Automating the Addition
of Fail-Safe Fault-Tolerance:
Beyond Fusion-Closed Specifications

Felix C. Gartner Arshad Jhumka
RWTH Aachen Technische Universit Darmstadt
Lehr- und Forschungsgebiet Informatik 1V Fachbereich Informatik
D-52056 Aachen, Germany D-64283 Darmstadt, Germany
Abstract

The fault tolerance theories by Arora and Kulkarni [3] and by Jhurtkal. [10] view a
fault-tolerant program as the result of composing a fault-intolerant program with fault tolerance
components calledetectorsaandcorrectors At their core, the theories assume that the correctness
specifications under consideration &meion closed In general, fusion closure of specifications
can be achieved by addihgstory variabledo the program. However, addition of history variables
causes an exponential growth of the state space of the program, causing addition of fault tolerance
to be expensive. To redress this problem, we present a method which can be used to add history
information to a program in a way that significantly reduces the number of additional states.
Hence, automated methods that add fault tolerance can now be efficiently applied in environments
where specifications are not necessarily fusion closed.

Contact author:

Felix Gartner

e-mail: fcg@acm.org
Telephone: +49-241-80-21430
Fax: +49-241-22220

Keywords:

fault-tolerance, safety, fusion closure, specifications, transition systems, theory, extension

1 Introduction

It is an established engineering method in computer science to generate complicated things from
simpler things. This technique has been applied in the area of fault-tolerant distributed systems. The
goal is to start off with a system which is not fault-tolerant for certain kinds of faults and use a sound
procedure to transform it into a program which is fault-tolerant. The approaches which have been
proposed range from practical proposals like Schneider’s state machine approach [16] to theoretical
studies like the one by Bast al.[5]. Although these methods can be combined, in general they seem

a little oversized since they cannot be easily adapted to other types of faults with finer granularity like
a stuck-at-0 register.

To this end, Arora and Kulkarni [3] initially presented a method which can be used to combat finer
grained fault assumptions. Fault tolerance is achieved by composing a fault-intolerant program with
two types of fault-tolerance components caltkdectorsandcorrectors Briefly spoken, a detector is
used to detect a certain (error) condition on the system state and a corrector is used to bring the system
into a valid state again. Since common fault-tolerance methods like triple modular redundancy or error
correcting codes can be modeled by using detectors and correctors, the theory can be viewed as an
abstraction of many existing fault tolerance techniques, including the state machine approach.

Kulkarni and Arora [11] and more recently Jhundaal. [10] proposed methods to automate the
addition of detectors and correctors to a fault-intolerant program. The basic idea of these methods is to
perform a state space analysis of the fault-affected program and change its transition relation in such
a way that it still satisfies its (weakened) specification in the presence of faults. These changes result
in either the removal of transitions to satisfy a safety specification or the addition of transitions to
satisfy a liveness specification.a@ner and Vlzer [8] analyzed the assumptions behind the original
Kulkarni-Arora method and argued that it is based on two distinct forms of redundesuiyyndancy
in spaceandredundancy in timeThe former refers to non-reachable states of the program while the
latter refers to non-reachable transitions. However, the detector/corrector method cannot be viewed
as a method which “adds redundancy” (like for example the state machine approach) because the
redundancy is already present in the fault intolerant program. This stems from the fact that Arora and
Kulkarni [3] assume that their correctness specificationsumien closed

Basically, fusion closure means that the next step of a program merely depends on the current
state and not on the previous history of the execution. For example, given a program with a single
variabler € N, then the specification “never = 1" is fusion closed while the specification: "= 4
implies that previously: = 2” is not. Specifications written in the popular Unity Logic [6] are fusion
closed [9] (since one cannot produce specifications that relate to the history of the computations),
as are specifications consisting of state transition systems (like C programs, since it is mostly data-
flow like). But general temporal logic formulas which are usually used in the area of fault-tolerant
program synthesis and refinement [14, 15] are not. Arora and Kulkarni [3, p. 75] originally argued that
this assumption is not restrictive in the sense that for every non-fusion closed specification there exists
an “equivalent” specification which is fusion closed if it is allowed to ddtory variablesto the
program. History variables are additional control variables which are used to record the previous state
sequence of an execution and hence can be used to answer the question of, e.g., “has the program been
in statex = 2?". Using such a history variablethe example above which was not fusion closed can
be rephrased in a fusion-closed fashion as “never 4 and(z = 2) ¢ h)". However, these history
variables add states to the program and in effect add the necessary redundancy to be fault-tolerant.

There are obvious “brute force” approaches on how to add history information like the one
sketched above where the history variable remembers the entire previous state sequence of an exe-
cution. However, since history variables must be implemented, they exponentially enlarge the state

space of the fault-intolerant program. Rephrasing this in the redundancy terminologytoéGand

Volzer [8], history variables add redundancy in space. Specifically, the history variables add exponen-
tial redundancy in space, which is costly. So, we are interested in adding as little redundancy (i.e., as
little additional states) as possible. Intuitively, the minimal amount of redundancy which is necessary

to tolerate a certain class of faults depends on the kind and nature of the faults.

In this paper, we present a method to add history states to a program in a way which avoids
exponential growth of the state space, but rather causes a polynomial increase in the size of the state
space in the worst case. More specifically, we start with a problem specificRied; which isnot
fusion closed, a prograii; which satisfieSPEC, and a class of fault8’. Depending orF’ we show
how to transformSPEC, andX:; into SPEC, andX, in such a way that (aJPEC is fusion closed,

(b) X5 can be made fault tolerant f&PEC, iff ¥; can be made fault tolerant f&PEC, and (c)

Y, is (in a certain sense) minimal with respect to the added states. We restrict our attention to cases
whereSPEC is a safety property and therefore are only concerned with what Arora and Kulkarni call
fail-safe fault-tolerancd3]. The programs which we consider are non-deterministic state machines
and so our application domain is that of distributed or concurrent systems.

The benefit of the proposed method is the following: Firstly, it makes the methods which auto-
matically add detectors [10, 11] amendable to specifications which are not fusion closed and closes
a gap in the applicability of the detector/corrector theory [3]. And secondly, the presented method
offers further insight into the efficiency of the basic mechanisms which are applied in fault tolerance.

The paper is structured as follows: We first present some preliminary definitions in Section 2 and
then relate the assumption of fusion closure to the notion of state space redundancy in Section 3. In
Section 4 we study specifications which are not fusion closed and sketch a method which makes these
types of specifications efficiently manageable in the context of automated methods which add fault
tolerance. Finally, Section 5 presents some open problems and directions for future work.

For lack of space, we only give proof sketches for theorems and lemmas. The detailed proofs can
be found in the full version of this work [7].

2 Formal Preliminaries

States, Traces and Properties. Thestate spacef a program is an unstructured finite nonempty set
C of states. Astate predicate ovef' is a boolean predicate ovér. A state transition ove€' is a pair
(r, s) of states fronC'.

In the following, letC' be a state set arifl be a state transition set. We defintace overC' to
be a non-empty sequensgeg s, s3, . . . Of states ove€’. We sometimes use the notatignto refer to
thei-th element of a trace. Note that traces can be finite or infinite. We will always use Greek letters
to denote traces and normal lowercase letters to denote states. For tweveam®s, we writea - 3
to mean the concatenation of the two traces. We say that a transdamursin some trace if there
exists an such tha{(s;, s;11) = t.

We define groperty overC' to be a set of traces ovér. A traces satisfiesa propertyP iff o € P.
If o does not satisfy®? we say thatr violates P. There are two important types of properties called
safetyandlivenesd2, 13]. In this paper, we are only concerned with safety properties. Informally
spoken, a safety property demands that “something bad never happens” [13], i.e., it rules out a set
of unwanted trace prefixes. Mutual exclusion and deadlock freedom are two prominent examples of
safety properties. Formally, a propefyoverC is asafety propertyff for each traces which violates
S there exists a prefix of o such that for all traceg, o - 3 violatesS.

Programs, Specifications and Correctness. We define programs as state transition systems con-
sisting of a state se&f, a set of initial stateg C C and a transition relatio” overC, i.e., aprogram
(sometimes also callesystenis a triple> = (C, I, T). The state predicatetogether with the state
transition sefl” describe a safety property, i.e., all traces which are constructable by starting in a
state in/ and using only state transitions frofh We denote this property bsafety-propX). For
brevity, we sometimes write instead ofsafety-prop>). A states € C' of a programX. is reachable

iff there exists a trace € . such thats occurs ing. Otherwises is non-reachable Sometimes we
will call a non-reachable statedundant

We define specifications to be properties, i.espacification ove€' is a property ove€'. A safety
specificationis a specification which is a safety property. Unlike Arora and Kulkarni [3], waalto
assume that problem specifications are fusion closed. Fusion closure is defined as follo@die et
a state sets € C, X be property over”, «, v finite state sequences, afdd, o be state sequences
overC'. A setX isfusion closedf the following holds: If«- s - g andy - s - d areinX thena - s-§
and~ - s - J are also inX.

It is easy to see that for every prograirholds thatsafety-propX) is fusion closed. Intuitively,
fusion closure means that the entire history of every trace is present in every state of the trace. We
will give examples for fusion closed and not fusion closed specifications later.

We say that prograrh satisfiespecificationSPEC iff all traces in3 satisfySPEC. Consequently,
we say that: violatesSPEC iff there exists a trace € > which violatesSPEC.

Extensions. Given some progrank; = (Ci,I;,T1) our goal is to define the notion of a fault-
tolerant versionX; of ¥; meaning that, does exactly whak; does in fault-free scenarios and
has additional fault-tolerance abilities whi¢hy lacks. Sometimesys = (Cy, Iz, T5) will have
additional states (i.e(’s O C4) and for this case we must define what these states “mean” with
respect to the original progradi;. This is done using &tate projection functiomr : Co — Cy
which tells which states of; are “the same” with respect to statesiyf. A state projection function
can be naturally extended to traces and properties, e.g., for adraee ... over Cy holds that
7'('(81, 59, ..) = 7'('(81),71'(82), N

We say that a program; = (C1, I1,T1) extendsa program®, = (Co, I, T5) using state projec-
tion r iff the following conditions hold*

1. Cy 2 Ch,

2. w is a total mapping fronC’; to C (for simplicity we assume that for any € C; holds that
7(s) = s), and

3. w(safety-prog>,)) = safety-propX).

If o extendsX; usingw andX; satisfiesSPEC then obviouslyr(Y,) satisfiesSPEC. When it is
clear from the context that, extends:; we will simply say that:, satisfiesSPEC instead of r(32)
satisfiesSPEC”.

Fault Models. We define a fault modeF" as being a program transformation, i.e., a mapgihg
from programs to programs. We require that a fault model does not tamper with the set of initial
states, i.e., we rule out “immediate” faults that occur before the system is switched on. We also

The concept of extension is related to the notiomadinemenf1]. Extensions are refinements with the additional
property that the original state space is preserved and that there is no nadtottefing[1].

restrict ourselves to the case whétéadds” transitions, since this is the only way to violate a safety
specification. Formally, &ult modelis a mappingF' which maps a progralx = (C,1,T) to a
programF(X) = (F(C), F(I), F(T')) such that the following conditions hold:

1. F(C)=C
2. F(I) =1
3. F(T)> T

The resulting program is called tifeult-affected versioor theprogram in the presence of faulté/e
say that a progrank. is F-intolerant with respect t&PEC iff ¥ satisfiesSPEC but F'(X) violates
SPEC.

Given two program&:; andXs such tha:, extends¥; and a fault modeF’, it makes sense to
assume thaf’ treats¥; andX, in a “similar way”. Basically, this means th&t should at least add
the same transitions t8; and>>. But with respect to the possible new statesefit can possibly
add new fault transitions. This models faults which occur within the fault-detection and correction
mechanisms. Formally, a fault modgl must beextension monotonjd.e., for any two programs
¥ = (Ch1, 1, Th) andXy = (Cs, I, To) such that, extends:; usingz holds:

F(IT)\T1 C F(Tx)\ Ty

original system 33; 4—@ @—> 4—@ @—>

extension Yo 4’@ @—> 4'@ @—>

extension monotonic not extension monotonic

Figure 1: Examples for extension monotonic and not extension monotonic fault models.

An example is given in Fig. 1. The original system is given at the top and the extension is given
below (the state projection is implied by vertical orientation, i.e., states which are vertically aligned
are mapped to the same stated)y In the left example the fault model is extension monotonic since
all fault transitions i, are also inX,. The right example is not extension monotonic. Intuitively, an
extension monotonic fault model maintains at least its original transitions over extensions.

The extension monotonicity requirement does not restrict faulty behavior on the new states of
the extension. However, we have to restrict this type of behavior since it would be impossible to
build fault-tolerant versions otherwise. In this paper we assume a very general type of restriction: it
basically states that in any infinite sequence of extensions of the original program there is always some
point whereF' does not introduce new fault transitions anymore. Formally, an extension monotonic
fault model F' is finite iff for any infinite sequence of programs, Y, . .. such that for alli, >,

extendsy; holds that there exists asuch that for allk > j no new fault transition is introduced in
Yk, i.e.,F(Tk+1) \Tk+1 = F(Tk) \Tk.

Finite fault models retain the fault transitions in the original program (i.e., they are extension
monotonic for each pair of extensions). They do not restrict the additional faulty behavior introduced
in the new states of an extension. However, they exclude fault models for which infinite redundancy
is necessary to tolerate them. The engineering process is as follows: Given a pkbgaauch a fault
model ', we extendX; to X5 to makeF tolerable. Then we look at the new states introduced in
this process and consider faults which might happen there. Regarding these new faults we construct
a new extensioiLz of 35 to potentially tolerate these faults. This process is repeated. In theory, this
process might never terminate, namelyifforever adds certain kinds of faults to the new states. A
finite fault model guarantees that this process must eventually terminate. In this paper, we assume our
fault model to be finite and extension monotonic.

Fault-tolerant Versions. Now we are able to define fault-tolerant version It captures the idea
of starting with some program; which is fault-intolerant regarding a specificatiSsREC and some
fault modelF’. A fault-tolerant versiort, of 3, is a program which has the same behavioEasf
no faults occur, but additionally satisfiS®EC in the presence of faults. Formally, a programthe
F-tolerant versiorof program>:; for SPEC using state projection iff the following conditions hold:

1. ¥ is F-intolerant with respect t@’,
2. Yo extends; usingm,
3. F(X,) satisfiesSPEC.

In the remainder of this papeF; is a fault model X, ¥; andX, are programsSPEC, SPEC, and
SPEC, are specifications.

3 Problem Statement

The basic task we would like to solve is to construct a fault-tolerant version for a given program and
a safety specification.

Definition 1 (general fail-safe transformation problem) Given a progrant; which isF-intolerant
with respect to a general safety specificati®PEC;. Thegeneral fail-safe transformation problem
consists of finding a fault-tolerant version Bf.

The case wherSPEC is fusion closed has been studied by Kulkarni and Arora [11] and Jhumka
et al. [10], i.e., they solve a restricted transformation problem wtSREC, is fusion-closed. We
briefly recall the known solutions to this problem.

Solutions for Fusion-Closed Specifications. The basic mechanism which Kulkarni and Arora [11]
and Jhumkaet al. [10] apply is the creation of non-reachable states. The fact that specifications
are fusion closed implies that safety specifications can be concisely represented by a set of “bad”
transitions, transitions which causes a violation of the specification [3, 9].

For a finite computation of 3. We say thatr maintainsSPEC iff there exists a sequence of states
{ such thaty - B € SPEC. If SPEC is a safety property, every trace notSREC has a prefix which
does not maintairSPEC. From the definition of maintains follows that there must be a transition

where a given trace switches from “good” to “bad”, i.e.¢ can be written as& - d - b - 3 such that
« - d maintainsSPEC and all “longer” prefixes (starting with - d - b) do not maintairSPEC. Arora
and Kulkarni have shown [4, “Only-if” part of Lemma 3.2] th@t b) is a transition which will cause
any trace in which it occurs to violatePEC.

The known automated procedures [10, 11] which are based on the concept of non-reachable states
use the following approach for addition of fail-safe fault tolerance: Singe,) violatesSPEC, there
must exist executions in which a specified bad transition occurs. Inevitably, we must prevent the
occurrence of such a transition. So, for all bad transitiors (d,b) we must make either state
or stateb unreachable irf'(3;). If ¢ is a program transition then it depends on whether ortnst
reachable irt; or not.

e If tis areachable program transition, then a violatioSREC can occur even if no faults occur,
S0, obviously, no fault-tolerant version exists since we would have to change the behavior of the
original program.

e If tis aredundant (i.e., non-reachable) program transition, then we can remove it resulting in a
smaller transition sef; of Y.

If ¢ is a transition which has been introduced Bythen we cannot remove it directly. The best we
can do is make the starting statef ¢ unreachable. But this can only be done if there exists a non-
reachable program transition on the pathi/tdf such a transition exists, we can safely remove it. If
not, then again no fault-tolerant version exists.

Adding History Variables. Consider program with one variablewhich can take five different
values (integers 0 to 4) and simply proceeds from state0 to = = 4 through all intermediate states.
The fault assumptio’ has added one transition fram= 1 to z = 3 to the transition relation. Now
consider the correctness specificatsREC = “always (@ = 4 implies that previously: = 2)”. Note
that F'(X;) does not satisiSPEC (i.e., F'(¥;) can reach state = 4 without having been in state
x = 2), and thatSPECis not fusion closed. To see the latter, consider the two tracg<, 4 and
2,3,4 from SPEC. The fusion at state = 3 yields traced, 3, 4 which is not inSPEC. SinceSPEC

is not fusion closed, we cannot apply the known transformation methods [10, 11].

The specification can be made fusion closed by adding a history variabldch records the
entire state history. NOWPEC can be rephrased $PEC = “always (x = 4 implies(2) € h)” or,
equivalently,SPEC = “never (t = 4 and(2) ¢ h)". Now we can identify a set of bad transitions
which must be prevented, e.g., from state- 3 A h = (1) to statex = 4 A h = (1,2,3,4). This
means that all transitions to a state where- 4 holds must be removed unless in the starting state
h # (1) is true. In this way bad transitions are prevented and the modified system ss&tidfiEesn
the presence faulf.

Problems with History Variables. Adding a history variablé in the previous example adds states
to the state space of the system. In fact, defining the domainasf the set of all sequences over
{0,1,2, 3,4} adds infinitely many states. Clearly this can be reduced by the observation that if faults
do not corrupt, thenh will only take on five different valuesy, (1), (1,2), (1,2, 3), and(1, 2, 3, 4)).
But still, the state space has been increased from five stafés+t®5 states.

Note that>s has redundant states akhg is not redundant at all. So the redundancy is due to the
history variableh. But even if the domain of has cardinality 5, the redundancy is in a certain sense
not minimal, as we now explain.

Consider the programts depicted in Figure 2. It tolerates the faifltoy adding onlyonestate
to the state space af; (namely,z = 5). Note that}s has only one redundant state, 3¢ can be
regarded as redundancy-minimal with resped@REC. The metric used for minimality is the number
of redundant states. We want to exploit this observation to deal with the general case.

OOV
/@

Figure 2: A redundancy-minimal version fault-tolerant program. The specification is “alwaysi(
implies that previously: = 2)”.

4 Beyond Fusion Closure

Although the automated procedures of [10, 11] were developed for fusion-closed specifications, they
(may) still work for specifications which are not fusion closed only if the fault model has a certain
pleasant form. For example, consider the system in Figure 3 and the specification

SPEC = "(e implies previously) and (neveg)”

Obviously, the fault modeF' can be tolerated using the known transformation methods bedause
does not “exploit” the part of the specification which is not fusion closed.

JOSO

Figure 3: The fail-safe transformation can be successful even if the specification is not fusion closed.
The specification in this case ise“{mplies previously) and (neveg)”.

Exploiting Non-Fusion Closure. Now we formalize what it means for a fault model to “exploit”
the fact that a specification is not fusion-closed (we call this propetyfusion closure First we
define what it means for a trace to be the fusion of two other traces.

Definition 2 (fusion and fusion point of traces) Let s be a state andv = a;e - 5 - apost ANd G =
Bpre = 5 PBpost D€ two traces in which occurs. Then we define

fusion(c, s, 3) = apre = S - Bpost
If fusion(, s,) # « and fusioia, s, 3) # 3 we call s a fusion pointof o and 3.
Lemma 1 For the fusion of three traces, 3, v holds: If s occurs before’ in 3 then
fusion(a, s, fusion(3, s, v)) = fusionfusion«, s, 8), s,)

and
fusion(v, s', fusiona, s, 3)) = fusion(~, s’, 3)

If SPEC is a set of traces, we recursively define an operator to generate the fusion closure of
SPEC, denoted byfusion-closuréSPEC). It produces a set which is closed under finite applications
of thefusionoperator.

Definition 3 (fusion closure) Given a specificatioSPEC, a traceo is in fusion-closuréSPEC) iff
1. oisin SPEC, or

2. o = fusion«, s, B) for tracesa, 3 € fusion-closuréSPEQ and a states that occurs inc and

3.

Lemma 1 guarantees that every tractusion-closuréSPEC) which is not inSPEC has a “normal
form”, i.e., it can be represented uniquely as the sequence of fusions of tr&§ffsin This is shown
in the following theorem.

Theorem 1 For every traces € fusion-closuréSPEC) which is not inSPEC there exists a sequence
of tracesay, a1, as, . .. and a sequence of states so, s3, . . . such that

1. foralli > 0, «; € SPEC,
2. foralli > 1, s; is a fusion point oty;_; anda;, and

3. o can be written ag = fusion(fusion(. . . fusionay, s1, a1), $2, a2), $3,3), . . .).

PROOF sSkETCH The proof is by induction on the structure of hewevolved from traces i$PEC.
Basically this means an induction on the number of fusion pointsigina. The induction step
assumes that is the fusion of two traces which have at madfusion points and depending on their
relative positions uses the rules of Lemma 1 to construct the normal forsn for

Now consider the system depicted in Figure 4. The corresponding specificatiS®PEE. =
“ f implies previouslyl”. The system may exhibit the following two traces in the absence of faults,
namelya = a-b-candf8 = a-d-e- f. Inthe presence of faults, a new trace is possible, namely
=a-b-e- f. Observe that violatesSPEC and thaty is the fusion of two traces, 3 € SPEC
(the state which plays the role in Definition 2 is state). In such a case we say that fault model
exploits the non-fusion closure SPEC.

Figure 4: Example where the non-fusion closure of a specification is exploited by a fault model. The
specification is if implies previouslyd”.

Definition 4 (exploiting non-fusion closure) LetX satisfySPEC. ThenF'(X) exploits the non-fusion
closure ofSPEC iff there exists atrace € F'(X) suchthat ¢ SPEC ando € fusion-closuréSPEC).

Intuitively, exploiting the non-fusion closure means that there exists a bad computatign (
SPEC) that can potentially “impersonate” a good computatiend fusion-closuréSPEC)). Defi-
nition 4 states thaf’ causes a violation a§PEC by constructing a fusion of two (allowed) traces.

8

Given a fault modeF' such thatF'(X) exploits the non-fusion closure 8PEC, then also we say that
the non-fusion closure fPEC is exploited forX in the presence of'.

Obviously, if for some specificatioSPEC and systenX. such an¥’ exists, therSPEC is not fusion
closed. Similarly trivial to prove is the observation that no fault mddelan exploit the non-fusion
closure of a specification which is fusion closed.

Onthe other hand, if the non-fusion closureéS®EC cannot be exploited, this does not necessarily
mean thatSPEC is fusion closed. To see this consider Figure 5. The correctness specifiSBfoh
of the program is ¢ implies previouslya”. Obviously, a fault model can only generate traces that
begin witha. Sincea is an initial state and we assume that initial states are not changed iy F’
can exploit the non-fusion closure. BSIPEC is not fusion closed.

Figure 5: Example where the non-fusion closure cannot be exploited but the specification is not fusion
closed. The specification ig Tmplies previouslyu”.

Preventing the Exploitation of Non-Fusion Closure. The fact that a fault model may not exploit
the non-fusion closure of a specification will be important in our approach to solve the general fail-
safe transformation problem (Def. 1). A method to solve this problem, i.e., that of finding a fault-
tolerant versior:s, should be a generally applicable method, which constritigtBom X, (this is
depicted in the top part of Figure 6). Instead of devising such a method from scratch, our aim is to
reuse the existing transformations to add fail-safe fault tolerance which are based on fusion-closed
specifications [10, 11]. This approach is shown in the bottom part of Figure 6. Starting_frowe
construct some intermediate prograth and some intermediate fusion-closed specificaBBEC,
to which we apply one of the above mentioned methods for fusion-closed specifications [10, 11]. The
construction of¥}, and SPEC» must be done in such a way that the resulting program satisfies the
properties of the general transformation problem stated in Definition 1. How can this be done?

The idea of our approach is the following: First, choS8&C- to be the fusion closure &PEC,
i.e., chooseSPEC, = fusion-closuréSPEC,) and construck, from %, in such a way that'(3))
does not exploit the non-fusion closure SPEC;. More precisely,X), results from applying an
algorithm (which we give below) which ensures that

e Y, extends:; using some state projectianand
e F(3)) does not exploit the non-fusion closureS#EC, .

Our claim, which we formally prove later, is that the program resulting from applying (for ex-
ample) the algorithms of [10, 11] t&/, with respect taSPEC>, in fact satisfies the requirements of
Definition 1, i.e.,X5 is in fact anF'-tolerant version ok, with respect taSPEC, .

Bad Fusion Points. For a given systerit and a specificatioSPEC, how can we tell whether or not
the nature oSPEC is exploitable by a fault model? For the negative case (where it can be exploited),
we give a sufficient criterion. It is based on the notion dfaa fusion point

Definition 5 (bad fusion point) Let X be F-intolerant with respect t&PEC. States of X is abad
fusion point ofY for SPEC in the presence aF iff there exist tracesy, 5 € SPEC such that

9

general method
N Yo

fault-intolerant w.r.t. . fault-tolerant w.r.t.
general specification fusion-closed SPEC,

SPEC;, ——— = SPEC,

N P po%y

this paper “standard” fail-safe transformation
w.r.t. fusion-closed SPEC,

Figure 6: Overview of transformation problem (top) and our approach (bottom). Algorithm 1 de-
scribed in this paper offers a solution to the first step (tg..— X5).

1. sis a fusion point ofxr and 3,
2. fusiona, s, 3) € F(X), and
3. fusiona, s, 3) ¢ SPEC.

Intuitively, a bad fusion point is a state in which “multiple pasts” may have happened, i.e., there
may be two different execution paths passing thragjgind from the point of view of the specification
it is important to tell the difference. We now give several examples of bad fusion points.

As an example, consider Fig. 4 wherés a bad fusion point. To instantiate the definition, take
a=a-b-ec F(¥)andf=a-d-e- f € F(X). The fusion at yields the trace. - b - e - f which is
not in SPEC.

Theorem 2 (bad fusion point criterion) The following two statements are equivalent:
1. ¥ has no bad fusion point fGPEC in the presence of'.

2. F(X) does not exploit the non-fusion closureSHEC.

PROOF skeTCH The main difficulty is to prove that iSPEC has no bad fusion point theR(X)
cannot exploit the non-fusion closure. We prove this by assumingrtiigy exploits the non-fusion
closure and using Theorem 1 to construct a bad fusion gaint.

Removal of Bad Fusion Points. Theorem 2 states that it is both necessary and sufficient to remove
all bad fusion points fronk to make its structure robust against fault models that exploit the non-
fusion closure oSPEC. So how can we get rid of bad fusion points?

Recall that a bad fusion point is one which has multiple pasts, and from the point of view of the
specification, it is necessary to distinguish between those pasts. Thus, the basic idea of our method
is to introduce additional states which split the fusion paths. This is sketched in Figure X; ket
(C1, I, T1) be a system. If is a bad fusion point of; for SPEC, there exists a traceé € SPEC and
atracen € F'(X) which both go through.

Algorithm 1 (Removal of Bad Fusion Points) To remove bad fusion points, we now construct an
extensiorty = (Cy, I2, 1) of X5 in the following way:

o Cy = (1 U{s'} wheres' is a “new” state,

e [, =1I;,and

10

e Ty results from by “diverting” the transitions ofg to and froms’ instead ofs.

The extension is completed by defining the state projection functiormaps’ to s. Observe that
is not a bad fusion point regarding and 5 anymore because now containss and 3 a different state
s’ which cannot be fused. So this procedure gets rid of one bad fusion point. Also, it does not by itself
introduce a new one, sincg is an extension state which cannot be referenceSlABC. So we can
repeatedly apply the procedure and incrementally build a sequence of extehsidns . . . where in
every step one bad fusion point is removed and an additional state is added. Holveway, cause
new bad fusion points to be created during this process by introducing new faults, transitions defined
on the newly added states. But since the fault model is finite it will do this only finitely often. Hence,
repeating this construction for every bad fusion point will terminate because we assume that the state
space is finite.

Note that in the extension process, certain states can be extended multiple times because they
might be bad fusion points for different combinations of traces.

I

Figure 7: Splitting fusion paths.

We now prove that the above method results in a program with the desired properties.

Lemma 2 LetX; be F-intolerant with respect to a general specificatiSREC;. The program>,
which results from applying Algorithm 1 satisfies the following properties:

1. ¥, extendsZ; using some state projectionand

2. F(X) does not exploit the non-fusion closureSHEC; .

PROOF SKETCH To show the first point we argue that there exists a projection funeti(wihich is
induced by our method) such that every fault-free executiof,as an execution oE;. To show the
second point, we argue that the method removes all bad fusion points and apply the bad fusion point
criterion of Theorem 2]

Correctness of the Combined Method. Starting from a progrant;, Lemma 2 shows that the
program, resulting from Algorithm 1 for removing bad fusion points enjoys certain properties (see
Fig. 6). We now prove that starting off from these properties and chods##y", as the fusion
closure ofSPEC, the progranks, which results from applying the algorithms of [10, 11]%, has

the desired properties of the transformation problem (Definition 1).

Lemma 3 Given F', SPEC,, and¥; as in Lemma 2, leSPEC, = fusion-closuréSPEC;) and let

3o be the result of applying any of the known methods that solve the fusion-closed transformation
problem toX, with respect toF’ and SPEC,, whereX), results from; through the application of
Algorithm 1. Then the following statements hold:

11

1. ¥, extends:; using some state projection

2. If F(X9) satisfiesSPEC, thenF'(X,) satisfiesSPEC; .

PROOF SKETCH To prove the first point we argue that a fault tolerance addition procedure only
removes non-reachable transitions. Hence, every fault-free executidf isfalso an execution of

Y9. But sinceX, extends:; so mustt,. To show the second point we first observe that,) does

not necessarily satisf§PEC; but not all traces for this are if'(X2) anymore (due to the removal

of bad transitions during addition of fault tolerance). Next we show that any traé&f) which
violatesSPEC; must exploit the non-fusion closure S8PEC . But this must also be a trace B{X)

and so is ruled out by assumptidn.

Lemmas 2 and 3 together guarantee that the composition of the method described in Section 1 and
the fail-safe transformation methods for fusion-closed specifications in fact solves the transformation
problem for non-fusion closed specifications of Definition 1.

Theorem 3 Let 31 be F-intolerant with respect to a general specificatiSsREC;. The composition
of Algorithm 1 and the fail-safe transformation methods for fusion-closed specifications solves the
general transformation problem of Definition 1.

Examples. Finally, we present two examples of the application of our method. The top of Figure 8
(left hand side, system 1) shows the original system. The augmented system is depicted at the bottom
(left hand side, system 4). The correctness specification for the systemimaglies previouslyb)
and e implies previouslyc)”. There are only two bad fusion points, namelandd which have to
be extended. In the first stepis “removed” by splitting the fusion path which is indicated using two
short lines. This results in system 2. Subsequedtly,refined, resulting in system 3. Note thidhas
to be refined twice because there are two sets of fusion paths. This results in system 4, which can be
subject to the standard fail-safe transformation methods, which will remove the tranéitidfisand
(d,e).

A similar, yet more complex example is shown on the right hand side of Fig. 8. The correctness
specification for the system 1 at the top isithplies previously § or ¢)". The figure shows that again
a “two level” extension is necessary here, since the only execution which must be prevented is the one
which usedothfault transitions. This means that stgtés a bad fusion point for multiple execution
paths and hence must be refined twice (note that the fault transitigh is a new fault added to the
system in the extension).

Discussion. The complexity of our method directly depends on the number of bad fusion points
which have to be removed and finding bad fusion points by directly applying Def. 5 is clearly in-
feasible even for moderately sized systems. However, bad fusion points are not hard to find if the
specification is given as a temporal logic formula in the spirit of those used throughout this paper. For
example, if specifications are given in the formdnly if previouslyy” then only states which occur

in traces between statesandy can be fusion points. Candidates fwad fusion points are all states
where two execution paths merge and this can easily be checked from the transition diagram of the
system.

Our method requires to check every possible fusion point whether it is a bad one. So obviously,
applying our method induces a larger computational overhead during the transformation process than
directly adding history variables. But as can be seen in Fig. 8, the number of states is significantly
less than adding a general history variable. For example, a clever addition of history variables to the

12

]

)] ®3)

a=0 (O
O OG0 0n0
()
OXOQOR05G=020
()

)

®3)
)

()
N

Figure 8: Removing bad fusion points. The specification for the system on the left imflies
previouslyb) and g implies previouslye)”. For the system on the right it isj“implies previously §
ore)”.

13

system in Fig. 8 would require two bits, one to record the visit to $tated one to record the visit to
c. Overall this would result ir2 x 2 x 5 = 20 states. Our methods achieves the same result with a
total of 8 states.

Although it can happen that states are refined multiple times, the number of bad fusion points (and
hence the number of added states) only depends on the specification and the fault model whereas the
number of added states using history variables depends on the size of the state space. For example, a
program withn states will have x n states after adding just one bit of history information.

In general, the worst case scenario in our scheme is when every state is a bad fusion point. As-
suming there are states in the system, there avén) bad fusion points. Assuming that faults do
not affect the refined states (which, for sake of comparison is realistic since we do not assume faults
to affect history variables, whenever they are used), every bad fusion point is refined, giving rise to
O(n) refined statesO(n) bad fusion states thus give rise@in?) refined states. In the worst case
scenario, our scheme adds an additio@ahQ) states, as compared to the exponential number of
additional states added by using history variables.

Note however that the resulting system in Fig. 8 is not redundancy minimal if the entire transfor-
mation problem is considered. The stdteis not necessary since it may become unreachable even in
the presence of faults after the fail-safe transformation is applied. This is the price we still have to pay
for the modularity of our approach, i.e., adding history states does at present not “look ahead” which
states might become unreachable even in the presence of faults.

In theory there are cases where our method of adding history states does not terminate because
there are infinitely many bad fusion points. For this to happen, the state space must be infinite. If we
consider the application area of embedded software, we can safely assume a bounded state space.

5 Conclusions

In this paper, we have presented ways on how get rid of a restriction upon which procedures that
add fault tolerance [10, 11] are based, namely that specifications have to be fusion closed. Apart
from closing a gap in the detector/corrector theory [3], our method can be viewed as a finer grained
method to add history information to a given system and hence add state space redundancy. This also
helps to understand the principles of fault-tolerant system operation. We have shown that our method
in general adds less history states than would be added using standard history variables (which in
general lead to an exponential growth of the state space). Thus, adding state redundancy using the
approach presented in this paper makes addition of fault tolerance more efficient. At present, we are
implementing our approach within the fault-tolerance synthesis framework SYNFT of Michigan State
University [12].

As future work, it would be interesting to combine our method with one of the methods to add de-
tectors so that the resulting method can be proven to be redundancy minimal. We are also investigating
issues of non-masking fault-tolerance, i.e, adding tolerance with respect to liveness properties.

References

[1] Martin Abadi and Leslie Lamport. The existence of refinement mappifgsoretical Computer Science
82(2):253-284, May 1991.

[2] Bowen Alpern and Fred B. Schneider. Defining livenebs¥ormation Processing Letter@1:181-185,
1985.

14

(3]

(4]

(5]

(6]

(7]

(8]

9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

Anish Arora and Sandeep S. Kulkarni. Component based design of multitolerant sydi&BsTransac-
tions on Software Engineering4(1):63-78, January 1998.

Anish Arora and Sandeep S. Kulkarni. Detectors and correctors: A theory of fault-tolerance components.
In Proceedings of the 18th IEEE International Conference on Distributed Computing Systems (ICDCS98)
May 1998.

Anindya Basu, Bernadette Charron-Bost, and Sam Toueg. Simulating reliable links with unreliable links
in the presence of process crashes.Ptaceedings of the 10th International Workshop on Distributed
Algorithms (WDAG96)pages 105-122, Bologna, Italy, October 1996. Springer-Verlag.

K. Mani Chandy and Jayadev MisrRarallel Program Design: A FoundatiorAddison-Wesley, Reading,
MA, Reading, Mass., 1988.

Felix C. Gartner and Arshad Jhumka. Automating the addition of fail-safe fault-tolerance: Beyond fusion-
closed specifications. Technical Report IC/2003/23, Swiss Federal Institute of Technology (EPFL), School
of Computer and Communication Sciences, Lausanne, Switzerland, April 2003.

Felix C. Gartner and Hagen 8zer. Defining redundancy in fault-tolerant computingBiteef Announce-
ment at the 15th International Symposium on DIStributed Computing (DISC ,2DBbpn, Portugal,
October 2001.

H. Peter Gumm. Another glance at the Alpern-Schneider characterization of safety and liveness in con-
current executiondnformation Processing Letterd7(6):291-294, 1993.

Arshad Jhumka, Felix C. &tner, Christof Fetzer, and Neeraj Suri. On systematic design of fast and
perfect detectors. Technical Report 200263, Swiss Federal Institute of Technology (EPFL), School of
Computer and Communication Sciences, Lausanne, Switzerland, September 2002.

Sandeep S. Kulkarni and Anish Arora. Automating the addition of fault-tolerance. In Mathai Joseph, edi-

tor, Formal Techniques in Real-Time and Fault-Tolerant Systems, 6th International Symposium (FTRTFT
2000) Proceedingsnumber 1926 in Lecture Notes in Computer Science, pages 82-93, Pune, India,

September 2000. Springer-Verlag.

Sandeep S. Kulkarni and Ali Ebnenasir. SYNFT: A framework for adding fault-tolerance to distributed
programs. Available via email from the authors at Michigan State University, USA, 2003.

Leslie Lamport. Proving the correctness of multiprocess progratBEE Transactions on Software
Engineering 3(2):125-143, March 1977.

Zhiming Liu and Mathai Joseph. Specification and verification of fault-tolerance, timing and scheduling.
ACM Transactions on Programming Languages and Systh($):46—89, 1999.

Heiko Mantel and Felix C. @rtner. A case study in the mechanical verification of fault tolerajmearnal
of Experimental & Theoretical Artificial Intelligence (JETAD2(4):473-488, October 2000.

Fred B. Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial.
ACM Computing Survey22(4):299-319, December 1990.

15

