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Abstract—Named Data Networking (NDN) is a promising future 

Internet architecture which retrieves the content using their names. 

Content names composed of strings separated by ‘/’ are stored in 

the NDN Forwarding Information Base (FIB) to forward the 

incoming packets further. To retrieve content through their names 

poses two main challenges for the NDN FIB: high memory 

consumption and high lookup time. Therefore, an efficient and 

scalable data structure is required to store names in FIB. Encoding 

components in all the names with a unique integer can reduce the 

memory consumption as well as lookup time. In this paper, we 

propose a scalable and memory-efficient radix trie based name 

component encoding scheme, RaCE, to implement NDN FIB. Our 

experiment results show that the RaCE scheme is reducing memory 

consumption by 89.95% and 26.07% compared to the original size 

of data and NCE scheme for the 29 million dataset, respectively. 

 

Keywords—Named Data Networking; NDN; Forwarding 

Information Base; FIB; Radix Trie; RaCE 

I. INTRODUCTION 

Named Data Networking (NDN) is the future Internet 
architecture which has changed the semantics of communication 
from end-host content fetching to pulling the content from any 
intermediate node having valid content [1][2]. As a future Internet 
paradigm, NDNs network layer supports scalability (support to 
large Internet topology and high amount of name prefixes), 
security (integrity, origin authentication and relevance of routing 
information), resiliency (to detect and recover from packet 
delivery performance), and efficiency (support multi-path 
forwarding and in-network caching for efficient data 
dissemination). 

In NDN, a content name (CN) is composed of several 
components of variable length which are maintained in the 
hierarchical structure, whereas current Internet uses fixed length 
(either 32 bit or 64 bit) addresses. In NDN, Forwarding 
Information Base (FIB) maintains name prefixes (NP) and their 
corresponding outgoing interface(s) and forwards incoming 
packets by calculating the longest prefix match (LPM) of the CN. 
To access contents via application name resolves numerous issues 
raised due to host-centric networking paradigm, but still NDN is 
facing two major issues. First is, FIB stores a huge number of 

names composed of an arbitrary number of components separated 
by ‗/‘. Storing these huge number of variable length names in 
compared to IP address consumes high memory space. Second is, 
a lookup operation, such as insert, LPM, delete and update the 
NPs on the large number of names consumes high time.  

To overcome the afore-mentioned issues, an efficient and 
scalable data structure is needed to implement NDN FIB. The 
data structure should have the following properties. First, it 
should consume less memory. Second, the operations like, insert, 
update, LPM, and delete should be performed in constant time. 
Third, LPM should not produce any false positives and false 
negatives. Therefore, the data structure should support low 
processing time, high throughput and reliability at the router 
level. 

Some existing data structures, such as Character Component 
Trie (CCT), Name Prefix Trie (NPT), and Hash Table (HT) are 
used for exact-match algorithms. CCT and NPT both store some 
extra information, like each node of CCT stores a character, a 
Boolean value (whether the node is end of a name or not), number 
of child nodes and pointers to the child nodes. Moreover, HT is 
not memory-efficient and is not suitable for LPM. 

A possible solution of the afore-mentioned problem is to 
encode the name, i.e., to encode the components of a CN with a 
unique integer where identical components share the same code. 
E.g., on an average, a CN can have 5-6 components and each 
component can have 6 characters. Then, the memory 
consumption will be approximately 30 bytes. To encode the 
component can solve this issue as it will consume only 20 bytes 
[3]. Wang, et al. [4] proposed the encoding for the NDN FIB. 
They encode the components using the integer on the current 
level states basis using the Encoded Name Prefix Trie (ENPT). 
The states and transitions of ENPT are maintained in the State 
Transition Array (STA). The use of array for implementing FIB 
can degrade the network and system performance as child nodes 
of the trie can be stored in consecutive memory locations. For 
each insertion and/or deletion operation in the STA, it is needed 
to re-allocate child nodes to other memory location. Sometimes, 
there can be need to re-allocate whole block of child nodes. For 
FIB implementation, it is impractical to assume that prior 
knowledge of content requests to arrive at an NDN router is 
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available before populating the data structure. Moreover, this may 
degrade system performance of the dynamic network 
environment. 

We propose a memory-efficient Radix trie based Component 
encoding (RaCE) scheme, which supports components encoding 
of CN for NDN FIB implementation. RaCE encodes the name 
components (NC) in the 32-bit integer where identical component 
share the same integer. RaCE uses the Radix trie (RT) [5] as the 
basic structure which eliminates the impact of maintaining 
redundant information. RT also reduces the lookup time by 
compressing the search path. In summary, the contributions of 
this paper are listed below: 

 We propose a component encoding scheme to implement 
NDN FIB. 

 We use the Radix trie, a compact prefix trie to reduce the 
memory consumption and to support reliability at the 
router. 

 Our extensive experiments over 29 million names dataset 
show that components encoding using RaCE is 
consuming 89.95% less memory than storing the names 
without encoding and reducing memory consumption by 
up to 26.07% in contrast to the NCE [4] scheme. 

The paper organization is as follows. Section II discusses 
about the related research works. Section III presents a brief NDN 
introduction. Section IV describes our proposed scheme, its 
working, and the algorithm. Our performance results are given in 
Section V. Finally, Section VI concludes the paper and provides 
possible future directions.  

II. RELATED WORK 

In NDN, Wang, et al. proposed Name Component Encoding 
(NCE) [4] in which NCs are encoded using the integer and states 
are maintained in the STA. They extended this work to speed up 
the lookup time and proposed parallel architecture called Parallel 
Name Lookup (PNL) [6]. Some schemes [7][8] uses hash table 
(HT) with bloom filter (BF) (space-efficient probabilistic data 
structure) for supporting the fast name lookup in FIB. So, et al. 
[7] have presented an NDN forwarding lookup engine based on 
HT and BF. They have also proposed a collision resistant SipHash 
[8], for computing prefix hashes in one pass with simultaneous 
parsing of name components. HT consumes high memory while, 
BFs cannot be directly used for NDN‘s FIB.  

Furthermore, Wang, et al. [11] proposed a two-stage Bloom 
filter-based scheme for finding LPM of CN. In first stage, NPs are 
stored into BFs and in second stage, NPs are divided into groups. 
This scheme performs better than character trie [9], NCE [4], 
BloomHash [10], and BF. Moreover, Wang, et al. [11] have 
shown two main technical issues to speed up name lookup of 
NDN FIB, such as, how to speed up the NPs‘ length calculation 
and how to speed up the HT operations. Later, Wang, et al. 
[12][13] proposed an adaptive greedy name lookup scheme to 
handle these issues. The above-mentioned schemes mainly based 
on the data structures, such as trie, HT, and BF. Trie based name 

lookup schemes having high lookup cost as their name prefix 
lookup time is based on the length of the name. HTs consumes 
high memory while, BF induces false positives [4]. To overcome 
these issues, Quan, et al. [14] proposed an Adaptive Prefix Bloom 
filter (NLAPB) scheme in which first part of a name matched by 
BF, while another part is processed by trie. Yuan, et al., [15] have 
proposed binary search of HTs. They have also proposed level 
pulling to reduce the number of HT lookup.   

III. NDN OVERVIEW 

In this section, we shall discuss about NDN working and FIB 
characteristics.  

A. NDN Forwarding and Routing 

Each NDN router uses three main data structures. 
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Fig.1. NDN forwarding [2] 

 Content Store (CS): It temporarily stores actual data 
packets for future references.  

 Pending Interest Table (PIT): It stores the requested 
packet’s CN until corresponding data packet arrives. 

 Forwarding Information Base (FIB): It forwards the 
incoming requesting packet to the next hop(s) using the 
LPM of CN. 

NDN holds receiver-based communication, initiated by the 
content consumer. NDN communication uses two types of 
packets: Interest packet (Ipkt) and Data packet (Dpkt) (see Fig. 
1). Each Ipkt and Dpkt contains CN for data to search. Whenever 
a content request reaches at the NDN router, requested data is 
searched using the CN associated with the Ipkt. If corresponding 
data is available at that router, a Dpkt is forwarded downstream 
using the trail of Ipkt. Otherwise, Ipkt is forwarded further. 
Therefore, the fundamental aim of the NDN is to access content 
without concerning about location of the content hosting entity. In 
NDN, security is in-built in the architecture. Every Dpkt in NDN 
is cryptographically signed by the content provider with its name 
for securing the data. Security layer provides security to each and 
every piece of content, unlike securing the entire communication 
channel in Internet.  

IV. OUR PROPOSED SOLUTION 

In this section, we discuss our proposed scheme for NC 
encoding using the Radix trie (RT). For the rest of this paper, we 
named our solution as RaCE scheme. 
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Fig.2. RaCE Framework 

A. The RaCE Framework and Data Structures 

The RaCE scheme is using use RT, a space-optimized ordered 
trie to speed up the name lookup and to reduce the total memory 
consumption. RT is path-compressed trie in which nodes with 
only one child are merged together.  

Fig. 2 shows the framework of RaCE scheme which 
comprises of Component Trie (CT) and Encoded Name Trie 
(ENT) along with one stack (Available Token Stack (AT)) and 
one Token Frequency Map (TFM). CT, TFM and AT together 

create Component Encoded Module (CEM) which encodes each 
component of a name and maintains their traces. These encoded 
names are passed to next module Encoded Name Module (ENM) 
which stores encoded names in the ENT. 

Fig. 3(a) shows the logical structure of FIB and encoding of 
the names using the CEM module. Fig. 3 (b) shows the FIB 
structure using RaCE scheme. When an Ipkt arrives at the router, 
CEM generates <component, token> tuple for each component of 
that name and generates the encoded name. It is inserted in the 
ENT, if not present. To delete, update and to find LPM, CEM acts 
similar to insert operation. 

In next sub-sections, we discuss component encoding and 
encoded name formation and the lookup operations, such as 
insert, search, delete and LPM. 

wfsf 

Name prefixes Encoded Name 
Outgoing 

interface(s) 

/in/co/google /1/2/3  

/in/co/google/books /1/2/3/4  

/uk/co/google /5/2/3  

/com/college/academic /6/7/8  

/com/video/movies /6/9/10  

/com/video/movie/lyrics /6/9/11/12  

/com/college/academic/books /6/7/8/4  

/in/co/yahoo/news /1/2/13/14  

/in/college/about 1/7/15  

/com/college/CS/news /6/7/16/14  

/com/college/CS/btech /6/7/16/17  

/in/college /1/7  

 

Fig. 3 (a). FIB table with the name prefixes and their encoded names Fig. 3 (b). FIB structure using RaCE 
   

B. Component Encoding Module (CEM) 

CT data structure is used to produce unique tokens for each 
NC. CT is a path compressed trie in which nodes having one child 
are merged together as shown in Fig. 3(b). Whenever a content 
request arrives at the NDN router, CN is decomposed into its 
components and a unique integer is assigned to each component. 
Then, these encoded components form the encoded name and 
passed to next module ENM. The same procedure is repeated for 
all CT’s operations - search, insert, and delete of component(s). In 
RaCE, token distribution process maintains the uniqueness among 
the NCs. We define uniqueness in token distribution process in 
CEM as a property in which CEM ensures that a unique token is 
assigned to each name‘s components and identical components 
share the same token. 

C. Encoded Name Module (ENM) 

ENT is also space optimized, compact prefix trie which stores 

encoded names. CT passes encoded names to ENT which is 

searched in the ENT. ENT structure supports four main 

operations - to search, insert and delete an encoded name, and to 

find LPM of encoded name. Encoded name is inserted in the 

ENT if already not present in the ENT, otherwise encoded name 

is discarded. To delete an encoded name, ENT deletes 

corresponding components path (not shared by other encoded 

names) from the leaf node and de-allocates memory. To find the 

LPM, an encoded name is searched from the root node and 

matched one-by-one components from longest-to-shortest prefix 

to find the node with outgoing interface(s). 

Radix trie has an important property, called compaction, which 

is followed by CT and ENT. In compaction, a node having only 

one child, is merged with its parent node. In our proposed 

solution, we opted this property with a modification that a single 

child node is merged with its parent node if child node is not 

containing any index entry. Compaction is performed with every 

insertion function, if needed.  

Fig. 4 and 5 shows the insert and delete operations in ENT 

through the examples. Suppose a name prefix arrives at the NDN 

router with the CN /in/college/about, propagated by the routing 

protocols. CT will generate the encoded name /1/7/15 and pass it 

to the NET. If encoded name is already present in the NET (see 

Fig. 4), then no operation will be performed. Furthermore, if a 

request arrives at the NDN router with the CN 

/in/college/about/director which does not exists in the NET, then 

its encoded name 1/7/15/18 will be inserted in the NET. RaCE 



repeats the same process for each name prefix required to 

maintain in the FIB.  

Whenever there is need to delete a name prefix from the FIB, 

CT provides the encoded name to NET. Encoded name is deleted 

from the NET from leaf node to root if and only if encoded name 

is not shared by other names of the trie. Suppose, the name to be 

deleted from the NET is /com/video/movies and encoded name is 

/6/9/10. The token ‗10‘ is not shared by any other encoded name 

so it can be deleted while other tokens ‗6‘ and ‗9‘ cannot be 

deleted as they are shared by other encoded names (see Fig. 5).  
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Fig. 4. Inserting an encoded name in the NET 
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Fig. 5. Deleting an encoded name from the NET 

D. RaCE Algorithm 

In this section, we present our algorithm for insertion, deletion 
and LPM using the RaCE scheme.  

1) Assumptions and variables:  
Table I and II list the variables and functions used for the 

algorithm of RaCE scheme. 

TABLE I VARIABLES USED IN RACE ALGORITHM 

Variable Significance 

N Name prefix to be insert in the FIB or CN of an Ipkt 

L Total number of components in N 

𝑪𝒊
𝑵 ith component of N, s.t.  𝐶𝑖   

𝑁𝐿
𝑖=1 = N 

𝑪𝒍𝒊𝒔𝒕
𝑵  Array containing the components of N 

token(𝑪𝒊
𝑵) A unique integer value assigned to 𝐶𝑖

𝑁 

𝑵𝒆 Encoded name for N, s.t., 𝑁𝑒= token(𝐶𝑖
𝑁) for i =1 to L 

𝑻𝒕
𝑪 

Number of components identified by a particular token present 
in the CT at any time instant t 

𝑫𝒍𝒊𝒔𝒕
𝑪  Deleted component list 

frtstack 
Stack to store tokens freed by deleting corresponding 
components. Tokens are popped for re-use 

2) Algorithm description:  

The algorithm for the RaCE scheme is given in Fig. 6. For the 
implementation purpose, we have used three data structures - 
Radix trie (RT), stack, and array. We have already discussed 

about using RT for CT and ENT structures. Stack is used for 
storing tokens freed by deleting components associated with it 
and the array is used to store total count of an individual 
component present in the requested names stored in FIB. 

TABLE II   FUNCTIONS USED IN RACE ALGORITHM 

Functions Description 

decompose(N) Decomposes N and prepares 𝐶𝑙𝑖𝑠𝑡
𝑁  

insertCT(𝐶𝑙𝑖𝑠𝑡
𝑁 ) 

Searches 𝐶𝑖
𝑁in CT and returns token for 𝐶𝑖

𝑁 if successful, 

otherwise inserts 𝐶𝑖
𝑁in CT. Function returns encoded name 

𝑁𝑒 . to ENT 

deleteCT(𝐶𝑙𝑖𝑠𝑡
𝑁 ) Delete 𝐶𝑖

𝑁from CT and re-allocates token to stack 

insertENT(𝑁𝑒) 
Searches 𝑁𝑒 in ENT and returns𝐹𝐼𝐵𝑖𝑛𝑑𝑒𝑥

𝑁𝑒  for updation if 

successful, otherwise inserts 𝑁𝑒  in ENT 

deleteENT(𝑁𝑒 , 
𝐷𝑙𝑖𝑠𝑡
𝐶 ) 

Delete path of 𝐷𝑙𝑖𝑠𝑡
𝐶  components present in 𝑁𝑒from ENT 

lpmCT(𝐶𝑙𝑖𝑠𝑡
𝑁 ) 

Searches 𝐶𝑖
𝑁 in CT and returns token for 𝐶𝑖

𝑁 if successful, 

otherwise stops procedure 

lpmENT(𝑁𝑒) Finds the LPM of the encoded name 𝑁𝑒  

searchCT(𝐶𝑖
𝑁) Search the 𝐶𝑖

𝑁 in the CT 
 

LPM_RaCE (N) 

Invoke decompose(N) 

send 𝐶𝑙𝑖𝑠𝑡
𝑁  to lpmCT(𝐶𝑙𝑖𝑠𝑡

𝑁 ) 

lpmCT(𝐶𝑙𝑖𝑠𝑡
𝑁 ) 

  ∀𝑪𝒊
𝑵 ∈ 𝑪𝒍𝒊𝒔𝒕

𝑵  

  if 𝐶𝑖
𝑁 is not in CT 

        break 

  else 

        𝑡𝑜𝑘𝑒𝑛(𝐶𝑖
𝑁) ←searchCT(𝐶𝑖

𝑁) 

        𝑁𝑒←𝑁𝑒 ∪ 𝑡𝑜𝑘𝑒𝑛(𝐶𝑖
𝑁) 

        lpmENT(𝑁𝑒) 

 

Insertion_RaCE (N) 
Invoke decompose(N) 

send 𝐶𝑙𝑖𝑠𝑡
𝑁  to insertCT(𝐶𝑙𝑖𝑠𝑡

𝑁 ) 

insertCT(𝐶𝑙𝑖𝑠𝑡
𝑁 ) //Insertion of a component 𝐶𝑖

𝑁 in the CT 

  ∀𝐶𝑖
𝑁 ∈ 𝐶𝑙𝑖𝑠𝑡

𝑁  

  if 𝐶𝑖
𝑁 is in CT 

        𝑇𝑡
𝐶= 𝑇𝑡

𝐶+ 1 

  else 

        𝑇𝑡
𝐶← 1 

        Insert 𝐶𝑖
𝑁in the CT 

        if empty(frtstack) = FALSE // free token to reuse 

                token(𝐶𝑖
𝑁) = pop(frtstack) 

        else 

               token(𝐶𝑖
𝑁) = token(𝐶𝑖−1

𝑁 ) + 1 

        𝑁𝑒 =  𝑁𝑒 ∪ 𝑡𝑜𝑘𝑒𝑛(𝐶𝑖
𝑁) 

        Invoke insertENT(𝑁𝑒) 

insertENT(𝑁𝑒) //Insertion of 𝑁𝑒  in the ENT 

  ∀𝑡𝑜𝑘𝑒𝑛(𝐶𝑖
𝑁) ∈ 𝑁𝑒  

  if 𝑁𝑒  is not in ENT 

        Insert 𝑁𝑒  in ENT 
Fig. 6. Pseudocode for RaCE lpm and insertion algorithm 

To find LPM of incoming CN, it is decomposed into 
components using decompose (N) function. Then each component 
is searched in the CT, if any component is not present in the CT, 



the procedure is terminated. Otherwise, it invokes searchCT(𝐶𝑖
𝑁) 

function to find the token of component and to form encoded 
name (𝑁𝑒). Then, it invokes lpmENT(𝑁𝑒) function to search the 
𝑁𝑒  in the ENT.  

To insert a name prefix into FIB, the function decompose(N) 
decomposes N into constituent components and passes these 

component list (𝐶𝑙𝑖𝑠𝑡
𝑁 ) to the insertCT(𝐶𝑙𝑖𝑠𝑡

𝑁 ) function. The function 
searches for the presence of each component in the CT, and if 

found, the component count (𝑇𝑡
𝐶) is incremented by 1 and the 

corresponding token is returned. If the component is not present 

in the CT, it is inserted in the CT and its component count (𝑇𝑡
𝐶) is 

initialized to 1. For assigning the token, the function first checks 
the frtstack for an available/free token to reuse. If any such free 

token is available in the frtstack, it is allocated to 𝐶𝑖
𝐶𝑁  by popping 

the stack. If frtstack is empty, a new token is assigned to the new 
component by incrementing the last token generated by 1. At the 

end of the insertCT(𝐶𝑙𝑖𝑠𝑡
𝐶𝑁 ) function, CT generates encoded name 

(𝑁𝑒)and invokes insertENT(𝑁𝑒) to insert Ne in the ENT. A 
function insertENT(𝑁𝑒) searches whether 𝑁𝑒  is already existing in 
the ENT or not. If 𝑁𝑒  does not exist, then insertENT(𝑁𝑒) inserts 
𝑁𝑒  in the ENT and its corresponding outgoing interface(s). 

Deletion_RaCE (N) 

Invoke decompose(N) 

send 𝐶𝑙𝑖𝑠𝑡
𝑁  to deleteCT(𝐶𝑙𝑖𝑠𝑡

𝑁 ) 

deleteCT(𝐶𝑙𝑖𝑠𝑡
𝑁 ) //Deletion of a component 𝐶𝑖

𝑁 from the CT 

  ∀𝐶𝑖
𝑁 ∈ 𝐶𝑙𝑖𝑠𝑡

𝑁  

  if 𝐶𝑖
𝑁is in CT 

        𝑁𝑒 =  𝑁𝑒 ∪ 𝑡𝑜𝑘𝑒𝑛(𝐶𝑖
𝑁) 

        𝑇𝑡
𝐶  = 𝑇𝑡

𝐶  - 1 

        if 𝑇𝑡
𝐶 = 0 

                Delete 𝐶𝑖
𝑁 from the CT 

                Add token(𝐶𝑖
𝑁) into 𝐷𝑙𝑖𝑠𝑡

𝐶  and frtstack 

  else  
        break 

  if 𝐷𝑙𝑖𝑠𝑡
𝐶  is not empty 

          Invoke deleteENT(𝑁𝑒 , 𝐷𝑙𝑖𝑠𝑡
𝐶 ) 

deleteENT(𝑁𝑒 , 𝐷𝑙𝑖𝑠𝑡
𝐶 ) //Deletion of 𝑁𝑒  from the ENT 

  ∀𝐷𝑙𝑖𝑠𝑡
𝐶 ∈ 𝑁𝑒  

        Delete token(𝐶𝑖
𝑁) from 𝑁𝑒  

        De-allocate memory for re-use 
Fig. 7. Pseudocode for RaCE deletion algorithm 

For deleting a name prefix from FIB, first its components are 

retrieved using decompose(N). Then the component list (𝐶𝑙𝑖𝑠𝑡
𝑁 ) is 

passed to the deleteCT(𝐶𝑙𝑖𝑠𝑡
𝑁 ) function. This function sequentially 

searches for the presence of each individual components (𝐶𝑖
𝑁) of 

N using the 𝐶𝑙𝑖𝑠𝑡
𝑁 . If any component from 𝐶𝑙𝑖𝑠𝑡

𝑁  is not present in the 
CT, the procedure is terminated. If all the components of a name  

N are available in the CT, then the 𝑇𝑡
𝐶  for all 𝐶𝑖

𝑁  present in 𝐶𝑙𝑖𝑠𝑡
𝑁  

are decremented by 1. If 𝑇𝑡
𝐶  of any 𝐶𝑖

𝑁  becomes 0 (which 
signifies that this component is not present in any name stored in 

the CT), then the function deletes that particular 𝐶𝑖
𝑁  from the CT 

and the unique token assigned to it earlier is added to the deleted 

component list (𝐷𝑙𝑖𝑠𝑡
𝐶 ) and is pushed to the freed token stack 

(frtstack). After the generation of the 𝐷𝑙𝑖𝑠𝑡
𝐶 (if not empty), the 

deleteENT(𝑁𝑒 ,𝐷𝑙𝑖𝑠𝑡
𝐶 ) function is invoked to delete every freed 

token from 𝑁𝑒  (present in the ENT) and de-allocates the memory 
for re-use. 

V. EXPERIMENT AND RESULTS 

A. Experimental Setup  

RaCE scheme has been implemented using Java
TM

 
programming language which runs on a server with Intel(R) 
Xenon(R) CPU E5-2695 v2 at 2.40 GHz having 128 GB DDR3 
RAM with operating environment 64 bit Windows

TM
 8.1.  

We have used four datasets as input. All are online dataset 
from Blacklist [16], Shallalist [17], average workload [4], and 
heavy workload [4]. Blacklist consists of 37,36,394 (~4M), 
Shallalist consists of 45,35,777 (~4.5 M), and average workload 
and heavy workload consists of 10.000,000 (10M) domain names 
(URLs). For a better analysis, we have combined these four 
datasets to form a dataset of 29M. For the rest paper, we refer 
Blacklist dataset as B_List, Shallalist dataset as S_List, average 
workload as 10M_AL and heavy workload as 10M_HL. We have 
done some pre-processing on the available URLs, to convert them 
into the traditional named data format. E.g., we have converted 
URLs of available datasets ‗google.com’ into named data format 
‘/com/google’. For FIB population, we modified the datasets by 
reducing the number of components in a name. Table III and IV 
depicts the detail of the datasets used for FIB population. For the 
performance evaluation, we have compared RaCE with three 
other schemes, NCE, NPT and CCT as discussed earlier. We run 
each program 100 times to minimize the impact of hardware 
dependency and then an average is taken to plot the graphs. 

B. Performance Metrics 

We have measured the total memory consumption as well as 
time for name lookup operations in the FIB. The main 
performance metrics used are as follows: 

 Total memory usage / consumption: Total amount of 
memory (CT and ENT) consumed (in MB) to implement 
the FIB data structure. 

 Frequency (in million/second): The number of names 
(in million) inserted/updated/deleted per second. 

In the next sub-section, we shall analyze the impact of token 
distribution using our proposed RaCE scheme. 

TABLE III ANALYSIS OF NUMBER OF NAME COMPONENTS FOR DIFFERENT DATASETS 

Dataset and 

Dataset Size 
# of Names 

Number of Names for the Number of Components 

<=4 5 6 7 8 9 10 >10 
B_List 3,736,394 3,521,370 97,019 50,268 26,398 16,016 10,003 6,113 9,208 
S_List 4,535,775 4,465,130 32,257 21,042 10,308 4,211 1,693 6,99 435 

10 M_AL 10,000,000 4,893,815 2,608,278 1,171,965 1,070,531 227,534 24,949 2,898 30 
10 M _HL 10,000,000 3,807,227 2,601,413 1,690,944 1,181,366 545,237 141,589 28,794 3,430 



 

C. Token distribution Mechanism  

The main aim of token distribution is to reduce the effect of 

redundant data by allocating a unique token to identical 

components. Fig. 8 and 9 shows the number of NCs and the total  

tokens allocated to them for B_List and S_List datasets. Different  

 

names may share some components at same and/or different 

levels. Therefore, to generate unique tokens for identical 

components reduce the generation of total number of tokens. It 

also depicts the ratio of total tokens distributed to the total 

number of components. RaCE scheme has achieved an average 

compression ratio of approximately 80% in all the datasets. 

TABLE IV STATISTICS OF NAME DATASETS - B_LIST, S_LIST, 10M_AL, 10M_HL AND 29M DATASETS 

Dataset and 

Dataset Size 
# of Names 

# of Total 

Components 

Average 
Component 

Size in Original 

(Bytes) 

Average 
Encoded 

Component 

Size (Bytes) 

Average # of 

Components 
per Name 

# of Nodes 

in NCE 

# of Nodes 

in CCT 

# of Nodes 

in NPT 

# of Nodes 

in RaCE 

B_List 3,736,394 9,482,567 12.83 8.33 2.54 2,340,795 11,730,555 

 
2,340,795 2,001,059 

S_List 4,535,775 10,576,826 12.89 8.28 2.33 2,879,339 18,129,256 2,879,339 2,641,457 

10 M_AL 10,000,000 47,030,831 27.58 12.97 4.70 2,780,325 17,702,732 2,780,325 1,607,424 

10 M _HL 10,000,000 51,213,285 40.49 13.96 5.12 494,088 3,197,223 494,088 285,439 

29M 28,272,169 1,21,336,533 28.48 13.24 4.29 8,482,468 50,386,700 8,482,468 6,219,196 
 

 

TABLE V MEMORY REQUIREMENTS BY ORIGINAL, NCE, NPT, CCT, AND RACE FOR B_LIST, S_LIST, 10M_AL, 10M_HL AND 29M DATASETS 

Dataset and 

Dataset Size 

# of 

Names 

Original 

size 
(MB) 

NCE 

Size 
(MB) 

NPT 

Size 
(MB) 

CCT 

Size 
(MB) 

RaCE 

Size 
(MB) 

Memory Compression Ratio (%) 

RaCE 
vs. 

Original Size 

RaCE 
vs. 

NCE 

RaCE 
vs. 

NPT 

RaCE 
vs. 

CCT 

B_List 3,637,394 54.62 36.11 47.80 74.64 25.59 53.14 29.13 46.46 65.72 

S_List 4,535,775 66.55 44.78 64.46 113.75 33.38 49.84 25.46 48.22 70.65 

10 M_AL 10,000,000 291.55 31.97 46.89 107.42 21.93 92.48 31.40 53.23 79.58 

10 M_HL 10,000,000 418.94 5.68 8.38 19.38 3.91 99.06 31.16 53.34 79.82 

29M 28,272,169 848.03 115.25 160.68 311.39 85.20 89.95 26.07 46.97 72.68 

           

 
Fig. 8. The number of components vs. number of tokens assigned in the B_List 
dataset 

 

 
Fig. 9. The number of components vs. number of tokens assigned in the S_List 

dataset 

D. Memory Consumption (worst case)  

We measure the memory consumption for the FIB by using our 

scheme in compare to the CCT, NPT and NCE schemes and plot 

the results in Fig. 10, 11, 12, 13 and 14 for B_List, S_List, 

10M_AL, 10M_HL and 29M datasets, respectively. It can be 

observed that CCT and NPT consume more memory for 

implementing FIB than the original size of the datasets. CCT and 

NPT data structure consume high memory because each node of 

the trie maintains additional information as discussed in Section 

I. On the other hand, RaCE scheme consume less memory than 

other schemes and the original dataset. RaCE memory 

consumption for B_List, S_List, 10M_AL, 10M_HL and 29M is 

38.55 MB, 49.71 MB, 21.93 MB, 3.91 MB and 85.20 MB, 

respectively. Table V depicts the detail of the memory consumed 

by different schemes for these datasets. In comparison to NCE, 

NPT, and CCT schemes, memory consumption in our scheme is 

reduced by 29.13%, 46.46% and 65.72%, respectively for B_List 

dataset, 25.46%, 48.22% and 70.65%, respectively for S_List 

dataset, 31.40%, 53.23% and 79.58%, respectively for 10M_AL 

dataset, 31.16%, 53.34%, and 79.82%, respectively for 10M_HL 

dataset and 26.07%, 46.97% and 72.68%, respectively for 29M 

dataset. 
 



 
Fig. 10. B_List memory consumption - RaCE, NCE, NPT, and CCT 

 

 

Fig. 11. S_List memory consumption -RaCE, NCE, NPT, and CCT 

 

Fig. 12. 10M_AL memory consumption -RaCE, NCE, NPT, and CCT 

 

Fig. 13. 10M_HL memory consumption -RaCE, NCE, NPT, and CCT 

 

Fig. 14. 29M -memory consumption - RaCE, NCE, NPT, and CCT 

E. Insertion, Deletion and LPM Time  
In this section, we shall discuss the time required for inserting, 

deleting and performing LPM. Fig. 15 shows the comparison 
between the insert, search, and delete frequency (M/s) of B_List, 
S_List, 10M_AL, and 10M_HL datasets. The total time required to 
insert, search, and delete all the names using the RaCE scheme, 
for B_List, 0.61 M/s, 0.698 M/s, and 0.522 M/s, for S_List, 0.638 
M/s, 0.72 M/s and 0.55 M/s, for 10M_AL, 0.657 M/s, 0.708 M/s 
and 0.505 M/s respectively, and for 10M_HL, 0.66 M/s, 0.70 M/s 
and 0.516 M/s, respectively. Fig. 16, 17 and 18 shows insert, 
search and delete frequency (in M/s) of RaCE with other schemes 
for 29M dataset. 

  

(a) (b) 

  

(c) (d) 
Fig. 15. RaCE - Insert, search, and delete frequency (M/s) for the B_List, S_List, 
10M_AL, and 10M_HL dataset, respectively 

F. Token Re-distribution Performance  

In token re-distribution, tokens freed by deleting NCs are 
assigned to new NCs. We carry out an experiment to evaluate the 
efficiency of token re-distribution process. For this, for each 1000 
name insertions, we deleted randomly selected single name entry 
from the CT and NET. After the component deletion, token can be 



re-distributed to the new components. We carried out this 
experiment for both datasets. Fig. 19 shows the total number of 
components present in the B_List and S_List datasets and the 
distribution of tokens among them.  

 
Fig. 16. 29M - Insert Frequency (M/s) for RaCE, NCE, NPT, and CCT 

 
Fig. 17. 29M - Search Frequency (M/s) for RaCE, NCE, NPT, and CCT 

 
Fig. 18. 29M - Delete Frequency (M/s) for RaCE, NCE, NPT, and CCT 

 
Fig. 19. A real scenario for token re-distribution for B_ List and S_List dataset 

VI. CONCLUSION 

This paper discussed a memory-efficient and scalable NC 
encoding based scheme for NDN FIB, called RaCE, which is 
reducing memory consumption of the FIB implementation. The 

incoming CNs or NPs are first decomposed in components. Then 
unique tokens are generated for each component where identical 
components share same components. The main operations are to 
insert, delete, and search a name, and to find LPM of name. 
Extensive experiments show that RaCE outperform other existing 
schemes. In future work, we will try to reduce the insertion, 
searching and deleting time by introducing the load balancing 
schemes for the trie. 
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