One-step Consensus with Zero-Degradation

Dan Dobre and Neeraj Suri
Department of Computer Science, Technische Universi@iri3tadt
{dan,sur}@informatik.tu-darmstadt.de

Abstract

In the asynchronousdistributed system model, consensus
is obtained in one communication step if all processes pro-
pose the same value. Assuming f < n/3, thisis regardless
of the failure detector output. A zero-degrading protocol
reaches consensusin two communication stepsin every sta-
ble run, i.e., when the failure detector makes no mistakes
and its output does not change. We show that no leader-
based consensus protocol can be simultaneously one-step
and zero-degrading. e propose two approachesto circum-
vent theimpossibility result and present corresponding con-
sensus protocols. Further, we present an atomic broadcast
protocol that has a latency of 30 in every stable run and a
latency of 26 in case of no collisions. Finally, we evaluate
its performancein a cluster of workstations.

1 Introduction

Consensus is central to the construction of fault-tolerant

distributed systems. Atomic broadcast, which is at the core
of state machine replication [20] can be implemented as a
sequence of consensus instances [5]. As this approach re

quires solving consensus repetitively, performance of con
sensus becomes a crucial issue. We measure performan

to achieve consensus. Actually, in asynchronous system
we cannot limit the number of communication steps, since
this would contradict the well-known FLP impossibility re-
sult [10]. In practice however most runs of a distributed
system are failure-free and synchronous. If consensus
used in a repeated form, then the overhead caused by ru
with failures is negligible. Since failures that occur ineon

run propagate as initial failures to all subsequent runs, we
are interested in algorithms whose performance is not per-

manently affected by initial failures. We say that a run of a
consensus algorithm &able iff the failure detector makes
no mistakes and its output does not change during that run
As defined in [9], aero-degrading algorithm achieves con-
sensus inwo communication steps in every stable run.

1Since failure detection is not instantaneous, we cannafireghat a
run is not affected by initial failures. Suchcovery runs [22] have negligi-
ble impact on the overall performance of a repetitive cosssmexecution.

i

by counting the number of communication steps needed

Another important optimization aspect is to expedite
the decision when all processes propose the same initial
value. Assuming’ < n/3, no underlying failure detector is
needed andne communication step is sufficient to obtain
consensus. In the literature such algorithms are calhed
step. The original idea of consensus in one communication
step stems from Brasileiro [2]. While his solution is opti-
mal for this particular case, his protocol needs at leasgthr
communication rounds starting from other configurations.

Our first objective is to investigate if consensus protocols
are inherently either one-step or zero-degrading. The-ques
tion we ask is the following: Do one-step consensus proto-
cols needhree communication steps in general? In section
4 we show that no leader-based consensus protocol can be
simultaneously one-step and zero-degrading. This implies
that every one-step protocol based on leader election has
a failure-free and synchronous run in which some process
decides after three communication rounds or later [11].

Our second objective is to find sufficient conditions
for circumventing the established impossibility resuldan
hence to eliminate the overhead of one communication step.
in this paper we consider two different approaches and
esent corresponding consensus protocols. In the first ap-
oach, we condition one-step decision on the behaviour of
the failure detector. With this approach, one-step degisio

Is guaranteed only in stable runs. The consensus algorithm

we present in section 5 is both of practical and of theorktica
interest. It is theoretically appealling because it usesth

. failure detector, which is the weakest to solve consendus [4
'SMoreover, it is reasonable to require stability, as withibut
N&ven termination cannot be guaranteed. Since stability fre

guently holds in practice, it is reasonable to optimize is th
respect. The second approach has been originally proposed
by Lamport[15]. In section 6 we present a modified version
thereof based on theP failure detector. This protocol pro-
vides both one-step decision and zero-degradation.

Further, in section 7 we present a consensus based
atomic broadcast algorithm that has a latencydoih every
stable run and a laten@p in case of no collisions, where
0 is the maximum network delay. In section 8 we present a
corresponding analytical and experimental evaluation.

2 Related Work g at moste values are distinct from, agreement is ensured

Brasileiro’s [2 ¢ lqorithm h if n —e — f > e. Thus, the degree of resilience is given by
imi rasi EIF?S []r:)ne-s. P (r:](_)nhsensus algorl n’;] as atﬂrg-n > maz{2f,2e + f}. Maximizinge leads tof < |n/3],
iminary voting phase in which processes exchange their, .. maximizing leads toe < |[n /4],

Cides, atheriise 1 uses. an Underling sonsensus module,, RECenY: Lamport has presented Fast Paxos [15),an ex-
it ’ decidesafter th f.y tgt I tension to the classic Paxos [13] consensus protocol, that
some process decidesafter e 1irst Step, all processes o q1q 41 jower bounds on time-complexity and resilience.

::2&S;‘gcze?e\grl;he%ttjtisdtehigI2ﬂSFL)JrI’OeF()jIOSG(t)htehergogft?;ssg]?theFaSt Paxos switches between achieving consensus in two or
A9 y prop : . _three message delays depending on how many processes are
underlying consensus. The drawback of this algorithm is

; L . . working. If n — f processes are working, then Fast Paxos
that it needs three rounds from other initial configurations ...\ o - 0ncansus in three message delays—If pro-

Based on Brasileiro’s idea, Mostefaoui and Raynal [17] ¢esses are working and there are no concurrent proposals,

developed an atomic broadcast protocol that has two mesihen Fast Paxos obtains consensus in two message delays.
sage delays in the best case but needs four in the normal

case. Moreover, even if messages are ordered, itis very un3 System Model and Definitions

likely that all buffers have the same length when their con- \ve assume a crash-stop asynchronous distributed sys-
tentis proposed. Thus, distinct processes propose differe tem model [5] consisting of a s&t = {p1, ..., p,,} of n pro-
values and the protocol works in the slower mode. cesses of which up tp < n may fail by crashing. A process
This problem was recognized by Pedone and behaves correctly, i.e., it executes the algorithm assigme
Schiper [18] and they suggested agreement on theit until it possibly crashes. A process that never crashes is
largest common prefix instead of agreement on the wholecorrect, otherwise it iaulty. Message transmission delays
buffer. As long as all buffers share a nonempty common and relative processing speeds are unbounded. The absence
prefix of messages, their algorithm achieves a latency ofof timing assumptions makes the distributed systesgm-
two message delays. As soon as messages are out of ordethronous [16]. Processes communicate and synchronize by
consensus is needed, which adds a latency of two additionakending and receiving messages awiable channels. A
message delays. This protocol tolerates a minority ofyault reliable channel does not lose, duplicate or (undetectably
processes, but achieving a latency2éfrequires collecting corrupt messages. Given two correct procepsasdq, if p
the proposals fronall processes. Thus, even if a single sends a message to ¢ theng eventually receivess.
process crashes, the protocol switches to the slower mode.3 1 The Consensus Problem
Based on the observation thatin LANs, messages are fre-
quently delivered in total order, Pedone and Schiper [19]in I the consensus problem, a set of processes have to
troduced the notion afrdering oracleto model the sponta- ~ @gree unanimously on a value that is one of the values pro-
neous total order encountered in LANs. The authors presenf?0sed by some process from the set. Formally, consensus is
an atomic broadcast protocol that has a latency of two mes-defined by two safety properties (Validity and Agreement)
sage delays in case of no collisions and thus performs veryand one liveness property (Termination) [5]:
well for a low to medium throughput. However, for high validity: If a process decides, then some process has
throughputs and hence with the increase of collisions their proposed.
solution exhibits a considerable performance degradation Agreement: No two processes decide differently.
Recently, the authors of [3] have extended the idea of Termination: Every correct process decides.
weak ordering oracles to Paxos-like [13] protocols. Paxos-

like protocols allow for the recovery of crashed processes qonqs has no deterministic solution [10]. Various ap-

[1] and are well suited for the client/server computation proaches have been proposed to circumvent this impos-
. :
model. The R*-Consensus protocol of [3] degrades if mul- gjpyjiry result. In practice, distributed systems are syn-
tiple clients issue requests concurrently and thus it ssiffe o 5n6us most of the time so that models such as partial
from the same drawback as the original [19]. synchrony [8], the timed asynchronous model [7] and unre-
The key assumption in Brasileiro's [2] one-step consen- jiaple failure detectors [5] describe real systems moreracc

sus isf < n/3. This is generalized by Lamport [14] who rately than the asynchronous model.
distinguishes between the number of correct processes re;

quired to reach consensus in one communication stefe(3.2 Failure Detectors

with e < f) and the number of correct processes needed Instead of dealing with low level details about synchrony
for progress# — f with f < n/2). Intuitively, if a pro- and associated timing assumptions, failure detectorsr§s] a

cessp decidesy in one communication step, then it has re- defined in terms of properties, allowing a clean separation
ceivedn — e equal values. Consequently, every process from the implementation. We assume that the system is
q that receives a message from- f processes receives equipped with an appropriate distributed failure detector
n — e — f times. Since among the— f values received by consisting of one failure detector module installed at each

Asynchrony and crashes create a context in which con-

process. The consensus protocols presented in this papesutput to every process infinitely often. Formally, a WAB

use the2 and<OP failure detectors respectively. Bothen- oracle satisfies the following properties:

tually provide consistent and correct information about the validity: If a correct process invokes w-broadcast(),
state of processes, i.e., crashed or not crashed. \Wifle then all correct processes eventually get the output w-
tracks the state of every proceSseventually outputs a sin- deliver(, m).

gl_e correcteader prqcessﬂ is strictly weaker tha>P and Uniform Integrity: For every pair k,m), w-deliver(,m)
it is the weakest failure detector to solve consensus [4, 6]. s output at most once and only if some process invoked

&P is defined in terms of the following two properties: w-broadcast(,m)

< Strong Completeness:Eventually, every crashed pro- Spontaneous Order: If w-broadcastf,«) is called an infi-
cess is suspected by every correct process. nite number of instancesthen there are infinité such

< Strong Accuracy: Eventually, no correct process is that the first message w-delivered in instaices the
suspected by any correct process. same for every process that w-delivers messaggs in

Q) is defined in terms of the eventual leadership property: 4 [ower Bound Proof
Eventual Leader: Eventually) outputs the same correct

process forever In this section we prove a lower bound on consensus

) time-complexity. We show that every one-step leader-based
3.3 The Atomic Broadcast Problem protocol has a run in which some process needs at least three

In the atomic broadcast problem processes have to agre€0mmunication steps to decide. In other words it is impossi-
on an unique sequence of messages. Formally, the atomi®le to devise a leader-based consensus protocol that is one-
broadcast problem is defined in terms of two primitives a- Step and zero-degrading. In order to develop an intuition fo
broadcast{:) and a-deliveng:), wherem is some messsage. the impossibility result, we first describe Brasileiro’sean
When a process executes a-broadcast] (respectively a- Step consensus [2] and how we would have to combine it
deliver(n)), we say thap a-broadcasts: (respectively a- with a leader-based protocol to achieve zero-degradation.
deliversm). We assume that every messages uniquely In the first round of Brasileiro’s one-step consensus, ev-
identified and carries the identity of its sender. In this-con €ry process broadcasts its proposal and subsequently waits
text, the atomic broadcast problem is defined by two live- for a message from — f processes. A procegsdecides
ness properties (Validity and Agreement) and two safety v iff it receivesn — f equal values.. Hence if a process
properties (Integrity and Total Order) [5]: p decidesv, then every procesgnecessarily receives at

Validity: If a correct process a-broadcasts a message ~ '€astn — 2/ times. To ensure agreement, it is sufficient to
then it eventually a-delivers: require that is amajority among the values received by

Agreement: If a process a-delivers message then all If there are less tham — f equal proposals, then the first
correct processes eventually a-deliver round is wasted. To eliminate this overhead, one straight-

Integrity: For any message, every process a-delivens forward approach is to combine it with the first round of.
at most once, and only if was previously a-broadcast. & leader-based protocol. Here, consensus is obtained in

Total Order: If some process a-delivers messageafter two communication steps if every correct process picks the

messagen, then a process a-delivers’ only after it a- leader value in the first round. Hence, in the com.bmeql pro-
deliversm. tocol we have to ensure that if no process decides in the

firstround, then every correct process picks the leadeevalu
3.4 Spontaneous Order However, this is only possible if there are less than 2 f

As pointed out by Pedone and Schiper in [19], messagesedual proposals. Otherwise, it might happen that some pro-
broadcastin LANSs are likely to be delivered totally ordered C€sSs receives a majority valuend consequently picksin
This phenomenon can be attributed to the short delay be-order to ensure agreement while some other process picks
tween the broadcast of a message and the subsequent déhe leader value, andv # v;. Hence, two distinct values
livery. Consequently, if two distinct processes broadeast ~are proposed in the second round and consequently some
andm’ respectively, then it is very likely that is deliv- ~ Process might not decide before the third round.
ered by all processes befone or viceversa. The authors
of [19] propose a new oracle call&dak Atomic Broadcast
(WAB) that captures the property of spontaneus total order.
A WAB is defined by the primitives w-broadcast(:) and

w-deliver(:,m), wherek € N is thek-th w-broadcast in- pefinition 2 (stable run) A run of a consensus algorithm

stance andn is a message. When a procgssxecutes W- g stableiff the failure detector makes no mistakes and its
broadcas, m), we say thap w-broadcastsn in instance oyput does not change during that run.

k. When a procesg executes w-delivek(, m) we say that
p w-deliversm that was w-broadcast in instange Intu- The stability of the failure detector can be attributed to
itively, if WAB is invoked infinitely often, it gives the same the fact that nearly all runs are synchronous and crashes are

Definition 1 (one-step) Assuming f < n/3, a consensus
protocol is one-stepff it reaches consensus in one commu-
nication step in every run in which all proposals are equal.

Ry : Ry :

initial. Even if the failure detector needs to pass through a

temporary stabilization period (e.g. after a failure), insh !] o = (§§)

runs it will exhibit a stable and accurate behaviour. In a , . 1 o11- . -

stable run{) outputs the same correct process from the be-

ginning of the run, while>P suspects exactly the processes 1 y 1 011 > 011

that have crashed initially. sy = (011)
1 -111] (1) > . 01-0

Definition 3 (zero-degradation) A consensusalgorithm A

is zero-degradingf .A reaches consensusin two communi- o0 o s @y, oM o s oL

cation steps in every stable run. sy = (01-0)
1 011 o 1 01-0 _ 01-0

Theorem 1 (Lower Bound) Assuming that n/4 < f < s :

n/3, every one-step consensus algorithm A based on €2 has 1 011- . 1 011- .)

a stable run in which some process decides after three com- 54 = (o0)

munication steps or more. 0 00l sl o 01-0] sl @), 01-0

Preliminary notes (see Figure 1): We prove the theorem , ™' o o). o7 010 s @ 01-0

for the casen = 4 but this solution can be generalized to i s = (e)

any value ofn by employing the same technique as used , 00| sgf . () g 010 ayf .. @) e

in [11]. The state of a process aftecommunication steps

is determined by its initial value, the failure detectorputt 1 0-10] sqf . (1) 0-10] 54l .. (@)

and the value and source of the messages received in every

communication round up th. To strengthen the result, the o 01:0] sal) o 01-0] saf v @

processes exchange their complete state. For the sake of . A -

simplicity, 2 outputs the same leader processat all pro- 0 -0 s @My o >

cesses in every run considered in the proof yntipossibly

crashes. The state of procesafterk communication steps 1 > >

is expressed as/adimensional vector witlh entries such

that thei-th entry contains the state of thh process after ° » 0 >

k — 1 steps. Since in each round a process waits for a mes—o 000 0 . 0-00|)

>

sage from at most — f processes, one entry is empty. The

decision value is bracketed (0)/(1). _
Two runsR; andR; aresimilar for procesg up to step Figure 1: Lower bound proof.

k, iff the state ofp after k& steps inR; is identical to the

state ofp after k steps inRs. If two runs are similar for

some procesg, thenp decides the same value in both runs. after two communication steps. jf decides), then we

Idea: The proof is by contradiction. We assume a leader- can construct a rui’ that forp, is similar to R (p; de-

based one-step and zero-degrading protocol and show thacides0 in R’) and that forp, is similar to R, (p4 decides

it does not solve consensus. We construct a chain of le- 1in R’). Consequently iRy, p; necessarily decidels

gal runs such that every two neighboring runs are similar to ® RunsR; andR; are similar forp;. Thus,p; decidesl

some process. We start with a run in which all processes in R after tvo communication steps. Singg is stable,

proposel, and then we construct new runs either by chang- ps also decides after the second round.

ing the communication pattern or the configuration. The e RunsR; andR, are similar forp, and thug, decides

failure detector assumption as well the expected propertie 1in R4 after the second communication step. Sifges

of the protocol lead to a run that violates agreement. stablep; also decides after the second round.
e RunsR, and R5 are similar forp;. Consequently,
Proof : decidesl in R5 after the second communication step. In

Rs5 we crashp; so that all messages sentgg, ps and

o If A'is one-step, then it must have a run likg in pa after the first round are lost. Sindg; is not stable
which all correct processes propose 1 andnight have becaus& eventually outputs a new leades, p; andp,

proposed the same. Thys, decides 1 after one roufid are only required to decide eventually. In order to ensure
o If Ais zero-degrading, then it must allow a run such as agreement they eventually decitle

Ry. Ry is sta_lble becaus@ outputsp; at all correct pro- e In R we crashp; such thatRs and R are similar for
cesses and its output does not change. Thusecides pa, p3 andps. Thus, they eventually decide As p;

2actually, processeps andps also decide 1 after one round but thisis ~ Cannot distinguishi?s from a stable run, it decides a.fter
not relevant for the proof. two rounds. In order to ensure agreementnhecessarily

decidesl.

e Rg andR; are similar forp;. Thus,p; decidesl in R;
after two communication step&; andRg are similar for
P4, thus it decide® in R7 after the first communication
step. Consequentlyg; violates the consensus agreement
property concluding the proof. O

5 Circumventing the Impossibility with

chronous runs, when there might be multiple leaders in the
system, agreement is kept through majority voting. Since
n — f equal values are necessary for a decision, if a pro-
cess decides then every process receivest leastn — 2 f
times, making the condition at line 9 become true. Since
n —2f > f, aprocess can safely pick the majority value.

5.1 Detailed Description

In this section we present a leader-based consensus pro- The L-Consensus algorithm consists of two parallel
tocol that is zero-degrading but is not one-step, as thistasksT'l and72. When a process; calls theConsensus

would contradict the established impossibility resultwHo
ever, the protocol has the property that it obtains consensu
in one communication step if all proposals are ecarad

the run is stable. The main idea behind the propdsed

function with a proposal; (i.e. it proposes value;), it ini-
tiates both tasks. Compliant with the definition of consen-
sus, theConsensus function eventually returns the same
decision value to each non-crashed process.

Consensus algorithm 1 is to constrain the processes to de- Task 1. The algorithm executes a sequence of asyn-

cide the value proposed by the leader. A process decides
in the first round ifn — f values including the leader value
are equal taw. Consequently, every process that does not

chronous rounds of one communication step each. In each
roundk, a process sends a rouhdnessage containing its
current proposal to all processes and waits for rauntes-

decide can safely pick the leader value. Hence, consensu§ages from— f processes including its currentleader, com-

is achieved in two rounds in every stable run. If there is no
leader, then safety is ensured by picking the majority value

Algorithm 1: TheL-Consensus Algorithm

Function Consensus()

start 71, 7°2;

task T1: r; « 1;est; «— v;; ld «— L;

while true do

ld «— Q.leader;
Vj do send PRORY, est;, Id) to p; enddq,
wait until received PRORY, *, *) fromn — f processes;
wait until received PRORY{, *, x) from Id
V ld # Q.leader;

if received PRORY{, v, Id) fromn — f processeg\ received
PROP(;, v, %) from ld then

Vj do send DECIDE() to p; enddg

return v;

else ifreceived PRORY, *, ld) from > n /2 processes\
received PRORY{, v, *) from Id then
est; «— v,
else ifreceived PRORY, v, *) fromn — 2 f processethen
est; «— v,
ri — 71 +1;
end

11 task T'2: upon reception of DECIDE({v): V7 # 7 do send
DECIDE({v) to p; enddq return v;

The protocol executes in a round by round fashion. In ev-

ery round, processes exchange messages, update their stat
depending on the messages received and possibly decide or
move to the next round. The algorithm has three blocks that
a process can execute in a round depending on which con
dition is satisfied (at line 4, 7 or 9). Safety is ensured as

follows: if a procesg decides a value during roundk, ev-
ery procesg that finishes round, does so with value, no

putes its new state based on the messages received (possibly
decides), and moves to the next round. A proggsgain-
tains three local variables: the round numberan estimate

of the decision valuest; initialized to the proposal value

v;, and the current leadéd, initially L.

At the beginning of each roungd; queries for the cur-
rent leader and stores the identitylih We say thap; has
leaderp; in roundk if p; sends a message wilth = [. The
messages sent contain the following fieltls:est;, (d. We
say that a procegs is majority leader for roundk if a ma-
jority of processes send rouridmessages with! = [. As
any two majorities have a non empty intersection, there can
be at most one majority leader at round\ote that in asyn-
chronous runs there are periods with no majority leader.

A processp; can send two different types of messages
in roundk. If p; has decided, then it broadcasts a decision
value, otherwise it broadcasts a PR®P¢st;, [d) message
and we say that; proposegst; in roundk;.

At the end of round: (i.e. after receiving round mes-
sages from — f processes possibly including one frau),
proces®; updates itest; variable as follows: ip; receives
a valuev from the majority leader of rounkl thenest; = v.

If there is no majority leader or th@ module atp; suspects

ld for having crashed ang; receives: — 2f equal values

v, thenp; picksv. Otherwise the estimate value is kept un-
changed. A procegs decides in round if it receivesn — f

gual values including one value from the majority leader.
Task 2: Upon receiving a decision message with value
v, p; forwards the decision value to the other processes and
then decides. Thus, if a correct process decides, the re-
maining correct processes cannot block since they eventu-
ally receive the decision message.

5.2 Correctness

matter what block it executes. In a stable run, the condition | emma 1 (Termination) Every correct process decides.

at line 7 evaluates to true, every correct process accepts th

leader value and hence decides in the next round. In asynProof: We show that if some correct process never decides

then every correct process eventually decides; a contradic k decidesy, and that every process that completes roknd
tion. If some correct process never decides then either somealoes so withest = v. This implies that thest value of
correct process decides or no correct process decides. every process after rouridis alwaysv. Thus, in roundk
1) Casea: Some correct process decides. Then, it broad-and after round:, v is the only value that can be decided
cast a decision message (line 5). Since it is correct, ev-at line 5. Ask is the lowest round in which some process
ery correct process eventually receives the decision rgessa decides, this implies thatis the only value that can be de-
(line 16) and also decides. Thus, every correct process decided in a round at line 5. This also implies that no process
cides, which contradicts the assumption. decides a value different fromat line 16 of taski'2. Now
2) Caseb: No correct process decides. If some correct pro- we prove the above claim. Suppose that a progegs p
cessp; never decides, then either it is blocked in a round or decidesd in roundk. Sincen — f > n/2, bothp andg
it executes an infinite number of rounds. receive equal values andd respectively from a majority
Casel: p; blocks forever in a round. Lét be the first of processes. As any two majorities intersect in at least one
round in which some correct process is blockedcan only process, it follows thai = v. Now, consider any process
be blocked at one of the wait statements (line 2 or 3). q' that completes round without deciding. We show that
- Casel: p; is blocked at line 2 of round. Sincek is the q' completes round with est = v. There are two cases
first round in which some correct process blocks at line 2, to consider: Casé: ¢’ evaluates the condition at line 7 to
all correct processes have broadcast a rdumgessage at false. We show that necessarily evaluates the condition at
line 1. As communication links are reliable and there are at line 9 to true. At round: there are at least — f valuesv
leastn — f correct processep; eventually receives — f andq’ has receivea — f values at line 2 of round. Any
roundk messages and completes line 2. two sets ofn — f elements have — 2f elements in com-
- CaselI: p; is blocked at line 3 of round. As inthe case mon, thus among the — f valuesq’ receives at round,
above, every correct process broadcasts a réundssage. at leastn — 2f values are equal to and at mosif values
Considelid, which is the leader process output®watp;. If are distinct fromv. Sincen —2f > f, v is a majority value
ld is correct, them; eventually receives a rouridmessage among the values received bY Valuew is unique as there
fromd and completes line 3. Otherwise/dfis faulty, then cannot be two distinct majority values. Thg/scompletes
eitherp; eventually receives a rouridmessage frond, or roundk with est = v.

Q eventually outputs a correct process different fia@rand Case2: ¢’ evaluates the condition at line 7 to true. Thus,
p; completes line 3. Thug, cannot block at line 3. there must be a procegssuch that a majority of processes
Case2: All correct processes execute an infinite number send messages witld = [. Sincep decides in roundk,
of rounds without deciding. From the definition of a faulty there must be a procegs, such that: — f processes send
process, there is a timg such that every faulty process messages withi = I’. As any two majorities have a process

has crashed beforg. From the definition of2 thereisa in common, it follows that = {’. Thusq completes round
time ¢, such that outputs the same correct processt k with est = v. 0

every correct process forever. liet= max{t,,t,} andk
be the first round after. In roundk, every correct process © Circumventing the Impossibility with &P

setsld to | and sends a message &, /) to all processes. In this section we present a one-step and zero-degrading
Since no correct process decides, no correct process exeglgorithm that uses theP failure detector. The proposed
cutes line 5. As there is a majority of correct processes andp-Consensus algorithm 2 is based on a simple observation
puis not suspected by any correct process, every correct prothat was originally discovered by Lamport [15]. One of
cess receives a majority of roukdnessages including one the necessary conditions for the impossibility of section 4

message from;, and every correct process setseit vari- is that processes receive messages from different quorums
able to the same value (line 8). Therefore, at roénd 1 in the first communication round. If all processes received
every process including; sends ak + 1, v, [) message. the same set of messages, then they could deterministically
Thus, at round: + 1 every correct process receives- f pick the same value to propose in the second round. Conse-
equal messages including &< 1, v, [) message from;. quently, consensus is obtained in two communication steps.
Therefore, the condition at line 4 evaluates to true andyever The idea behind-Consensus is to use theP failure
correct process decides at line 5; a contradiction. [detector to build a consistent quorum from which every

process delivers first round messages in case it cannot de-
cide. In every stable run®P suspects exactly the faulty

processes and its output does not change during that run.
Proof : A process can decide either at line 5 of some round Hence, every process that does not decide during the first

Lemma 2 (Agreement) No two processes decide differ-
ently.

or at line 16 of taski"2. If a process decides at line 16, round computes the same quorum (line 5) and subsequently
then some other process has decidatlline 5. Letk be the receives a message from every quorum member. The sets of
lowest round in which some procegslecidesv at line 5. messages received by different processes from the quorum

We claim that each process that decidex line 5 of round are equal and the functions applied to pick a value are de-

terministic (lines 9-12). Hence, all processes start the ne p; proposegst; in roundk;.

round with the same value and consequently every correct Subsequently; waits for a message from— f distinct
process decides in the second round.

Algorithm 2 : TheP-Consensus Algorithm

Function Consensus()

processes. If; receivesn — f identical values it decides.
Otherwise p; additionally waits for messages from a quo-
rum@ thatis computed deterministically as the set that con-
tains the first: — f nonsuspected processes. We say ¢hat

start 71, T2; is completeiff it hasn — f members.
taSkhif_;litm ” 0; esti «— vi; At the end of round:, p; updates itg.st; variable as fol-
whnile true do . .) .
L v do send PROR, est;) to p; enddo; lows: if there is a complete quoru@ such thg[ol receives
) wait until received PROR, =) from n — f processes; a message from each processijrand there is a majority
i) n— ; i J—

3 if received PROR, v) from 1 — f processeshen valuez_; among then — f values received, thee?stl = . If
4 vj do send DECIDE) to p, enddg retum v; there is no such value, then no process decided in round
5 let Q; = { the firstn — f processes k. Thus,p can propose any value in the next round. Sub-

pj 1 J ¢ OP.suspected };
wait until received PRORY{, *) from every
pj 1 J € Qi\OP.suspected,

sequently,p picks the estimate of thkeader, the process
with the smallest index among all nonsuspected processes.
In case that there is no such processimply keeps its es-

7 let Qlist; = (v | PROP;, v) has been received from timate. If @ is not complete and there is a majority vatue
pj:J € Qi) among the values received in rouhdhenest; = v. If no

8 it Qlisti| =n — fthen such value exists, then moves to the next round

9 if Ju € Qlist; : #(v) > n — 2 then » them -

10 est; «— v;

n else 6.2 Correctness

t; tmin{jlj) . . .

12 st CStmin{jli€Qi} Lemma 3 (Termination) Every correct process decides.
else%ensure agreement%

13 let vlist; = (v | PROP¢;, v) has been received

14 if Jv € vlist; : #(v) > |vlist;|/2 then Proof: We follow the same strategy as in section 5.2 and

15 est; < v,

show that if some correct process never decides then ev-
ery correct process eventually decides. Assuming that some
correct process never decides yields two cases. Either some
correct process decides or no correct process decides. The
latter case implies that some correct process never decides
Thus, eitherl) it is blocked in a round o2) it executes an
) o infinite number of rounds.
6.1 Detailed Description - Casel): The proof is similar to the one of section

TheP-Consensus algorithm consists of two parallel tasks 5.2. A process cannot block at one of the wait statements
T1 and T2 that are initiated when a process proposes a (at lines 2, 6) because at mogtprocesses are faulty and
value. TheConsensus function eventually returns the <©P.suspected eventually contains all crashed processes.
same decision value to every correct process. Since the sec- - Case2): All correct processes execute an infinite num-
ond task is identical to task2 of theL -Consensus protocol, ber of rounds without deciding. From the definition of a
we confine ourselves to describing task. faulty process, there is a tinig such that every faulty pro-

The algorithm executes a sequence of asynchronousess has crashed befdie From the definition o&P there
rounds of one communication step each. In each rdyied is atimets such that aftet,, o outputs exactly the crashed
process sends a roukdnessage containing its current pro- processes forever. Let:= maxz{t;,t2} andk be the first
posal to all processes and waits for rodnchessages from round aftert. Since no correct process decides, no cor-
n — f distinct processes, computes its new state based omect process executes line 4 and every correct process ex-
the messages received and tries to decide. If it cannot deecutes lines 5, 6 and 7. AP behaves perfectly in round
cide then it possibly waits for more messages, computes itsk, every quorum) contains exactly the correct processes.
new state and moves to the next round. The fact that) is complete and identical and every correct

A processp; maintains two local variables: the round process receives a message from every membé¢J ofi-
numberk; initialized to 1 and an estimate of the decision plies thatQlist is the same at every correct process and that
valueest; initialized to the proposal value;. At the be- |Qlist| = n — f. Hence, the condition at line 8 evaluates to
ginning of each roundp; broadcasts a message that con- true and all correct processes pick the same value either at
tains the following fields:k;, est;. A processp; can send line 10 or at line 12. Therefore, in rourkd+ 1, all correct
two different types of messages in rouhd If p; has de- processes send a message with the same value and hence
cided, then it broadcasts a decision value, otherwise @dsen every correct process receives— f identical values and
a PROPE;, est;) message to all processes and we say thatconsequently decides at line 4; a contradition. O

ri — 71 +1;
end

16 task 7'2: upon reception of DECIDE({): V7 # 7 do send
DECIDE({v) to p; enddq return v;

Lemma 4 (Agreement) No two processes decide differ- Algorithm 3 : The C-Abcast Algorithm
ently.

Initialization:

1 k; < 1; estimate; «— L; adelivered; «— L;
2 a-broadcast(m):
Proof: We claim that each process that decides at line 4 of 3 estimate; — estimate; U {m};
roundk decidesv, and that every process that completes 4 a.geliverg):
round k& without deciding does so withst = v. As al- 5 while truedo
ready shown in 5.2, if this claim is true then agreement 6 w-broadcas; , estimate;);
holds. Now, we prove the above claim. It is easy to see ’ wait until w-deliver of the first messagé{, v);
. . . . 8 msgSet; — Consensus(;, v);
that if two distinct processes and ¢ decide in roundk, 9 adeliver; — msgSet; — adelivereds;
then they decide the same valuelLet ¢’ be a correct pro- 10 deliver all messages indeliver; atomically in some
cess that does not decide in roundAs ¢’ receives at least deterministic order;
x > n — f messages, it receives at mgsvaluesw # v. 1 adelivered; «— adelivered; U adelivers;
Sincex— f > n—2f > f,vis amajority among the values ig ZStTZti = estimate; — adelivered;;
received by;’ in roundk which implies that one of the con- 14 iflestin;atei’: @ then
ditions at line 9 or 14 evaluates to true. Thy/scompletes 15 wait until w-deliver of the first messagé{, v)
roundk with est = v, which concludes the proof. O V estimate; # ()

end

16 upon w-deliver(x, v) of the second, third etc. message of any round
17 estimate; < estimate; U v;

7 The Atomic Broadcast Protocol

The proposed-Abcast protocol 3 represents a modifi-
cation of the WABcast atomic broadcast algorithm of [19].
Like the Chandra & Toueg’s (CT) Atomic Broadcast pro- 7.1 Correctness
tocol [5], C-Abcast reduces atomic broadcast to consensus. | emma 5 states thatk € N, a) if a process delivers the

It executes a series of consensus instances to determine a.th message batch, then every correct process also delivers
single message delivery sequence at all processes. Unlikg ang b) that thek-th message batch is the same at every
the CT Atomic Broadcasg-Abcast assumes an underly- process. From a) and b) we can easily deduce Agreement
ing consensus module that is very efficient in case that all gnqg Total Order. Validity requires a more detailed proof.
proposals are equal. In order to exploit the efficiency of the

underlying consensu€i,-Abcast uses a WAB oracle to pro- | emma 5 For all k > 0, every process p and every correct

vide the consensus module with equal input values. Whenprocess ¢, if p executes round % until the end then ¢ executes
the oracle outputs the same proposal to every pro€ess, round k until the end and adelz‘ver]’; = adeliver®

Abcast has a latency of two message delays, 2&.0ne !

for asking the oracle plus one communication step for con- Proof: We will prove the lemma by induction ovér First,
sensus. In case of collisions, consensus is obtained in twdit is easy to see that every correct process executes round
communication steps. Henc€rAbcast has a latency of until the end. Due to consensus agreemeng,afdelivers
three message delays, i38,in the common case. messages in roundthenadeliver! = adeliver!. Now as-

The protocol consists of three concurrent tasks. A pro- sSume that the lemma holds for &l 1 < k£ < r. We first
cess can either a-broadcast a message (line 2), a-deliveshow thatifp a-delivers messages in rountheng executes
a message (line 4), or w-deliver a message (line 16). Aroundr until the end. Ifp a-delivers messages in round
procesy a-broadcasts a messageby includingm ina 7, thenp returns from the invocation of Consensys{ at
setestimate,. This set contains the messages that haveline 8. Since there is at most a minority of faulty processes,
not been yet a-delivered hy. The a-deliver{) task exe- at least one correct processexecutes Consensusg).
cutes in a round by round fashion. In rouhdproces This implies that: w-broadcasts its estimate at line 6. By
w-broadcasts the sestimate, and waits to w-deliver the ~ the induction hypothesis, jf a-delivers messages in round
first valuev output by its oracle. Them, proposes to the 7 — 1, ¢ executes round — 1 until the end. Thusy eventu-
k-th consensus instance and waits for the decision. Afterally w-delivers the first message of stageither a) at line 7
it decides,p atomically delivers all messages contained in O b) at line 15. Without loss of generality, lettimate,,
thek-th decision in some deterministic order, removes from be the first message w-delivered pyn roundr. In both
estimate,, every message a-delivered so far and moves tocases; breaks from the corresponding wait statement and
the next round. In order to ensure validity, every message a-€xecutes Consensusstimate,)®. By consensus termi-
broadcast by some correct process must eventually be conbation,g eventually executes rounduntil the end.
tained in the proposal of every correct process. Thus, in the 3In caseq breaks from the second wait statement (line 15) it does not

third task (line 16), every procegsincludes inestimate,, block at the first wait statement (line 7) because it has dyr@adelivered
all messages w-broadcast so far. the first round- message.

We now show that ifp a-delivers messages in round
r then adeliver, adelivery. As shown in the first
part of the lemma,q executes round- until the end.
Thus, ¢ a-delivers messages ideliver;. Due to con-
sensus agreemenmbsgSet; msgSet,. By the in-

duction hypothesisyk,1 < k < r : adeliver}

adeliverf; = U;;%adeliver’; = U};}adeliver’;. As
adeliver”™ = msgSet” — Uz;iadeliverk, we get
adeliver;, = msgSet;, — UZ;}adeliver’; = msgSet; —

O

UiZ] adeliver’qc = adelivery.
Lemma 6 (Agreement) If a process a-deliversmessage m,
then all correct processes eventually a-deliver m.
Proof : Follows directly from Lemma 5. O

Lemma 7 (Total Order) If some process a-delivers mes-
sagem’ after message m, then a process a-deliversm’ only
after it a-deliversm.

Proof: Follows from lemma 5, the total odering of natu-

ral numbers, and the fact that messages within a batch ar

delivered atomically in a deterministic order. O
Lemma 8 (Validity) If a correct process a-broadcasts
message m, then eventually it a-delivers m.

Proof: The proof is by contradiction. Suppose that a cor-
rect process a-broadcasis but never a-deliversn. By
Lemma 6 no correct process a-delivets Consider a pro-
cessp that a-broadcasts a message Consequentlyp in-
cludesm in estimate, and thus w-broadcasts. By the
validity property of the ordering oracle, every correct{pro
cess eventually w-delivers, at line 16 and thus includes
m in its estimate. Since no correct process adelivens

no correct process removesfrom its estimate at line 12.
There is a time so that all faulty processes have crashed
beforet and at whichm is included in theestimate of
every correct process. Létbe the lowest round number
aftert. Every correct process w-broadcastdn k, which
implies that every value proposed to thh consensus in-
stance necessarily contains Due to validity of consen-
sus,m is included in thensgSet of every correct process.
Thus,m is a-delivered by every correct process at roknd

a contradiction. O

8 Performance Evaluation

In this section we provide a brief comparison both ana-
lytical and experimental to outline the efficiency of our pro

tocols compared to Paxos and WABcast. Table 1 compares

the proposed protocols with Paxos [13] and WABCast [19]
in terms of time complexity (wheré& is the maximum net-

work delay), message complexity, resilience, and the eracl
used for termination. In case of no collisions, WABCast as

Table 1: Comparison of various atomic broadcast protocols

P | No Collisions ; Collisions Resil Oracl
rotoco latency | #messages estl. racle
Paxos 35 n?4+n+1 f<n/2 Q
WABCast 25 ; 0 n?2 4+n; oo WAB
L-/P-Cons. | 26:36 | n2+n;2n2+n | <7/3 | qup

complexity. Compared to Paxos, they trade the maximum
degree of resilience, i.ef, < n/2 for the lower time com-
plexity of 26. In periods with collisions, WABCast might
not terminate whereds-/P-Consensus have the same time
complexity as Paxos though with more messages. We ex-
pect the proposed protocols to be as efficient in terms of
latency as WABCast when collisions are rare and to exhibit
a behaviour similar to Paxos when collisions are frequent.

8.1 Experimental Evaluation

We compared the performance of the proposed pro-
tocols with Paxos and WABCast. We measured the la-
tency of atomic broadcast as a function of the throughput,
whereby latency is defined as the shortest delay between a-

%roadcasting a messageand a-deliveringn. We imple-

mented. -/P-Consensus an@-Abcast using the Neko [21]
framework. The experiments were conducted on a cluster of
4 identical workstations (2.8GHz, 512MB) interconnected
by a 100Mb ethernet LAN. Different consensus algorithms
were tested by exchanging the consensus modul€-of
Abcast. The WAB oracle implementation uses UDP pack-
ets whereas the rest of the communication is TCP-based.
We considered only stable runs in our experiments. In order
to capture the performance of the tested protocols during
periods with and without collisions, we varied the through-
put betweer20msg/s and500msg/s. Figure 2 shows

5 T T
P-Consensus —+— R -

L .8 2]
4.5 L-Consensus ---%---
-
4k WABCast ---&--- ,'B-m/ i
-Gy
35 g
3+ &-o .

mean latency [ms]

200 300
throughput [1/s]

400 500

Figure 2: L-/P-Cons. vs. WABcast{ = 4)

the comparison of our protocols with WABCast. Both pro-

well asL-/P-Consensus have the same time and messaggosed protocols exhibit a similar latency as WABCast up to

26 ; Acknowledgments We gratefully acknowledge the

g4 | FrGonsensus E help and insights from Dr Falk Fraikin, the DEEDS group,
L-Consensus - F the funding support from Microsoft Research via the Euro-
22y S pean PhD Fellowship; and also from the EU DECOS and
7 2f R ReSIST projects .
g o6l] References
g 1l | [1] M. K. Aguilera et al. Failure detection and consensus in the
’ crash-recovery modelDist. Computing, vol. 13, 2, pp. 99-
12 | E 125, 2000.
L | [2] F. V. Brasileiroet al. Consensus in one communication step.
Proc. of PACT, pp. 42-50, 2001.
0.8 ‘ ‘ ‘ ‘ ‘ [3] L. Camargoset al. Optimal and practical WAB-based con-
0 100 200 300 400 500 sensus algorithmdJNIS TR 1C-05-07 Apr. 2005.
throughput [1fs] [4] T.D. Chandraet al. The weakest failure detector for solving
. consensusJACM, vol. 43, 3, pp. 685-722, 1996.
Figure 3: L-/P-Cons. (& = 4) vs. Paxos# = 3) [5] T. D. Chandra and S. Touegr.)pUnreIiabIe failure detectors
reliable distributed systemslACM, vol. 43, 2, pp. 225-267,
1996.
a throughput oB0msg/s and they outperform WABCast [6] F. Chu. Reducing to &W. Inf. Processing Letters, vol. 67,
for all throughputs higher thah00msg/s. Figure 3 sum- 6, pp. 289-293, 1998.

. : : o 7] F. Cristian and C. Fetzer. The timed asynchronous tisted
marizes the comparison with Paxos. When collision pre- [
P P system modelProc. FTCS, pp. 140-149, 1998.

dominatg,the proposed protocolsiqdeed ha}ve the samg tim(TS] C. Dwork et al. Consensus in the presence of partial syn-
complexity as Paxos. However, given their decentralized chrony. JACM, vol. 35, 2, pp. 288-323, 1988

nature, our protocols need more messages. From a throughg) p. putta and R. Guerraoui. Fast indulgent consensusagith
put of 300msg/s upwards, Paxos slightly outperforms both degradationProc. EDCC-4, pp. 191-208, 2002.
protocols. For lower throughputs;/P-Consensus perform [10] M. J. Fischeret al. Impossibility of distributed consensus

better than Paxos. with one faulty processIACM, vol. 32, 2, pp. 374-382, 1985.
[11] R. Guerraoui and M. Raynal. The information structufe o
9 Conclusion indulgent consensuslEEE Trans. Computers, vol. 53, 12,

pp. 453-466, 2004.

One-step decision and zero-degradation express the abill12] |. Keidar and S. Rajsbaum. On the cost of fault-tolewat-
ity to reach consenus in one and two communication steps ~ Sensus when there are no faultéCM SIGACT News, Online
respectively, and protocols that satisfy them are optimal i \ol. 32, 2001. , .
this respect. We investigated if these properties are inher [13] L. Lamport. The part-time parliamentACM Trans. Com-
ently incompatible and showed that they cannot be both sat-,, _ PUer Systems, vol. 16, 2, pp. 133-169, 1998.

S . . . [14] L. Lamport. Lower bounds for asynchronous consenBus.
isfied using the) failure detector. As shown in [11], afy ture Directions in Dist. Computing, 2004.

based procol that decidgs in two communic_ation stgpg in[15] L. Lamport. Fast PaxogviSR TR 2005-112, July 2005.
every well-behaved run is also zero-degrading. This im- [16] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann
plies that the failure detector employed by Fast Paxos [13] Publishers, 1996.
is strictly stronger thaf2. Subsequently, we proposed two [17] A. Mostéfaoui and M. Raynal. Low cost consensus-based
approaches to circumvent the established impossiblity re- atomic broadcastProc. PRDC, pp. 45-54, 2000.
sult. The first approach relaxes one-step decision to hold[18] F. Pedone and A. Schiper. Optimistic atomic broadcast:
only in stable runs. The second approach assumes a strictly ~ pragmatic viewpoint.Journal of Theoretical Computer Sci-
stronger failure detector. For each approach we developed _ence, vol. 291, 1, pp. 79-101, 2003. .
a corresponding consensus protocol. While the proposed!®l F. Pedonetal. Solving agreement problems with weak or-
L-Consensus ensures one-step decision only in stable rung, d':erlgggrﬁclgzProcl. of IEDCC,t.pp.f44]t6_tl,|2002t. o
the ability of P-Consensus to decide in one communication] F.B. Schneli er. imp emen,'ng ault-tolerant Sereicsing

. . the state machine approach: A tutoriaCM Computing Sur-
step is regardless of the failure detector output. To be able veys, vol. 22, 4, pp. 299-319, 1990.
to test the efficiency of the proposed protocols we modified 151} 5 rbanet al. Neko: A single environment to simulate and
the atomic broadcast algorithm of [19] to use consensus. " prototype distributed algorithmsProc. of Information Net-
We compared the proposed consensus protocols with Paxos \orking, pp. 503-511, 2001.
and WABcast both analytically and experimentally. The re- [22] P. Duttaet al. The Overhead of Consensus Recoveé6/TR
sults of the experiments confirm the analytical evaluation 200456, June 2004.
establishing the efficiency of our proposed protocols.

