
Susceptibility Analysis of Structured P2P Systems
to Localized Eclipse Attacks

Daniel Germanus, Robert Langenberg, Abdelmajid Khelil, Neeraj Suri
CS Department, TU Darmstadt

{germanus,langenberg,khelil,suri}@cs.tu-darmstadt.de

Abstract—Peer-to-Peer (P2P) protocols are susceptible to Lo-
calized Eclipse Attacks (LEA), i.e., attacks where a victim peer’s
environment is masked by malicious peers which are then able
to instigate progressively insidious security attacks. To obtain
effective placement of malicious peers, LEAs significantly benefit
from overlay topology-awareness. Hence, we propose heuristics
for Chord, Pastry and Kademlia to assess the protocols’ LEA
susceptibility based on their topology characteristics and overlay
routing mechanisms. As a result, our method can be used
for P2P protocol parameter tuning in order to substantially
mitigate LEAs. We present evaluations highlighting LEA’s impact
on contemporary P2P protocols. Our proposed heuristics are
abstract in nature, making them applicable plus customizable for
many other structured P2P protocols. We validate our model’s
accuracy through a simulation case study.

Index Terms—Peer-to-Peer Security, Eclipse Attack, Overlay
Topology Analysis

I. INTRODUCTION

Peer-to-Peer (P2P) computing emerged from file sharing
requirements to become a viable alternative for the traditional
client/server computing in many diverse application areas such
as critical information infrastructures, searches, video stream-
ing, social networks, etc. The expanding usage of the P2P
model underlies the high value of enhancing P2P resilience to
disruptions and attacks. P2P networks are not only vulnerable
to attacks from the environment but also to malicious peers.
This is mainly due to the anonymity and typical autonomy
of peers to join and leave the overlay network. Subsequently,
a spectrum of P2P-specific attacks have been documented on
varied P2P-based software systems. Examples include Index
Poisoning [1], Sybil [2] and Eclipse [3] attacks.

P2P’s progression towards critical applications imposes high
resilience needs not only on the overlay itself but on individual
peers as well. In such applications, an attacker might insid-
iously damage the system by carefully selecting a subset of
peers that get eclipsed by malicious peers. This Eclipse Attack
(EA) variant is called Localized Eclipse Attack (LEA) [4].

LEAs usually require a distinguished attacker who has
knowledge about the application running on top of the P2P
system. LEAs may result in censorship of individual files,
incapacitated game players, or blackouts in a power grid. Thus,
consequences of a successful LEA may reach from disgruntled
file sharers to hazardous ramifications for human users.

Research partially funded by DFG GRK 1362 (TUD GKmM).

The concept of LEAs has been extensively discussed in
literature [4], [5], [6], [7], [8], [9] and was evaluated in the
context of the Kad network which is dedicated to file sharing
purposes and based upon the Kademlia [10] protocol. Yet,
a generic and multi-protocol applicable analytical evaluation
of LEAs is still lacking. We aim to close this gap and
provide an abstract heuristic that can serve as a template for
P2P protocol-specific heuristics to approximate the degree of
malicious message interception induced by LEAs. We provide
heuristics for three dominant structured P2P protocols, i.e.,
Chord [11], Pastry [12] and Kademlia [10], and validate
them using simulations. The presented heuristics also aid P2P
protocol parameter tuning in order to mitigate LEA attacks by
increasing attackability costs, and identify the intrinsic weak-
ness of structured overlay routing schemes, i.e., the concept
of predictable proximities and hop wise distance reductions.

A. Contributions

Our key contributions that help in assessing and mitigating
LEA threats are:

(i) Defining an abstract heuristic that reflects overlay routing
mechanisms of multiple P2P protocols. We provide a
detailed overview how common P2P protocol concepts
relate to that abstract heuristic (Section III).

(ii) Development of heuristics for Chord, Pastry and Kadem-
lia to assess the level of malicious message interception
under LEA conditions (Section IV).

(iii) Validation of the proposed heuristics in a simulation
case study and considering different LEA strategies. The
study shows heuristic accuracy of over 90% (Section VI).

B. Paper Structure

Section II introduces the technical preliminaries. In Sec-
tion III we present an abstract heuristic for overlay proximities
and utilize it to develop (a) protocol specific heuristics in
Section IV and, (b) generalized LEA strategies in Section V.
The protocol-specific instantiations and simulation case study
appears in Section VI. For fuller context, the related work is
presented in Section VII.

II. PRELIMINARIES

This section presents technical foundations behind our work.
First, we provide a generalized model of structured P2P
protocols and outline protocol-independent common concepts.

2

Next, we present P2P protocol concepts relevant to plan and
conduct EAs. Finally, we propose a brief EA taxonomy that
helps in understanding EA variations, such as LEAs.

A. Common Notions & Concepts

The P2P overlay topology is modelled as a directed graph
D = (P,E), where each peer is part of the peer set P . Each
peer maintains its routing state to enable interaction with its
overlay network peers. If peer a’s routing state points to peer
b, there exists a directed edge e = (a, b) in E. The set E−(a)
denotes incoming edges to peer a and E+(a) denotes outgoing
edges from peer a. Furthermore, E(a) = E−(a) ∪ E+(a).
In structured P2P overlays, edges between peers are usually
asymmetric though close-by peers display a high probability
of symmetric edge relationships.

Over an attack, the peer set P is divided into a benign peer
set B ⊂ P , a malicious peer set M ⊂ P and a victim peer
set V ⊂ P . We assume that P = B ∪ V ∪M and N = |P |.

Applicable to most structured P2P protocols we present
four key concepts that serve as basic assumptions driving our
abstract and protocol specific heuristics in Sections III and IV.

(i) ID space distance function: Computes the ID space
distance across two overlay IDs. Peers are assigned IDs
from the overlay ID space typically as integer numbers
in the range of [0, . . . , 2128 − 1].

(ii) Overlay routing: For an arbitrary routing path from a
source peer to a destination peer, the ID space distance
between the current hop and the destination decreases
on each subsequent routing hop towards the destination.
Usually, routing mechanisms choose the next hop with
the highest ID space distance reduction.

(iii) Routing state granularity: Peers store more routing state
information of close by peers than of peers further
away. In an overlay network with N peers, routing state
information per peer is usually of size c · log(N) with
c being a protocol specific constant. This is a protocol
class design aspect to leverage scalability.

(iv) Maintenance protocol: Continually keeps peers’ routing
state information updated and handles proper insertion
(removal) of joining (leaving) peers.

B. EA Taxonomy

This brief taxonomy provides an overall picture of EAs and
their variants. We first detail the assets in a P2P system. Next,
we present various EA mechanics. Finally, we discuss various
aspects of attacker knowledge that helps the attacker to reduce
cost and increase the severity of the EA.

1) Assets: The key assets in a P2P system are data, keys,
peers and the overlay network. We relate to a datum in terms
of payload which is stored, replicated or transmitted by peers.
A datum is usually assigned to at least one key, e.g., as a
key/value tuple in a Distributed Hash Table (DHT).

2) Action on Interception: LEAs target overlay message
interception. On interception, malicious peers can take various
actions. The trivial action is to drop messages with specific
characteristics, e.g., based on the sending or receiving peer’s

identity. Moreover, messages could be forged, replayed, al-
tered, delayed, or simply passed through.

3) Direction: We differentiate between (i) in-attacks, i.e.,
messages destined towards a set of victim peers should be
intercepted, or (ii) out-attacks in case messages originating
from the victim peer set should be intercepted. Naturally, a
combination of in- and out-attacks is possible.

4) Placement: The placement strategy of malicious peers
depends on which assets are targeted. In case the overall over-
lay is targeted, randomly placing malicious peers throughout
the overlay is a possible approach for an attack. Also, an
attacker could consider the application’s data model or P2P
protocol details to place malicious peers in the proximity of
specific peers which are required for proper overlay operation.

In case individual peers are targeted, the EA is considered a
LEA. Often, placements close to the victim peer are beneficial,
where closeness can be expressed in terms of the overlay’s ID
space distance or other distance metrics, e.g., latencies of the
underlay network infrastructure.

The exact placement with a specific overlay ID is typically
not possible. Depending on the overlay protocol and the
application requirements, an external identifier is required as
input parameter to compute the overlay ID. Examples for
external identifiers are the IP address, a fixed random number
which is created upon peer installation, or certificates.

5) Propagation: The propagation of malicious peers refers
to the prevalence of routing state entries in benign peers
which point to malicious peers. It depends on the specific P2P
protocol’s maintenance and lookup mechanisms to propagate
routing state. Also, we differentiate between passive and active
propagation. For the passive propagation case, malicious peers
behave similar to benign peers. In the context of active
propagation, malicious peers selfishly try to propagate their
routing state.

6) Timeline: A LEA typically entails a start time and dura-
tion. In addition, a preparation phase is required to propagate
the malicious peers’ presence in the overlay.

7) Attacker Knowledge: Knowledge about the assets, net-
work infrastructure and overlay topology characteristics (as
introduced in Section II-A) helps attackers to increase the
efficiency of an EA. Here, efficiency relates to increased EA
severity and reduced cost for the attacker. A P2P overlay
serves as the technical foundation for applications that use the
overlay’s self-organization, routing mechanism, or data storage
and replication capabilities. Consequently, knowledge about
the application’s data model and accordingly which key or
datum is critical for the application is a useful information for
an attacker to determine e.g. which peers to eclipse.

III. PROXIMITY BASED ABSTRACT HEURISTIC

The proposed abstract heuristic builds upon overlay message
routing in structured P2P protocols utilizing the key concept
of overlay proximity. This abstraction will also serve as the
template for deriving protocol-specific heuristics in Section IV.
The heuristic represents the basis for a systematic investigation
of structured P2P protocol LEA susceptibility. The assumption

3

for LEAs is that a victim peer’s proximity is populated by
malicious peers which can intercept messages addressed to
the victim and conduct insidious actions on it. To set the
context for the heuristic, we first present some key notions
of proximity and overlay routing.

A. Overlay Proximity & Overlay Routing

The overlay proximity of a peer p denominates a set of
peers close to p. The amount of peers in the proximity set and
the overlay ID space range that is occupied by the proximity
differ depending on the P2P protocol and overlay network size.
Chord [11] and Pastry [12] have proximity concepts embedded
in their routing algorithms. Therefore, we group these two in
the following subsection. After that, we discuss the proximity
notion of Kademlia’s [10] routing algorithm.

1) Chord & Pastry: Chord and Pastry consider the prox-
imity as an integral part of their two-tier message routing
algorithms. As a first step, the algorithm checks if the mes-
sage’s destination is closer to a peer in the proximity. If no
appropriate peer was found in its proximity, then the routing
table is considered for selecting the next hop. Chord terms
this proximity as a successor list; in Pastry it is called a leaf
set. Successor list and leaf set are fixed size data structures
and separate from the routing table that is queried in the
second step as described before. Chord and Pastry’s routing
mechanisms are usually recursive, i.e., the originator passes the
message away and surrenders control to the next hop which
has to continue the routing mechanism recursively until the
message reaches the destination.

2) Kademlia: Kademlia’s routing algorithm follows a one-
tier approach and its routing state consists of a single data
structure which is interpreted as a tree. Leaves of the tree are
assigned to so called buckets, which are lists that hold routing
state information of other peers. With increasing depth from
the root of the routing state tree, buckets contain routing state
information of closer peers. ID space distance is measured
using a binary XOR metric, i.e., the distance of two overlay
IDs a and b equals a XOR b. The result of the XOR metric
computation is the Common Prefix Length (CPL) and denotes
the closeness of two IDs. Therefore, we define the Kademlia
proximity as the set of peers in the three non-empty buckets
with highest depth from the tree root. Routing in Kademlia is
iterative. The message forwarding and delivery mechanism is
separated in a lookup and delivery part. The lookup process is
parallelized for performance and fault tolerance reasons. The
message will be delivered directly in case the lookup process
was successful and the message originator has found the des-
tination’s IP address. Using this approach instead of recursive
message forwarding, Kademlia peers do not surrender control
to other and potentially unknown peers.

B. Overlay Proximity Types

So far, we considered proximity notions in terms of routing
mechanisms. Now, we discuss how proximities span across the
ID space, either symmetrically or asymmetricall. This notion
is important to understand LEA strategies directed towards

proximities which will be defined in Section V. The following
definitions refer to the proximity of a peer v and its ID is
denoted by id(v).

We define λ as the average distance between any two peers
in the given overlay ID space and the protocol specific amount
of peers that constitute the proximity of a peer as κ.

Hence, the expected proximity width ε is defined as:

ε = λ · κ (1)

A symmetric proximity range is defined as:

[id(v)− 1

2
ε, id(v) +

1

2
ε] (2)

Furthermore, an asymmetric proximity range with proxi-
mate peers having lower IDs than v is defined as:

[id(v)− ε, id(v)[(3)

An attacker can deduce the ID space range of each victim
peer’s proximity based on the victim set V in order to prepare
the desired LEA.

C. Definition of the Abstract Heuristic

On this background, the proposed abstract heuristic devel-
ops a probabilistic basis to distinguish if a message is delivered
to its destination via peers from the destination proximity or
from distant peers. We chose a probabilistic approach since
deterministic solutions are not feasible due to (a) the lack of
full formal specifications for many structured P2P protocols,
and, (b) given the dynamic nature of P2P overlays as caused
by user behavior and/or peer or infrastructure perturbations.

In overlay routing, messages are either forwarded or deliv-
ered. Delivery implies that the destination is known whereas
forwarding implies that the message is passed to a peer that
is usually closer to the destination than the current peer.
Messages can be delivered either via proximate peers or further
distant peers which are not part of the destination proximity.
We call the link between two proximate peers a Short Distance
Edge (SDE), and Long Distance Edge (LDE) between distant
peers. We observed in experiments that overlay message
delivery via an SDE is significantly more likely than via an
LDE. Our abstract heuristic reflects this correlation.

The Overlay Distance Class (ODC) concept allows a con-
sideration independent of routing paths and their lengths.
This abstraction reflects overlay message routing in arbitrary
structured overlays. In Figure 1, three ODCs are depicted. The
ODC with index l denotes the class of peers which require
exactly l + 1 overlay hops towards a destination peer (bold
arrows). On behalf of the overlay routing mechanism, three
exceptions exist (dashed arrows): (i) LDEs from ODC ≥ 1
pointing to the destination (edge (a, v)), (ii) LDEs that point to
an ODC which is not neighbored (edge (b, k)), and (iii) SDEs
from an ODC ≥ 1 (edge (j, v)). The height of the rectangles
illustrates the size of classes. Peers k, m and j are located in
the proximity of destination peer v. Unlabeled arrows across
ODCs denote message forwarding, and arrows pointing to peer

4

Fig. 1. Overlay Distance Classes (ODCs) for an overlay with not more than
3 hops and with v as destination peer

v denote message delivery. The delivery from proximate peers
occurs along SDEs (edges (k, v), (m, v) and (j, v)) or LDEs of
distant peers (edge (a, v)). Consequently, the proposed abstract
heuristic is essentially a set of probabilities as in the following
5 steps. Each of these abstract 5 steps can be specifically
instantiated for target protocols as will be shown in Section IV.

Step 1: pSDE(v, l) is the probability that a peer in ODC
l has an SDE to v. This reflects the likelihood of message
delivery via peers belonging to ODC l which are also close
by the destination w.r.t. their overlay ID.

Step 2: pLDE(v, l) is the probability that a peer in ODC
l has an LDE to v. This reflects the likelihood of message
delivery via distant peers belonging to ODC l.

Step 3: pSDE|LDE(v, l) is the probability that a peer in
ODC l has neither an SDE nor an LDE to peer v. This reflects
the likelihood of message forwarding by peers in ODC l to
an intermediate peer on the overlay routing path towards the
destination.

Thus, in a message loss free scenario, the following holds:

pSDE(v, l) + pLDE(v, l) + pSDE|LDE(v, l) = 1 (4)

Moreover:
Step 4: p∗SDE(v, l) is the probability that a message sent

from a peer in ODC l will be delivered via an SDE. This
is an aggregated likelihood and refers to an overlay routing
sequence with the message originator in ODC l and the
delivery along an SDE.

A compact representation of p∗SDE(v, l) is given by Equa-
tion 5:

p∗SDE(v, l) = pSDE(v, l)

+

l∑
i=1

(
pSDE(v, l − i) ·

i−1∏
j=0

pSDE|LDE(v, l − j)
)

(5)

Step 5: pSDE(v) is the probability that any message sent
from any peer will be delivered via an SDE. This is the final

step of the abstract heuristic.
In order to compute the overall probability pSDE(v), the

ODCs’ p∗SDE(v, l) for l = 0 . . . lmax need to be weighted with
respect to the ODC class size. The protocol-specific fraction of
peers belonging to each ODC is given by the weight function
g(l). Thus, we modify Equation 5 to consider the ODC size
distribution of the specific target P2P protocol:

pSDE(v) =

lmax∑
l=0

g(l) · p∗SDE(v, l) (6)

The parameter lmax specifies the ODC with highest distance
to target peer v (lmax = 2 in Figure 1).

IV. P2P PROTOCOL-SPECIFIC HEURISTICS

For the heuristic steps of pSDE , pLDE and pSDE|LDE
developed in Section III, we now provide specific formulae
for Chord, Pastry and Kademlia. Based on this, it is possible
to compute the probability of malicious message interception
from a peer’s proximity for varied LEA strategies.

Heuristics are based upon the P2P protocol specifications.
The following three assumptions have been made: (i) peers
in the proximity have propagated to other peers in their ID
space region, (ii) intermediate hops always reduce the distance
towards the destination, (iii) routing state in peers is well
populated. These assumptions simplify the dynamics of the
overlay network and explain the deviations of heuristics and
simulations that will be presented in Section VI.

A. Heuristic for Chord

We assume an arbitrary peer pi that belongs to ODC i.
N(i) denotes the expected number of peers between pi and
v in Chord’s ID space, i.e., small values of i result in small
values returned by N(i) which we define as:

N(i) =
N

s(i)
(7)

The distance of each subsequent hop during overlay mes-
sage routing towards the message’s destination peer quarters
according to Chord’s specification. This is reflected by divid-
ing N by s(i) which we define as:

s(i) = 22(lmax−i+1) (8)

Basically, s(i) increases by factor of 4 over each subsequent
hop.

Furthermore, we define

pSDE(v, i) =

{
1 if N(i) ≤ κ
κ2

N(i)2 otherwise (9)

This formula approximates the probability of peer pi having
a SDE towards v. This probability decreases for increasing
distances between the two peers. Thus, equation 9 returns:
• 1 if N(i) is smaller or equal to the number of SDEs (=κ)
• a quadratic decrease if N(i) is larger than κ

5

To compute pSDE|LDE(v, i), a definition of the probability
function pLDE(v, i) is required:

pLDE(v, i) =
(log2(N)− 2 · (lmax − i)) · s(i)

3 ·N
(10)

The expected amount of LDEs stored in each peer’s routing
state is log2(N). On each hop towards the destination the
amount of LDEs possibly pointing at v decreases by 2 on
average while the amount of peers decreases by factor s(i).

On subsequent routing hops, the amount of peers decreases
as well as the number of LDEs towards the destination.
The relation between these two is required to estimate the
probability of having an LDE to the destination. Therefore,
the number of remaining LDEs is divided by the number of
remaining peers. The division in Equation 10 by N results
in the probability of an LDE pointing at destination v. The
factor of 1

3 is a calibration parameter that has been derived
from simulation experiments.

Thus, for Chord pSDE|LDE(v, i) is obtained as:

pSDE|LDE(v, i) = (1− pLDE(v, i)) · (1− pSDE(v, i)) (11)

g(i) is a weight function for the pSDE(v). It specifies the
number of peers for the i-th ODC. We present the correspond-
ing values in Figure 2 and set:

g(i) =
3

s(i)
(12)

The amount of peers in ODC i is one quarter the amount of
peers in ODC i+1. Consequently, ODCs further away from v
tend to hold exponentially more peers than closer ones. This
guarantees a number of hops that is logarithmically dependent
on N , as each message forwarding hop traverses at least one
ODC according to our assumption.

With the previous definitions, all terms of Equation 6 are
defined. The heuristic computations for other overlay network
sizes are presented in Section VI.

B. Heuristic for Pastry

Equation 13 calculates the probability of an arbitrary peer’s
membership in ODC i. The distribution has been calculated for
different overlay network sizes and is also depicted in Figure 3.

g(i) =
2b − 1

2b·(lmax−(i+1))
(13)

Similar to Chord, the ID space distance decreases on each
hop. According to Pastry’s specification, the distance to a des-
tination peer v decreases by a factor of s(i) = 2b·(lmax−(i+1)).

Pastry uses a prefix based distance notion which is encoded
with a positional numeral system typically of base 16, i.e.,
b = 4. All peers share at least a prefix of length 0, therefore
N(lmax) yields the number of all peers in the overlay.

Peers with identical shared prefix lengths are in the same
ODC. With increasing shared prefix length, the number of
peers in an ODC decreases exponentially. N(i) − N(i − 1)

1 2 3 4 5 6 7
Number of hops

0.0

0.2

0.4

0.6

0.8

1.0

Pe
er

 fr
eq

ue
nc

y

Chord Hop Distance Distribution
N=500
N=1000
N=2000
N=5000
N=10000

Fig. 2. Chord ODC size distribution

denotes the number of peers in ODC i. For Pastry, N(i) is
defined as:

N(i) =
N

2b·(lmax−(i+1))
(14)

To calculate the probability if an arbitrary peer of ODC i
is located in v’s proximity, the probability of an SDE towards
v in the respective ODC needs to be known. Therefore, we
define T (i) as the expected number of peers which have both,
an SDE towards v and an ODC i membership. The sum of
probabilities of v belonging to ODC i such that not all of the
SDEs to v are located in the same ODC i is multiplied by the
number of SDE neighbors which are located outside of ODC
i. The result is denoted as T (i):

T (i) =

2

N(i−1) ·
∑κ

2
j=1(κ− j) + κN(i)−κ

N(i)

for N(i) ≥ κ
2 + 1,

N(i) otherwise.
(15)

If N(i) ≤ κ
2 + 1, two conclusions follow. First, T (i) =

N(i), i.e., the whole ODC i is within v’s proximity. Secondly,
pSDE(v, i) = 1 because all peers in ODC i will have an
SDE to v. T (i) is used for the definition of pSDE(v, i). This
definition includes three different cases to deal with varying
amounts of SDEs for different ODCs.

We define pSDE(v, i) for Pastry as follows:

pSDE(v, i) =

{
1 if N(i− 1) ≤ κ

2 + 1
qSDE(v, i) otherwise

qSDE(v, i) =

{
κ−T (lmax)
N(i)−N(i−1) for i = lmax
T (i)−T (i+1)
N(i)−N(i−1) otherwise

(16)

The two cases in qSDE(v, i) reflect the probability that a
randomly chosen peer from ODC i is one of the T (i) peers.

6

The probability of a peer having an LDE to v increases expo-
nentially with decreasing distance to peer v, as exponentially
less peers exist with this shared prefix length.

pLDE(v, i) =
2b(lmax−i+1)

N
(17)

pSDE|LDE(v, i) can be computed using the probability func-
tion of step 3 in Section III. The formula for the heuristic of
the overall probability of a peer being reached via an SDE
follows from Equation 6.

1 2 3 4
Number of hops

0.0

0.2

0.4

0.6

0.8

1.0

Pe
er

 fr
eq

ue
nc

y

Pastry Hop Distance Distribution
N=500
N=1000
N=2000
N=5000
N=10000

Fig. 3. Pastry ODC size distribution

C. Heuristic for Kademlia

The Kademlia protocol differs from previous protocols with
respect to the following aspects. First, the routing mechanism
does not differentiate between SDEs and LDEs. Despite hav-
ing a proximity (see Section III-A2), on a conceptual level
messages are routed via LDEs until they reach their desti-
nations. Second, message routing is per default iterative and
sends multiple parallel lookup requests until the destination IP
address is resolved, the message itself is then delivered directly
from the sender to the destination peer. Kademlia’s ODC size
distribution (i.e., values for g(i)) is shown in Figure 4.

Besides these aspects, the Kademlia routing mechanism is
similar to Pastry’s. Therefore, the Kademlia heuristic is related
to the Pastry heuristic, with the differences presented below.

As Kademlia selects the most appropriate peers for the
next hop from a peer set with a higher CPL than the current
peer, order statistics are applied to determine the expectation
E{Ymax} for the highest CPL in the following way. We
assume a Kademlia overlay with bucket size 8, 3 parallel
routing paths and ID bit-length of 128. The peers’ IDs in a
bucket can be seen as 8 random instances of a bitstring X
with dimension 128. For the coordinates of a string

Xi = (Xi,1, Xi,2, . . . , Xi,128) , i ∈ {1, 2, . . . , 8}

1 2 3 4
Number of hops

0.0

0.2

0.4

0.6

0.8

1.0

Pe
er

 fr
eq

ue
nc

y

Kademlia Hop Distance Distribution
N=500
N=1000
N=2000
N=5000
N=10000

Fig. 4. Kademlia ODC size distribution

holds:

P [Xi,j = 0] =
1

2
= P [Xi,j = 1] , j ∈ {1, 2, . . . , 128} .

We consider a random variable Yi that denotes the CPL of
a bitstring with the destination peer. Therefore, Yi has values
from {1, 2, . . . , 128} with a probability distribution:

P [Yi = k] =

{(
1
2

)k+1
for k ∈ {1, 2, . . . , 126}(

1
2

)128
for k ∈ {127, 128}

for all i ∈ {1, . . . , 8}. Let
(
Y(1), . . . , Y(8)

)
be the sample

ordered by size, the so called order statistics. The expectation
for the highest three (i.e., Y8, Y7, Y6) needs to be found. For
simplicity, the CPL of previous hops and one (from the bucket)
is not considered in the example.

Equation 18 is based upon the Pastry heuristic, but refer-
ences to b have been removed. idLength represents the length
of an ID, for Kademlia this is usually between 128 and 192 bit.
setSize stands for the number of IDs the highest CPL peers
are chosen from, and max for the best peer to be considered,
so max = setSize yields the expectation for the peer with
the maximum CPL.

E{Ymax} =∑idLength
k=0 k ·

∑setSize
m=max

(
setSize
m

)
(P [Ymax ≤ k]m

·P [Ymax > k]setSize−m − P [Ymax ≤ k − 1]m

·P [Ymax > k − 1]setSize−m)

(18)

As the SDE concept is not anchored in Kademlia’s routing
algorithm, we experimentally ascertain that the closest 24
peers to a destination peer fulfill the characteristics of a

7

neighborhood comparable to Pastry’s leaf set. We therefore
define these 24 peers which are stored in the Kademlia buckets
with the lowest indices as proximity. Therefore, pSDE(v, i) is
defined as in Equation 16 with κ = 24.

We define Equation 19 to calculate the probability of an
arbitrary peer’s membership in ODC i.

g(i) =
1

2E{Ymax}·i
(19)

The parallelized lookup process in Kademlia returns over
the first iteration a peer set with potentially unequal CPLs.

The first iteration of pLDE(v, i) has to be calculated with
z different values for b and with z equal to the degree of
parallelism. This is because the expected CPL of the first
parallel hops chosen from the sender’s routing state is smaller
than the CPL of the subsequent hops, as the set of peers
stemming from the responses is larger. Therefore, we introduce
b0 and the formula changes accordingly to:

pLDE(v, i) =
{

2b0

N(i) for i = lmax,
2b(lmax−i+1)

N(lmax)
otherwise

(20)
Equation 5 needs to be calculated individually for the

different values of b0 as Kademlia takes three different paths
to the target, and the average of these will represent the value.

V. OVERLAY PROXIMITY LEA STRATEGIES

This section briefly discusses two LEA strategies, namely
Proximity Hijacking and Proximity Insertion, that target the
overlay proximity of given victim peers. Our proposed heuris-
tics approximate the Proximity Hijacking strategy. Thus, we
deduce in the subsequent simulation case study the accuarcy of
our heuristics from simulation runs according to the hijacking
strategy.

A. Proximity Hijacking LEA Strategy

In the case of Proximity Hijacking no malicious peers are
newly introduced into the overlay, but an attacker overtakes
(i.e. hijacks) benign peers in the victim peers’ proximities. An
attacker could achieve this by exploiting security weaknesses
to gain administrative control over the machines the peers are
running on. Details on the various ways to achieve this clearly
exceed the focus of this paper.

B. Proximity Insertion LEA Strategy

Using the Proximity Insertion strategy, newly joining ma-
licious peers are inserted into the proximity of victim peers.
IDs of the malicious peers are chosen to outrank the benign
proximity, i.e., all malicious peers will be inserted within
the range of the closest proximate peers (for symmetric
proximities) or within the range of the victim and the closest
proximate peer (for asymmetric proximities). Due to the self-
organization mechanisms in structured P2P overlays, victim
peers exchange after a given time span their benign proximities
by the malicious peers. Simulations show, that the second
strategy may result in a higher malicious message interception
degree than the hijack strategy. We differentiate between the

INSERT-low and INSERT-high Proximity Insertion strategies.
INSERT-low implies that malicious peers are inserted very
close to the victim peer, whereas INSERT-high relaxes this
constraint a bit and requires the attacker to undercut the ID
space range of the closest benign proximity peer(s) of the
victim. Therefore, INSERT-high usually results in a wider
range of malicious overlay IDs and INSERT-low accumulates
malicious IDs nearby the victim.

VI. PERFORMANCE EVALUATION: HEURISTICS
VALIDATION & DISCUSSION

In this section, we validate our three heuristics by evaluating
a LEA simulation case study that shows an accuracy of 90%
for the Proximity Hijacking strategy. The Proximity Insertion
strategies reveal a higher deviation. Furthermore, we present
simulation settings and performance metrics.

A. Simulation Settings and Performance Metrics

First, we give an overview on the parameters that have been
chosen. Next, we present the configuration of the LEAs that
have been conducted and present the measurement process.
Then, we present the performance metrics to evaluate the
model accuracy and the effects under malicious conditions.

1) Simulation Settings: The simulation study was con-
ducted with Chord, Pastry and Kademlia implementations
in OverSim [13]. Parameters of our simulation case studies
are shown in Table I. Simulations are conducted for varying
overlay network sizes between 500 and 10000 benign peers.
For benign peers, we consider a uniform workload, i.e., each
peer sends periodically a message to the prespecified victim
peer v. Benign peers b ∈ B and malicious peers m ∈ M are
subject to churn, and the victim peer v is present in the overlay
for the whole simulation period.

2) Performance Metrics: Our simulations target to inves-
tigate two performance aspects, i.e., the accuracy of our
heuristics and the degree of malicious message interception
by varied LEA strategies. The model accuracy is compared
to the experimental results of the hijack strategy. The attack
severity is the ratio of messages that an attacker could intercept
to the total number of messages that are addressed to v.

B. Attack Severity and Heuristics Accuracy vs. Overlay Size

We now investigate the impact of overlay size on the
accuracy of our developed heuristics and on the severity of
EA strategies. Hereby, we fix the number of malicious peers
to |M | = κ, i.e., κ = 8 for Chord, κ = 16 for Pastry which
reflects the default settings according to the protocols’ spec-
ifications and κ = 24 for Kademlia according to our notion
of Kademlia’s proximity. We simulate the different strategies
presented in Section V and present the EA severity evaluation
in Figures 5 (Chord), 6 (Pastry) and 7 (Kademlia) for various
overlay sizes. The pSDE curve denotes the computation of
our heuristics and the hijack curves denotes the Proximity
Hijacking LEA strategy that has been presented in Section V.
Deviations between pSDE and the hijack curves are small, i.e.,
±5%, which yields an accuracy of our heuristics of 90%. The

8

Parameters Values
Simulated time up to 16 hours, depending on overlay size
Overlay sizes 500, 1000, 2000, 5000, 10000
% ID space (λ) 0.2%, 0.1%, 0.05%, 0.02%, 0.01%
Churn 1h lifetime with exponentially distributed probability
Chord proximity size (κ) 8
Chord average proximity width (ε) 1.6%, 0.8%, 0.4%, 0.16%, 0.08%
Chord high width inserted peer distance from v or one another 0.2%/κ, 0.1%/κ, 0.05%/κ, 0.02%/κ, 0.01%/κ
All overlays, low width inserted peer distance from v or one another 0.000001% for all sizes
Pastry proximity size (κ) 16
Pastry average proximity width (ε) 3.2%, 1.6%, 0.8%, 0.32%, 0.16%
Pastry high width inserted peer distance from v or one another 0.4%/κ, 0.2%/κ, 0.1%/κ, 0.04%/κ, 0.02%/κ
Kademlia proximity size (κ) 24
Kademlia average proximity width (ε) 5%, 2.5%, 1.25%, 0.625%, 0.3125%
Kademlia high width inserted peer distance from v or one another 0.4%/κ, 0.2%/κ, 0.1%/κ, 0.04%/κ, 0.02%/κ

TABLE I
SIMULATION PARAMETERS

500 1000 2000 5000 10000
Overlay size

0

20

40

60

80

100

LE
A

se
ve

rit
y

Chord

HIJACK
INSERT-high
INSERT-low
pSDE (Analytical)

Fig. 5. LEA severity (Chord)

pSDE LEA severity is about 90% for Chord, up to 80% for
Pastry, and up to 82% for Kademlia. The severity is equal to
the degree of message interception, in case the victim peer’s
proximity has been hijacked or expelled through the newly
inserted malicious peers. An important observation is that the
LEA severity is almost independent of the overlay size.

Figures 5, 6 and 7 also show results for the Proximity
Insertion LEA strategies. The severity of these two strategies
is higher for Chord and Pastry compared to the Proximity
Hijacking simulations. Kademlia displays lower susceptibility
for the Proximity Insertion LEA strategy.

The difference between INSERT-low and INSERT-high is
because of overlay maintenance effects that consider changes
of LDEs that pointed towards v before the LEA was started.

C. Lessons Learned

We conducted a systematic analysis of structured P2P pro-
tocols and their susceptibility to LEAs. Our analysis allowed

500 1000 2000 5000 10000
Overlay size

0

20

40

60

80

100

LE
A

se
ve

rit
y

Pastry

HIJACK
INSERT-high
INSERT-low
pSDE (Analytical)

Fig. 6. LEA severity (Pastry)

500 1000 2000 5000 10000
Overlay size

0

20

40

60

80

100

LE
A

se
ve

rit
y

Kademlia

HIJACK
INSERT-high
INSERT-low
pSDE (Analytical)

Fig. 7. LEA severity (Kademlia)

9

us to classify peers adjacencies according to their criticality
to the incoming traffic. A key result of our work is the
development of a probabilistic heuristic that serves as a
template to define P2P protocol-specific heuristics to actually
approximate potential malicious message interception degree
from within victim peers’ proximities. The heuristics show
high accuracy compared to the experimental results obtained
from our simulation study.

The heuristic validation has shown an accuracy of 90% com-
pared to simulations. Both, the analytical and simulation case
studies have shown that the last hop of a route significantly
favors (with a probability higher than 70%) SDEs to deliver
messages to their destination.

Though only representing an initial study, our three pro-
posed LEA strategies can cause significant damage even
through a small number of malicious peers and this almost
independent of the overlay size. Besides covering SDEs by
malicious peers, through the insertion of malicious peers (con-
trary to the hijacking strategy) the P2P maintenance protocols’
operations result in removing some of the LDEs incident to the
victim peer and thus increasing the LEA’s severity for Chord
and Pastry. By this way, the maintenance protocols of Chord
and Pastry favor LEAs through an additional message control
gain. This results in message interception of more than 90%
for Chord and Pastry. Contrary, in Kademlia the proximity
insertion strategies achieve a message interception of up to
50% which is clearly below the proximity hijack strategy’s
severity. One possible reason is the convergence of routing
paths towards frequently addressed peers and the synthetic
design of our simulation workload. We will address this in
more detail in future work.

Overall, we identified four concepts of structured P2P pro-
tocols that are required to conduct the proposed LEAs. While
these concepts leverage scalability, decentralization and self-
organization, they also enable LEA susceptibility for multiple
P2P protocols that entail these concepts.

D. Limitations and Future Work

A prerequisite for the presented LEA scenarios is the ability
of the attackers to obtain the desired overlay IDs for malicious
peers to perform a targeted insertion and hijacking activities.
Depending on the protocol’s mapping mechanism from an
external identifier to the overlay ID, this might require a large
resource pool for an attacker to choose from. However, the
continuous increase in number and size of active botnets in
the Internet weakens this assumption. In ongoing work, we
are investigating metrics to quantify the required efforts to
acquire certain amount of appropriate peers as a preparation
of LEAs. Such metrics are necessary to accurately understand
the efficiency and efficacy of LEAs.

While our underlying basic workload model is valid for
some applications, it can also get outdated for the emerging
P2P applications such as content streaming and social net-
works. Accordingly, we plan to extend the current analysis to
scope various workload models and to consider the outgoing
traffic of the victim peers.

Throughout the paper, we have emphasized the general-
ized applicability of our approach. We detailed our analysis
for three case studies on Chord, Pastry and Kademlia and
qualitatively discussed how to extend the results to other
structured protocols. In future work, we aim at expanding our
investigations of LEAs to both unstructured and hybrid P2P
protocols.

VII. RELATED WORK

A generic overview on various attack categories against
structured P2P protocols is given in [14] and mainly focuses
on Sybil, Eclipse, and routing & storage attacks.

Generic (or non-localized) EA discussions are given in [11],
[15], [3], [1], [16], [17]. The remainder of this section presents
for space limitation reasons only LEAs.

LEAs have been discussed in [4], [5], [6], [7], [8], [9].
Except for [4], all previously mentioned work discusses LEAs
in the context of the Kad file sharing network. Kad is based on
the Kademlia protocol [10], yet it is adapted to the file sharing
use case in terms of overlay ID handling and replication
mechanisms.

The focus on Kad limits LEA discussions to a specific
file sharing application context. In our analysis, we intro-
duce a proximity concept and substantiate the importance
of the proximity based on heuristics that reflect the overlay
routing algorithms of three different protocols. Thereby, we
outline their differences but also the commonalities of various
structured P2P protocols that allow for a unified abstract
consideration of the overlay proximity notion.

In the following, we briefly present the existing works that
discuss LEAs.

In [4], the possibility of LEAs are discussed on a conceptual
level. The authors propose to mount the attack by occupying
a specific region in the routing tables of a small set of victim
peers. The authors claim that attacking peers need to have a
low network latency to the victim peers and thereby assume
a proximity neighbor selection (PNS) scheme in the P2P
protocol. PNS refers to underlay network metrics that help to
constitute a low latency proximity. Yet, for the studied LEAs
in this work, we do not consider this extension.

In [5], two LEA variants are presented which are directed
against the Kad file sharing network, i.e., localized in- and out-
attacks. The data centric out-attack is conducted through peer
placement in Kad’s tolerance area of the file’s ID that should
be eclipsed. Peers with long-lasting overlay presence time have
a higher chance to be part of other peers’ routing tables. Based
on this observation, they show that a LEA’s effectiveness can
increase over time. The out-attack poisons the victim peer’s
routing table by introducing many malicious peers close to the
victim peer’s ID.

In [6], the authors consider a Sybil attack as a preparatory
step for launching a LEA. This LEA focusses on the inter-
ception of Kad lookup messages. 24 malicious peers are used
to eclipse specific keywords. To achieve this, malicious peers
are required to share a CPL of 96 bits with the victim peer.
Intercepting Kad lookups is the same strategy as we propose

10

it in our Kademlia simulation study to validate our proposed
Kademlia heuristic.

In [7], in- and out- LEAs are conducted. Thus, a Sybil attack
is launched and malicious peers are placed randomly across
the overlay. The authors introduce an attack mechanism called
“back pointer hijacking” which poisons the routing tables of
selected peers with the goal to evict the routing table entry
of a victim peer. The mechanism exploits a security weakness
in older Kad versions, recent versions of Kad prohibit this
LEA variant. The LEA variants studied in our work do not
consider malicious peers that propagate forged routing state
information.

In [8], a LEA is conducted to place Sybil peers around a
specific Kad ID. As a result, routing tables of benign peers
with a common prefix length of 8 of the eclipsed ID get
poisoned. Through experiments, it turned out that 8 malicious
peers suffice to intercept all search requests for the eclipsed
Kad ID. We assume that the different results in [8] and our
study are due to the differences of Kad and Kademlia.

In [9], two LEA variants are conducted against the Kad
network. Both aim at eclipsing a specific ID. The first attack
prevents the ID’s publication by using 10 malicious peers
closely located to the ID to be eclipsed. “Close” means in
this case with a common prefix length of 125 to the Kad ID
of the data item. This is expectedly closer to any other peer,
so the Sybil peers constitute a forged tolerance zone for the
attacked Kad ID and subsequently the data corresponding to
this Kad ID is replicated at the Sybils only. This LEA is a
refinement of [8] and addresses a countermeasure introduced
in more recent Kad protocol versions. This countermeasure
delimits each peer’s routing state to have not more than 10
peers from the same IP subnet or more than one peer with
the same IP address in its routing table. The second attack
presented in [9] prevents peers from finding replicated data
by placing peers closer to the target Kad ID and propagating
these peers in the area around the ID to be eclipsed.

Furthermore, without explicitly refering to LEAs, simple
LEA mitigation techniques are presented in [18], [15], [1].
The authors propose to use a cryptographic hash function to
compute the overlay ID, e.g., using the peer’s IP address.
As a result of the computation, the expected distribution of
peer IDs throughout the ID space is uniform, and selection
of specific IDs for a LEA requires a very high amount of
attacker resources. The previous consideration is discussed in
detail in [19]. The authors show how to obtain an overlay ID
in a desired ID space region even with a considerable small
set of external identifiers.

VIII. CONCLUSION

Our work has shown that the key feature of structured
P2P protocols, i.e., maintaining a structured overlay topology,
is at the same time a key security weakness that facilitates
LEAs. Indeed, while a structured approach enables scalability
and fault tolerance it also favors LEAs against specific peers.
Though LEAs have been discussed in previous work, our
work is the first to provide heuristics that approximate the

potential severity of LEAs. These insights are crucial not only
to conduct efficient and severe LEAs but also to address this
weakness inherent in this class of protocols by developing
requisite countermeasures.

REFERENCES

[1] T. Condie et al., “Induced Churn as Shelter from Routing-Table Poison-
ing,” in Proc. NDSS, 2006, pp. 115–120.

[2] J. Douceur, “The Sybil Attack,” in Proc. IPTPS, 2002, pp. 251–260.
[3] A. Singh et al., “Defending against Eclipse Attacks on Overlay Net-

works,” in Proc. SIGOPS, 2004, pp. 115–120.
[4] ——, “Eclipse Attacks on Overlay Networks: Threats and Defenses,” in

Proc. INFOCOM, 2006, pp. 1–12.
[5] T. Locher et al., “Poisoning the Kad network,” Distributed Computing,

pp. 195–206, 2010.
[6] T. Cholez et al., “Evaluation of Sybil Attacks Protection Schemes in

Kad,” Scalability of Networks and Services, vol. 5637, pp. 70–82, 2009.
[7] P. Wang et al., “Attacking the Kad Network,” SecureComm ’08, pp.

1–10, 2008.
[8] M. Steiner et al., “Exploiting KAD : Possible Uses and Misuses,”

Computer Communication Review, vol. 37, no. 5, pp. 65–69, 2007.
[9] M. Kohnen et al., “Conducting and Optimizing Eclipse Attacks in the

Kad Peer-to-Peer Network,” in Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2009, vol. 5550, pp. 104–116.

[10] P. Maymounkov and D. Mazières, “Kademlia: A Peer-to-Peer Informa-
tion System Based on the XOR Metric,” in Proc. IPTPS, 2002, pp. 53
– 65.

[11] I. Stoica et al., “Chord: A Scalable Peer-to-Peer Lookup Service for
Internet Applications,” in Proc. SIGCOMM, 2001, pp. 149 – 160.

[12] A. Rowstron and P. Druschel, “Pastry: Scalable, Decentralized Object
Location, and Routing for Large-Scale Peer-to-Peer Systems,” in Mid-
dleware, 2001, pp. 329–350.

[13] I. Baumgart et al., “OverSim: A Flexible Overlay Network Simulation
Framework,” in Proc. GI at INFOCOM, 2007, pp. 79 – 84.

[14] G. Urdaneta et al., “A Survey of DHT Security Techniques,” ACM
Computing Surveys, pp. 8:1–8:49, 2011.

[15] M. Castro et al., “Secure Routing for Structured Peer-to-Peer Overlay
Networks,” SIGOPS Oper. Syst. Rev., pp. 299–314, 2002.

[16] K. Hildrum and J. Kubiatowicz, “Asymptotically Efficient Approaches
to Fault-Tolerance in Peer-to-Peer Networks,” in Proc. DISC, 2003, pp.
321–336.

[17] M. Srivatsa and L. Liu, “Vulnerabilities and Security Threats in Struc-
tured Overlay Networks: A Quantitative Analysis,” in Proc. ACSAC,
2004, pp. 252–261.

[18] E. Sit and R. Morris, “Security Considerations for Peer-to-Peer Dis-
tributed Hash Tables,” in Proc. IPTPS, 2002, pp. 261–269.

[19] D. Cerri et al., “ID Mapping Attacks in P2P Networks,” in Global
Telecommunications Conference (GLOBECOM), 2005, pp. 6–12.

