
Reliable Memory Efficient Name Forwarding in

Named Data Networking

Divya Saxena
Department of CSE

IIT Roorkee, India

divya.saxena.2015@ieee.org

Vaskar Raychoudhury
Department of CSE

IIT Roorkee, India

vaskar@ieee.org

Christian Becker
Chair for Information Systems II

Universität Mannheim, Germany

Ls-becker@uni-mannheim.de

Neeraj Suri
Dept. of Computer Science

TU Darmstadt, Germany

suri@cs.tu-darmstadt.de

Abstract—Named Data Networking (NDN) is a promising future

Internet architecture which retrieves the content using their names.

Content names composed of strings separated by ‘/’ are stored in

the NDN Forwarding Information Base (FIB) to forward the

incoming packets further. To retrieve content through their names

poses two main challenges for the NDN FIB: high memory

consumption and high lookup time. Therefore, an efficient and

scalable data structure is required to store names in FIB. Encoding

components in all the names with a unique integer can reduce the

memory consumption as well as lookup time. In this paper, we

propose a scalable and memory-efficient radix trie based name

component encoding scheme, RaCE, to implement NDN FIB. Our

experiment results show that the RaCE scheme is reducing memory

consumption by 89.95% and 26.07% compared to the original size

of data and NCE scheme for the 29 million dataset, respectively.

Keywords—Named Data Networking; NDN; Forwarding

Information Base; FIB; Radix Trie; RaCE

I. INTRODUCTION

Named Data Networking (NDN) is the future Internet
architecture which has changed the semantics of communication
from end-host content fetching to pulling the content from any
intermediate node having valid content [1][2]. As a future Internet
paradigm, NDNs network layer supports scalability (support to
large Internet topology and high amount of name prefixes),
security (integrity, origin authentication and relevance of routing
information), resiliency (to detect and recover from packet
delivery performance), and efficiency (support multi-path
forwarding and in-network caching for efficient data
dissemination).

In NDN, a content name (CN) is composed of several
components of variable length which are maintained in the
hierarchical structure, whereas current Internet uses fixed length
(either 32 bit or 64 bit) addresses. In NDN, Forwarding
Information Base (FIB) maintains name prefixes (NP) and their
corresponding outgoing interface(s) and forwards incoming
packets by calculating the longest prefix match (LPM) of the CN.
To access contents via application name resolves numerous issues
raised due to host-centric networking paradigm, but still NDN is
facing two major issues. First is, FIB stores a huge number of

names composed of an arbitrary number of components separated
by ‗/‘. Storing these huge number of variable length names in
compared to IP address consumes high memory space. Second is,
a lookup operation, such as insert, LPM, delete and update the
NPs on the large number of names consumes high time.

To overcome the afore-mentioned issues, an efficient and
scalable data structure is needed to implement NDN FIB. The
data structure should have the following properties. First, it
should consume less memory. Second, the operations like, insert,
update, LPM, and delete should be performed in constant time.
Third, LPM should not produce any false positives and false
negatives. Therefore, the data structure should support low
processing time, high throughput and reliability at the router
level.

Some existing data structures, such as Character Component
Trie (CCT), Name Prefix Trie (NPT), and Hash Table (HT) are
used for exact-match algorithms. CCT and NPT both store some
extra information, like each node of CCT stores a character, a
Boolean value (whether the node is end of a name or not), number
of child nodes and pointers to the child nodes. Moreover, HT is
not memory-efficient and is not suitable for LPM.

A possible solution of the afore-mentioned problem is to
encode the name, i.e., to encode the components of a CN with a
unique integer where identical components share the same code.
E.g., on an average, a CN can have 5-6 components and each
component can have 6 characters. Then, the memory
consumption will be approximately 30 bytes. To encode the
component can solve this issue as it will consume only 20 bytes
[3]. Wang, et al. [4] proposed the encoding for the NDN FIB.
They encode the components using the integer on the current
level states basis using the Encoded Name Prefix Trie (ENPT).
The states and transitions of ENPT are maintained in the State
Transition Array (STA). The use of array for implementing FIB
can degrade the network and system performance as child nodes
of the trie can be stored in consecutive memory locations. For
each insertion and/or deletion operation in the STA, it is needed
to re-allocate child nodes to other memory location. Sometimes,
there can be need to re-allocate whole block of child nodes. For
FIB implementation, it is impractical to assume that prior
knowledge of content requests to arrive at an NDN router is

javascript:linkTo_UnCryptMailto('pdlowr-Ov0ehfnhuCxql0pdqqkhlp1gh');

available before populating the data structure. Moreover, this may
degrade system performance of the dynamic network
environment.

We propose a memory-efficient Radix trie based Component
encoding (RaCE) scheme, which supports components encoding
of CN for NDN FIB implementation. RaCE encodes the name
components (NC) in the 32-bit integer where identical component
share the same integer. RaCE uses the Radix trie (RT) [5] as the
basic structure which eliminates the impact of maintaining
redundant information. RT also reduces the lookup time by
compressing the search path. In summary, the contributions of
this paper are listed below:

 We propose a component encoding scheme to implement
NDN FIB.

 We use the Radix trie, a compact prefix trie to reduce the
memory consumption and to support reliability at the
router.

 Our extensive experiments over 29 million names dataset
show that components encoding using RaCE is
consuming 89.95% less memory than storing the names
without encoding and reducing memory consumption by
up to 26.07% in contrast to the NCE [4] scheme.

The paper organization is as follows. Section II discusses
about the related research works. Section III presents a brief NDN
introduction. Section IV describes our proposed scheme, its
working, and the algorithm. Our performance results are given in
Section V. Finally, Section VI concludes the paper and provides
possible future directions.

II. RELATED WORK

In NDN, Wang, et al. proposed Name Component Encoding
(NCE) [4] in which NCs are encoded using the integer and states
are maintained in the STA. They extended this work to speed up
the lookup time and proposed parallel architecture called Parallel
Name Lookup (PNL) [6]. Some schemes [7][8] uses hash table
(HT) with bloom filter (BF) (space-efficient probabilistic data
structure) for supporting the fast name lookup in FIB. So, et al.
[7] have presented an NDN forwarding lookup engine based on
HT and BF. They have also proposed a collision resistant SipHash
[8], for computing prefix hashes in one pass with simultaneous
parsing of name components. HT consumes high memory while,
BFs cannot be directly used for NDN‘s FIB.

Furthermore, Wang, et al. [11] proposed a two-stage Bloom
filter-based scheme for finding LPM of CN. In first stage, NPs are
stored into BFs and in second stage, NPs are divided into groups.
This scheme performs better than character trie [9], NCE [4],
BloomHash [10], and BF. Moreover, Wang, et al. [11] have
shown two main technical issues to speed up name lookup of
NDN FIB, such as, how to speed up the NPs‘ length calculation
and how to speed up the HT operations. Later, Wang, et al.
[12][13] proposed an adaptive greedy name lookup scheme to
handle these issues. The above-mentioned schemes mainly based
on the data structures, such as trie, HT, and BF. Trie based name

lookup schemes having high lookup cost as their name prefix
lookup time is based on the length of the name. HTs consumes
high memory while, BF induces false positives [4]. To overcome
these issues, Quan, et al. [14] proposed an Adaptive Prefix Bloom
filter (NLAPB) scheme in which first part of a name matched by
BF, while another part is processed by trie. Yuan, et al., [15] have
proposed binary search of HTs. They have also proposed level
pulling to reduce the number of HT lookup.

III. NDN OVERVIEW

In this section, we shall discuss about NDN working and FIB
characteristics.

A. NDN Forwarding and Routing

Each NDN router uses three main data structures.

Content Store

(CS)

Content Store

(CS)
Pending Interest

Table (PIT)

Pending Interest

Table (PIT)
FIB

Add Request Port
Create PIT entry

Drop Interest Packet
Return data

Content Store

(CS)

Content Store

(CS)

Pending Interest

Table (PIT)

Pending Interest

Table (PIT)

Drop Data

Data Packet

Process

Interest Packet

Process
Delete PIT Entry

Forward Data

Cache Data

Data

Packet

Interest

Packet

Miss

MatchedExact Matching

Longest Prefix Matching

Fig.1. NDN forwarding [2]

 Content Store (CS): It temporarily stores actual data
packets for future references.

 Pending Interest Table (PIT): It stores the requested
packet’s CN until corresponding data packet arrives.

 Forwarding Information Base (FIB): It forwards the
incoming requesting packet to the next hop(s) using the
LPM of CN.

NDN holds receiver-based communication, initiated by the
content consumer. NDN communication uses two types of
packets: Interest packet (Ipkt) and Data packet (Dpkt) (see Fig.
1). Each Ipkt and Dpkt contains CN for data to search. Whenever
a content request reaches at the NDN router, requested data is
searched using the CN associated with the Ipkt. If corresponding
data is available at that router, a Dpkt is forwarded downstream
using the trail of Ipkt. Otherwise, Ipkt is forwarded further.
Therefore, the fundamental aim of the NDN is to access content
without concerning about location of the content hosting entity. In
NDN, security is in-built in the architecture. Every Dpkt in NDN
is cryptographically signed by the content provider with its name
for securing the data. Security layer provides security to each and
every piece of content, unlike securing the entire communication
channel in Internet.

IV. OUR PROPOSED SOLUTION

In this section, we discuss our proposed scheme for NC
encoding using the Radix trie (RT). For the rest of this paper, we
named our solution as RaCE scheme.

Component Trie (CT) Encoded Name Trie (ENT)

Encoded

Name
Insert

 Delete

Update

LPM

Outgoing

interface(s)

RaCE framework

Fig.2. RaCE Framework

A. The RaCE Framework and Data Structures

The RaCE scheme is using use RT, a space-optimized ordered
trie to speed up the name lookup and to reduce the total memory
consumption. RT is path-compressed trie in which nodes with
only one child are merged together.

Fig. 2 shows the framework of RaCE scheme which
comprises of Component Trie (CT) and Encoded Name Trie
(ENT) along with one stack (Available Token Stack (AT)) and
one Token Frequency Map (TFM). CT, TFM and AT together

create Component Encoded Module (CEM) which encodes each
component of a name and maintains their traces. These encoded
names are passed to next module Encoded Name Module (ENM)
which stores encoded names in the ENT.

Fig. 3(a) shows the logical structure of FIB and encoding of
the names using the CEM module. Fig. 3 (b) shows the FIB
structure using RaCE scheme. When an Ipkt arrives at the router,
CEM generates <component, token> tuple for each component of
that name and generates the encoded name. It is inserted in the
ENT, if not present. To delete, update and to find LPM, CEM acts
similar to insert operation.

In next sub-sections, we discuss component encoding and
encoded name formation and the lookup operations, such as
insert, search, delete and LPM.

wfsf

Name prefixes Encoded Name
Outgoing

interface(s)

/in/co/google /1/2/3

/in/co/google/books /1/2/3/4

/uk/co/google /5/2/3

/com/college/academic /6/7/8

/com/video/movies /6/9/10

/com/video/movie/lyrics /6/9/11/12

/com/college/academic/books /6/7/8/4

/in/co/yahoo/news /1/2/13/14

/in/college/about 1/7/15

/com/college/CS/news /6/7/16/14

/com/college/CS/btech /6/7/16/17

/in/college /1/7

Fig. 3 (a). FIB table with the name prefixes and their encoded names Fig. 3 (b). FIB structure using RaCE

B. Component Encoding Module (CEM)

CT data structure is used to produce unique tokens for each
NC. CT is a path compressed trie in which nodes having one child
are merged together as shown in Fig. 3(b). Whenever a content
request arrives at the NDN router, CN is decomposed into its
components and a unique integer is assigned to each component.
Then, these encoded components form the encoded name and
passed to next module ENM. The same procedure is repeated for
all CT’s operations - search, insert, and delete of component(s). In
RaCE, token distribution process maintains the uniqueness among
the NCs. We define uniqueness in token distribution process in
CEM as a property in which CEM ensures that a unique token is
assigned to each name‘s components and identical components
share the same token.

C. Encoded Name Module (ENM)

ENT is also space optimized, compact prefix trie which stores

encoded names. CT passes encoded names to ENT which is

searched in the ENT. ENT structure supports four main

operations - to search, insert and delete an encoded name, and to

find LPM of encoded name. Encoded name is inserted in the

ENT if already not present in the ENT, otherwise encoded name

is discarded. To delete an encoded name, ENT deletes

corresponding components path (not shared by other encoded

names) from the leaf node and de-allocates memory. To find the

LPM, an encoded name is searched from the root node and

matched one-by-one components from longest-to-shortest prefix

to find the node with outgoing interface(s).

Radix trie has an important property, called compaction, which

is followed by CT and ENT. In compaction, a node having only

one child, is merged with its parent node. In our proposed

solution, we opted this property with a modification that a single

child node is merged with its parent node if child node is not

containing any index entry. Compaction is performed with every

insertion function, if needed.

Fig. 4 and 5 shows the insert and delete operations in ENT

through the examples. Suppose a name prefix arrives at the NDN

router with the CN /in/college/about, propagated by the routing

protocols. CT will generate the encoded name /1/7/15 and pass it

to the NET. If encoded name is already present in the NET (see

Fig. 4), then no operation will be performed. Furthermore, if a

request arrives at the NDN router with the CN

/in/college/about/director which does not exists in the NET, then

its encoded name 1/7/15/18 will be inserted in the NET. RaCE

repeats the same process for each name prefix required to

maintain in the FIB.

Whenever there is need to delete a name prefix from the FIB,

CT provides the encoded name to NET. Encoded name is deleted

from the NET from leaf node to root if and only if encoded name

is not shared by other names of the trie. Suppose, the name to be

deleted from the NET is /com/video/movies and encoded name is

/6/9/10. The token ‗10‘ is not shared by any other encoded name

so it can be deleted while other tokens ‗6‘ and ‗9‘ cannot be

deleted as they are shared by other encoded names (see Fig. 5).

61
5.2.3

2 7

3 13.14 15 10 11.12

7 9

8 16

4 14 17

Root

4 18

Fig. 4. Inserting an encoded name in the NET

Deletion

/6/9/10

1126612345

Token_Array

1126512345 10

-1

Stack Top

Stack Top

Before:

87654321 1817

87654321 1817
Token_ArrayAfter:

221101 21

161514131211109

161514131211109

221112 21

61
5.2.3

2 7

3 13.14 15 10 11.12

7 9

8 16

4 14 17

Root

4 18

61
5.2.3

2 7

3 13.14 15 11.12

7 9

8 16

4 14 17

Root

4 18

Fig. 5. Deleting an encoded name from the NET

D. RaCE Algorithm

In this section, we present our algorithm for insertion, deletion
and LPM using the RaCE scheme.

1) Assumptions and variables:
Table I and II list the variables and functions used for the

algorithm of RaCE scheme.

TABLE I VARIABLES USED IN RACE ALGORITHM

Variable Significance

N Name prefix to be insert in the FIB or CN of an Ipkt

L Total number of components in N

𝑪𝒊
𝑵 ith component of N, s.t. 𝐶𝑖

𝑁𝐿
𝑖=1 = N

𝑪𝒍𝒊𝒔𝒕
𝑵 Array containing the components of N

token(𝑪𝒊
𝑵) A unique integer value assigned to 𝐶𝑖

𝑁

𝑵𝒆 Encoded name for N, s.t., 𝑁𝑒= token(𝐶𝑖
𝑁) for i =1 to L

𝑻𝒕
𝑪

Number of components identified by a particular token present
in the CT at any time instant t

𝑫𝒍𝒊𝒔𝒕
𝑪 Deleted component list

frtstack
Stack to store tokens freed by deleting corresponding
components. Tokens are popped for re-use

2) Algorithm description:

The algorithm for the RaCE scheme is given in Fig. 6. For the
implementation purpose, we have used three data structures -
Radix trie (RT), stack, and array. We have already discussed

about using RT for CT and ENT structures. Stack is used for
storing tokens freed by deleting components associated with it
and the array is used to store total count of an individual
component present in the requested names stored in FIB.

TABLE II FUNCTIONS USED IN RACE ALGORITHM

Functions Description

decompose(N) Decomposes N and prepares 𝐶𝑙𝑖𝑠𝑡
𝑁

insertCT(𝐶𝑙𝑖𝑠𝑡
𝑁)

Searches 𝐶𝑖
𝑁in CT and returns token for 𝐶𝑖

𝑁 if successful,

otherwise inserts 𝐶𝑖
𝑁in CT. Function returns encoded name

𝑁𝑒 . to ENT

deleteCT(𝐶𝑙𝑖𝑠𝑡
𝑁) Delete 𝐶𝑖

𝑁from CT and re-allocates token to stack

insertENT(𝑁𝑒)
Searches 𝑁𝑒 in ENT and returns𝐹𝐼𝐵𝑖𝑛𝑑𝑒𝑥

𝑁𝑒 for updation if

successful, otherwise inserts 𝑁𝑒 in ENT

deleteENT(𝑁𝑒 ,
𝐷𝑙𝑖𝑠𝑡
𝐶)

Delete path of 𝐷𝑙𝑖𝑠𝑡
𝐶 components present in 𝑁𝑒from ENT

lpmCT(𝐶𝑙𝑖𝑠𝑡
𝑁)

Searches 𝐶𝑖
𝑁 in CT and returns token for 𝐶𝑖

𝑁 if successful,

otherwise stops procedure

lpmENT(𝑁𝑒) Finds the LPM of the encoded name 𝑁𝑒

searchCT(𝐶𝑖
𝑁) Search the 𝐶𝑖

𝑁 in the CT

LPM_RaCE (N)

Invoke decompose(N)

send 𝐶𝑙𝑖𝑠𝑡
𝑁 to lpmCT(𝐶𝑙𝑖𝑠𝑡

𝑁)

lpmCT(𝐶𝑙𝑖𝑠𝑡
𝑁)

 ∀𝑪𝒊
𝑵 ∈ 𝑪𝒍𝒊𝒔𝒕

𝑵

 if 𝐶𝑖
𝑁 is not in CT

 break

 else

 𝑡𝑜𝑘𝑒𝑛(𝐶𝑖
𝑁) ←searchCT(𝐶𝑖

𝑁)

 𝑁𝑒←𝑁𝑒 ∪ 𝑡𝑜𝑘𝑒𝑛(𝐶𝑖
𝑁)

 lpmENT(𝑁𝑒)

Insertion_RaCE (N)
Invoke decompose(N)

send 𝐶𝑙𝑖𝑠𝑡
𝑁 to insertCT(𝐶𝑙𝑖𝑠𝑡

𝑁)

insertCT(𝐶𝑙𝑖𝑠𝑡
𝑁) //Insertion of a component 𝐶𝑖

𝑁 in the CT

 ∀𝐶𝑖
𝑁 ∈ 𝐶𝑙𝑖𝑠𝑡

𝑁

 if 𝐶𝑖
𝑁 is in CT

 𝑇𝑡
𝐶= 𝑇𝑡

𝐶+ 1

 else

 𝑇𝑡
𝐶← 1

 Insert 𝐶𝑖
𝑁in the CT

 if empty(frtstack) = FALSE // free token to reuse

 token(𝐶𝑖
𝑁) = pop(frtstack)

 else

 token(𝐶𝑖
𝑁) = token(𝐶𝑖−1

𝑁) + 1

 𝑁𝑒 = 𝑁𝑒 ∪ 𝑡𝑜𝑘𝑒𝑛(𝐶𝑖
𝑁)

 Invoke insertENT(𝑁𝑒)

insertENT(𝑁𝑒) //Insertion of 𝑁𝑒 in the ENT

 ∀𝑡𝑜𝑘𝑒𝑛(𝐶𝑖
𝑁) ∈ 𝑁𝑒

 if 𝑁𝑒 is not in ENT

 Insert 𝑁𝑒 in ENT
Fig. 6. Pseudocode for RaCE lpm and insertion algorithm

To find LPM of incoming CN, it is decomposed into
components using decompose (N) function. Then each component
is searched in the CT, if any component is not present in the CT,

the procedure is terminated. Otherwise, it invokes searchCT(𝐶𝑖
𝑁)

function to find the token of component and to form encoded
name (𝑁𝑒). Then, it invokes lpmENT(𝑁𝑒) function to search the
𝑁𝑒 in the ENT.

To insert a name prefix into FIB, the function decompose(N)
decomposes N into constituent components and passes these

component list (𝐶𝑙𝑖𝑠𝑡
𝑁) to the insertCT(𝐶𝑙𝑖𝑠𝑡

𝑁) function. The function
searches for the presence of each component in the CT, and if

found, the component count (𝑇𝑡
𝐶) is incremented by 1 and the

corresponding token is returned. If the component is not present

in the CT, it is inserted in the CT and its component count (𝑇𝑡
𝐶) is

initialized to 1. For assigning the token, the function first checks
the frtstack for an available/free token to reuse. If any such free

token is available in the frtstack, it is allocated to 𝐶𝑖
𝐶𝑁 by popping

the stack. If frtstack is empty, a new token is assigned to the new
component by incrementing the last token generated by 1. At the

end of the insertCT(𝐶𝑙𝑖𝑠𝑡
𝐶𝑁) function, CT generates encoded name

(𝑁𝑒)and invokes insertENT(𝑁𝑒) to insert Ne in the ENT. A
function insertENT(𝑁𝑒) searches whether 𝑁𝑒 is already existing in
the ENT or not. If 𝑁𝑒 does not exist, then insertENT(𝑁𝑒) inserts
𝑁𝑒 in the ENT and its corresponding outgoing interface(s).

Deletion_RaCE (N)

Invoke decompose(N)

send 𝐶𝑙𝑖𝑠𝑡
𝑁 to deleteCT(𝐶𝑙𝑖𝑠𝑡

𝑁)

deleteCT(𝐶𝑙𝑖𝑠𝑡
𝑁) //Deletion of a component 𝐶𝑖

𝑁 from the CT

 ∀𝐶𝑖
𝑁 ∈ 𝐶𝑙𝑖𝑠𝑡

𝑁

 if 𝐶𝑖
𝑁is in CT

 𝑁𝑒 = 𝑁𝑒 ∪ 𝑡𝑜𝑘𝑒𝑛(𝐶𝑖
𝑁)

 𝑇𝑡
𝐶 = 𝑇𝑡

𝐶 - 1

 if 𝑇𝑡
𝐶 = 0

 Delete 𝐶𝑖
𝑁 from the CT

 Add token(𝐶𝑖
𝑁) into 𝐷𝑙𝑖𝑠𝑡

𝐶 and frtstack

 else
 break

 if 𝐷𝑙𝑖𝑠𝑡
𝐶 is not empty

 Invoke deleteENT(𝑁𝑒 , 𝐷𝑙𝑖𝑠𝑡
𝐶)

deleteENT(𝑁𝑒 , 𝐷𝑙𝑖𝑠𝑡
𝐶) //Deletion of 𝑁𝑒 from the ENT

 ∀𝐷𝑙𝑖𝑠𝑡
𝐶 ∈ 𝑁𝑒

 Delete token(𝐶𝑖
𝑁) from 𝑁𝑒

 De-allocate memory for re-use
Fig. 7. Pseudocode for RaCE deletion algorithm

For deleting a name prefix from FIB, first its components are

retrieved using decompose(N). Then the component list (𝐶𝑙𝑖𝑠𝑡
𝑁) is

passed to the deleteCT(𝐶𝑙𝑖𝑠𝑡
𝑁) function. This function sequentially

searches for the presence of each individual components (𝐶𝑖
𝑁) of

N using the 𝐶𝑙𝑖𝑠𝑡
𝑁 . If any component from 𝐶𝑙𝑖𝑠𝑡

𝑁 is not present in the
CT, the procedure is terminated. If all the components of a name

N are available in the CT, then the 𝑇𝑡
𝐶 for all 𝐶𝑖

𝑁 present in 𝐶𝑙𝑖𝑠𝑡
𝑁

are decremented by 1. If 𝑇𝑡
𝐶 of any 𝐶𝑖

𝑁 becomes 0 (which
signifies that this component is not present in any name stored in

the CT), then the function deletes that particular 𝐶𝑖
𝑁 from the CT

and the unique token assigned to it earlier is added to the deleted

component list (𝐷𝑙𝑖𝑠𝑡
𝐶) and is pushed to the freed token stack

(frtstack). After the generation of the 𝐷𝑙𝑖𝑠𝑡
𝐶 (if not empty), the

deleteENT(𝑁𝑒 ,𝐷𝑙𝑖𝑠𝑡
𝐶) function is invoked to delete every freed

token from 𝑁𝑒 (present in the ENT) and de-allocates the memory
for re-use.

V. EXPERIMENT AND RESULTS

A. Experimental Setup

RaCE scheme has been implemented using Java
TM

programming language which runs on a server with Intel(R)
Xenon(R) CPU E5-2695 v2 at 2.40 GHz having 128 GB DDR3
RAM with operating environment 64 bit Windows

TM
 8.1.

We have used four datasets as input. All are online dataset
from Blacklist [16], Shallalist [17], average workload [4], and
heavy workload [4]. Blacklist consists of 37,36,394 (~4M),
Shallalist consists of 45,35,777 (~4.5 M), and average workload
and heavy workload consists of 10.000,000 (10M) domain names
(URLs). For a better analysis, we have combined these four
datasets to form a dataset of 29M. For the rest paper, we refer
Blacklist dataset as B_List, Shallalist dataset as S_List, average
workload as 10M_AL and heavy workload as 10M_HL. We have
done some pre-processing on the available URLs, to convert them
into the traditional named data format. E.g., we have converted
URLs of available datasets ‗google.com’ into named data format
‘/com/google’. For FIB population, we modified the datasets by
reducing the number of components in a name. Table III and IV
depicts the detail of the datasets used for FIB population. For the
performance evaluation, we have compared RaCE with three
other schemes, NCE, NPT and CCT as discussed earlier. We run
each program 100 times to minimize the impact of hardware
dependency and then an average is taken to plot the graphs.

B. Performance Metrics

We have measured the total memory consumption as well as
time for name lookup operations in the FIB. The main
performance metrics used are as follows:

 Total memory usage / consumption: Total amount of
memory (CT and ENT) consumed (in MB) to implement
the FIB data structure.

 Frequency (in million/second): The number of names
(in million) inserted/updated/deleted per second.

In the next sub-section, we shall analyze the impact of token
distribution using our proposed RaCE scheme.

TABLE III ANALYSIS OF NUMBER OF NAME COMPONENTS FOR DIFFERENT DATASETS

Dataset and

Dataset Size
of Names

Number of Names for the Number of Components

<=4 5 6 7 8 9 10 >10
B_List 3,736,394 3,521,370 97,019 50,268 26,398 16,016 10,003 6,113 9,208
S_List 4,535,775 4,465,130 32,257 21,042 10,308 4,211 1,693 6,99 435

10 M_AL 10,000,000 4,893,815 2,608,278 1,171,965 1,070,531 227,534 24,949 2,898 30
10 M _HL 10,000,000 3,807,227 2,601,413 1,690,944 1,181,366 545,237 141,589 28,794 3,430

C. Token distribution Mechanism

The main aim of token distribution is to reduce the effect of

redundant data by allocating a unique token to identical

components. Fig. 8 and 9 shows the number of NCs and the total

tokens allocated to them for B_List and S_List datasets. Different

names may share some components at same and/or different

levels. Therefore, to generate unique tokens for identical

components reduce the generation of total number of tokens. It

also depicts the ratio of total tokens distributed to the total

number of components. RaCE scheme has achieved an average

compression ratio of approximately 80% in all the datasets.

TABLE IV STATISTICS OF NAME DATASETS - B_LIST, S_LIST, 10M_AL, 10M_HL AND 29M DATASETS

Dataset and

Dataset Size
of Names

of Total

Components

Average
Component

Size in Original

(Bytes)

Average
Encoded

Component

Size (Bytes)

Average # of

Components
per Name

of Nodes

in NCE

of Nodes

in CCT

of Nodes

in NPT

of Nodes

in RaCE

B_List 3,736,394 9,482,567 12.83 8.33 2.54 2,340,795 11,730,555

2,340,795 2,001,059

S_List 4,535,775 10,576,826 12.89 8.28 2.33 2,879,339 18,129,256 2,879,339 2,641,457

10 M_AL 10,000,000 47,030,831 27.58 12.97 4.70 2,780,325 17,702,732 2,780,325 1,607,424

10 M _HL 10,000,000 51,213,285 40.49 13.96 5.12 494,088 3,197,223 494,088 285,439

29M 28,272,169 1,21,336,533 28.48 13.24 4.29 8,482,468 50,386,700 8,482,468 6,219,196

TABLE V MEMORY REQUIREMENTS BY ORIGINAL, NCE, NPT, CCT, AND RACE FOR B_LIST, S_LIST, 10M_AL, 10M_HL AND 29M DATASETS

Dataset and

Dataset Size

of

Names

Original

size
(MB)

NCE

Size
(MB)

NPT

Size
(MB)

CCT

Size
(MB)

RaCE

Size
(MB)

Memory Compression Ratio (%)

RaCE
vs.

Original Size

RaCE
vs.

NCE

RaCE
vs.

NPT

RaCE
vs.

CCT

B_List 3,637,394 54.62 36.11 47.80 74.64 25.59 53.14 29.13 46.46 65.72

S_List 4,535,775 66.55 44.78 64.46 113.75 33.38 49.84 25.46 48.22 70.65

10 M_AL 10,000,000 291.55 31.97 46.89 107.42 21.93 92.48 31.40 53.23 79.58

10 M_HL 10,000,000 418.94 5.68 8.38 19.38 3.91 99.06 31.16 53.34 79.82

29M 28,272,169 848.03 115.25 160.68 311.39 85.20 89.95 26.07 46.97 72.68

Fig. 8. The number of components vs. number of tokens assigned in the B_List
dataset

Fig. 9. The number of components vs. number of tokens assigned in the S_List

dataset

D. Memory Consumption (worst case)

We measure the memory consumption for the FIB by using our

scheme in compare to the CCT, NPT and NCE schemes and plot

the results in Fig. 10, 11, 12, 13 and 14 for B_List, S_List,

10M_AL, 10M_HL and 29M datasets, respectively. It can be

observed that CCT and NPT consume more memory for

implementing FIB than the original size of the datasets. CCT and

NPT data structure consume high memory because each node of

the trie maintains additional information as discussed in Section

I. On the other hand, RaCE scheme consume less memory than

other schemes and the original dataset. RaCE memory

consumption for B_List, S_List, 10M_AL, 10M_HL and 29M is

38.55 MB, 49.71 MB, 21.93 MB, 3.91 MB and 85.20 MB,

respectively. Table V depicts the detail of the memory consumed

by different schemes for these datasets. In comparison to NCE,

NPT, and CCT schemes, memory consumption in our scheme is

reduced by 29.13%, 46.46% and 65.72%, respectively for B_List

dataset, 25.46%, 48.22% and 70.65%, respectively for S_List

dataset, 31.40%, 53.23% and 79.58%, respectively for 10M_AL

dataset, 31.16%, 53.34%, and 79.82%, respectively for 10M_HL

dataset and 26.07%, 46.97% and 72.68%, respectively for 29M

dataset.

Fig. 10. B_List memory consumption - RaCE, NCE, NPT, and CCT

Fig. 11. S_List memory consumption -RaCE, NCE, NPT, and CCT

Fig. 12. 10M_AL memory consumption -RaCE, NCE, NPT, and CCT

Fig. 13. 10M_HL memory consumption -RaCE, NCE, NPT, and CCT

Fig. 14. 29M -memory consumption - RaCE, NCE, NPT, and CCT

E. Insertion, Deletion and LPM Time
In this section, we shall discuss the time required for inserting,

deleting and performing LPM. Fig. 15 shows the comparison
between the insert, search, and delete frequency (M/s) of B_List,
S_List, 10M_AL, and 10M_HL datasets. The total time required to
insert, search, and delete all the names using the RaCE scheme,
for B_List, 0.61 M/s, 0.698 M/s, and 0.522 M/s, for S_List, 0.638
M/s, 0.72 M/s and 0.55 M/s, for 10M_AL, 0.657 M/s, 0.708 M/s
and 0.505 M/s respectively, and for 10M_HL, 0.66 M/s, 0.70 M/s
and 0.516 M/s, respectively. Fig. 16, 17 and 18 shows insert,
search and delete frequency (in M/s) of RaCE with other schemes
for 29M dataset.

(a) (b)

(c) (d)
Fig. 15. RaCE - Insert, search, and delete frequency (M/s) for the B_List, S_List,
10M_AL, and 10M_HL dataset, respectively

F. Token Re-distribution Performance

In token re-distribution, tokens freed by deleting NCs are
assigned to new NCs. We carry out an experiment to evaluate the
efficiency of token re-distribution process. For this, for each 1000
name insertions, we deleted randomly selected single name entry
from the CT and NET. After the component deletion, token can be

re-distributed to the new components. We carried out this
experiment for both datasets. Fig. 19 shows the total number of
components present in the B_List and S_List datasets and the
distribution of tokens among them.

Fig. 16. 29M - Insert Frequency (M/s) for RaCE, NCE, NPT, and CCT

Fig. 17. 29M - Search Frequency (M/s) for RaCE, NCE, NPT, and CCT

Fig. 18. 29M - Delete Frequency (M/s) for RaCE, NCE, NPT, and CCT

Fig. 19. A real scenario for token re-distribution for B_ List and S_List dataset

VI. CONCLUSION

This paper discussed a memory-efficient and scalable NC
encoding based scheme for NDN FIB, called RaCE, which is
reducing memory consumption of the FIB implementation. The

incoming CNs or NPs are first decomposed in components. Then
unique tokens are generated for each component where identical
components share same components. The main operations are to
insert, delete, and search a name, and to find LPM of name.
Extensive experiments show that RaCE outperform other existing
schemes. In future work, we will try to reduce the insertion,
searching and deleting time by introducing the load balancing
schemes for the trie.

VII. ACKNOWLEDGEMENT

This work is partially supported by the Alexander von Humboldt

Foundation through the post-doctoral research fellow Dr. Vaskar

Raychoudhury.

REFERENCES

[1] Saxena D, Raychoudhury V, Suri N, Becker C, Cao J. Named Data

Networking: A survey. Computer Science Review. 2016 Feb 21.

[2] Zhang, L. et al. 2010. NDN Project, PARC Technical Report NDN-0001,
[Online]. Available: http://www.named-data.net/

[3] Saxena D, Raychoudhury V. 2016. Radient: Scalable, Memory Efficient
Name Lookup Algorithm for Named Data Networking. Elsevier Journal of
Network and Computer Applications. (Jan. 2016).

[4] Y. Wang, et al., ―Scalable Name Lookup in NDN Using Effective Name
Component Encoding,‖ In Proc. of IEEE 32nd International Conference on
Distributed Computing Systems (ICDCS), 2012, pp. 688-697.

[5] Morrison D. PATRICIA—practical algorithm to retrieve information coded
in alphanumeric. J. ACM, vol. 15, no. 4, pp. 514–534, Oct. 1968.

[6] Wang Y, et al., Parallel name lookup for named data networking. In Global
Telecommunications Conference (GLOBECOM), (Dec 2011), pp. 1-5.

[7] W. So, et al., ―Toward fast NDN software forwarding lookup engine based
on hash tables,‖ In Proceedings of the 8th ACM/IEEE symposium on
Architectures for networking and communications systems, 2012, pp. 85-86.

[8] W. So, et al., ―Named Data Networking on a Router: Forwarding at 20Gbps
and Beyond Categories and Subject Descriptors,‖ In Proceeding of ACM
SIGCOMM conference‘13, 2013, pp. 495–496.

[9] E. Fredkin, ―Trie memory,‖ ACM Comm., 3(9), (1960):pp. 490–499.

[10] S. Dharmapurikar, et al., ―Longest Prefix Matching using Bloom Filters,‖ In
Proceedings of the International Conference on App., tech., architectures,
and protocols for computer communications, 2003, pp. 201-212.

[11] Y. Wang, et al., ―NameFilter: Achieving fast name lookup with low memory
cost via applying two-stage Bloom filters,‖ International Conference on
Computer Communications (INFOCOM), 2013, pp. 95–99.

[12] Y. Wang, et al., "Greedy name lookup for named data networking," In
Proceedings of the ACM International Conference on Measurement and
modeling of computer systems, 2013, pp. 359-360.

[13] Y. Wang, et al., "Fast name lookup for Named Data Networking," In
Proceedings of the IEEE 22nd International Symposium of Quality of
Service (IWQoS), 2014, pp. 198-207.

[14] W. Quan, et al., ―Scalable Name Lookup with Adaptive Prefix Bloom Filter
for Named Data Networking,‖ IEEE communication, 18(1), (2014): 102–
105.

[15] H. Yuan, and P. Crowley, "Reliably Scalable Name Prefix Lookup." In
Proceedings of the 11th ACM/IEEE Symposium on Architectures for
networking and communications systems, 2015, pp. 111-121.

[16] Blacklist. [Online]. Available: http://urlblacklist.com/. [Accessed on Aug.
2014].

[17] Shallalist [Online] Available: http://www.shallalist.de/. [Accessed on Oct.
2014].

