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Abstract

In the asynchronous distributed system model, consensus
is obtained in one communication step if all processes pro-
pose the same value. Assuming f < n/3, this is regardless
of the failure detector output. A zero-degrading protocol
reaches consensus in two communication steps in every sta-
ble run, i.e., when the failure detector makes no mistakes
and its output does not change. We show that no leader-
based consensus protocol can be simultaneously one-step
and zero-degrading. We propose two approaches to circum-
vent the impossibility result and present corresponding con-
sensus protocols. Further, we present an atomic broadcast
protocol that has a latency of 3δ in every stable run and a
latency of 2δ in case of no collisions. Finally, we evaluate
its performance in a cluster of workstations.

1 Introduction
Consensus is central to the construction of fault-tolerant

distributed systems. Atomic broadcast, which is at the core
of state machine replication [20] can be implemented as a
sequence of consensus instances [5]. As this approach re-
quires solving consensus repetitively, performance of con-
sensus becomes a crucial issue. We measure performance
by counting the number of communication steps needed
to achieve consensus. Actually, in asynchronous systems
we cannot limit the number of communication steps, since
this would contradict the well-known FLP impossibility re-
sult [10]. In practice however most runs of a distributed
system are failure-free and synchronous. If consensus is
used in a repeated form, then the overhead caused by runs
with failures is negligible. Since failures that occur in one
run propagate as initial failures to all subsequent runs, we
are interested in algorithms whose performance is not per-
manently1 affected by initial failures. We say that a run of a
consensus algorithm isstable iff the failure detector makes
no mistakes and its output does not change during that run.
As defined in [9], azero-degrading algorithm achieves con-
sensus intwo communication steps in every stable run.

1Since failure detection is not instantaneous, we cannot require that a
run is not affected by initial failures. Suchrecovery runs [22] have negligi-
ble impact on the overall performance of a repetitive consensus execution.

Another important optimization aspect is to expedite
the decision when all processes propose the same initial
value. Assumingf < n/3, no underlying failure detector is
needed andone communication step is sufficient to obtain
consensus. In the literature such algorithms are calledone-
step. The original idea of consensus in one communication
step stems from Brasileiro [2]. While his solution is opti-
mal for this particular case, his protocol needs at least three
communication rounds starting from other configurations.

Our first objective is to investigate if consensus protocols
are inherently either one-step or zero-degrading. The ques-
tion we ask is the following: Do one-step consensus proto-
cols needthree communication steps in general? In section
4 we show that no leader-based consensus protocol can be
simultaneously one-step and zero-degrading. This implies
that every one-step protocol based on leader election has
a failure-free and synchronous run in which some process
decides after three communication rounds or later [11].

Our second objective is to find sufficient conditions
for circumventing the established impossibility result and
hence to eliminate the overhead of one communication step.
In this paper we consider two different approaches and
present corresponding consensus protocols. In the first ap-
proach, we condition one-step decision on the behaviour of
the failure detector. With this approach, one-step decision
is guaranteed only in stable runs. The consensus algorithm
we present in section 5 is both of practical and of theoretical
interest. It is theoretically appealling because it uses the Ω
failure detector, which is the weakest to solve consensus [4].
Moreover, it is reasonable to require stability, as withoutit
even termination cannot be guaranteed. Since stability fre-
quently holds in practice, it is reasonable to optimize in this
respect. The second approach has been originally proposed
by Lamport [15]. In section 6 we present a modified version
thereof based on the3P failure detector. This protocol pro-
vides both one-step decision and zero-degradation.

Further, in section 7 we present a consensus based
atomic broadcast algorithm that has a latency of3δ in every
stable run and a latency2δ in case of no collisions, where
δ is the maximum network delay. In section 8 we present a
corresponding analytical and experimental evaluation.



2 Related Work

Brasileiro’s [2] one-step consensus algorithm has a pre-
liminary voting phase in which processes exchange their
proposals. If a process receives enough equal values it de-
cides, otherwise it uses an underlying consensus module.
If some process decidesv after the first step, all processes
that proceed without deciding proposev to the consensus
module. Agreement is thus ensured by the properties of the
underlying consensus. The drawback of this algorithm is
that it needs three rounds from other initial configurations.

Based on Brasileiro’s idea, Mostefaoui and Raynal [17]
developed an atomic broadcast protocol that has two mes-
sage delays in the best case but needs four in the normal
case. Moreover, even if messages are ordered, it is very un-
likely that all buffers have the same length when their con-
tent is proposed. Thus, distinct processes propose different
values and the protocol works in the slower mode.

This problem was recognized by Pedone and
Schiper [18] and they suggested agreement on the
largest common prefix instead of agreement on the whole
buffer. As long as all buffers share a nonempty common
prefix of messages, their algorithm achieves a latency of
two message delays. As soon as messages are out of order,
consensus is needed, which adds a latency of two additional
message delays. This protocol tolerates a minority of faulty
processes, but achieving a latency of2δ requires collecting
the proposals fromall processes. Thus, even if a single
process crashes, the protocol switches to the slower mode.

Based on the observation that in LANs, messages are fre-
quently delivered in total order, Pedone and Schiper [19] in-
troduced the notion ofordering oracle to model the sponta-
neous total order encountered in LANs. The authors present
an atomic broadcast protocol that has a latency of two mes-
sage delays in case of no collisions and thus performs very
well for a low to medium throughput. However, for high
throughputs and hence with the increase of collisions their
solution exhibits a considerable performance degradation.

Recently, the authors of [3] have extended the idea of
weak ordering oracles to Paxos-like [13] protocols. Paxos-
like protocols allow for the recovery of crashed processes
[1] and are well suited for the client/server computation
model. The R*-Consensus protocol of [3] degrades if mul-
tiple clients issue requests concurrently and thus it suffers
from the same drawback as the original [19].

The key assumption in Brasileiro’s [2] one-step consen-
sus isf < n/3. This is generalized by Lamport [14] who
distinguishes between the number of correct processes re-
quired to reach consensus in one communication step (n−e
with e ≤ f ) and the number of correct processes needed
for progress (n − f with f < n/2). Intuitively, if a pro-
cessp decidesv in one communication step, then it has re-
ceivedn − e equal valuesv. Consequently, every process
q that receives a message fromn − f processes receivesv
n− e− f times. Since among then− f values received by

q at moste values are distinct fromv, agreement is ensured
if n − e − f > e. Thus, the degree of resilience is given by
n > max{2f, 2e + f}. Maximizinge leads tof < ⌊n/3⌋,
while maximizingf leads toe ≤ ⌊n/4⌋.

Recently, Lamport has presented Fast Paxos [15], an ex-
tension to the classic Paxos [13] consensus protocol, that
meets all lower bounds on time-complexity and resilience.
Fast Paxos switches between achieving consensus in two or
three message delays depending on how many processes are
working. If n − f processes are working, then Fast Paxos
achieves consensus in three message delays. Ifn − e pro-
cesses are working and there are no concurrent proposals,
then Fast Paxos obtains consensus in two message delays.

3 System Model and Definitions
We assume a crash-stop asynchronous distributed sys-

tem model [5] consisting of a setΠ = {p1, ..., pn} of n pro-
cesses of which up tof < n may fail by crashing. A process
behaves correctly, i.e., it executes the algorithm assigned to
it until it possibly crashes. A process that never crashes is
correct, otherwise it isfaulty. Message transmission delays
and relative processing speeds are unbounded. The absence
of timing assumptions makes the distributed systemasyn-
chronous [16]. Processes communicate and synchronize by
sending and receiving messages overreliable channels. A
reliable channel does not lose, duplicate or (undetectably)
corrupt messages. Given two correct processesp andq, if p
sends a messagem to q thenq eventually receivesm.

3.1 The Consensus Problem

In the consensus problem, a set of processes have to
agree unanimously on a value that is one of the values pro-
posed by some process from the set. Formally, consensus is
defined by two safety properties (Validity and Agreement)
and one liveness property (Termination) [5]:

Validity: If a process decidesv, then some process has
proposedv.

Agreement: No two processes decide differently.
Termination: Every correct process decides.

Asynchrony and crashes create a context in which con-
sensus has no deterministic solution [10]. Various ap-
proaches have been proposed to circumvent this impos-
sibility result. In practice, distributed systems are syn-
chronous most of the time so that models such as partial
synchrony [8], the timed asynchronous model [7] and unre-
liable failure detectors [5] describe real systems more accu-
rately than the asynchronous model.

3.2 Failure Detectors

Instead of dealing with low level details about synchrony
and associated timing assumptions, failure detectors [5] are
defined in terms of properties, allowing a clean separation
from the implementation. We assume that the system is
equipped with an appropriate distributed failure detector,
consisting of one failure detector module installed at each



process. The consensus protocols presented in this paper
use theΩ and3P failure detectors respectively. Botheven-
tually provide consistent and correct information about the
state of processes, i.e., crashed or not crashed. While3P
tracks the state of every process,Ω eventually outputs a sin-
gle correctleader process.Ω is strictly weaker than3P and
it is the weakest failure detector to solve consensus [4, 6].
3P is defined in terms of the following two properties:

3 Strong Completeness:Eventually, every crashed pro-
cess is suspected by every correct process.

3 Strong Accuracy: Eventually, no correct process is
suspected by any correct process.

Ω is defined in terms of the eventual leadership property:
Eventual Leader: Eventually,Ω outputs the same correct

process forever.

3.3 The Atomic Broadcast Problem

In the atomic broadcast problem processes have to agree
on an unique sequence of messages. Formally, the atomic
broadcast problem is defined in terms of two primitives a-
broadcast(m) and a-deliver(m), wherem is some messsage.
When a processp executes a-broadcast(m) (respectively a-
deliver(m)), we say thatp a-broadcastsm (respectivelyp a-
deliversm). We assume that every messagem is uniquely
identified and carries the identity of its sender. In this con-
text, the atomic broadcast problem is defined by two live-
ness properties (Validity and Agreement) and two safety
properties (Integrity and Total Order) [5]:
Validity: If a correct process a-broadcasts a messagem,

then it eventually a-deliversm.
Agreement: If a process a-delivers messagem, then all

correct processes eventually a-deliverm.
Integrity: For any messagem, every process a-deliversm

at most once, and only ifm was previously a-broadcast.
Total Order: If some process a-delivers messagem′ after

messagem, then a process a-deliversm′ only after it a-
deliversm.

3.4 Spontaneous Order

As pointed out by Pedone and Schiper in [19], messages
broadcast in LANs are likely to be delivered totally ordered.
This phenomenon can be attributed to the short delay be-
tween the broadcast of a message and the subsequent de-
livery. Consequently, if two distinct processes broadcastm
andm′ respectively, then it is very likely thatm is deliv-
ered by all processes beforem′ or viceversa. The authors
of [19] propose a new oracle calledWeak Atomic Broadcast
(WAB) that captures the property of spontaneus total order.
A WAB is defined by the primitives w-broadcast(k,m) and
w-deliver(k,m), wherek ∈ N is thek-th w-broadcast in-
stance andm is a message. When a processp executes w-
broadcast(k, m), we say thatp w-broadcastsm in instance
k. When a processp executes w-deliver(k, m) we say that
p w-deliversm that was w-broadcast in instancek. Intu-
itively, if WAB is invoked infinitely often, it gives the same

output to every process infinitely often. Formally, a WAB
oracle satisfies the following properties:
Validity: If a correct process invokes w-broadcast(k, m),

then all correct processes eventually get the output w-
deliver(k, m).

Uniform Integrity: For every pair (k,m), w-deliver(k,m)
is output at most once and only if some process invoked
w-broadcast(k,m)

Spontaneous Order: If w-broadcast(j,∗) is called an infi-
nite number of instancesj then there are infinitek such
that the first message w-delivered in instancek is the
same for every process that w-delivers messages ink.

4 Lower Bound Proof
In this section we prove a lower bound on consensus

time-complexity. We show that every one-step leader-based
protocol has a run in which some process needs at least three
communication steps to decide. In other words it is impossi-
ble to devise a leader-based consensus protocol that is one-
step and zero-degrading. In order to develop an intuition for
the impossibility result, we first describe Brasileiro’s one-
step consensus [2] and how we would have to combine it
with a leader-based protocol to achieve zero-degradation.

In the first round of Brasileiro’s one-step consensus, ev-
ery process broadcasts its proposal and subsequently waits
for a message fromn − f processes. A processp decides
v iff it receivesn − f equal valuesv. Hence if a process
p decidesv, then every processq necessarily receivesv at
leastn − 2f times. To ensure agreement, it is sufficient to
require thatv is amajority among the values received byq.

If there are less thann− f equal proposals, then the first
round is wasted. To eliminate this overhead, one straight-
forward approach is to combine it with the first round of
a leader-based protocol. Here, consensus is obtained in
two communication steps if every correct process picks the
leader value in the first round. Hence, in the combined pro-
tocol we have to ensure that if no process decides in the
first round, then every correct process picks the leader value.
However, this is only possible if there are less thann − 2f
equal proposals. Otherwise, it might happen that some pro-
cess receives a majority valuev and consequently picksv in
order to ensure agreement while some other process picks
the leader valuevl andv 6= vl. Hence, two distinct values
are proposed in the second round and consequently some
process might not decide before the third round.

Definition 1 (one-step) Assuming f < n/3, a consensus
protocol is one-stepiff it reaches consensus in one commu-
nication step in every run in which all proposals are equal.

Definition 2 (stable run) A run of a consensus algorithm
is stableiff the failure detector makes no mistakes and its
output does not change during that run.

The stability of the failure detector can be attributed to
the fact that nearly all runs are synchronous and crashes are



initial. Even if the failure detector needs to pass through a
temporary stabilization period (e.g. after a failure), in most
runs it will exhibit a stable and accurate behaviour. In a
stable run,Ω outputs the same correct process from the be-
ginning of the run, while3P suspects exactly the processes
that have crashed initially.

Definition 3 (zero-degradation) A consensus algorithmA
is zero-degradingiff A reaches consensus in two communi-
cation steps in every stable run.

Theorem 1 (Lower Bound) Assuming that n/4 ≤ f <
n/3, every one-step consensus algorithm A based on Ω has
a stable run in which some process decides after three com-
munication steps or more.

Preliminary notes (see Figure 1): We prove the theorem
for the casen = 4 but this solution can be generalized to
any value ofn by employing the same technique as used
in [11]. The state of a process afterk communication steps
is determined by its initial value, the failure detector output
and the value and source of the messages received in every
communication round up tok. To strengthen the result, the
processes exchange their complete state. For the sake of
simplicity, Ω outputs the same leader processp1 at all pro-
cesses in every run considered in the proof untilp1 possibly
crashes. The state of processp afterk communication steps
is expressed as ak-dimensional vector withn entries such
that thei-th entry contains the state of thei-th process after
k − 1 steps. Since in each round a process waits for a mes-
sage from at mostn− f processes, one entry is empty. The
decision value is bracketed (0)/(1).

Two runsR1 andR2 aresimilar for processp up to step
k, iff the state ofp after k steps inR1 is identical to the
state ofp after k steps inR2. If two runs are similar for
some processp, thenp decides the same value in both runs.
Idea: The proof is by contradiction. We assume a leader-
based one-step and zero-degrading protocol and show that
it does not solve consensus. We construct a chain of le-
gal runs such that every two neighboring runs are similar to
some process. We start with a run in which all processes
propose1, and then we construct new runs either by chang-
ing the communication pattern or the configuration. The
failure detector assumption as well the expected properties
of the protocol lead to a run that violates agreement.

Proof :

• If A is one-step, then it must have a run likeR1 in
which all correct processes propose 1 andp1 might have
proposed the same. Thus,p4 decides 1 after one round2.
• If A is zero-degrading, then it must allow a run such as
R2. R2 is stable becauseΩ outputsp1 at all correct pro-
cesses and its output does not change. Thus,p1 decides

2Actually, processesp2 andp3 also decide 1 after one round but this is
not relevant for the proof.
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Figure 1: Lower bound proof.

after two communication steps. Ifp1 decides0, then we
can construct a runR′ that forp1 is similar toR2 (p1 de-
cides0 in R′) and that forp4 is similar toR1 (p4 decides
1 in R′). Consequently inR2, p1 necessarily decides1.
• RunsR2 andR3 are similar forp1. Thus,p1 decides1
in R3 after two communication steps. SinceR3 is stable,
p4 also decides1 after the second round.
• RunsR3 andR4 are similar forp4 and thusp4 decides
1 in R4 after the second communication step. SinceR4 is
stable,p1 also decides1 after the second round.
• RunsR4 andR5 are similar forp1. Consequentlyp1

decides1 in R5 after the second communication step. In
R5 we crashp1 so that all messages sent top2, p3 and
p4 after the first round are lost. SinceR5 is not stable
becauseΩ eventually outputs a new leader,p2, p3 andp4

are only required to decide eventually. In order to ensure
agreement they eventually decide1.
• In R6 we crashp1 such thatR5 andR6 are similar for
p2, p3 andp4. Thus, they eventually decide1. As p1

cannot distinguishR6 from a stable run, it decides after
two rounds. In order to ensure agreement,p1 necessarily



decides1.
• R6 andR7 are similar forp1. Thus,p1 decides1 in R7

after two communication steps.R7 andR8 are similar for
p4, thus it decides0 in R7 after the first communication
step. Consequently,R7 violates the consensus agreement
property concluding the proof. �

5 Circumventing the Impossibility with Ω

In this section we present a leader-based consensus pro-
tocol that is zero-degrading but is not one-step, as this
would contradict the established impossibility result. How-
ever, the protocol has the property that it obtains consensus
in one communication step if all proposals are equaland
the run is stable. The main idea behind the proposedL -
Consensus algorithm 1 is to constrain the processes to de-
cide the value proposed by the leader. A process decidesv
in the first round ifn − f values including the leader value
are equal tov. Consequently, every process that does not
decide can safely pick the leader value. Hence, consensus
is achieved in two rounds in every stable run. If there is no
leader, then safety is ensured by picking the majority value.

Algorithm 1 : TheL -Consensus Algorithm
Function Consensus(vi)

start T1, T2;
task T1: ri ← 1; esti ← vi; ld← ⊥;

while true do
ld← Ω.leader;
∀j do send PROP(ri, esti, ld) to pj enddo;1
wait until received PROP(ri, ∗, ∗) from n− f processes;2
wait until received PROP(ri, ∗, ∗) from ld3
∨ ld 6= Ω.leader;

if received PROP(ri, v, ld) from n− f processes∧ received4
PROP(ri, v, ∗) from ld then
∀j do send DECIDE(v) to pj enddo;5
return v;6

else ifreceived PROP(ri, ∗, ld) from > n/2 processes∧7
received PROP(ri, v, ∗) from ld then

esti ← v;8

else ifreceived PROP(ri, v, ∗) from n− 2f processesthen9
esti ← v;10

ri ← ri + 1;
end

task T2: upon reception ofDECIDE(v): ∀j 6= i do send11
DECIDE(v) to pj enddo; return v;

The protocol executes in a round by round fashion. In ev-
ery round, processes exchange messages, update their state
depending on the messages received and possibly decide or
move to the next round. The algorithm has three blocks that
a process can execute in a round depending on which con-
dition is satisfied (at line 4, 7 or 9). Safety is ensured as
follows: if a processp decides a valuev during roundk, ev-
ery processq that finishes roundk, does so with valuev, no
matter what block it executes. In a stable run, the condition
at line 7 evaluates to true, every correct process accepts the
leader value and hence decides in the next round. In asyn-

chronous runs, when there might be multiple leaders in the
system, agreement is kept through majority voting. Since
n − f equal values are necessary for a decision, if a pro-
cess decidesv then every process receivesv at leastn− 2f
times, making the condition at line 9 become true. Since
n − 2f > f , a process can safely pick the majority value.

5.1 Detailed Description

The L -Consensus algorithm consists of two parallel
tasksT 1 andT 2. When a processpi calls theConsensus
function with a proposalvi (i.e. it proposes valuevi), it ini-
tiates both tasks. Compliant with the definition of consen-
sus, theConsensus function eventually returns the same
decision valuev to each non-crashed process.

Task 1: The algorithm executes a sequence of asyn-
chronous rounds of one communication step each. In each
roundk, a process sends a roundk message containing its
current proposal to all processes and waits for roundk mes-
sages fromn−f processes including its current leader, com-
putes its new state based on the messages received (possibly
decides), and moves to the next round. A processpi main-
tains three local variables: the round numberri, an estimate
of the decision valueesti initialized to the proposal value
vi, and the current leaderld, initially ⊥.

At the beginning of each round,pi queriesΩ for the cur-
rent leader and stores the identity inld. We say thatpi has
leaderpl in roundk if pi sends a message withld = l. The
messages sent contain the following fields:ki, esti, ld. We
say that a processpl is majority leader for roundk if a ma-
jority of processes send roundk messages withld = l. As
any two majorities have a non empty intersection, there can
be at most one majority leader at roundk. Note that in asyn-
chronous runs there are periods with no majority leader.

A processpi can send two different types of messages
in roundk. If pi has decided, then it broadcasts a decision
value, otherwise it broadcasts a PROP(ki, esti, ld) message
and we say thatpi proposesesti in roundki.

At the end of roundk (i.e. after receiving roundk mes-
sages fromn−f processes possibly including one fromld),
processpi updates itsesti variable as follows: ifpi receives
a valuev from the majority leader of roundk, thenesti = v.
If there is no majority leader or theΩ module atpi suspects
ld for having crashed andpi receivesn − 2f equal values
v, thenpi picksv. Otherwise the estimate value is kept un-
changed. A processpi decides in roundk if it receivesn−f
equal values including one value from the majority leader.

Task 2: Upon receiving a decision message with value
v, pi forwards the decision value to the other processes and
then decidesv. Thus, if a correct process decides, the re-
maining correct processes cannot block since they eventu-
ally receive the decision message.

5.2 Correctness

Lemma 1 (Termination) Every correct process decides.

Proof : We show that if some correct process never decides



then every correct process eventually decides; a contradic-
tion. If some correct process never decides then either some
correct process decides or no correct process decides.
1) Casea: Some correct process decides. Then, it broad-
cast a decision message (line 5). Since it is correct, ev-
ery correct process eventually receives the decision message
(line 16) and also decides. Thus, every correct process de-
cides, which contradicts the assumption.
2) Caseb: No correct process decides. If some correct pro-
cesspi never decides, then either it is blocked in a round or
it executes an infinite number of rounds.

Case1: pi blocks forever in a round. Letk be the first
round in which some correct process is blocked.pi can only
be blocked at one of the wait statements (line 2 or 3).
- CaseI: pi is blocked at line 2 of roundk. Sincek is the
first round in which some correct process blocks at line 2,
all correct processes have broadcast a roundk message at
line 1. As communication links are reliable and there are at
leastn − f correct processes,pi eventually receivesn − f
roundk messages and completes line 2.
- CaseII: pi is blocked at line 3 of roundk. As in the case
above, every correct process broadcasts a roundk message.
Considerld, which is the leader process output byΩ atpi. If
ld is correct, thenpi eventually receives a roundk message
from ld and completes line 3. Otherwise, ifld is faulty, then
eitherpi eventually receives a roundk message fromld, or
Ω eventually outputs a correct process different fromld and
pi completes line 3. Thus,pi cannot block at line 3.

Case2: All correct processes execute an infinite number
of rounds without deciding. From the definition of a faulty
process, there is a timet1 such that every faulty process
has crashed beforet1. From the definition ofΩ there is a
time t2 such thatΩ outputs the same correct processpl at
every correct process forever. Lett := max{t1, t2} andk
be the first round aftert. In roundk, every correct process
setsld to l and sends a message (k, ∗, l) to all processes.
Since no correct process decides, no correct process exe-
cutes line 5. As there is a majority of correct processes and
pl is not suspected by any correct process, every correct pro-
cess receives a majority of roundk messages including one
message frompl, and every correct process sets itsest vari-
able to the same value (line 8). Therefore, at roundk + 1
every process includingpl sends a (k + 1, v, l) message.
Thus, at roundk + 1 every correct process receivesn − f
equal messages including a (k + 1, v, l) message frompl.
Therefore, the condition at line 4 evaluates to true and every
correct process decides at line 5; a contradiction. �

Lemma 2 (Agreement) No two processes decide differ-
ently.

Proof : A process can decide either at line 5 of some round
or at line 16 of taskT 2. If a process decidesv at line 16,
then some other process has decidedv at line 5. Letk be the
lowest round in which some processp decidesv at line 5.
We claim that each process that decidesv at line 5 of round

k decidesv, and that every process that completes roundk
does so withest = v. This implies that theest value of
every process after roundk is alwaysv. Thus, in roundk
and after roundk, v is the only value that can be decided
at line 5. Ask is the lowest round in which some process
decides, this implies thatv is the only value that can be de-
cided in a round at line 5. This also implies that no process
decides a value different fromv at line 16 of taskT 2. Now
we prove the above claim. Suppose that a processq 6= p
decidesd in roundk. Sincen − f > n/2, bothp andq
receive equal valuesv andd respectively from a majority
of processes. As any two majorities intersect in at least one
process, it follows thatd = v. Now, consider any process
q′ that completes roundk without deciding. We show that
q′ completes roundk with est = v. There are two cases
to consider: Case1: q′ evaluates the condition at line 7 to
false. We show thatq necessarily evaluates the condition at
line 9 to true. At roundk there are at leastn − f valuesv
andq′ has receivedn − f values at line 2 of roundk. Any
two sets ofn − f elements haven − 2f elements in com-
mon, thus among then − f valuesq′ receives at roundk,
at leastn − 2f values are equal tov and at mostf values
are distinct fromv. Sincen− 2f > f , v is a majority value
among the values received byq′. Valuev is unique as there
cannot be two distinct majority values. Thusq′ completes
roundk with est = v.

Case2: q′ evaluates the condition at line 7 to true. Thus,
there must be a processpl such that a majority of processes
send messages withld = l. Sincep decides in roundk,
there must be a processpl′ , such thatn − f processes send
messages withld = l′. As any two majorities have a process
in common, it follows thatl = l′. Thusq completes round
k with est = v. �

6 Circumventing the Impossibility with 3P

In this section we present a one-step and zero-degrading
algorithm that uses the3P failure detector. The proposed
P-Consensus algorithm 2 is based on a simple observation
that was originally discovered by Lamport [15]. One of
the necessary conditions for the impossibility of section 4
is that processes receive messages from different quorums
in the first communication round. If all processes received
the same set of messages, then they could deterministically
pick the same value to propose in the second round. Conse-
quently, consensus is obtained in two communication steps.

The idea behindP-Consensus is to use the3P failure
detector to build a consistent quorum from which every
process delivers first round messages in case it cannot de-
cide. In every stable run,3P suspects exactly the faulty
processes and its output does not change during that run.
Hence, every process that does not decide during the first
round computes the same quorum (line 5) and subsequently
receives a message from every quorum member. The sets of
messages received by different processes from the quorum
are equal and the functions applied to pick a value are de-



terministic (lines 9-12). Hence, all processes start the next
round with the same value and consequently every correct
process decides in the second round.

Algorithm 2 : TheP-Consensus Algorithm
Function Consensus(vi)

start T1, T2;
task T1: ri ← 0; esti ← vi;

while true do
∀j do send PROP(ri, esti) to pj enddo ;1

wait until received PROP(ri, ∗) from n− f processes;2
if received PROP(ri, v) from n− f processesthen3
∀j do send DECIDE(v) to pj enddo; return v;4

let Qi = { the firstn− f processes5
pj : j /∈ 3P .suspected };
wait until received PROP(ri, ∗) from every6
pj : j ∈ Qi\3P .suspected;

let Qlisti = (v | PROP(ri, v) has been received from7
pj : j ∈ Qi);
if |Qlisti| = n− f then8

if ∃v ∈ Qlisti : #(v) ≥ n− 2f then9
esti ← v;10

else11
esti ← estmin{j|j∈Qi}

;12

else%ensure agreement%
let vlisti = (v | PROP(ri, v) has been received);13
if ∃v ∈ vlisti : #(v) > |vlisti|/2 then14

esti ← v;15

ri ← ri + 1;
end

task T2: upon reception ofDECIDE(v): ∀j 6= i do send16
DECIDE(v) to pj enddo; return v;

6.1 Detailed Description

TheP-Consensus algorithm consists of two parallel tasks
T 1 and T 2 that are initiated when a process proposes a
value. TheConsensus function eventually returns the
same decision value to every correct process. Since the sec-
ond task is identical to taskT 2 of theL -Consensus protocol,
we confine ourselves to describing taskT 1.

The algorithm executes a sequence of asynchronous
rounds of one communication step each. In each roundk, a
process sends a roundk message containing its current pro-
posal to all processes and waits for roundk messages from
n − f distinct processes, computes its new state based on
the messages received and tries to decide. If it cannot de-
cide then it possibly waits for more messages, computes its
new state and moves to the next round.

A processpi maintains two local variables: the round
numberki initialized to 1 and an estimate of the decision
valueesti initialized to the proposal valuevi. At the be-
ginning of each round,pi broadcasts a message that con-
tains the following fields:ki, esti. A processpi can send
two different types of messages in roundki. If pi has de-
cided, then it broadcasts a decision value, otherwise it sends
a PROP(ki, esti) message to all processes and we say that

pi proposesesti in roundki.
Subsequently,pi waits for a message fromn− f distinct

processes. Ifpi receivesn − f identical values it decides.
Otherwise,pi additionally waits for messages from a quo-
rumQ that is computed deterministically as the set that con-
tains the firstn− f nonsuspected processes. We say thatQ
is complete iff it has n − f members.

At the end of roundk, pi updates itsesti variable as fol-
lows: if there is a complete quorumQ such thatpi receives
a message from each process inQ and there is a majority
valuev among then − f values received, thenesti = v. If
there is no such valuev, then no process decided in round
k. Thus,p can propose any value in the next round. Sub-
sequently,p picks the estimate of theleader, the process
with the smallest index among all nonsuspected processes.
In case that there is no such process,p simply keeps its es-
timate. IfQ is not complete and there is a majority valuev
among the values received in roundk thenesti = v. If no
such value exists, thenpi moves to the next round.

6.2 Correctness

Lemma 3 (Termination) Every correct process decides.

Proof : We follow the same strategy as in section 5.2 and
show that if some correct process never decides then ev-
ery correct process eventually decides. Assuming that some
correct process never decides yields two cases. Either some
correct process decides or no correct process decides. The
latter case implies that some correct process never decides.
Thus, either1) it is blocked in a round or2) it executes an
infinite number of rounds.

- Case1): The proof is similar to the one of section
5.2. A process cannot block at one of the wait statements
(at lines 2, 6) because at mostf processes are faulty and
⋄P .suspected eventually contains all crashed processes.

- Case2): All correct processes execute an infinite num-
ber of rounds without deciding. From the definition of a
faulty process, there is a timet1 such that every faulty pro-
cess has crashed beforet1. From the definition of⋄P there
is a timet2 such that aftert2, ⋄P outputs exactly the crashed
processes forever. Lett := max{t1, t2} andk be the first
round aftert. Since no correct process decides, no cor-
rect process executes line 4 and every correct process ex-
ecutes lines 5, 6 and 7. As⋄P behaves perfectly in round
k, every quorumQ contains exactly the correct processes.
The fact thatQ is complete and identical and every correct
process receives a message from every member ofQ im-
plies thatQlist is the same at every correct process and that
|Qlist| = n− f . Hence, the condition at line 8 evaluates to
true and all correct processes pick the same value either at
line 10 or at line 12. Therefore, in roundk + 1, all correct
processes send a message with the same value and hence
every correct process receivesn − f identical values and
consequently decides at line 4; a contradition. �



Lemma 4 (Agreement) No two processes decide differ-
ently.

Proof : We claim that each process that decides at line 4 of
roundk decidesv, and that every process that completes
roundk without deciding does so withest = v. As al-
ready shown in 5.2, if this claim is true then agreement
holds. Now, we prove the above claim. It is easy to see
that if two distinct processesp and q decide in roundk,
then they decide the same valuev. Let q′ be a correct pro-
cess that does not decide in roundk. As q′ receives at least
x ≥ n − f messages, it receives at mostf valuesw 6= v.
Sincex−f ≥ n−2f > f , v is a majority among the values
received byq′ in roundk which implies that one of the con-
ditions at line 9 or 14 evaluates to true. Thus,q′ completes
roundk with est = v, which concludes the proof. �

7 The Atomic Broadcast Protocol

The proposedC-Abcast protocol 3 represents a modifi-
cation of the WABcast atomic broadcast algorithm of [19].
Like the Chandra & Toueg’s (CT) Atomic Broadcast pro-
tocol [5], C-Abcast reduces atomic broadcast to consensus.
It executes a series of consensus instances to determine a
single message delivery sequence at all processes. Unlike
the CT Atomic Broadcast,C-Abcast assumes an underly-
ing consensus module that is very efficient in case that all
proposals are equal. In order to exploit the efficiency of the
underlying consensus,C-Abcast uses a WAB oracle to pro-
vide the consensus module with equal input values. When
the oracle outputs the same proposal to every process,C-
Abcast has a latency of two message delays, i.e.,2δ; one
for asking the oracle plus one communication step for con-
sensus. In case of collisions, consensus is obtained in two
communication steps. Hence,C-Abcast has a latency of
three message delays, i.e,3δ in the common case.

The protocol consists of three concurrent tasks. A pro-
cess can either a-broadcast a message (line 2), a-deliver
a message (line 4), or w-deliver a message (line 16). A
processp a-broadcasts a messagem by includingm in a
set estimatep. This set contains the messages that have
not been yet a-delivered byp. The a-deliver(∗) task exe-
cutes in a round by round fashion. In roundk, processp
w-broadcasts the setestimatep and waits to w-deliver the
first valuev output by its oracle. Then,p proposesv to the
k-th consensus instance and waits for the decision. After
it decides,p atomically delivers all messages contained in
thek-th decision in some deterministic order, removes from
estimatep every message a-delivered so far and moves to
the next round. In order to ensure validity, every message a-
broadcast by some correct process must eventually be con-
tained in the proposal of every correct process. Thus, in the
third task (line 16), every processp includes inestimatep

all messages w-broadcast so far.

Algorithm 3 : TheC-Abcast Algorithm
Initialization:

ki ← 1; estimatei ← ⊥; adeliveredi ← ⊥;1

a-broadcast(m):2
estimatei ← estimatei ∪ {m};3

a-deliver(∗):4
while true do5

w-broadcast(ki , estimatei);6
wait until w-deliver of the first message (ki, v);7
msgSeti ← Consensus(ki , v);8
adeliveri ← msgSeti − adeliveredi;9
deliver all messages inadeliveri atomically in some10
deterministic order;
adeliveredi ← adeliveredi ∪ adeliveri;11
estimatei ← estimatei − adeliveredi;12
ki ← ki + 1;13
if estimatei = ∅ then14

wait until w-deliver of the first message (ki, v)15
∨ estimatei 6= ∅

end

upon w-deliver(∗, v) of the second, third etc. message of any round16
estimatei ← estimatei ∪ v;17

7.1 Correctness

Lemma 5 states that∀k ∈ N, a) if a process delivers the
k-th message batch, then every correct process also delivers
it and b) that thek-th message batch is the same at every
process. From a) and b) we can easily deduce Agreement
and Total Order. Validity requires a more detailed proof.

Lemma 5 For all k > 0, every process p and every correct
process q, if p executes round k until the end then q executes
round k until the end and adeliverk

p = adeliverk
q .

Proof : We will prove the lemma by induction overk. First,
it is easy to see that every correct process executes round1
until the end. Due to consensus agreement, ifp a-delivers
messages in round1 thenadeliver1

p = adeliver1

q . Now as-
sume that the lemma holds for allk, 1 ≤ k < r. We first
show that ifp a-delivers messages in roundr thenq executes
round r until the end. Ifp a-delivers messages in round
r, thenp returns from the invocation of Consensus(r, ∗) at
line 8. Since there is at most a minority of faulty processes,
at least one correct processu executes Consensus(r, ∗).
This implies thatu w-broadcasts its estimate at line 6. By
the induction hypothesis, ifp a-delivers messages in round
r − 1, q executes roundr − 1 until the end. Thus,q eventu-
ally w-delivers the first message of stager either a) at line 7
or b) at line 15. Without loss of generality, letestimateu

be the first message w-delivered byq in roundr. In both
casesq breaks from the corresponding wait statement and
executes Consensus(r, estimateu)3. By consensus termi-
nation,q eventually executes roundr until the end.

3In caseq breaks from the second wait statement (line 15) it does not
block at the first wait statement (line 7) because it has already w-delivered
the first roundr message.



We now show that ifp a-delivers messages in round
r then adeliverr

p = adeliverr
q . As shown in the first

part of the lemma,q executes roundr until the end.
Thus, q a-delivers messages inadeliverr

q . Due to con-
sensus agreementmsgSetrp = msgSetrq. By the in-
duction hypothesis,∀k, 1 ≤ k < r : adeliverk

p =

adeliverk
q ⇒ ∪r−1

k=1
adeliverk

p = ∪r−1

k=1
adeliverk

q . As
adeliverr = msgSetr − ∪r−1

k=1
adeliverk, we get

adeliverr
p = msgSetrp − ∪r−1

k=1
adeliverk

p = msgSetrq −

∪r−1

k=1
adeliverk

q = adeliverr
q . �

Lemma 6 (Agreement) If a process a-delivers message m,
then all correct processes eventually a-deliver m.

Proof : Follows directly from Lemma 5. �

Lemma 7 (Total Order) If some process a-delivers mes-
sage m′ after message m, then a process a-delivers m′ only
after it a-delivers m.

Proof : Follows from lemma 5, the total odering of natu-
ral numbers, and the fact that messages within a batch are
delivered atomically in a deterministic order. �

Lemma 8 (Validity) If a correct process a-broadcasts
message m, then eventually it a-delivers m.

Proof : The proof is by contradiction. Suppose that a cor-
rect process a-broadcastsm but never a-deliversm. By
Lemma 6 no correct process a-deliversm. Consider a pro-
cessp that a-broadcasts a messagem. Consequently,p in-
cludesm in estimatep and thus w-broadcastsm. By the
validity property of the ordering oracle, every correct pro-
cess eventually w-deliversm at line 16 and thus includes
m in its estimate. Since no correct process adeliversm,
no correct process removesm from itsestimate at line 12.
There is a timet so that all faulty processes have crashed
beforet and at whichm is included in theestimate of
every correct process. Letk be the lowest round number
after t. Every correct process w-broadcastsm in k, which
implies that every value proposed to thek-th consensus in-
stance necessarily containsm. Due to validity of consen-
sus,m is included in themsgSet of every correct process.
Thus,m is a-delivered by every correct process at roundk;
a contradiction. �

8 Performance Evaluation
In this section we provide a brief comparison both ana-

lytical and experimental to outline the efficiency of our pro-
tocols compared to Paxos and WABcast. Table 1 compares
the proposed protocols with Paxos [13] and WABCast [19]
in terms of time complexity (whereδ is the maximum net-
work delay), message complexity, resilience, and the oracle
used for termination. In case of no collisions, WABCast as
well asL -/P-Consensus have the same time and message

Table 1: Comparison of various atomic broadcast protocols
No Collisions ; Collisions

Protocol latency #messages Resil. Oracle

Paxos 3δ n2 + n + 1 f < n/2 Ω
WABCast 2δ ;∞ n2 + n ;∞ WAB
L -/P-Cons. 2δ ; 3δ n2 + n ; 2n2 + n f < n/3 Ω/⋄P

complexity. Compared to Paxos, they trade the maximum
degree of resilience, i.e.,f < n/2 for the lower time com-
plexity of 2δ. In periods with collisions, WABCast might
not terminate whereasL -/P-Consensus have the same time
complexity as Paxos though with more messages. We ex-
pect the proposed protocols to be as efficient in terms of
latency as WABCast when collisions are rare and to exhibit
a behaviour similar to Paxos when collisions are frequent.

8.1 Experimental Evaluation

We compared the performance of the proposed pro-
tocols with Paxos and WABCast. We measured the la-
tency of atomic broadcast as a function of the throughput,
whereby latency is defined as the shortest delay between a-
broadcasting a messagem and a-deliveringm. We imple-
mentedL -/P-Consensus andC-Abcast using the Neko [21]
framework. The experiments were conducted on a cluster of
4 identical workstations (2.8GHz, 512MB) interconnected
by a 100Mb ethernet LAN. Different consensus algorithms
were tested by exchanging the consensus module ofC-
Abcast. The WAB oracle implementation uses UDP pack-
ets whereas the rest of the communication is TCP-based.
We considered only stable runs in our experiments. In order
to capture the performance of the tested protocols during
periods with and without collisions, we varied the through-
put between20msg/s and500msg/s. Figure 2 shows
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Figure 2: L -/P-Cons. vs. WABcast (n = 4)

the comparison of our protocols with WABCast. Both pro-
posed protocols exhibit a similar latency as WABCast up to
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Figure 3: L -/P-Cons. (n = 4) vs. Paxos (n = 3)

a throughput of80msg/s and they outperform WABCast
for all throughputs higher than100msg/s. Figure 3 sum-
marizes the comparison with Paxos. When collision pre-
dominate, the proposed protocols indeed have the same time
complexity as Paxos. However, given their decentralized
nature, our protocols need more messages. From a through-
put of300msg/s upwards, Paxos slightly outperforms both
protocols. For lower throughputs,L -/P-Consensus perform
better than Paxos.

9 Conclusion

One-step decision and zero-degradation express the abil-
ity to reach consenus in one and two communication steps
respectively, and protocols that satisfy them are optimal in
this respect. We investigated if these properties are inher-
ently incompatible and showed that they cannot be both sat-
isfied using theΩ failure detector. As shown in [11], anyΩ
based procol that decides in two communication steps in
every well-behaved run is also zero-degrading. This im-
plies that the failure detector employed by Fast Paxos [13]
is strictly stronger thanΩ. Subsequently, we proposed two
approaches to circumvent the established impossiblity re-
sult. The first approach relaxes one-step decision to hold
only in stable runs. The second approach assumes a strictly
stronger failure detector. For each approach we developed
a corresponding consensus protocol. While the proposed
L -Consensus ensures one-step decision only in stable runs,
the ability ofP-Consensus to decide in one communication
step is regardless of the failure detector output. To be able
to test the efficiency of the proposed protocols we modified
the atomic broadcast algorithm of [19] to use consensus.
We compared the proposed consensus protocols with Paxos
and WABcast both analytically and experimentally. The re-
sults of the experiments confirm the analytical evaluation
establishing the efficiency of our proposed protocols.
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