
Automating the Addition
of Fail-Safe Fault-Tolerance:

Beyond Fusion-Closed Specifications

Felix C. G̈artner
RWTH Aachen

Lehr- und Forschungsgebiet Informatik IV

D-52056 Aachen, Germany

Arshad Jhumka
Technische Universität Darmstadt

Fachbereich Informatik

D-64283 Darmstadt, Germany

Abstract

The fault tolerance theories by Arora and Kulkarni [3] and by Jhumkaet al. [10] view a
fault-tolerant program as the result of composing a fault-intolerant program with fault tolerance
components calleddetectorsandcorrectors. At their core, the theories assume that the correctness
specifications under consideration arefusion closed. In general, fusion closure of specifications
can be achieved by addinghistory variablesto the program. However, addition of history variables
causes an exponential growth of the state space of the program, causing addition of fault tolerance
to be expensive. To redress this problem, we present a method which can be used to add history
information to a program in a way that significantly reduces the number of additional states.
Hence, automated methods that add fault tolerance can now be efficiently applied in environments
where specifications are not necessarily fusion closed.

Contact author:

Felix Gärtner
e-mail: fcg@acm.org
Telephone: +49-241-80-21430
Fax: +49-241-22220

Keywords:

fault-tolerance, safety, fusion closure, specifications, transition systems, theory, extension



1 Introduction

It is an established engineering method in computer science to generate complicated things from
simpler things. This technique has been applied in the area of fault-tolerant distributed systems. The
goal is to start off with a system which is not fault-tolerant for certain kinds of faults and use a sound
procedure to transform it into a program which is fault-tolerant. The approaches which have been
proposed range from practical proposals like Schneider’s state machine approach [16] to theoretical
studies like the one by Basuet al.[5]. Although these methods can be combined, in general they seem
a little oversized since they cannot be easily adapted to other types of faults with finer granularity like
a stuck-at-0 register.

To this end, Arora and Kulkarni [3] initially presented a method which can be used to combat finer
grained fault assumptions. Fault tolerance is achieved by composing a fault-intolerant program with
two types of fault-tolerance components calleddetectorsandcorrectors. Briefly spoken, a detector is
used to detect a certain (error) condition on the system state and a corrector is used to bring the system
into a valid state again. Since common fault-tolerance methods like triple modular redundancy or error
correcting codes can be modeled by using detectors and correctors, the theory can be viewed as an
abstraction of many existing fault tolerance techniques, including the state machine approach.

Kulkarni and Arora [11] and more recently Jhumkaet al. [10] proposed methods to automate the
addition of detectors and correctors to a fault-intolerant program. The basic idea of these methods is to
perform a state space analysis of the fault-affected program and change its transition relation in such
a way that it still satisfies its (weakened) specification in the presence of faults. These changes result
in either the removal of transitions to satisfy a safety specification or the addition of transitions to
satisfy a liveness specification. Gärtner and V̈olzer [8] analyzed the assumptions behind the original
Kulkarni-Arora method and argued that it is based on two distinct forms of redundancy:redundancy
in spaceandredundancy in time. The former refers to non-reachable states of the program while the
latter refers to non-reachable transitions. However, the detector/corrector method cannot be viewed
as a method which “adds redundancy” (like for example the state machine approach) because the
redundancy is already present in the fault intolerant program. This stems from the fact that Arora and
Kulkarni [3] assume that their correctness specifications arefusion closed.

Basically, fusion closure means that the next step of a program merely depends on the current
state and not on the previous history of the execution. For example, given a program with a single
variablex ∈ N, then the specification “neverx = 1” is fusion closed while the specification “x = 4
implies that previouslyx = 2” is not. Specifications written in the popular Unity Logic [6] are fusion
closed [9] (since one cannot produce specifications that relate to the history of the computations),
as are specifications consisting of state transition systems (like C programs, since it is mostly data-
flow like). But general temporal logic formulas which are usually used in the area of fault-tolerant
program synthesis and refinement [14, 15] are not. Arora and Kulkarni [3, p. 75] originally argued that
this assumption is not restrictive in the sense that for every non-fusion closed specification there exists
an “equivalent” specification which is fusion closed if it is allowed to addhistory variablesto the
program. History variables are additional control variables which are used to record the previous state
sequence of an execution and hence can be used to answer the question of, e.g., “has the program been
in statex = 2?”. Using such a history variableh the example above which was not fusion closed can
be rephrased in a fusion-closed fashion as “never (x = 4 and(x = 2) 6∈ h)”. However, these history
variables add states to the program and in effect add the necessary redundancy to be fault-tolerant.

There are obvious “brute force” approaches on how to add history information like the one
sketched above where the history variable remembers the entire previous state sequence of an exe-
cution. However, since history variables must be implemented, they exponentially enlarge the state

1



space of the fault-intolerant program. Rephrasing this in the redundancy terminology of Gärtner and
Völzer [8], history variables add redundancy in space. Specifically, the history variables add exponen-
tial redundancy in space, which is costly. So, we are interested in adding as little redundancy (i.e., as
little additional states) as possible. Intuitively, the minimal amount of redundancy which is necessary
to tolerate a certain class of faults depends on the kind and nature of the faults.

In this paper, we present a method to add history states to a program in a way which avoids
exponential growth of the state space, but rather causes a polynomial increase in the size of the state
space in the worst case. More specifically, we start with a problem specificationSPEC1 which isnot
fusion closed, a programΣ1 which satisfiesSPEC1 and a class of faultsF . Depending onF we show
how to transformSPEC1 andΣ1 into SPEC2 andΣ2 in such a way that (a)SPEC2 is fusion closed,
(b) Σ2 can be made fault tolerant forSPEC2 iff Σ1 can be made fault tolerant forSPEC1, and (c)
Σ2 is (in a certain sense) minimal with respect to the added states. We restrict our attention to cases
whereSPEC is a safety property and therefore are only concerned with what Arora and Kulkarni call
fail-safe fault-tolerance[3]. The programs which we consider are non-deterministic state machines
and so our application domain is that of distributed or concurrent systems.

The benefit of the proposed method is the following: Firstly, it makes the methods which auto-
matically add detectors [10, 11] amendable to specifications which are not fusion closed and closes
a gap in the applicability of the detector/corrector theory [3]. And secondly, the presented method
offers further insight into the efficiency of the basic mechanisms which are applied in fault tolerance.

The paper is structured as follows: We first present some preliminary definitions in Section 2 and
then relate the assumption of fusion closure to the notion of state space redundancy in Section 3. In
Section 4 we study specifications which are not fusion closed and sketch a method which makes these
types of specifications efficiently manageable in the context of automated methods which add fault
tolerance. Finally, Section 5 presents some open problems and directions for future work.

For lack of space, we only give proof sketches for theorems and lemmas. The detailed proofs can
be found in the full version of this work [7].

2 Formal Preliminaries

States, Traces and Properties. Thestate spaceof a program is an unstructured finite nonempty set
C of states. Astate predicate overC is a boolean predicate overC. A state transition overC is a pair
(r, s) of states fromC.

In the following, letC be a state set andT be a state transition set. We define atrace overC to
be a non-empty sequences1, s2, s3, . . . of states overC. We sometimes use the notationsi to refer to
thei-th element of a trace. Note that traces can be finite or infinite. We will always use Greek letters
to denote traces and normal lowercase letters to denote states. For two tracesα andβ, we writeα · β
to mean the concatenation of the two traces. We say that a transitiont occursin some traceσ if there
exists ani such that(si, si+1) = t.

We define aproperty overC to be a set of traces overC. A traceσ satisfiesa propertyP iff σ ∈ P .
If σ does not satisfyP we say thatσ violatesP . There are two important types of properties called
safetyand liveness[2, 13]. In this paper, we are only concerned with safety properties. Informally
spoken, a safety property demands that “something bad never happens” [13], i.e., it rules out a set
of unwanted trace prefixes. Mutual exclusion and deadlock freedom are two prominent examples of
safety properties. Formally, a propertyS overC is asafety propertyiff for each traceσ which violates
S there exists a prefixα of σ such that for all tracesβ, α · β violatesS.

2



Programs, Specifications and Correctness. We define programs as state transition systems con-
sisting of a state setC, a set of initial statesI ⊆ C and a transition relationT overC, i.e., aprogram
(sometimes also calledsystem) is a tripleΣ = (C, I, T ). The state predicateI together with the state
transition setT describe a safety propertyS, i.e., all traces which are constructable by starting in a
state inI and using only state transitions fromT . We denote this property bysafety-prop(Σ). For
brevity, we sometimes writeΣ instead ofsafety-prop(Σ). A states ∈ C of a programΣ is reachable
iff there exists a traceσ ∈ Σ such thats occurs inσ. Otherwises is non-reachable. Sometimes we
will call a non-reachable stateredundant.

We define specifications to be properties, i.e., aspecification overC is a property overC. A safety
specificationis a specification which is a safety property. Unlike Arora and Kulkarni [3], we donot
assume that problem specifications are fusion closed. Fusion closure is defined as follows: LetC be
a state set,s ∈ C, X be property overC, α, γ finite state sequences, andβ, δ, σ be state sequences
overC. A setX is fusion closedif the following holds: Ifα · s · β andγ · s · δ are inX thenα · s · δ
andγ · s · β are also inX.

It is easy to see that for every programΣ holds thatsafety-prop(Σ) is fusion closed. Intuitively,
fusion closure means that the entire history of every trace is present in every state of the trace. We
will give examples for fusion closed and not fusion closed specifications later.

We say that programΣ satisfiesspecificationSPEC iff all traces inΣ satisfySPEC . Consequently,
we say thatΣ violatesSPEC iff there exists a traceσ ∈ Σ which violatesSPEC .

Extensions. Given some programΣ1 = (C1, I1, T1) our goal is to define the notion of a fault-
tolerant versionΣ2 of Σ1 meaning thatΣ2 does exactly whatΣ1 does in fault-free scenarios and
has additional fault-tolerance abilities whichΣ1 lacks. Sometimes,Σ2 = (C2, I2, T2) will have
additional states (i.e.,C2 ⊃ C1) and for this case we must define what these states “mean” with
respect to the original programΣ1. This is done using astate projection functionπ : C2 7→ C1

which tells which states ofΣ2 are “the same” with respect to states ofΣ1. A state projection function
can be naturally extended to traces and properties, e.g., for a traces1, s2, . . . over C2 holds that
π(s1, s2, . . .) = π(s1), π(s2), . . .

We say that a programΣ1 = (C1, I1, T1) extendsa programΣ2 = (C2, I2, T2) using state projec-
tion π iff the following conditions hold:1

1. C2 ⊇ C1,

2. π is a total mapping fromC2 to C1 (for simplicity we assume that for anys ∈ C1 holds that
π(s) = s), and

3. π(safety-prop(Σ2)) = safety-prop(Σ1).

If Σ2 extendsΣ1 usingπ andΣ1 satisfiesSPEC then obviouslyπ(Σ2) satisfiesSPEC . When it is
clear from the context thatΣ2 extendsΣ1 we will simply say thatΣ2 satisfiesSPEC instead of “π(Σ2)
satisfiesSPEC ”.

Fault Models. We define a fault modelF as being a program transformation, i.e., a mappingF
from programs to programs. We require that a fault model does not tamper with the set of initial
states, i.e., we rule out “immediate” faults that occur before the system is switched on. We also

1The concept of extension is related to the notion ofrefinement[1]. Extensions are refinements with the additional
property that the original state space is preserved and that there is no notion ofstuttering[1].

3



restrict ourselves to the case whereF “adds” transitions, since this is the only way to violate a safety
specification. Formally, afault modelis a mappingF which maps a programΣ = (C, I, T ) to a
programF (Σ) = (F (C), F (I), F (T )) such that the following conditions hold:

1. F (C) = C

2. F (I) = I

3. F (T ) ⊃ T

The resulting program is called thefault-affected versionor theprogram in the presence of faults. We
say that a programΣ is F -intolerant with respect toSPEC iff Σ satisfiesSPEC but F (Σ) violates
SPEC .

Given two programsΣ1 andΣ2 such thatΣ2 extendsΣ1 and a fault modelF , it makes sense to
assume thatF treatsΣ1 andΣ2 in a “similar way”. Basically, this means thatF should at least add
the same transitions toΣ1 andΣ2. But with respect to the possible new states ofΣ2 it can possibly
add new fault transitions. This models faults which occur within the fault-detection and correction
mechanisms. Formally, a fault modelF must beextension monotonic, i.e., for any two programs
Σ1 = (C1, I1, T1) andΣ2 = (C2, I2, T2) such thatΣ2 extendsΣ1 usingπ holds:

F (T1) \ T1 ⊆ F (T2) \ T2

original system Σ1

extension Σ2 a b

a b a b

d c

a b

d

π

not extension monotonicextension monotonic

Figure 1: Examples for extension monotonic and not extension monotonic fault models.

An example is given in Fig. 1. The original system is given at the top and the extension is given
below (the state projection is implied by vertical orientation, i.e., states which are vertically aligned
are mapped to the same state byπ). In the left example the fault model is extension monotonic since
all fault transitions inΣ1 are also inΣ2. The right example is not extension monotonic. Intuitively, an
extension monotonic fault model maintains at least its original transitions over extensions.

The extension monotonicity requirement does not restrict faulty behavior on the new states of
the extension. However, we have to restrict this type of behavior since it would be impossible to
build fault-tolerant versions otherwise. In this paper we assume a very general type of restriction: it
basically states that in any infinite sequence of extensions of the original program there is always some
point whereF does not introduce new fault transitions anymore. Formally, an extension monotonic
fault modelF is finite iff for any infinite sequence of programsΣ1,Σ2, . . . such that for alli, Σi+1

4



extendsΣi holds that there exists aj such that for allk ≥ j no new fault transition is introduced in
Σk, i.e.,F (Tk+1) \ Tk+1 = F (Tk) \ Tk.

Finite fault models retain the fault transitions in the original program (i.e., they are extension
monotonic for each pair of extensions). They do not restrict the additional faulty behavior introduced
in the new states of an extension. However, they exclude fault models for which infinite redundancy
is necessary to tolerate them. The engineering process is as follows: Given a programΣ1 and a fault
modelF , we extendΣ1 to Σ2 to makeF tolerable. Then we look at the new states introduced in
this process and consider faults which might happen there. Regarding these new faults we construct
a new extensionΣ3 of Σ2 to potentially tolerate these faults. This process is repeated. In theory, this
process might never terminate, namely ifF forever adds certain kinds of faults to the new states. A
finite fault model guarantees that this process must eventually terminate. In this paper, we assume our
fault model to be finite and extension monotonic.

Fault-tolerant Versions. Now we are able to define afault-tolerant version. It captures the idea
of starting with some programΣ1 which is fault-intolerant regarding a specificationSPEC and some
fault modelF . A fault-tolerant versionΣ2 of Σ1 is a program which has the same behavior asΣ1 if
no faults occur, but additionally satisfiesSPEC in the presence of faults. Formally, a programΣ2 the
F -tolerant versionof programΣ1 for SPEC using state projectionπ iff the following conditions hold:

1. Σ1 is F -intolerant with respect toF ,

2. Σ2 extendsΣ1 usingπ,

3. F (Σ2) satisfiesSPEC .

In the remainder of this paper,F is a fault model,Σ, Σ1 andΣ2 are programs,SPEC , SPEC1 and
SPEC2 are specifications.

3 Problem Statement

The basic task we would like to solve is to construct a fault-tolerant version for a given program and
a safety specification.

Definition 1 (general fail-safe transformation problem) Given a programΣ1 which isF -intolerant
with respect to a general safety specificationSPEC1. Thegeneral fail-safe transformation problem
consists of finding a fault-tolerant version ofΣ1.

The case whereSPEC is fusion closed has been studied by Kulkarni and Arora [11] and Jhumka
et al. [10], i.e., they solve a restricted transformation problem whereSPEC1 is fusion-closed. We
briefly recall the known solutions to this problem.

Solutions for Fusion-Closed Specifications. The basic mechanism which Kulkarni and Arora [11]
and Jhumkaet al. [10] apply is the creation of non-reachable states. The fact that specifications
are fusion closed implies that safety specifications can be concisely represented by a set of “bad”
transitions, transitions which causes a violation of the specification [3, 9].

For a finite computationα of Σ. We say thatα maintainsSPEC iff there exists a sequence of states
β such thatα · β ∈ SPEC . If SPEC is a safety property, every trace not inSPEC has a prefix which
does not maintainSPEC . From the definition of maintains follows that there must be a transition

5



where a given traceσ switches from “good” to “bad”, i.e.,σ can be written asα · d · b · β such that
α · d maintainsSPEC and all “longer” prefixes (starting withα · d · b) do not maintainSPEC . Arora
and Kulkarni have shown [4, “Only-if” part of Lemma 3.2] that(d, b) is a transition which will cause
any trace in which it occurs to violateSPEC .

The known automated procedures [10, 11] which are based on the concept of non-reachable states
use the following approach for addition of fail-safe fault tolerance: SinceF (Σ1) violatesSPEC , there
must exist executions in which a specified bad transition occurs. Inevitably, we must prevent the
occurrence of such a transition. So, for all bad transitionst = (d, b) we must make either stated
or stateb unreachable inF (Σ2). If t is a program transition then it depends on whether or nott is
reachable inΣ1 or not.

• If t is a reachable program transition, then a violation ofSPEC can occur even if no faults occur,
so, obviously, no fault-tolerant version exists since we would have to change the behavior of the
original program.

• If t is a redundant (i.e., non-reachable) program transition, then we can remove it resulting in a
smaller transition setT2 of Σ2.

If t is a transition which has been introduced byF , then we cannot remove it directly. The best we
can do is make the starting stated of t unreachable. But this can only be done if there exists a non-
reachable program transition on the path tod. If such a transition exists, we can safely remove it. If
not, then again no fault-tolerant version exists.

Adding History Variables. Consider program with one variablex which can take five different
values (integers 0 to 4) and simply proceeds from statex = 0 to x = 4 through all intermediate states.
The fault assumptionF has added one transition fromx = 1 to x = 3 to the transition relation. Now
consider the correctness specificationSPEC = “always (x = 4 implies that previouslyx = 2)”. Note
that F (Σ1) does not satisfySPEC (i.e., F (Σ1) can reach statex = 4 without having been in state
x = 2), and thatSPECis not fusion closed. To see the latter, consider the two traces0, 3, 2, 4 and
2, 3, 4 from SPEC . The fusion at statex = 3 yields trace0, 3, 4 which is not inSPEC . SinceSPEC
is not fusion closed, we cannot apply the known transformation methods [10, 11].

The specification can be made fusion closed by adding a history variableh which records the
entire state history. NowSPEC can be rephrased asSPEC = “always (x = 4 implies〈2〉 ∈ h)” or,
equivalently,SPEC = “never (x = 4 and〈2〉 6∈ h)”. Now we can identify a set of bad transitions
which must be prevented, e.g., from statex = 3 ∧ h = 〈1〉 to statex = 4 ∧ h = 〈1, 2, 3, 4〉. This
means that all transitions to a state wherex = 4 holds must be removed unless in the starting state
h 6= 〈1〉 is true. In this way bad transitions are prevented and the modified system satisfiesSPEC in
the presence faultf .

Problems with History Variables. Adding a history variableh in the previous example adds states
to the state space of the system. In fact, defining the domain ofh as the set of all sequences over
{0, 1, 2, 3, 4} adds infinitely many states. Clearly this can be reduced by the observation that if faults
do not corrupth, thenh will only take on five different values (〈〉, 〈1〉, 〈1, 2〉, 〈1, 2, 3〉, and〈1, 2, 3, 4〉).
But still, the state space has been increased from five states to52 = 25 states.

Note thatΣ2 has redundant states andΣ1 is not redundant at all. So the redundancy is due to the
history variableh. But even if the domain ofh has cardinality 5, the redundancy is in a certain sense
not minimal, as we now explain.

6



Consider the programΣ3 depicted in Figure 2. It tolerates the faultf by adding onlyonestate
to the state space ofΣ1 (namely,x = 5). Note thatΣ3 has only one redundant state, soΣ3 can be
regarded as redundancy-minimal with respect toSPEC . The metric used for minimality is the number
of redundant states. We want to exploit this observation to deal with the general case.

1 2 3 40

5

Figure 2: A redundancy-minimal version fault-tolerant program. The specification is “always (x = 4
implies that previouslyx = 2)”.

4 Beyond Fusion Closure

Although the automated procedures of [10, 11] were developed for fusion-closed specifications, they
(may) still work for specifications which are not fusion closed only if the fault model has a certain
pleasant form. For example, consider the system in Figure 3 and the specification

SPEC = “(e implies previouslyc) and (neverg)”

Obviously, the fault modelF can be tolerated using the known transformation methods becauseF
does not “exploit” the part of the specification which is not fusion closed.

a b c d e f g

Figure 3: The fail-safe transformation can be successful even if the specification is not fusion closed.
The specification in this case is “(e implies previouslyc) and (neverg)”.

Exploiting Non-Fusion Closure. Now we formalize what it means for a fault model to “exploit”
the fact that a specification is not fusion-closed (we call this propertynon-fusion closure). First we
define what it means for a trace to be the fusion of two other traces.

Definition 2 (fusion and fusion point of traces) Let s be a state andα = αpre · s · αpost andβ =
βpre · s · βpost be two traces in whichs occurs. Then we define

fusion(α, s, β) = αpre · s · βpost

If fusion(α, s, β) 6= α and fusion(α, s, β) 6= β we calls a fusion pointof α andβ.

Lemma 1 For the fusion of three tracesα, β, γ holds: Ifs occurs befores′ in β then

fusion(α, s, fusion(β, s′, γ)) = fusion(fusion(α, s, β), s′, γ)

and
fusion(γ, s′, fusion(α, s, β)) = fusion(γ, s′, β)

7



If SPEC is a set of traces, we recursively define an operator to generate the fusion closure of
SPEC , denoted byfusion-closure(SPEC). It produces a set which is closed under finite applications
of thefusionoperator.

Definition 3 (fusion closure) Given a specificationSPEC, a traceσ is in fusion-closure(SPEC) iff

1. σ is in SPEC, or

2. σ = fusion(α, s, β) for tracesα, β ∈ fusion-closure(SPEC) and a states that occurs inα and
β.

Lemma 1 guarantees that every trace infusion-closure(SPEC) which is not inSPEC has a “normal
form”, i.e., it can be represented uniquely as the sequence of fusions of traces inSPEC . This is shown
in the following theorem.

Theorem 1 For every traceσ ∈ fusion-closure(SPEC) which is not inSPEC there exists a sequence
of tracesα0, α1, α2, . . . and a sequence of statess1, s2, s3, . . . such that

1. for all i ≥ 0, αi ∈ SPEC,

2. for all i ≥ 1, si is a fusion point ofαi−1 andαi, and

3. σ can be written asσ = fusion(fusion(. . . fusion(α0, s1, α1), s2, α2), s3, α3), . . .).

PROOF SKETCH: The proof is by induction on the structure of howσ evolved from traces inSPEC .
Basically this means an induction on the number of fusion points insigma. The induction step
assumes thatσ is the fusion of two traces which have at mostn fusion points and depending on their
relative positions uses the rules of Lemma 1 to construct the normal form forσ. �

Now consider the system depicted in Figure 4. The corresponding specification is:SPEC =
“f implies previouslyd”. The system may exhibit the following two traces in the absence of faults,
namelyα = a · b · c andβ = a · d · e · f . In the presence of faults, a new trace is possible, namely
γ = a · b · e · f . Observe thatγ violatesSPEC and thatγ is the fusion of two tracesα, β ∈ SPEC
(the state which plays the role ofs in Definition 2 is statee). In such a case we say that fault modelF
exploits the non-fusion closure ofSPEC .

b c d e fa

Figure 4: Example where the non-fusion closure of a specification is exploited by a fault model. The
specification is “f implies previouslyd”.

Definition 4 (exploiting non-fusion closure) LetΣ satisfySPEC. ThenF (Σ) exploits the non-fusion
closure ofSPEC iff there exists a traceσ ∈ F (Σ) such thatσ 6∈ SPEC andσ ∈ fusion-closure(SPEC).

Intuitively, exploiting the non-fusion closure means that there exists a bad computation (σ 6∈
SPEC ) that can potentially “impersonate” a good computation (σ ∈ fusion-closure(SPEC)). Defi-
nition 4 states thatF causes a violation ofSPEC by constructing a fusion of two (allowed) traces.

8



Given a fault modelF such thatF (Σ) exploits the non-fusion closure ofSPEC , then also we say that
the non-fusion closure ofSPEC is exploited forΣ in the presence ofF .

Obviously, if for some specificationSPEC and systemΣ such anF exists, thenSPEC is not fusion
closed. Similarly trivial to prove is the observation that no fault modelF can exploit the non-fusion
closure of a specification which is fusion closed.

On the other hand, if the non-fusion closure ofSPEC cannot be exploited, this does not necessarily
mean thatSPEC is fusion closed. To see this consider Figure 5. The correctness specificationSPEC
of the program is “c implies previouslya”. Obviously, a fault model can only generate traces that
begin witha. Sincea is an initial state and we assume that initial states are not changed byF , noF
can exploit the non-fusion closure. ButSPEC is not fusion closed.

b ca

Figure 5: Example where the non-fusion closure cannot be exploited but the specification is not fusion
closed. The specification is “c implies previouslya”.

Preventing the Exploitation of Non-Fusion Closure. The fact that a fault model may not exploit
the non-fusion closure of a specification will be important in our approach to solve the general fail-
safe transformation problem (Def. 1). A method to solve this problem, i.e., that of finding a fault-
tolerant versionΣ2, should be a generally applicable method, which constructsΣ2 from Σ1 (this is
depicted in the top part of Figure 6). Instead of devising such a method from scratch, our aim is to
reuse the existing transformations to add fail-safe fault tolerance which are based on fusion-closed
specifications [10, 11]. This approach is shown in the bottom part of Figure 6. Starting fromΣ1, we
construct some intermediate programΣ′

2 and some intermediate fusion-closed specificationSPEC2

to which we apply one of the above mentioned methods for fusion-closed specifications [10, 11]. The
construction ofΣ′

2 andSPEC2 must be done in such a way that the resulting program satisfies the
properties of the general transformation problem stated in Definition 1. How can this be done?

The idea of our approach is the following: First, chooseSPEC2 to be the fusion closure ofSPEC1,
i.e., chooseSPEC2 = fusion-closure(SPEC1) and constructΣ′

2 from Σ1 in such a way thatF (Σ′
2)

does not exploit the non-fusion closure ofSPEC1. More precisely,Σ′
2 results from applying an

algorithm (which we give below) which ensures that

• Σ′
2 extendsΣ1 using some state projectionπ and

• F (Σ′
2) does not exploit the non-fusion closure ofSPEC1.

Our claim, which we formally prove later, is that the programΣ2 resulting from applying (for ex-
ample) the algorithms of [10, 11] toΣ′

2 with respect toSPEC2 in fact satisfies the requirements of
Definition 1, i.e.,Σ2 is in fact anF -tolerant version ofΣ1 with respect toSPEC1.

Bad Fusion Points. For a given systemΣ and a specificationSPEC , how can we tell whether or not
the nature ofSPEC is exploitable by a fault model? For the negative case (where it can be exploited),
we give a sufficient criterion. It is based on the notion of abad fusion point.

Definition 5 (bad fusion point) Let Σ beF -intolerant with respect toSPEC. States of Σ is a bad
fusion point ofΣ for SPEC in the presence ofF iff there exist tracesα, β ∈ SPEC such that

9



fault-intolerant w.r.t.
general specification

SPEC1

fusion-closed

SPEC2

general method

“standard” fail-safe transformation
w.r.t. fusion-closed SPEC2

this paper

Σ′
2

fault-tolerant w.r.t.
SPEC1

Σ1

Σ1 Σ2

Σ2

Figure 6: Overview of transformation problem (top) and our approach (bottom). Algorithm 1 de-
scribed in this paper offers a solution to the first step (i.e.,Σ1 → Σ′

2).

1. s is a fusion point ofα andβ,

2. fusion(α, s, β) ∈ F (Σ), and

3. fusion(α, s, β) 6∈ SPEC.

Intuitively, a bad fusion point is a state in which “multiple pasts” may have happened, i.e., there
may be two different execution paths passing throughs, and from the point of view of the specification
it is important to tell the difference. We now give several examples of bad fusion points.

As an example, consider Fig. 4 wheree is a bad fusion point. To instantiate the definition, take
α = a · b · e ∈ F (Σ) andβ = a · d · e · f ∈ F (Σ). The fusion ate yields the tracea · b · e · f which is
not in SPEC .

Theorem 2 (bad fusion point criterion) The following two statements are equivalent:

1. Σ has no bad fusion point forSPEC in the presence ofF .

2. F (Σ) does not exploit the non-fusion closure ofSPEC.

PROOF SKETCH: The main difficulty is to prove that ifSPEC has no bad fusion point thenF (Σ)
cannot exploit the non-fusion closure. We prove this by assuming thatF (Σ) exploits the non-fusion
closure and using Theorem 1 to construct a bad fusion point.�

Removal of Bad Fusion Points. Theorem 2 states that it is both necessary and sufficient to remove
all bad fusion points fromΣ to make its structure robust against fault models that exploit the non-
fusion closure ofSPEC . So how can we get rid of bad fusion points?

Recall that a bad fusion point is one which has multiple pasts, and from the point of view of the
specification, it is necessary to distinguish between those pasts. Thus, the basic idea of our method
is to introduce additional states which split the fusion paths. This is sketched in Figure 7. LetΣ1 =
(C1, I1, T1) be a system. Ifs is a bad fusion point ofΣ1 for SPEC , there exists a traceβ ∈ SPEC and
a traceα ∈ F (Σ) which both go throughs.

Algorithm 1 (Removal of Bad Fusion Points) To remove bad fusion points, we now construct an
extensionΣ2 = (C2, I2, T2) of Σ1 in the following way:

• C2 = C1 ∪ {s′} wheres′ is a “new” state,

• I2 = I1, and

10



• T2 results fromT1 by “diverting” the transitions ofβ to and froms′ instead ofs.

The extension is completed by defining the state projection functionπ to maps′ to s. Observe thats
is not a bad fusion point regardingα andβ anymore becauseα now containss andβ a different state
s′ which cannot be fused. So this procedure gets rid of one bad fusion point. Also, it does not by itself
introduce a new one, sinces′ is an extension state which cannot be referenced inSPEC. So we can
repeatedly apply the procedure and incrementally build a sequence of extensionsΣ1,Σ2, . . . where in
every step one bad fusion point is removed and an additional state is added. However,F may cause
new bad fusion points to be created during this process by introducing new faults, transitions defined
on the newly added states. But since the fault model is finite it will do this only finitely often. Hence,
repeating this construction for every bad fusion point will terminate because we assume that the state
space is finite.

Note that in the extension process, certain states can be extended multiple times because they
might be bad fusion points for different combinations of traces.

s s

s′

α
β α

β

Figure 7: Splitting fusion paths.

We now prove that the above method results in a program with the desired properties.

Lemma 2 Let Σ1 be F -intolerant with respect to a general specificationSPEC1. The programΣ′
2

which results from applying Algorithm 1 satisfies the following properties:

1. Σ′
2 extendsΣ1 using some state projectionπ and

2. F (Σ′
2) does not exploit the non-fusion closure ofSPEC1.

PROOF SKETCH: To show the first point we argue that there exists a projection functionπ (which is
induced by our method) such that every fault-free execution ofΣ′

2 is an execution ofΣ1. To show the
second point, we argue that the method removes all bad fusion points and apply the bad fusion point
criterion of Theorem 2.�

Correctness of the Combined Method. Starting from a programΣ1, Lemma 2 shows that the
programΣ′

2 resulting from Algorithm 1 for removing bad fusion points enjoys certain properties (see
Fig. 6). We now prove that starting off from these properties and choosingSPEC2 as the fusion
closure ofSPEC1, the programΣ2, which results from applying the algorithms of [10, 11] onΣ′

2, has
the desired properties of the transformation problem (Definition 1).

Lemma 3 GivenF , SPEC1, andΣ1 as in Lemma 2, letSPEC2 = fusion-closure(SPEC1) and let
Σ2 be the result of applying any of the known methods that solve the fusion-closed transformation
problem toΣ′

2 with respect toF and SPEC2, whereΣ′
2 results fromΣ1 through the application of

Algorithm 1. Then the following statements hold:

11



1. Σ2 extendsΣ1 using some state projectionπ.

2. If F (Σ2) satisfiesSPEC2 thenF (Σ2) satisfiesSPEC1.

PROOF SKETCH: To prove the first point we argue that a fault tolerance addition procedure only
removes non-reachable transitions. Hence, every fault-free execution ofΣ′

2 is also an execution of
Σ2. But sinceΣ′

2 extendsΣ1 so mustΣ2. To show the second point we first observe thatF (Σ′
2) does

not necessarily satisfySPEC1 but not all traces for this are inF (Σ2) anymore (due to the removal
of bad transitions during addition of fault tolerance). Next we show that any trace ofF (Σ2) which
violatesSPEC1 must exploit the non-fusion closure ofSPEC1. But this must also be a trace ofF (Σ′)
and so is ruled out by assumption.�

Lemmas 2 and 3 together guarantee that the composition of the method described in Section 1 and
the fail-safe transformation methods for fusion-closed specifications in fact solves the transformation
problem for non-fusion closed specifications of Definition 1.

Theorem 3 Let Σ1 beF -intolerant with respect to a general specificationSPEC1. The composition
of Algorithm 1 and the fail-safe transformation methods for fusion-closed specifications solves the
general transformation problem of Definition 1.

Examples. Finally, we present two examples of the application of our method. The top of Figure 8
(left hand side, system 1) shows the original system. The augmented system is depicted at the bottom
(left hand side, system 4). The correctness specification for the system is “(d implies previouslyb)
and (e implies previouslyc)”. There are only two bad fusion points, namelyc andd which have to
be extended. In the first step,c is “removed” by splitting the fusion path which is indicated using two
short lines. This results in system 2. Subsequently,d is refined, resulting in system 3. Note thatd has
to be refined twice because there are two sets of fusion paths. This results in system 4, which can be
subject to the standard fail-safe transformation methods, which will remove the transitions(c, d′′) and
(d, e).

A similar, yet more complex example is shown on the right hand side of Fig. 8. The correctness
specification for the system 1 at the top is “g implies previously (b or c)”. The figure shows that again
a “two level” extension is necessary here, since the only execution which must be prevented is the one
which usesboth fault transitions. This means that statef is a bad fusion point for multiple execution
paths and hence must be refined twice (note that the fault transition(d, f) is a new fault added to the
system in the extension).

Discussion. The complexity of our method directly depends on the number of bad fusion points
which have to be removed and finding bad fusion points by directly applying Def. 5 is clearly in-
feasible even for moderately sized systems. However, bad fusion points are not hard to find if the
specification is given as a temporal logic formula in the spirit of those used throughout this paper. For
example, if specifications are given in the form “x only if previouslyy” then only states which occur
in traces between statesx andy can be fusion points. Candidates forbad fusion points are all states
where two execution paths merge and this can easily be checked from the transition diagram of the
system.

Our method requires to check every possible fusion point whether it is a bad one. So obviously,
applying our method induces a larger computational overhead during the transformation process than
directly adding history variables. But as can be seen in Fig. 8, the number of states is significantly
less than adding a general history variable. For example, a clever addition of history variables to the

12



(2)

(3)

(4)

(1) a b c d e

a b c d e

c′

a b c d e

c′ d′

a b c d e

d′′

d′c′

(1)

(2)

(3)

(4)

(5)

(6)

a b ec d f g

a b ec d f g

c′

a b ec d f g

c′ d′

a b ec d f g

c′ d′ e′

c′ d′ e′ f ′

a b ec d f g

f ′′

a b ec d f g

c′ d′ e′ f ′

Figure 8: Removing bad fusion points. The specification for the system on the left is “(d implies
previouslyb) and (e implies previouslyc)”. For the system on the right it is “g implies previously (b
or e)”.

13



system in Fig. 8 would require two bits, one to record the visit to stateb and one to record the visit to
c. Overall this would result in2 × 2 × 5 = 20 states. Our methods achieves the same result with a
total of 8 states.

Although it can happen that states are refined multiple times, the number of bad fusion points (and
hence the number of added states) only depends on the specification and the fault model whereas the
number of added states using history variables depends on the size of the state space. For example, a
program withn states will have2× n states after adding just one bit of history information.

In general, the worst case scenario in our scheme is when every state is a bad fusion point. As-
suming there aren states in the system, there areO(n) bad fusion points. Assuming that faults do
not affect the refined states (which, for sake of comparison is realistic since we do not assume faults
to affect history variables, whenever they are used), every bad fusion point is refined, giving rise to
O(n) refined states.O(n) bad fusion states thus give rise toO(n2) refined states. In the worst case
scenario, our scheme adds an additionalO(n2) states, as compared to the exponential number of
additional states added by using history variables.

Note however that the resulting system in Fig. 8 is not redundancy minimal if the entire transfor-
mation problem is considered. The stated′′ is not necessary since it may become unreachable even in
the presence of faults after the fail-safe transformation is applied. This is the price we still have to pay
for the modularity of our approach, i.e., adding history states does at present not “look ahead” which
states might become unreachable even in the presence of faults.

In theory there are cases where our method of adding history states does not terminate because
there are infinitely many bad fusion points. For this to happen, the state space must be infinite. If we
consider the application area of embedded software, we can safely assume a bounded state space.

5 Conclusions

In this paper, we have presented ways on how get rid of a restriction upon which procedures that
add fault tolerance [10, 11] are based, namely that specifications have to be fusion closed. Apart
from closing a gap in the detector/corrector theory [3], our method can be viewed as a finer grained
method to add history information to a given system and hence add state space redundancy. This also
helps to understand the principles of fault-tolerant system operation. We have shown that our method
in general adds less history states than would be added using standard history variables (which in
general lead to an exponential growth of the state space). Thus, adding state redundancy using the
approach presented in this paper makes addition of fault tolerance more efficient. At present, we are
implementing our approach within the fault-tolerance synthesis framework SYNFT of Michigan State
University [12].

As future work, it would be interesting to combine our method with one of the methods to add de-
tectors so that the resulting method can be proven to be redundancy minimal. We are also investigating
issues of non-masking fault-tolerance, i.e, adding tolerance with respect to liveness properties.

References

[1] Martı́n Abadi and Leslie Lamport. The existence of refinement mappings.Theoretical Computer Science,
82(2):253–284, May 1991.

[2] Bowen Alpern and Fred B. Schneider. Defining liveness.Information Processing Letters, 21:181–185,
1985.

14



[3] Anish Arora and Sandeep S. Kulkarni. Component based design of multitolerant systems.IEEE Transac-
tions on Software Engineering, 24(1):63–78, January 1998.

[4] Anish Arora and Sandeep S. Kulkarni. Detectors and correctors: A theory of fault-tolerance components.
In Proceedings of the 18th IEEE International Conference on Distributed Computing Systems (ICDCS98),
May 1998.

[5] Anindya Basu, Bernadette Charron-Bost, and Sam Toueg. Simulating reliable links with unreliable links
in the presence of process crashes. InProceedings of the 10th International Workshop on Distributed
Algorithms (WDAG96), pages 105–122, Bologna, Italy, October 1996. Springer-Verlag.

[6] K. Mani Chandy and Jayadev Misra.Parallel Program Design: A Foundation. Addison-Wesley, Reading,
MA, Reading, Mass., 1988.

[7] Felix C. Gärtner and Arshad Jhumka. Automating the addition of fail-safe fault-tolerance: Beyond fusion-
closed specifications. Technical Report IC/2003/23, Swiss Federal Institute of Technology (EPFL), School
of Computer and Communication Sciences, Lausanne, Switzerland, April 2003.

[8] Felix C. Gärtner and Hagen V̈olzer. Defining redundancy in fault-tolerant computing. InBrief Announce-
ment at the 15th International Symposium on DIStributed Computing (DISC 2001), Lisbon, Portugal,
October 2001.

[9] H. Peter Gumm. Another glance at the Alpern-Schneider characterization of safety and liveness in con-
current executions.Information Processing Letters, 47(6):291–294, 1993.

[10] Arshad Jhumka, Felix C. G̈artner, Christof Fetzer, and Neeraj Suri. On systematic design of fast and
perfect detectors. Technical Report 200263, Swiss Federal Institute of Technology (EPFL), School of
Computer and Communication Sciences, Lausanne, Switzerland, September 2002.

[11] Sandeep S. Kulkarni and Anish Arora. Automating the addition of fault-tolerance. In Mathai Joseph, edi-
tor, Formal Techniques in Real-Time and Fault-Tolerant Systems, 6th International Symposium (FTRTFT
2000) Proceedings, number 1926 in Lecture Notes in Computer Science, pages 82–93, Pune, India,
September 2000. Springer-Verlag.

[12] Sandeep S. Kulkarni and Ali Ebnenasir. SYNFT: A framework for adding fault-tolerance to distributed
programs. Available via email from the authors at Michigan State University, USA, 2003.

[13] Leslie Lamport. Proving the correctness of multiprocess programs.IEEE Transactions on Software
Engineering, 3(2):125–143, March 1977.

[14] Zhiming Liu and Mathai Joseph. Specification and verification of fault-tolerance, timing and scheduling.
ACM Transactions on Programming Languages and Systems, 21(1):46–89, 1999.

[15] Heiko Mantel and Felix C. G̈artner. A case study in the mechanical verification of fault tolerance.Journal
of Experimental & Theoretical Artificial Intelligence (JETAI), 12(4):473–488, October 2000.

[16] Fred B. Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial.
ACM Computing Surveys, 22(4):299–319, December 1990.

15


