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Abstract

Data transport is a core function for Wireless Sensor
Networks (WSNs) with different applications having var-
ied requirements on the reliability and timeliness of data
delivery. While node redundancy, inherent in WSNs, in-
creases the fault tolerance, no guarantees on reliability
levels can be assured. Furthermore, the frequent failures
within WSNs impact the observed reliability over time and
make it more challenging to achieve the desired reliabil-
ity. Unfortunately, a framework for modeling reliability of
data transport protocols in WSNs is currently missing. The
existence of such a framework would simplify evaluation,
comparison and also adaptation of these protocols. We for-
mulate the problem of data transport in a WSN as a set of
operations carried out on raw data. The operations aim
at filtering the raw data to streamline its reliable transport
towards the sink. Based on this formulation we systemati-
cally define a reliability framework. This paper argues for
the usefulness of the reliability framework by classifying ex-
isting transport protocols and comparing their reliability.

1. Introduction

Wireless Sensor Networks (WSNs) constitute a rapidly
growing research area covering both a wide variety of de-
vices and applications. Typical applications involve track-
ing or monitoring as (a) either statically as embedded sen-
sors or (b) dynamically as mobile (semi) autonomous enti-
ties. Correspondingly, applications such as monitoring of
traffic, disaster scenarios or target detection are seeing in-
creased use of WSNs. Empirically the core function for a
WSN is to collect data from the environment and transport
it to a gateway node termed as sink. The general data col-
lection and dissemination process involves the flow of the
raw data from source nodes towards the sink.
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Typically a WSN comprises of a large number of sensor
nodes possessing limited processing and power capabilities,
often communicating over unreliable and low bandwidth ra-
dio links [3]. Consequently, this resource constrained envi-
ronment is also subject to frequent node and communica-
tion failures. However, the utility of a WSN based appli-
cation arises from delivering reliable services, necessitating
the incorporation of fault tolerance techniques. A common
approach to provide fault tolerance in WSNs is using node
redundancy. However, this approach is not sufficient to ful-
fill the requirements of the application. Users are interested
in detecting a targeted phenomenon (fire detection, track-
ing) with a certain quality, e.g., they may require no false
negatives with or without tolerating false positives. Thus,
the desired responsiveness, i.e., reliability and timeliness of
data transport often varies for different applications. In ex-
treme cases, there are applications that may require limited
responsiveness such as habitat monitoring, and others that
require high responsiveness such as military applications.
Other intermediate responsiveness classes can be identified
such as applications that do not require high delivery relia-
bility [6] but require delivery timeliness, i.e., if some data is
lost the application performance will not degrade but data
should reach within time bounds specified by the applica-
tion.

One possible solution for reporting the phenomenon is
to flood the raw data. Flooding of (bursty) raw data causes
broadcast storms, which can result in more failures such as
collisions, contention and power depletion. Subsequently,
timeliness can not be assured. A established solution to this
problem is convergecast [14], guide the flood of raw data in
the direction of the sink. This can substantially increase the
responsiveness of the WSN, however the large volume of
data increases the probability of failures and consequently,
decreases the overall reliability. It is shown that in-network
processing is an optimization that further reduces the re-
dundancy of data [5], resulting in fewer collisions and less
contention, as well as enhanced responsiveness.

Consider the example of fire detection. The application
requires the fire to be detected and reported within speci-



fied time bounds. For this scenario we assume that sensor
nodes send “fire” message to all neighbors as soon as the
sensed temperature exceeds a given threshold. If a node
receives a certain number of “fire” messages (for instance
two), it sends a “fire” message to the sink using unicast. If
in-network processing operation for fire detection is not re-
liable and some fire” messages are lost due to collisions
(Figure 1a), application performance degrades due to non-
reporting of fire to the sink. Similarly, if the in-network pro-
cessing is reliable but the unicast is unreliable or the “fire”
message does not reach the sink in time, the performance
of the application drops (Figure 1b). Therefore, in order to
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Figure 1. Fire Detection Scenario

model the reliability of data transport all the operations on
data starting from its generation (dissemination, aggrega-
tion, unicast) need to be considered.

This paper targets the following specific objectives. In
order to setup the WSN responsiveness requirement inspite
of failures, we first develop a WSN fault model along with
semantics for data transport and reliability. Next we pro-
pose a scheme for the categorization of the existing trans-
port protocols on their operational phases and modules. Fol-
lowing such a classification, we capture these operational
phases in the proposed reliable framework that facilitates
reliability assessment, relative comparisons and adaptation
of data transport protocols. We also show that our reliability
model can simplify the online adaptation of data transport
protocols.

The paper is organized as follows. Section 2 presents
the related work. Section 3 details the proposed generalized
system and fault models, along with the existing and our
proposed data transport semantic. The proposed reliability
framework is presented in Section 4. The reliability com-
parison across existing transport protocols is conducted in
Section 5. Our conclusions and directions for future work
appear in Section 6.

2. Related Work

The study of reliable data transport in WSNs has been the
subject of extensive research [3, 6, 7, 8, 9, 11, 12, 14, 16].
While the common target is reliability assessment, the use
of different transport and reliability semantics exposes a
lack of generalized semantics. This also complicates a com-
parison and development of conformal reliability enhance-
ment strategies across them.

A limited body of work exists for reliability modeling of
sensor nodes [4] and especially on the reliability of clus-
tered WSNs [2, 13]. The reliability issues in multimodal
fusion sensor networks is discussed in [4]. The authors
presented system reliability for different types of sensors.
Markov models are used to represent the system reliability.
As only sensor reliability is modeled, this work is of com-
plementary value to ours. The authors in [2] proposed an
end-to-end reliability measure based solely on the connec-
tivity between sensor nodes, similar to the traditional wired
network. In [13] authors have extended this approach by in-
cluding the reliability for sensing coverage of sensors in the
WSN. Both approaches are limited in the sense that they
are considering only connectivity and sensing aspects of
data transport and are applicable only to clustered topolo-
gies. They do not consider other operations on data such
as aggregation and routing. From the discussion above we
conclude that there is a need for a generic reliability frame-
work for data transport.

3. Models and Semantics: System Model, Fault
Model, Data Transport Semantics

On this background, we first present a simple yet com-
prehensive system and fault model to capture generic WSN's
properties. Next we survey the existing data transport se-
mantics and propose our generalized semantic.

3.1. System Model

We consider a WSN consisting of N sensor nodes, S =
{51, 82, 83, ceernn sy }. Typically, each node is equipped with
one or more sensing devices, short range transceivers for
communication, limited processing, memory buffers and
energy capabilities. Overall the WSN consists of a few des-
ignated sinks that are adequate in power, ideally up to the
entire life of network, and possessing more memory and
higher processing speeds as compared to the sensor nodes.
In this work we assume, for the sake of simplicity, the ex-
istence of a single sink. We assume that all nodes are static
in nature but the topology of the network is dynamic due to
failures. Sensor nodes are placed in a finite size area and
communicate with each other via bi-directional multi-hop



wireless links employing a CSMA-based Medium Access
Control (MAC) protocol.

3.2. Fault Model

WSNss are obviously subject to a wide range of comput-
ing and communication level faults. Cheap hardware, lim-
ited resources and severe environmental conditions lead to
frequent perturbations in WSNs [1]. To achieve the desired
responsiveness the proper identification of faults is neces-
sary. Our fault classification is based on the ability of data
transport protocols to tolerate the effects of these faults [10].
We categorize all faults encountered during the data trans-
port broadly as intolerable or tolerable faults.

3.2.1 Intolerable Faults

Intolerable faults are those whose effects can not be handled
by the data transport protocols. WSNs may be deployed in
harsh environments such as for fire detection, tracking of
people in catastrophic areas. These environments can per-
manently destroy the nodes on a large scale or the entire
WSN, which obviously can not be handled. Other intol-
erable faults include crash failure of the sink and network
partitioning. The sink plays an important role and acts as
a bridge between the user and the WSN. Therefore, if the
sink crashes, the network will not be able to communicate
with the user resulting in an intolerable fault. Network par-
titioning is considered as an intolerable fault, since source
nodes and the sink may belong to different network parti-
tions. These intolerable faults can be transformed into tol-
erable ones, if the maintenance of the WSN is possible.

3.2.2 Tolerable Faults

Tolerable faults are those whose effects can be handled
by the data transport protocols. We further classify the
tolerable faults as communication and node failures.

Communication Failures: = Communication failures
constitute the most frequent failures in the WSN. Failures
relevant to the data transport include message loss and
higher message delays. These failures directly impact the
responsiveness of the WSN.

e Message Loss: Interference, collision and contention
constitute the major causes of message loss which ef-
fects the reliability and timeliness of data delivery.

e Message Delay: Network congestion is the major
cause of message delay in the WSN and effect the
timeliness of data delivery.

Node Failures: Node failures result in change of network
topology and may impact the responsiveness of the WSN.

Also nodes may start misbehaving. Due to these failures,
the event detection accuracy becomes lower. We subdivide
the node failures as follows.

e Accidental Damage: During deployment the sensor
nodes may get dropped or impacted, damaging the
node permanently. Also animals, falling trees or hu-
man themselves may accidentally destroy the sensor
nodes.

e Sensing Devices: As the sensor nodes are interacting
with harsh environments, and for extended periods of
time the sensors may start misbehaving, i.e., reporting
false alarms, resulting in erratic behavior, or the sensed
values may be noisy.

e Energy Depletion: Sensor nodes may run out of
power, which leads to a fail-stop behavior for these
nodes.

e Transient Failures: These occur from either software
or hardware perturbations and typically disappear if
the node is rebooted.

3.3. Data Transport Semantics

We first describe the existing data transport semantics
and illustrate their limitations. Consequently, we develop
and define our generalized data transport semantic.

3.3.1 Existing Semantics

A prominent semantic used for data transport in traditional
WSNss is the end-to-end (e2e) message delivery. Similar to
wired networks, a node has to transport the data towards the
sink. Unfortunately, this semantic is less suitable for WSNss,
given their data-centric nature [6].

The commonly accepted semantic by the research com-
munity is event-to-sink [6, 14, 16]. This semantic consid-
ers multiple nodes reporting the phenomenon to the sink.
Each node that detects the phenomenon is responsible for
sending the data to the sink. This semantic is showed to be
more suitable than the e2e semantic for WSNs [6], however
the event-to-sink semantic does not consider the in-network
processing of data.

3.3.2 Our Generalized Semantic

The in-network processing of data is common in WSNs. As
soon as the sensed value exceeds a given threshold indi-
cating the existence of the phenomenon, the corresponding
sensor nodes generate raw data messages. These messages
are disseminated towards the sink. In order to save lim-
ited resources such as energy and bandwidth, nodes perform



some operations on received raw data and forward this in-
formation towards the sink (Figure 2). Operations on raw
data are primarily filtering, aggregation and routing of data.
Actually, the data transport starts with the generation of the
raw data and comprises the different operations until the
phenomenon is reported to the sink.
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Figure 2. Our Generalized Semantic for Data
Transport

Hence, complementing the e2e and event-to-sink, we de-
velop our generalized semantic for data transport:

Definition 1 Data transport in WSNs is a set of operations
carried out on raw data from its generation till the phe-
nomenon is reported to the sink.

4. The Reliability Framework

As reliability is a major requirement for data transport,
we aim at providing a generic framework that allows for a
simple investigation of reliability. We first define a generic
reliability semantic with an appropriate reliability metric.
To simplify the computation of this metric, we then provide
a reliability model for data transport.

4.1. Our Generalized Reliability Semantic

In the e2e semantic of data transport, the reliability met-
ric is the probability that the single message generated for
the event reaches the sink. In the event-to-sink semantic the
reliability metric is the ratio of packets received at the sink
to the total number of packets generated for the event. Nei-
ther semantics consider timeliness, nor do they address the

in-network processing. Consequently, we need to develop a
new reliability semantic that explicitly considers timeliness
and our generalized semantic for data transport, in order to
achieve the desired responsiveness.

Accordingly, the reliability of data transport is a function
of the reliability of all the operations carried out on raw data.
Furthermore, we define the reliability metric as follows:

Definition 2 The reliability of data transport is the proba-
bility that the sink detects the phenomenon of interest within
an application specified time bound.

The decomposition of the data transport into operations
simplifies the computation of the overall reliability, pro-
vided that the dependencies between the reliabilities of the
different operations are given. This shows the need for a
reliability model that simplifies the calculation of overall
reliability of data transport.

4.2. The Data Transport Reliability Model

Prior to developing the reliability model, we specifically
note that our emphasis is on setting up the reliability model
for the operational phases of the WSN rather than modify-
ing standardized reliability evaluation schemes.

There are various popular graphical formalisms to ex-
press system reliability such as Fault Trees, Markov Mod-
els and Reliability Block Diagrams (RBD). We use the RBD
approach for its simplicity. The reliability of data transport
depends on the reliability of each operation. If one of the
operation fails, then the overall data transport fails. Accord-
ing to the RBD theory, this leads to a series representation
of the data transport in the WSN. Figure 3 depicts the re-
sulting RBD, which outlines the dependencies of the data
transport reliability versus the different stages for data op-
erations reliability.
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Figure 3. Reliability Block Diagram for Data
Transport

We calculate the reliability of data transport R, as fol-
lows:

Rqg=Rop, - Rop, ... - Rop,

Ra =[] Rop. (1
=1



where R,,, is the reliability of i*" operation and R, € [0, 1].

Using Equation (1), the data transport reliability is cal-
culated provided the number of operations and their relia-
bilities are known. The reliability of each operation can be
calculated either analytically or by simulations. Equation
(1) assumes that the time specified by the application for
data delivery is met by all the operations and all the deliv-
eries are in time. We defer the task of assigning time to
different operations to achieve overall timeliness as future
work.

This reliability model can be used to measure and esti-
mate the reliability of data transport in presence of the fail-
ures outlined in Section 3.2. In this work we mimic the
failures by tuning the reliability of each operation. For ex-
ample during the aggregation operation, loss of some raw
data may reduce the accuracy of aggregated value, which
can be considered as a decrease in the degree of reliability
of the aggregation operation. Similarly, the routing of ag-
gregated values can fail due to the message loss or delay and
can be considered as a decrease in the degree of reliability
of that operation.

5. Reliability Comparison of Existing Data
Transport Protocols

In order to compare the reliability of existing data trans-
port protocols we first classify and investigate the oper-
ations performed by the protocols to develop appropriate
RBDs. Using these RBDs we calculate the reliability of
these protocols in order to compare them.

5.1. Protocol Classification

According to the considered transport semantic we clas-
sify the existing protocols in two classes as: e2e and event-
to-sink.

Several e2e protocols are available in literature [7, §,
9, 11]. The basic technique to increase the reliability of
e2e data transport is retransmission. These protocols dif-
fer mainly in the policies for retransmissions. Each method
proposes a strategy to detect message loss and fix the nodes
that can retransmit lost messages. There are multiple mes-
sage loss detection techniques available such as Acknowl-
edgment (ACK), Negative ACK (NACK), Selective NACK
and timers. Modeling the reliability of these protocols is
therefore similar. For this reason we select only one rep-
resentative of this class, the Reliable Multi-Segment Trans-
port (RMST) protocol [7].

For the event-to-sink class some protocols are available
such as the Event to Sink Reliable Transport (ESRT) [6],
Reliable Bursty Convergecast (RBC) [14] and Price-
Oriented Reliable Transport (PORT) [16] protocols. Since

this class is more suitable for WSNs we select the main rep-
resentatives of this class: ESRT and RBC (PORT is based
on ESRT with focus on energy efficiency) for our compara-
tive study.

5.2. Reliability Models for the Protocols

After classifying the existing protocols and selecting rep-
resentatives of each class we aim at developing the RBD for
the selected protocols in order to evaluate and compare their
reliability. The task of the existing data transport protocols
in both classes is to report a message, either raw data or
the message containing the result of previous operations on
the raw data, to the sink. These protocols do not consider
previous operations on the raw data. The operations not
considered by the protocols are presented as grayed blocks
in Figures 4-6 for completeness.

5.2.1 The RMST Protocol

The RMST [7] protocol is Selective NACK-based. RMST
places responsibility for loss detection at the sink. Missing
message requests are unicast from the sink to the source.
RMST does not consider the timeliness of delivery.

Operations on data transport from the source to the sink
in RMST are divided as follows:

Routing: This operation is used to identify potential routes
for data transport.

Message Loss Detection (MLD): MLD is an essential op-
eration for reliable data delivery. MLD is used for re-
transmission of missing data.

For reliable delivery in RMST, missing data is detected
by Selective NACK and retransmitted. The failure of one re-
transmission does not result in the failure of data transport.
This effect is shown as parallel RBD blocks for RMST in
Figure 4.
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Figure 4. Reliability Block Diagram for RMST

The number of retransmissions play an important role in
the reliability of the data transport. The designer can use



this model to determine, what is the expected number of
retransmissions to achieve the desired reliability.

Using Figure 4, the reliability of RMST Rrasst is
calculated as follows:

Rryst=1—{(1—-Rg)*(1 — (Rr*Rmrp))"} (2)

where Ry, is the routing reliability and Ry, p the reliability
of message loss detection.

Rp and Ry, p vary with respect to the protocols used,
the environment where the WSN is deployed and the net-
work conditions. These factors are typically determined
during the design stage using simulations.

5.2.2 The ESRT Protocol

The ESRT [6] protocol achieves the optimal operating point
by adjusting the reporting rate of sensor nodes depending
upon the current network load. In this approach, upon get-
ting information from nodes the sink knows about the net-
work condition and accordingly informs the source nodes
to adjust the reporting rates.

In ESRT, each node that detects the phenomenon routes
the data towards the sink. If the data from one source node
is not delivered, the application can tolerate this and data
transport will not fail. Therefore, according to the RBD
theory data transport for ESRT consists of n parallel routing
blocks as shown in Figure 5.
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Figure 5. Reliability Block Diagram for ESRT

We calculate the reliability of ESRT Rpgrr as follows:

Rpsrr =1—(1—RRg)" 3)

where Ry is the routing reliability and n is the number of
sources reporting the phenomenon to the sink.

5.2.3 The RBC Protocol

RBC [14] focuses on bursty convergecast and uses a
window-less block acknowledgment scheme which im-
proves channel utilization and packet delivery delay. Meth-
ods are proposed to reduce timer delay and to schedule re-
transmission.

In RBC all source nodes send data towards the sink.
Thus it can be viewed as a special case of RMST where in-
stead of single source node, a set of nodes are transmitting
the data, using the e2e semantic. The RBD for the RBC
protocol is shown in Figure 6.
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Figure 6. Reliability Block Diagram for RBC

The reliability of RBC Rgpc is calculated as follows:

Rrpc =1— (1 — Reae)" “4)

where R.o, is the reliability of the e2e scheme and n is the
number of sources reporting the phenomenon to the sink.

Substituting Equation (2) in Equation (4) we obtain,

Rrpo = 1-(1- 1—{(1—RR>*<1—<RR*RMLD>>"}} ;"
(5)

5.3. Analysis

After computing the reliabilities of the selected existing
data transport protocols, we explore how failures and impor-
tant protocol design parameters impact these reliabilities.
We investigate the impact of the retransmission strategy and
especially the number of retransmissions on the reliability
of the e2e protocols. For the event-to-sink protocols, we
compare their reliability corresponding to the number of
source nodes.

Figure 7 shows the impact of the number of retransmis-
sions on the reliability of RMST using Equation (2). We in-
vestigated the number of retransmissions by fixing the rout-
ing and MLD reliability at different levels. Our purpose



of tuning the reliability levels is to model the behavior of
failures. In the case of high routing and MLD reliabilities
we observe that after two retransmissions the reliability re-
mains close to 1.0 and the impact of further retransmissions
on the reliability is minimal. In case of low routing and
high MLD reliability, after eight retransmissions the relia-
bility of RMST becomes close to 1.0. The high reliability
of MLD can be achieved if the MLD technique deploys the
timer that shows a low probability of failure. In all scenar-
ios after a certain number of retransmissions the behavior
remains same and the retransmissions become useless and
waste limited resources. These results are in agreement with
the results in [15]. However our study specifically provides
a new approach to easily determine the number of retrans-
missions needed for a given MLD strategy and a given rout-
ing reliability.
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Figure 7. Impact of #Retransmissions on
RMST Reliability

Figure 8 plots the reliabilities of ESRT and RBC (us-
ing Equations (3) - (4)) for different number of sources and
different failure rates. We have fixed the number of retrans-
missions in RBC equal to three similar to [15]. Also we
have fixed the reliability of MLD as 0.8. We observe that
if routing reliability is high, then we require less number of
sources for reporting the phenomenon. In this case ESRT
and RBC performed equally good due to the fact that at a
higher routing reliability, less retransmissions are needed.
For a routing reliability of 0.5 RBC requires two report-
ing nodes, whereas ESRT requires six reporting nodes to
achieve a reliability close to 1.0. This signifies that RBC re-
quires fewer nodes to send data to the sink, saving precious
resources in the network. For routing reliability less than
0.5 we require an higher number of sources.

Online adaptation of protocols can be easily achieved by
tuning the protocol parameters according to current network
conditions. Considering RBC for instance, Rr and Ry;1.p

r=3,R_MLD=0.8
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Figure 8. Comparison of the Reliability of
ESRT and RBC

reflect network conditions and are affected by different fail-
ures occurring in the network whereas n and 7 are protocol
parameters which can be tuned depending on the required
degree of reliability (Equation (5)). If Rr or Rapp de-
creases, n or r should be tuned appropriately so that the
required degree of reliability is maintained.

The above results are in accordance with the results in
the literature, emphasizing the utility of our framework for
a simple evaluation, comparison and adaptation of the reli-
abilities of existing and future data transport schemes.

6. Conclusions

In this paper, we developed a reliability framework for
data transport based on the different operational phases of
the WSN protocols. For this, we established a fault model
to capture the possible failures along with generalized data
transport and reliability semantics. Consequently we devel-
oped a reliability block model based approach that exploits
the decomposition of the complex data transport problem
into operations and simplifies the investigation of the over-
all reliability of data transport. Finally, we deployed our
framework to study and compare the reliability of existing
data transport protocols. This comparative study shows that
the developed framework allows a systematic basis for reli-
ability assessment and reliability comparison.

In the future, we plan to expand the framework focusing
on other operational phases and the requirement on time-
liness. We will also investigate the impact of single and
grouped failures on the responsiveness of the WSN.
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