Lemma 6 and 7.



5 Concluding Remarks

We have presented amnesic algorithms that robustly implement a shared register
from a collection of n base objects, of which up to t < n/3 can be subject
to NR-arbitrary failures. For n ≥ 3t + 1 we have shown that two rounds of
communication with the base objects are sufficient for every read operation to
complete. This is the first robust and amnesic register construction that matches
the two-round lower bound proved in [10]. For the n ≥ 4t + 1 case, we have
presented the first robust and amnesic register construction that matches the
(trivial) one-round lower bound for every operation. Note that our construction
is tight because with less than 4t+1 base objects, both the read and the write
operations require at least two communication rounds [2, 10].

The main result of this paper, that robust access to amnesic storage is possible
in optimal time is somewhat surprising given the large body of literature on non-
amnesic [4,10–14] and non-robust [5,8,9,18] algorithms. Moreover, our result is
counter-intuitive because so far, only non-amnesic algorithms match the time-
complexity lower bounds. As a corollary, our result suggests that the intuition
of amnesic algorithms being inherently less efficient than non-amnesic ones is
largely unjustified.

Some of the prior amnesic (but not robust) register implementations assume
that the readers cannot modify the base objects (see e.g. [2]). This assumption
in fact results in implementations that possess several properties that could be
valuable in practice, for instance the ability to tolerate any number of malicious
readers while using only O(1) memory at the base objects. We are not aware of
any robust implementation supporting that as well, and in fact, our algorithms
are not an exception. We leave as an open problem the question whether robust
and amnesic register implementations exist, that would support any number of
readers while using only O(1) memory at the base objects.
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