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Cross-Domain Noise Impact Evaluation for Black Box Two-Level
Control CPS
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Control Cyber-Physical Systems (CPSs) constitute a major category of CPS. In control CPSs, in addition to the well-studied

noises within the physical subsystem, we are interested in evaluating the impact of cross-domain noise: the noise that comes

from the physical subsystem, propagates through the cyber subsystem, and goes back to the physical subsystem. Impact

of cross-domain noise is hard to evaluate when the cyber subsystem is a black box, which cannot be explicitly modeled.

To address this challenge, this paper focuses on the two-level control CPS, a widely adopted control CPS architecture,

and proposes an emulation based evaluation methodology framework. The framework uses hybrid model reachability to

quantify the cross-domain noise impact, and exploits Lyapunov stability theories to reduce the evaluation benchmark size.

We validated the effectiveness and efficiency of our proposed framework on a representative control CPS testbed. Particularly,

24.1% of evaluation effort is saved using the proposed benchmark shrinking technology.
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1. INTRODUCTION

Cyber-Physical Systems (CPSs) [Sha et al. 2008] converge the discrete computing and continuous
physical domains. One representative category of CPSs is control CPSs, where computer systems
control physical objects in real-time. Naturally, control CPSs demand integration of computer sci-
ence and control theories.

This paper focuses on one aspect of the integration: how to evaluate the impact of cross-domain
noises in control CPSs. Specifically, this paper assumes a classic control CPS architecture described
by Fig. 1. It consists of a “physical” control subsystem (simplified as the “physical subsystem” 1 in

1Note the term “physical subsystem” is a notational convenience. Strictly speaking, it refers to the low-level control system
(aka “inner control loop”), which may or may not be purely analogue. For example, when a ground computer (i.e. the
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the following) and a “cyber” computing subsystem (simplified as the “cyber subsystem” in the fol-
lowing). The physical and cyber subsystems form a two-level control loop. The physical subsystem
conducts the inner control loop, which carries out fine-time-grain sensing (the “local sensing” in
the figure) and actuation of the plant (i.e., the physical object being controlled). The cyber subsys-
tem conducts the outer control loop, which carries out coarse-time-grain reference point updates.
For simplicity, in the following, this paper calls the control CPS architecture of Fig. 1 the two-level
control CPS (2L-CCPS) architecture.

Fig. 1. 2L-CCPS, a classic control CPS architecture. Note that the cyber subsystem digital modules can be interconnected
via local or remote function calls.

More specifically, in Fig. 1, the dashed box delineates the physical subsystem, which is the same
as a conventional non-CPS control system. The external input to the physical subsystem is the
reference point value, a vector that specifies the target state of the plant. Given the reference point
value, the physical subsystem takes charge of maneuvering the plant until the plant’s state reaches
the reference point value. For example, suppose the plant is a cart, with vector (x1, x2)

T as its state,
where x1 is the cart’s current location and x2 is the cart’s current velocity. A reference point value
of (10, 0)T commands the physical subsystem to move the cart to location 10 and stop there.

Besides the physical subsystem, the dash-dot box in Fig. 1 delineates the cyber subsystem. Specif-
ically, the cyber subsystem is a set of interconnected digital modules (can be both software and/or
hardware, e.g. digital signal processors). These digital modules collaboratively carry out a workflow
that remotely senses the plant state (see Mrs in Fig. 1), processes the sensed state, and decides the
new reference point value. The new reference point value is the output (see Mfd in Fig. 1) of the
cyber subsystem, and is fed back to the physical subsystem.

The reference point update events take place in coarse-time-grain: they happen discretely and are
separated by long time intervals. In contrast, the local sensing and controller actuation in the physical
subsystem (i.e., the inner control loop) take place in fine-time-grain. They run in continuous time,
or periodically with a sufficiently small period2.

For example, for a 2L-CCPS to remotely fly a drone, the drone (the physical subsystem) has
its onboard fine-time-grain sensing and actuation for attitude control; while the ground station (the
cyber subsystem) uses visuals to conduct remote coarse-time-grain sensing of the drone, and to
command the drone where to go. In the following, unless otherwise denoted, the “sensing” of this

“cyber subsystem”) uses analogue wireless signals to remotely control a purely analogue (consider mechanical is a kind of
analogue) drone, the “physical subsystem” (i.e. the drone) is purely analogue. However, when the ground computer uses
WiFi to remotely control a WiFi+analogue drone, the “physical subsystem” (i.e. the drone) is indeed a mixture of digital and
analogue parts.
2According to Franklin et al. [Franklin et al. 1994], when replacing an analog controller with a discrete controller, we can
empirically regard the discrete controller as an analog controller, if the sampling rate is faster than 20 times the closed-loop
bandwidth of the analog physical subsystem.
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paper refers to the latter, i.e., the coarse-time-grain remote sensing for computing new reference
point values by the cyber subsystem.

In practice, sensed signals are always accompanied with noises. These noises constitute a major
source of errors. Noises within conventional control systems (e.g., the physical subsystem of a 2L-
CCPS) include local sensing noises, controller output disturbances, and plant modeling errors. They
are well-studied and can be well contained [Hovakimyan and Cao 2010]. Hence these noises are not
the focus of this paper. Instead, this paper focuses on the noise that crosses the boundaries between
the cyber and physical subsystems, i.e., the so called cross-domain noise. Specifically, in a 2L-
CCPS, cross-domain noise (see N in Fig. 1) refers to the noise that arises from the remote sensing
(see module Mrs in Fig. 1) of the plant. It propagates through the cyber subsystem, and goes back
to the physical subsystem as the error component of the new reference point value.

Challenge and Overall Idea of the Proposed Solution Framework
In a conventional control system, noises (i.e. sensing noises, controller output disturbances, and

plant modeling errors) propagate through the sensing, controller, and plant module, which can all be
modeled by closed form formulae. Correspondingly, the impacts of the noises can be analytically
evaluated. In contrast, the cross-domain noise in a 2L-CCPS propagates through the discrete cyber
subsystem (see Fig. 1), which cannot be modeled by closed form formulae in general. The situation
is worse when the cyber subsystem is black box: e.g. when the cyber subsystem is encapsulated by
a third party vendor.

To address the challenge on how to evaluate cross-domain noise’s impacts, this paper aims to
make an initial step forward: we propose a methodology framework to evaluate the impacts of
the cross-domain noise in a 2L-CCPS with a black box cyber subsystem. The overall idea of our
framework is as follows.

We first prepare a benchmark, i.e., a set of sample states of the plant. For each sample state of
the benchmark, we carry out Monte Carlo emulation. In each emulation trial, the benchmark sample
state, plus the cross-domain noise, are entered into the cyber subsystem. The cyber subsystem then
outputs the (noisy) next reference point value, which is fed across the domain boundary into a
physical subsystem simulator to measure the accident risk. Via the above Monte Carlo emulation, we
establish a quantitative relationship between the cross-domain noise level and the plant accident risk
increase3. This relationship becomes a metric to evaluate the impact of the cross-domain noise. We
further propose a control theory based method to shrink the benchmark size, to make our evaluation
more efficient.

Contributions and Basic Insights
In a more general sense, our proposed framework addresses a sub-problem of fault propagation

profiling, a hot topic in system dependability research. Compared to existing fault propagation pro-
filing works, our cyber subsystem model is a black box to the users; our physical subsystem model
is at the granularity of differential equation level; we extensively exploit inter-disciplinary control
theory; and we focus on evaluating cross-domain noises unique to CPSs.

The framework is also related to control CPS fault diagnosis and fault tolerance. Compared to
existing control CPS fault diagnosis/tolerance works, our cyber subsystem model is a black box to
the users, hence the cyber subsystem does not have an accurate model. In addition, we are neither
focusing on fault diagnosis (the cause of fault is known, i.e., cross-domain noise), nor fault tolerance.

3Again use the aforementioned remotely flying drone example. In each Monte Carlo trial, the benchmark sample can be a
video frame (i.e. a photo) of the remote drone and its nearby obstacles. The video frame plus additive white Gaussian noise
(i.e. the cross domain noise) is inputted into the ground station (i.e. the cyber subsystem). This mimics the fact that the ground
station’s video camera is noisy. Then the ground station conducts computer vision recognition and decision making as a black
box. The decision, i.e. the outputted new reference point on where to fly the remote drone, is fed back to a drone simulator,
which simulates the next step physical trajectory of the drone. Expectedly, with higher additive white Gaussian noise, the
ground station would more likely make wrong decisions, and the simulated drone trajectory will have higher probability of
hitting the obstacles. By carrying out many randomized trials of such, we will establish the quantitative relationship between
the additive white Gaussian noise level and the obstacle-hitting probability.
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Main contributions and insights of this paper are summarized as following.

(1) We propose a benchmark metric and corresponding measurement method to evaluate cross-
domain noise impacts to 2L-CCPSs with black box cyber subsystems.

(2) We further propose a method to effectively shrink the benchmark, exploiting the inter-
disciplinary Lyapunov stability control theories.

(3) We validated the effectiveness and efficiency of our proposed methodology framework on a rep-
resentative 2L-CCPS testbed. Particularly, the benchmark shrinking technology reduces 24.1%
of the evaluation effort.

Paper Organization
The rest of the paper is organized as follows. Section 2 discusses related work. Section 3 describes

the overall systems model to set the context for discussion. Section 4 elaborates our basic cross-
domain noise impact evaluation method. Section 5 proposes a method to effectively shrink the
evaluation benchmark. Section 6 demonstrates and validates the proposed methodology framework.
Section 7 concludes the paper.

2. RELATED WORK

In a more general sense, this paper addresses a sub-problem of fault propagation profiling, a hot
topic in system dependability research. Works of Hiller et al. [Hiller et al. 2004] propose using
conditional probability to profile the permeability, exposure, and impact of faults in a network of
software modules. Oliner et al. [Oliner and Aiken 2011] propose using principal component analysis
and temporal correlations to discover influence relationships between software modules, to profile
anomaly propagation. Distefano et al. [Distefano et al. 2011] propose a compositional calculus to
analyse software fault propagation with closed form formulae. Jhumka et al. [Jhumka and Leeke
2011] use software fault propagation profiling results to guide the placement of fault detector asser-
tions. Pham et al. [Pham et al. 2015] propose a UML based annotation and inference framework to
analyze concurrent fault propagations in component based software systems. However, all the above
works focus on pure software system, rather than CPS.

There are works on profiling CPS fault propagation. Sierla et al. [Sierla et al. 2013] study CPS
fault propagation with an explicit object-oriented and event based model. Ge et al. [Ge et al. 2009]
analyse CPS failure probability using the PRISM [Kwiatkowska et al. 2002] probabilistic model
checker. There are also works on using various artificial intelligence and/or statistics tools to quan-
tify CPS fault propagation [Augustine et al. 2012]. However, the above works all assume a white box
cyber subsystem, or at least a cyber subsystem where the interconnection details of digital modules
are known to the user.

As cross-domain noise impact evaluation is a subtask of holistic system analysis, the solution
proposed by this paper can be plugged into holistic system analysis frameworks, such as FMEA or
FMECA [US Dept. of the Army 2015]. For example, for FMEA, our impact evaluation results can
serve as a system failure rate input related to cross-domain noise.

This paper is also related to fault-tolerant control CPS. Conventional fault-tolerant control CPS
works deal with sensing errors, actuation errors, system parameter errors, or even system model
changes. They typically require white box models of the cyber subsystem [Gao et al. 2015a]. Re-
search on fault-tolerant control CPS with black box cyber subsystems is relatively young. There are
works on using redundancy to deal with faults in such control CPS [Wang et al. 2013]. Such topic
is apparently orthogonal to this paper’s topic.

Model predictive control [Camacho and Bordons 2013] focuses on repeatedly deriving optimal
control signals to control the plant. This paper, however, is not focusing on how to control the plant.

There are also works on using data mining, machine learning and/or inference to diagnose the
cause of faults [Gao et al. 2015b]. In contrast, our paper is not about diagnosis. The cause of fault
is given: the cross-domain noise. We want to evaluate its impact on the physical subsystem given
different noise levels and various initial plant states. On the other hand, our evaluation results can
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serve as a training set for data mining, machine learning, or as the prerequisite conditional proba-
bility distribution needed by Bayesian inference. In this sense, this paper’s work complements the
diagnosis works.

The work in [Tan et al. 2014] proposes using a Bayesian network for cross-domain noise profiling
in control CPS. However, it is a one-page work-in-progress abstract and its proposed methodology
may not be valid when noise is non-Gaussian.

3. OVERALL SYSTEMS MODELS

We shall first set the context for our discussion by introducing the overall systems model. This
includes the physical and cyber aspects of the 2L-CCPS architecture, and the combined systems
model.

3.1. Physical Subsystem Model

In this paper, we assume the physical subsystem of a 2L-CCPS is a Linear Time Invariant (LTI)
control system, which is arguably the most widely used control system.

For an LTI control system, the state of the plant at time t is described by a n-dimensional vector
X(t) = (x1(t), x2(t), . . ., xn(t))

T. The vector is also called the plant’s state vector (in the follow-
ing, we use the term “plant’s state” and “ plant’s state vector” interchangeably), and each element
of the state vector is also called a state variable. For simplicity, we often omit the parameter t when

writing state vector and/or variables, and use Ẋ (and respectively ẋi, i = 1, . . . , n) to denote the

derivative d X
d t

(and respectively d xi

d t
, i = 1, . . . , n).

The dynamics of the plant is governed by the following systems of differential equations.

d(X −Oref)

d t
= A(X −Oref) +BU, (1)

U = −K(X −Oref), (2)

where Oref ∈ Rn is the reference point value from the cyber subsystem: the objective of control is
to maneuver the plant state vector X to Oref (so that X − Oref = 0); A ∈ Rn×n and B ∈ Rn×m

are two constant matrices dependent on the plant’s physics; U(t) = (u1(t), u2(t), . . ., um(t))T is
the controller output created as per Eq. (2); K ∈ Rm×n is a constant matrix defining the control

strategy. Denote X̃
def
= X −Oref, the system of Eq. (1)(2) can be rewritten into the following form.

˙̃X = FX̃, (3)

where F = A−BK.
Besides the above systems of differential equations, the dynamics of the plant are also governed

by allowed region A ⊆ Rn (or equivalently, forbidden region Ā def
= Rn − A, i.e., the complement

of the allowed region) in the state space Rn. Every time X exceeds the allowed region (i.e., reaches
the forbidden region), a plant fault happens. For example, for a drone swarm control CPS, any two
drones must maintain a distance of over 500 meters. Dropping below this 500 meters limit means a
plant fault happens.

3.2. Cyber Subsystem Model

We assume the following about the cyber subsystem (see Fig. 1).

Assumption 1 Except for Mrs and Mfd and their interfaces to the rest of the cyber subsystem, the
cyber subsystem is a black box to the 2L-CCPS user. The user knows nothing about the exis-
tence4, interconnection details, and implementation details of all other cyber subsystem digital

4After deployment, if the 2L-CCPS vendor requests to upgrade (or patch, or reconfigure) some of the digital modules,
existence of these modules may be revealed to the user, but not the interconnection and internal implementation details of
these modules.
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000:6 F. Tan et al.

modules. This is common in practice. For example, in computer operating systems (OSs), except
for some application layer modules (analogous to Mrs and Mfd), the rest of the OS modules are
black boxes to OS users.

Assumption 2 The cyber subsystem, however, is a white box to the 2L-CCPS vendor. The vendor
can suggest to the user alternatives to upgrade (or patch, or reconfigure) the 2L-CCPS without
revealing cyber subsystem modular details, i.e., the interconnection and internal implementa-
tion details of digital modules. This is again a common practice, e.g. OS vendors often suggest
different ways to patch OSs to users without revealing the modular details.

Assumption 3 The time cost to deliver a plant’s state sample to the cyber subsystem is τ1 (see
Fig. 1); and the time cost to run the cyber subsystem and to deliver the outputted reference point
value to the physical subsystem is τ2 (see Fig. 1). Every time the cyber subsystem delivers a new
reference point value to the physical subsystem, we say a reference point update event happens.

Assumption 4 The cyber subsystem decides the new reference point value purely based on the most
recent remote sensing of the plant’s state. In other words, the cyber subsystem is memoryless.

According to Assumption 1, to users, the cyber subsystem is a black box except the known
existence of the “remote sensing” module Mrs and the “final decision” module Mfd (see Fig. 1).
The single cyber subsystem input port sends the current state of the plant X into Mrs; and the single
cyber subsystem output port sends the decision from Mfd as the new reference point value O′

ref to the
physical subsystem. Mrs senses the state of the physical plant, and outputs Mrs(X)+N to the rest of
the cyber subsystem, where Mrs(X) is the sensing result without noise, and N is the cross-domain
noise random variable (RV). The cross-domain noise RV N hence will propagate throughout the
black box cyber subsystem to interfere the final decision making.

3.3. Combined Model

The hybrid automaton [Tabuada 2009] of Fig. 2, denoted as H , models the combined “cyber” and
“physical” aspects of 2L-CCPS.

Fig. 2. Hybrid automaton H that models 2L-CCPS

H’s node describes the continuous behavior of the combined model. It includes Eq. (3) and the
continuous increase of time: ṫ = 1. H’s edge describes the discrete behavior of the combined model.
It represents a reference point update event: at time t0, the cyber subsystem can change the value
of reference point Oref by delivering the cyber subsystem’s output to the physical subsystem. After
a reference point update event, Oref takes a new value (denoted as O′

ref(t0) in Fig. 2) and remains
constant until the next reference point update event. Note to comply with reality, we assume the
triggering of reference point update events is non-zeno.

4. CROSS-DOMAIN NOISE IMPACT EVALUATION FRAMEWORK

As mentioned in Section 1, noises in the physical subsystem, such as local sensing noises, controller
output disturbances, and plant modeling errors, are well studied and can be well contained by the
physical subsystem. Therefore, these noises are not the focus of this paper. Instead, we focus on
cross-domain noises (i.e., the noise denoted by RV N in Fig. 1), which are not contained within the
physical subsystem. Correspondingly, in the following, unless explicitly denoted, we use the term
“noise” and “cross-domain noise” interchangeably. Our goal is to propose a framework of methods
to evaluate the cross-domain noise’s impact on a 2L-CCPS (see Fig. 1). In this section, we propose
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a hybrid automata reachability based metric to quantify the impact, and propose a corresponding
basic measurement method.

4.1. Elementary Trial and Reachability Probability

The physical subsystem of a 2L-CCPS is modeled by Eq. (3); hence is memoryless. That is, the
future trajectory of the plant X(t) (t ∈ (t0,+∞), where t0 is the current time) is only dependent on
the current state X(t0) and the current and future reference point values Oref(t) (t ∈ [t0,+∞)). In
practice, the derivative on the left hand side of Eq. (3) is finite, therefore, we can also say the future
trajectory of X(t) (t ∈ (t0,+∞)) is only dependent on the current state X(t0) and future reference
point values Oref(t) (t ∈ (t0,+∞)).

Suppose the current time is t0−τ1−τ2 (where τ1 and τ2 are the two delay time costs, see Fig. 1),
and the current plant state X(t0 − τ1 − τ2) is given: X(t0 − τ1 − τ2) = X0. We carry out the
following elementary trial. At t0 − τ1 − τ2, the cyber subsystem samples the current plant state and
triggers the corresponding reference point update event at t0 − τ1 − τ2 + τ1 + τ2 = t0 (see Fig. 2),
changing Oref to O′

ref(t0). After that, the cyber subsystem triggers no more reference point update
event.

With the concept of elementary trial, we shall propose a methodology framework to evaluate the
cross-domain noise impact on a 2L-CCPS. Meanwhile, to simplify our theoretical modeling and
analysis, we assume the following.

Assumption 5 Unless otherwise denoted, in the following theoretical modeling and analysis sec-
tions (i.e. from here to the end of Section 5, including Appendix A, B, and C), we assume
τ1 = τ2 = 0.

Later, in Section 5.4, we will discuss the implications of Assumption 5 to real-world systems
with non-zero delays. But for now, under Assumption 5, suppose the current time is t0, and the
current plant state is X(t0) = X0, then an elementary trial shall run as follows. At t0, the cyber
subsystem samples the current plant state and triggers the corresponding reference point update
event at t0 (see Fig. 2), changing Oref to O′

ref(t0). After that, the cyber subsystem triggers no more
reference point update event.

In the elementary trial, the sampling, and hence the cyber subsystem’s decision making, are in-
terfered by the cross-domain noise RV N (see Fig. 1). Therefore, whether a plant fault will happen
(i.e., X(t) reaches the forbidden region Ā during (t0,+∞)) becomes random, and can be repre-
sented by a Bernoulli RV of R(N,X0): R(N,X0) = 1 represents that a plant fault will happen;
and R(N,X0) = 0 otherwise. We call R(N,X0) the reachability RV under cross-domain noise
RV N and given X0, and denote the reachability probability Pr(R(N,X0) = 1) as p(N,X0); and
consequently Pr(R(N,X0) = 0) = 1−p(N,X0). Intuitively, p(N,X0) reflects the risk of the 2L-
CCPS under cross-domain noise RV N and given X0 (interested readers can refer to Appendix A to
further understand this intuition). In the following, unless otherwise denoted, we simplify R(N,X0)
as R and p(N,X0) as p.

4.2. Measuring Reachability Probability

Next, we describe how to measure the value of p(N,X0). Under cross-domain noise RV N and
given X(t0) = X0, we run a campaign of η elementary trials. The value of p(N,X0) can be
estimated by averaging the results of these elementary trials.

Specifically, denote the reachability RV for the jth (j = 1, . . ., η) elementary trial as Rj . Denote

R̄
def
= 1

η

∑η
j=1 Rj . According to the well-known central limit theorem, when η is big enough, we
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can use R̄ to estimate p(N,X0). This is quantitatively elaborated by the following proposition.

PROPOSITION 4.1 (CAMPAIGN SCALE). Under cross-domain noise RV N , given
X(t0) = X0, α ∈ [0, 1], and δp ∈ (0,+∞),

if η >

(

Φ−1(1− α
2 )

2δp

)2

, (4)

where Φ is the cumulative distribution function of standard normal distribution and Φ−1 is Φ’s
inverse; then R̄ falls within range p± δp with confidence level of (1− α). That is,

Pr(|R̄− p| 6 δp) > 1− α.

Proof: Due to the memoryless assumption of the cyber and physical subsystems, Rjs are identical
independent distribution RVs, and Rj ∼ Bernoulli(p). According to the central limit theorem, RV

R̄ therefore conforms to the normal distribution Normal(µ, σ2/η), where µ and σ2 are respectively
the expectation and variance of Rj . As Rj ∼ Bernoulli(p), µ = p and σ2 = p(1− p) 6 1

4 (because

p ∈ [0, 1]), i.e., σ 6 1
2 .

Also Ineq. (4) ⇒ √
η >

Φ−1(1− α
2 )

2δp
⇒ δp >

Φ−1(1− α
2 )

2
√
η

. (5)

Therefore, R̄ ∼ Normal(µ, σ2/η) ⇒ Pr(|R̄− µ| 6 σ√
η
Φ−1(1− α

2
)) > 1− α

⇒ Pr(|R̄− p| 6 1

2
√
η
Φ−1(1− α

2
)) > 1− α (as µ = p and σ 6 1

2 )

⇒ Pr(|R̄− p| 6 δp) > 1− α (due to Ineq. (5)). �

Proposition 4.1 implies that under cross-domain noise RV N , given X(t0) = X0, α, and δp, after
a measurement campaign of η (η satisfies Ineq. (4)) elementary trials, we derive a realization r̄ of
RV R̄, which can be used as an estimation of p, i.e., p̂ = r̄, with confidence level of at least (1−α).

As R̄’s realization, we have r̄ = 1
η

∑η

j=1 rj , where rj is RV Rj’s realization in the corresponding

elementary trail. To get rj , the simple way is to emulate the jth elementary trial as follows:

Step 1 Feed the initial plant state X0 into the real cyber subsystem and derive O′
ref.

Step 2 Simulate the physical subsystem of Eq. (3), from simulator time t0 to simulator time +∞,
with initial plant state X0, and updated reference point value O′

ref. If the resulted trajectory X(t)
(t ∈ [t0,+∞)) reaches the forbidden region Ā, then rj = 1; otherwise rj = 0.

In practice, infinite time simulation is impossible. Therefore Step 2 has to be accelerated. This is
possible when the physical subsystem (described by Eq. (3)) is an LTI control system.

In control engineering, it is a well established practice that LTI control systems in the form of
Eq. (3) are designed to be stable in the sense of Lyapunov [Brogan 1991]. Specifically, K of Eq. (2)
is designed such that a positive definite symmetric matrix P ∈ Rn×n exists to satisfy

FTP+PF = −I, (6)

where I is the n× n identity matrix.
Correspondingly, given control systems of Eq. (3) that are stable in the sense of Lyapunov, there

are mature tools [Brogan 1991] to derive the aforementioned P.
With P, we can define a Lyapunov function V (X(t), Oref(t)) as follows.

V (X(t), Oref(t))
def
= (X(t)−Oref(t))

TP(X(t)−Oref(t)). (7)
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Intuitively, Lyapunov function represents a virtual “potential energy” of the physical plant. If the
physical subsystem is stable, this potential energy should monotonically decrease. This is quantified
by the following proposition.

PROPOSITION 4.2 (TRAJECTORY BOUNDARY). Given X(t0) = X0 ∈ Rn and O′
ref(t0) ∈

Rn, let X(t) (t ∈ [t0,+∞)) be the trajectory of plant state evolved according to Eq. (3) when
Oref(t) ≡ O′

ref(t0), then ∀t ∈ [t0,+∞),

dV (X(t), Oref(t))

d t
6 0. (8)

Proof: Proposition 4.2 is already implied in the classic proof of Lyapunov stability [Khalil 2001].
The details are recompiled in Appendix B. �

Due to Proposition 4.2, in an elementary trial, the plant’s Lyapunov function value monotonically
drops. Particularly, if it drops below the minimum Lyapunov function value of the forbidden region
Ā, the plant state can never reach Ā again. Based on this heuristics, we propose the algorithm of
Fig. 3 to emulate the jth elementary trial (j = 1, . . ., η), so as to approximate rj , the realization of
reachability RV Rj .

1. ElementaryTrialEmulation(input: N , X0; output: rj ){
2. Input X(t0) = X0 into the cyber subsystem to generate O′

ref
(t0);

// or equivalently, let Mrs output Mrs(X(t0)) +N to the rest
// of the cyber subsystem to generate O′

ref
(t0), where X(t0) = X0.

3. Current simulator time t← t0;
4. Oref ← O′

ref
(t0);

5. while (true){
6. Derive X(t) according to Eq. (3);
7. if (X(t) ∈ Ā) { rj ← 1; break; }
8. if (V (X(t), Oref) < infY ∈Ā{V (Y,Oref)}) { rj ← 0; break; }
9. t← t+ δt; // δt: per iteration simulator time increment
10. if (t > Tsim){ // Tsim: maximum simulation time
11. rj ← 1; break;
12. }
13. }
14. }

Fig. 3. Pseudo C code to emulate an elementary trial, to calculate rj . It is an emulation because Line 2 uses the real cyber
subsystem.

In Fig. 3, Line 7 corresponds to the case that trajectory X(t) is found to reach forbidden region
Ā, hence rj = 1. In Line 8, as future trajectory X(t)’s Lyapunov function value drops below
infY ∈Ā{V (Y,Oref)}, a simple proof with negation can show that due to Ineq. (8), X(t) will never

reach any points in Ā. Line 11 corresponds to the situation that after sufficiently long simulation, we
still cannot decide if X(t) reaches Ā; therefore, we pessimistically over approximate with rj = 1.

4.3. Quantifying Impact of Cross-Domain Noise with Reachability Probability

Now we can get the η realizations {rj}. Let p̂
def
= r̄

def
= 1

η

∑η
j=1 rj . As per Proposition 4.1, when η

satisfies Ineq. (4), p̂ = r̄ is a (1−α) confident estimation of p. By definition, p is an elementary trial’s
reachability probability (i.e., probability to reach forbidden region Ā) under cross-domain noise RV
N and given initial plant state X0. That is, p’s elaborative form is p(N,X0), and it measures the
risk of an elementary trial.

The impact of cross-domain noise RV N should be the risk increase caused by N . Let I(N,X0)
denote the impact of N on the 2L-CCPS with initial plant state X(t0) = X0. Then we propose to
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quantify I(N,X0) as

I(N,X0)
def
= p(N,X0)− p(0, X0), (9)

where p(0, X0) is an elementary trial’s reachability probability under 0 cross-domain noise and
given initial plant state X0.

To holistically quantify the impact of N to the 2L-CCPS, ideally, we should evaluate I(N,X0)
for every X0 ∈ Rn. Obviously this is impractical. Instead, we propose to use a benchmark X =
{X0

i }i=1,...,b of b sample points in the allowed region A (i.e., ∀i, X0
i ∈ A). The b sample points in

X are fixed, or the sampling method is fixed (e.g. uniform sampling in A). We call each sampled
point X0

i a benchmark point.

With benchmark X = {X0
i }i=1,...,b, we summarize our basic 2L-CCPS cross-domain noise im-

pact evaluation method as follows. Given cross-domain noise RV N , for each benchmark point
X0

i ∈ X , we run the elementary trial campaign described in Section 4.1 and 4.2 to get reach-
ability probability pi(N,X0

i ) and pi(0, X
0
i ), and follow Eq. (9) to get cross-domain noise im-

pact Ii(N,X0
i ). The holistic impact of cross-domain noise RV N is thus quantified by the set

{Ii(N,X0
i )}i=1,...,b.

5. SHRINKING BENCHMARK REGION

5.1. Refined 2L-CCPS Architecture

In Section 4, the benchmark points are sampled from the entire allowed region A. This benchmark
sampling region (simplified as “benchmark region” in the following) is too big. On the other hand,
for an initial plant state X0 ∈ A sufficiently away from the forbidden region Ā, the plant trajectory
may never reach Ā, even perturbed by large cross-domain noises. It is therefore meaningless to
include such X0 in the benchmark. To make an analogy, to benchmark meteoroids’ reachability to
the earth, it is sufficient to focus on meteoroids in the solar system; meteoroids in other galaxies are
practically irrelevant. Based on the above heuristics, we propose to shrink the benchmark region as
follows.

Fig. 4. Refined 2L-CCPS architecture. Note under Assumption 5, τ1 = τ2 = 0.

We refine the classic 2L-CCPS architecture of Fig. 1 by adding a bounding filter to the input
port of the physical subsystem (see Fig. 4). This bounding filter rejects extreme new reference point
values from the cyber subsystem. Specifically, suppose at time t0 a reference point update event
happened, and X(t0) = X0. Then the bounding filter will define a hyper bounding ball Ball(X0, γ)
in the state space, centered at X0 with radius γ > 0. If the new reference point value O′

ref from the

cyber subsystem is within Ball(X0, γ), then O′
ref is accepted. Otherwise, O′

ref is truncated. Formally,
the filtered new reference point value O′′

ref is
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O′′
ref =

{

O′

ref−X0

||O′

ref
−X0||2

γ +X0 (if ||O′
ref −X0||2 > γ)

O′
ref (otherwise)

(10)

Note Eq. (10) implies that the classic 2L-CCPS architecture (see Fig. 1) is a special case of the
refined 2L-CCPS architecture (see Fig. 4), where γ = +∞.

With the bounding filter, no matter what the cross-domain noise RV N is, given the current
plant state X0, a reference point update event can only change reference point to a value within
Ball(X0, γ). Therefore, in the refined 2L-CCPS architecture, given whatever cross-domain noise
N , for an elementary trial starting from plant state X0, the reachable state space of all possible
future trajectories is constrained. Denote this reachable state space as Traj(N,X0). Denote

B̄∗ def
= {X0|X0 ∈ A, and Traj(N,X0) ∩ Ā ≡ ∅ for whatever RV N }.

Then for whatever RV N , ∀X0 ∈ B̄∗, p(N,X0) ≡ 0 and I(N,X0) ≡ 0. Therefore, if we can
explicitly identify B̄∗, then we do not need to benchmark test any point in B̄∗. A point in B̄∗ is thus
an “irrelevant benchmark point.”

Correspondingly, the (relevant) benchmark points only need to be sampled from B∗ def
= A− B̄∗.

More specifically, we call B∗ the “tight shrunk benchmark region,” and call any B ⊇ B∗ (B ⊆ A)
a “shrunk benchmark region.” We call B̄∗ the “tight irrelevant benchmark region,” and call any
B̄ ⊆ B̄∗ (B̄ ⊆ A) an “irrelevant benchmark region.”

5.2. Heuristics to Shrink Benchmark Region

Now, the question is how to find B, or equivalently B̄, given the bounding filter (see Fig. 4).
Our solution heuristics is still based on Proposition 4.2. Basically, for a well designed LTI physi-

cal subsystem, the plant’s Lyapunov function V (X(t), Oref(t)) exists, and is monotonically decreas-
ing when Oref(t) is a constant, which is the case for elementary trials. According to Proposition 4.2,
at time t0, given initial plant state X(t0) = X0 ∈ A and bounding filtered new reference point
value O′′

ref(t0) ∈ Ball(X0, γ), the trajectory of an elementary trial X(t) (t ∈ [t0,+∞)) is confined

by the hyper-ellipsoid E(X0, O′′
ref(t0)) of

E(X0, O′′
ref(t0))

def
= {Y |Y ∈ Rn and (Y −O′′

ref(t0))
TP(Y −O′′

ref(t0)) 6 V (X0, O′′
ref)}, (11)

where P is the positive definite symmetric matrix in the Lyapunov function of Eq. (7). We call
E(X0, O′′

ref(t0)) a “Lyapunov hyper-ellipsoid”.

As shown by Fig. 5, if none of such confining Lyapunov hyper-ellipsoids intersects with Ā, then
X0 ∈ B̄∗. Consequently, the set of such X0s constitute a B̄ ⊆ B̄∗.

Fig. 5. Confining Lyapunov hyper-ellipsoids and forbidden region
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Formally, let us define

V sup
X0,Ball(X0,γ)

def
= sup

∀O′′

ref
∈Ball(X0,γ)

{V (X0, O′′
ref)}, (12)

and for arbitrary Y ⊆ Rn, define

V inf
Y,Ball(X0,γ)

def
= inf

∀O′′

ref
∈Ball(X0,γ)

{V (Y,O′′
ref)|∀Y ∈ Y}.

Then the intuition of Fig. 5 is formalized by Lemma 5.1.

LEMMA 5.1 (IRRELEVANT BENCHMARK POINT). For any state X0 ∈ A, if

V sup
X0,Ball(X0,γ) < V inf

Ā,Ball(X0,γ)
, then X0 ∈ B̄∗.

Proof: For any elementary trial starting with X(t0) = X0, no matter what RV N is, the re-
sulted new reference point after bounding filtering, denoted as O′′

ref(t0), is within Ball(X0, γ). If

V inf
Ā,Ball(X0,γ)

> V sup
X0,Ball(X0,γ), then the elementary trial plant state trajectory’s initial Lyapunov

function value V (X(t0), O
′′
ref(t0)) is less than that of any state in Ā. As per Proposition 4.2, the el-

ementary trial plant state trajectory can never reach Ā. This is true for any elementary trial starting
with X(t0) = X0 under whatever RV N . Therefore Traj(N,X0) ∩ Ā ≡ ∅ for whatever RV N . �

5.3. Closed-Form Definition of Shrunk Benchmark Region

This subsection shall extend Lemma 5.1 to find a closed-form B̄, hence B.
Our heuristics is to first find the closed-form formula for V sup

X0,Ball(X0,γ). Using this formula,

we then find a sufficient condition for V sup
X0,Ball(X0,γ) < V inf

Ā,Ball(X0,γ)
. Then any X0 satisfying the

sufficient condition should belong to B̄∗. Consequently, the set of such X0s constitute a B̄ ⊆ B̄∗.
Fig. 6 gives the intuition to find the closed-form formula to calculate V sup

X0,Ball(X0,γ). Given X0

and ∀O′′
ref ∈ Ball(X0, γ), the maximum Lyapunov function value V (X0, O′′

ref) is achieved when

we choose O′′
ref = O1, so that the radius of Ball(X0, γ) exactly overlaps with the semi-minor axis

of Lyapunov hyper-ellipsoid E(X0, O′′
ref) (see Eq. (11)). Note the directions and lengths ratio of the

major and minor axes of all Lyapunov hyper-ellipsoids are fixed once P is given; and E(X0, O′′
ref)

is centered on O′′
ref and has X0 on the surface.

Fig. 6. Intuition of V
sup

X0,Ball(X0,γ)

Fig. 6’s intuition to find the closed-form formula of V sup
X0,Ball(X0,γ) is formalized by Lemma 5.2.

LEMMA 5.2 (CLOSED-FORM VALUE OF V SUP

X0,BALL(X0,γ)). We have V sup
X0,Ball(X0,γ) =

λmax(P)γ2, where λmax(P) is the maximal eigenvalue of P in Lyapunov function of Eq. (7).

ACM Transactions on Cyber-Physical Systems, Vol. 000, No. 000, Article 000, Publication date: 000.



Cross-Domain Noise Impact Evaluation for Black Box Two-Level Control CPS 000:13

Proof: According to Eq. (12), V sup
X0,Ball(X0,γ) is the optimal objective function value for the following

optimization problem:

max
O′′

ref

fX0(O′′
ref) = V (X0, O′′

ref) = (X0 −O′′
ref)

TP(X0 −O′′
ref)

s.t. (X0 −O′′
ref)

T(X0 −O′′
ref) 6 γ2,

(13)

where O′′
ref is the only optimization variable.

Problem (13) is a typical Quadratic Constrained Quadratic Optimization (QCQP) problem [Boyd
and Vandenberghe 2004]. As this problem has a single constraint and the constraint itself is a hyper
ball, a special form of quadratic function, we can solve it as follows.

First, denote Õref
def
= X0 − O′′

ref, and f ′
X0(Õref)

def
= −fX0(O′′

ref) = −ÕT
refPÕref. Then problem

(13) is equivalent to problem

min
Õref

f ′
X0(Õref)

s.t. ÕT
refÕref 6 γ2.

(14)

The Lagrangian of optimization problem (14) is

L(Õref, ν) = ÕT
ref(νI−P)Õref − νγ2,

and the dual function is

g(ν) = inf
Õref

{L(Õref, ν)} =

{

−νγ2 (if νI−P � 0)
−∞ (otherwise)

where “� 0” means the matrix on the left hand side is positive semidefinite. Using a Schur comple-
ment [Boyd and Vandenberghe 2004], the Lagrange dual problem to problem (14) is

max
ν

h

s.t. ν > 0
[

νI−P 0
0 −νγ2 − h

]

� 0

(15)

As problem (14) is strictly feasible, i.e., there exists some Õref (e.g. Õref = 0) s.t. ÕT
refÕref < γ2,

problem (15) holds strong duality to problem (14) [Boyd and Vandenberghe 2004]. Hence, the two
problems’ optimal values are equal. By solving problem (15), we have the optimal value

h∗ = −λmax(P)γ2,

where λmax(P) is the maximal eigenvalue of matrix P. Then we have

fX0(O′′
ref)

∗ = −f ′
X0(Õref)

∗ = −h∗ = λmax(P)γ2. �

Now we know that given X0 ∈ A, V sup
X0,Ball(X0,γ) = λmax(P)γ2. Then, it is possible to find a

sufficient condition to make V sup
X0,Ball(X0,γ) < V inf

Ā,Ball(X0,γ)
. To find such sufficient condition, let us

first define the distance between a point X0 ∈ Rn and a region Y ⊆ Rn as

Dis(X,Y)
def
= inf{||X − Y ||2|∀Y ∈ Y}.

Then a sufficient condition is described by Lemma 5.3.
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LEMMA 5.3 (IRRELEVANCE DISTANCE). Given Y ⊆ Rn, state X0 ∈ A, and an arbitrarily
small positive constant ε > 0, if

Dis(X0,Y) >

√

λmax(P)

λmin(P)
γ + γ + ε

def
= Γ, (16)

where λmax(P) and λmin(P) are respectively the maximum and minimum eigenvalues of the

positive definite symmetric matrix P of Eq. (7), then V sup
X0,Ball(X0,γ) < V inf

Y,Ball(X0,γ).

Proof: ∀O′′
ref ∈ Ball(X0, γ), ∀Y ∈ Y ,

V (Y,O′′
ref) = (Y −O′′

ref)
TP(Y −O′′

ref). (17)

Due to the bounding filter, we know that

(O′′
ref −X0)T(O′′

ref −X0) 6 γ2.

Also, as Dis(X0,Y) > Γ, we have

(Y −X0)T(Y −X0) > Γ2.

From Eq. (17), we get

V (Y,O′′
ref) > λmin(P)(Y −O′′

ref)
T(Y −O′′

ref)

= λmin(P)[(Y −X0)− (O′′
ref −X0)]T[(Y −X0)− (O′′

ref −X0)]

> λmin(P)(Γ− γ)2 (see Lemma C.1 in Appendix C)

> λmax(P)γ2 + λmin(P)ε2 = V sup
X0,Ball(X0,γ) + λmin(P)ε2.

That is, ∀O′′
ref ∈ Ball(X0, γ), ∀Y ∈ Y , we have V (Y,O′′

ref) > V sup
X0,Ball(X0,γ) + λmin(P)ε2.

Therefore, V sup
X0,Ball(X0,γ) < V inf

Y,Ball(X0,γ). �

Fig. 7. Visual intuition of irrelevance distance Γ

We call Γ the irrelevance distance. Fig. 7 visualizes the intuition of Γ. Basically, if Dis(X0,Y) >
Γ, then no Lyapunov hyper-ellipsoid E(X0, O′′

ref) (∀O′′
ref ∈ Ball(X0, γ)) can intersect with Y .

Hence elementary trial trajectories starting from X0 can never reach Y . In case Y = Ā and X0 ∈ A,
X0 thus is an irrelevant benchmark point: X0 ∈ B̄∗.
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Lemma 5.3 thus helps us to find a closed-form shrunk benchmark region B, as described by
Theorem 5.4.

THEOREM 5.4 (SHRUNK BENCHMARK REGION). For the refined 2L-CCPS architecture,

B def
= {X0|X0 ∈ A, and Dis(X0, Ā) 6 Γ} (18)

is a shrunk benchmark region.

Proof: ∀X0 ∈ B̄ = A − B, Dis(X0, Ā) > Γ. Due to Lemma 5.3, we know that V sup
X0,Ball(X0,γ) <

V inf
Ā,Ball(X0,γ)

. Due to Lemma 5.1, we know X0 ∈ B̄∗. Therefore, B̄ ⊆ B̄∗. That is B ⊇ B∗. �

Fig. 8. A shrunk benchmark region derived via Theorem 5.4

Fig. 8 illustrates an example shrunk benchmark region derived via Theorem 5.4. Now, to build
benchmark X , instead of sampling the entire allowed region A, we only need to sample the shrunk
benchmark region B.

5.4. Discussions on Assumption 5

So far, unless otherwise denoted, all contents of Section 4 and 5 are based on Assumption 5, which
idealizes delay time costs as τ1 = τ2 = 0.

In reality, the delay time costs cannot be zero. Therefore, the evaluation methodology framework
proposed in Section 4 and 5 provides only an idealized theoretical approximation of the reality. But
this does not render the theoretical evaluation results useless, becuase they increase our knowledge
and confidence on the real system.

That said, the knowledge and confidence derived from the idealized theoretical approximation are
particularly relevant when τ1 and τ2 are sufficiently small: e.g., several orders of magnitude smaller
than the interval between consecutive reference point update events. This is corroborated by our
evaluations in Section 6, where real 2L-CCPS experiment results (see Section 6.4) match idealized
theoretical evaluation results (see Section 6.2 and 6.3).

From a more generic perspective, using idealized theoretical approximation results to increase
knowledge and confidence of computer systems is a well adopted engineering practice. For example,
when using automata based model checking to verify complex computer systems (those involving
thousands of lines of source code), the formal model can rarely exactly match all the source code
(that is why we still have to test and debug the source code after model checking). But this does
not render automata based model checking useless: we still need model checking to know the real
computer system better, and to trust the real computer systems more.

6. EVALUATION

In this section, we evaluate our proposed methodology framework in Section 4 and 5. Specifically,
we evaluate the cross-domain noise impacts of two cyber subsystem upgrade alternatives for an
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inverted pendulum [Brogan 1991] testbed. By comparing the two evaluation results, a better alter-
native is chosen. Runtime experiments are then carried out to verify the choice. We also show that
Section 5’s benchmark region shrinking method can save 24.1% of the offline evaluation effort,
meanwhile achieving the same evaluation goal.

6.1. Inverted Pendulum (IP) Testbed

Our testbed is a 2L-CCPS that runs computer vision assisted parallel inverted pendulums [Brogan
1991] (see Fig. 9). In the testbed, two unmanned carts respectively maintain the standing of their
inverted pendulums (IPs), and maintain a certain cart-convoy formation. The physical subsystem
controls the unmanned IP carts’ fine-grain movements, while the cyber subsystem coordinates the
cart-convoy formation using computer vision. This is a representative 2L-CCPS testbed, which can
be generalized to many real-world applications: e.g., computer vision guided driving or convoy-
formation of unmanned automobiles [Beyeler et al. 2014], unmanned aerial vehicles [Kong et al.
2014], and computer vision assisted industrial robot coordination [Kim et al. 2012]. All of such
systems involve a physical subsystem of mission-critical plants (the unmanned automobiles, the un-
manned aerial vehicles, the industrial robots), just like the unmanned carts with IPs; and a computer
vision assisted cyber subsystem that runs complex computations to decide coarse grain coordina-
tion.

Specifically, the physical subsystem of the testbed consists of two inverted pendulums: IP1 and
IP2. An inverted pendulum is a metal rod with one end hinged on a cart, and the other end free to
rotate around the hinge (see Fig. 9 (a)). The cart can move along a piece of metal rail. The controller
of the inverted pendulum takes charge of moving the cart back and forth along the rail to keep the
hinged metal rod (the inverted pendulum) standing upright.

(a) An inverted pendulum (b) Holistic testbed view

Fig. 9. Parallel-inverted-pendulum testbed

For IPi (i = 1, 2), let Xipi(t) denote its plant state. Xipi then includes four state variables (see
Fig. 9(a)): respectively the current location xipi(t) (m) and velocity ẋipi(t) (m/sec) of the cart, and

the current angular displacement θipi(t) (rad) and velocity θ̇ipi(t) (rad/sec) of the rod from the up-

right position. That is, Xipi(t) = (xipi(t), θipi(t), ẋipi(t), θ̇ipi(t))
T.

As an LTI control system5, the physical dynamics of IPi is governed by the following systems of
differential equations [Googol 2016].

d(Xipi −Oiprefi)

d t
= Aipi(Xipi −Oiprefi) +BipiUipi,

Uipi = −Kipi(Xipi −Oiprefi),

5Strictly speaking, an inverted pendulum control system is not linear, but when θipi is reasonably small (e.g.≤ π
6

(rad)), the
system can be regarded as linear.
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where Xipi, Oiprefi, Uipi, Aipi, Bipi, Kipi respectively correspond to X , Oref, U , A, B, K in Eq. (1)
and (2). The specific inverted pendulums we use are made by Googol [Googol 2016], and have the
following configurations (for both i = 1 and 2).

Aipi =







0.000 1.000 0.000 0.000
0.000 0.000 0.000 0.000
0.000 0.000 0.000 1.000
0.000 0.000 29.400 0.000






,

Bipi = (0.000, 1.000, 0.000, 3.000)T,

Kipi = (−5.0505,−5.8249, 35.2502, 6.2750).

As we have two inverted pendulums, the holistic plant of our testbed can be described by the
following differential equation systems.

d(Xtb −Otbref)

d t
= Atb(Xtb −Otbref) +BtbUtb, (19)

Utb = −Ktb(Xtb −Otbref), (20)

where Xtb =

(

Xip1

Xip2

)

, Otb =

(

Oipref1

Oipref2

)

, Atb =

(

Aip1 0

0 Aip2

)

, Btb =

(

Bip1 0

0 Bip2

)

, and Ktb =
(

Kip1 0

0 Kip2

)

.

Both IPs move along the x-axis. The given allowed region A for our testbed is6

A = {Xtb|Xtb ∈ R8, and 0.15 ≤ xip2 − xip1 ≤ 0.2}. (21)

That is, IP1 and IP2’s carts cannot go too close nor too apart7.
The cyber subsystem of our testbed takes charge of computing new reference points for the plant

(i.e., IP1 and IP2) using computer vision sensing inputs. Due to Assumption 2 in Section 1, the
cyber subsyste is a white box to the vendor. Fig. 10 depicts the white box details.

Note that a reference point represents the equilibrium state that the user aims to achieve. For
inverted pendulum IPi (i = 1, 2), the user always wants the equilibrium taking the form Oiprefi =

(xiprefi, 0, 0, 0)
T. That is, at equilibrium, the inverted pendulum cart should stop at xiprefi, and the rod

should stand still at upright angle. Therefore, the only update the cyber subsystem should make to a
reference point is the cart’s equilibrium location xiprefi: at different time, the cyber subsystem may
want to move the cart to different locations. That is, the cyber subsystem is focusing on computing
the new xiprefi.

As shown in Fig. 10, the cyber subsystem’s computation data flow starts from M0, the “remote
sensing” module, where a USB 2Mega pixel camera captures a 640 × 480 pixel raw image of IP1

and IP2. Denote the raw image captured as D0 = M0(X) +N , where X is the current plant state,
and N is the cross-domain noise. D0 is then fed to module M1 and M2 respectively for red and
yellow color recognition. M1’s output D1 is a binary image: a pixel of 1 means the corresponding
pixel in D0 is recognized as red; and 0 otherwise. The same applies to M2 and D2, except that the
color to recognize is yellow.

The reason why to carry out red and yellow color recognition is because IP1 and IP2’s carts
respectively bear a red and a yellow label. By recognizing the red and yellow label, the cyber sub-
system identifies xip1 and xip2, the current locations of the two carts. This is realized by feeding D1,

6Here we are assuming the rail of the IPs are long enough. Otherwise, a more strict definition of A should also include the
rail length constraints.
7In the actual implementation, IP1 and IP2 are moving along two parallel rails. Therefore, the two inverted pendulums will
not really crash. However, for evaluation purposes, we still enforce the allowed region of Ineq. (21), regarding IP1 and IP2

as if moving along a same rail.
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Fig. 10. Testbed cyber subsystem white box details in the vendor’s view (note according to Assumption 1 in Section 1, to
the user, the cyber subsystem is a black box except M0, M5 and their interfaces to the rest of the cyber subsystem)

D2 respectively to M3 and M4 for IP1 and IP2 cart localization. The output of M3 (i.e., D3) is the
estimation of xip1; while the output of M4 (i.e., D4) is the estimation of xip2. D3 and D4 are fed to
M5, the “final decision” module, to compute the new reference point values, i.e., xipref1 and xipref2.

6.2. Offline Cross-Domain Noise Impact Evaluation

In our testbed of Fig. 10, raw image data (i.e., D0) captured by M0 are noisy. This cross-domain
noise propagates through the network of digital modules, and finally affects the plant. In order
to enhance robustness against the cross-domain noise, the testbed vendor proposes two upgrading
alternatives: either upgrade M1 to a commercial-off-the-shelf (COTS) module of M ′

1; or to upgrade
M3 to a COTS module of M ′

3; but not both, because of budget limit. Meanwhile, as both M ′
1 and

M ′
3 are COTS, their interconnection and internal implementation details are hidden to the user. To

independently decide which alternative to take, the testbed user carries out the cross-domain noise
impact evaluation framework of Section 4 and 5.

As summarized by the last paragraph of Section 4, the first step of the evaluation framework is
to prepare a benchmark X = {X0

i }i=1,...,b. Without loss of generality, the user chooses b = 1000.
For the time being, the user first tries the framework without benchmark region shrinking. That is,
the user sample b = 1000 benchmark points from the entire allowed region A (see Eq. (21)).

For each benchmark point X0
i (i = 1, . . ., b), the framework asks the user to emulate η elementary

trials following the algorithm of Fig. 3. Particularly, the user implements Line 2 according to the
alternative way described in the comment. That is, M0 outputs M0(X

0
i ) + N to the rest of the

cyber subsystem to generate O′
ref(t0) (note according to Assumption 1 of Section 3.2, M0 and its

interface to the rest of the cyber subsystem is not a black box to the user).
The implementation detail is as follows. For each X0

i ∈ X , the user prepares a high quality
640 × 480 pixels picture Pi as M0’s noiseless output. That is, Pi = M0(X

0
i ). Let N denote the

cross-domain noise RV, and D0,i denote the noisy output of M0 corresponding to X0
i . Then D0,i =

M0(X
0
i ) +N = Pi +N .

Indeed D0,i is also a 640 × 480 pixels picture, with each pixel inflicted by RV N . The user
generates D0,i pixel by pixel. Let Pi(j, k) ∈ [0, 255] (j = 1, 2, . . ., 640; k = 1, 2, . . ., 480)
denote Pi’s red (or yellow) color value of the pixel at coordinate (j, k). Let N(j, k) ∈ R denote the
component of cross-domain noise N at pixel coordinate (j, k). Let D0,i(j, k) denote the noisy raw
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image red (or yellow) color value at pixel (j, k). Then D0,i(j, k) = Pi(j, k) +N(j, k) (in practice,
D0,i(j, k)’s value is rounded to the closest integer in [0, 255]).

Without loss of generality, the user generates the cross-domain noise RV N as per Gaussian
distribution, i.e., N(j, k) ∼ Normal(0, σ2). The user defines the level of N , denoted as ‖N‖, with
mean square error (MSE), a well-known concept in image processing.

MSE
def
=

1

J ·K

J
∑

j=1

K
∑

k=1

N2(j, k), (22)

where J and K are respectively the width and length of an image in pixels. It can be proven that
E(MSE) = σ2.

The user then discretizes 10 log10 MSE’s value range into 5 intervals, respectively (−∞,−10),
[−10, 0), [0, 10), [10, 20), [20, 30). Suppose the 10 log10 MSE derived from the current N falls in
the lth (l ∈ {1, 2, . . ., 5}) interval, then the user says ‖N‖ = l.

With the above methodology to generate D0,i = M0(X
0
i ) + N for each benchmark point X0

i ,
the user implements the elementary trial emulation described by Fig. 3.

Now the user is ready to evaluate the impact of cross-domain noise to our testbed. The user
examines three cyber subsystem settings: no upgrade, upgrade M1 only, upgrade M3 only.

For each setting, for each benchmark point X0
i ∈ X (i = 1, . . ., 1000) and each noise level

||N || = l, l ∈ {1, 2, . . . , 5}, the user runs a campaign of η = 1000 elementary trial emulations,
and derive the cross-domain noise impact value as per Eq. (9). According to Proposition 4.1, this
guarantees a confidence level of 95% that the derived impact value error is within ±0.032. For the
bounding filter in the physical subsystem, the user sets its radius γ = 0.001m (see Fig. 10). All the
emulations are carried out on a HP workstation with Intel Core I7-3610QM and 8G RAM.

The statistics of impact values over all benchmark points are shown and compared in Fig.11.
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Fig. 11. Statistics of cross-domain noise impact values {I(N,X0)}∀X0∈X , without shrinking benchmark region

As the impact value indicates the increase of plant fault probability due to cross-domain noise N ,
the smaller the impact value, the more robust the system. Therefore, Fig.11 clearly favors upgrading
M1.

6.3. Offline Evaluation with Shrunk Benchmark Region

In Section 6.2’s evaluation, the benchmark points are sampled from the entire allowed region A. By
applying the benchmark region shrinking methodology proposed in Section 5, the user can sample
less. Specifically, using the existing LTI control Lyapunov analysis methodology [Brogan 1991],
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the user finds for our testbed of Eq. (19)(20),

P =

(

Q 0
0 Q

)

,

where

Q =







190.2853 −50.0013 29.3842 10.9965
−50.0013 436.0298 −10.9938 442.5856
29.3842 −10.9938 23.9030 −50.0135
10.9965 442.5856 −50.0135 639.884






.

The user chooses ε = 0.0002, so the irrelevance distance Γ =
√

λmax(P)
λmin(P)

γ + γ + ε = 0.016 (see

Eq. (16)), which defines the shrunk benchmark region B via Eq. (18).
The user reuses the benchmark points used in Section 6.2, but excluding all those outside of B. In

this way, the shrunk benchmark region B removes 241 of the original 1000 benchmark points (i.e.,
24.1% of the evaluation computation effort is saved). The statistics of cross-domain noise impact
values over the reduced benchmark are shown and compared in Fig. 12. The results also apparently
favor upgrading M1.
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6.4. Runtime Experiment Validation

Through our proposed evaluation framework, Section 6.2 and 6.3 both come to the conclusion that
the user should upgrade M1 to M ′

1. To validate the user’s decision, we carry out runtime experiments
to compare the actual results of the upgrading alternatives.

Specifically, we evaluate three scenarios of the testbed. In the first scenario, no digital module
is upgraded. In the second scenario, only M1 is upgraded to M ′

1. In the third scenario, only M3 is
upgraded to M ′

3. For each scenario, we set the cross-domain noise level ‖N‖ to 1, 2, 3, 4, and 5
(see Section 6.2 and Eq. (22) for the definition of these values; in our experiment implementation,
module M0, a noisy camera, is realized by appending a noise generator to a high quality camera’s
output). For each noise level, 20 elementary trial experiments are carried out. In each experiment,
IP1 and IP2 start from a random initial state uniformly picked from the allowed region A, and run
for 1 minute. We record whether during this 1 minute, IP1 and IP2’s state ever exceeds A. If so, a
plant fault occurs.

Table I lists the experiment result: the total number of plant faults and the percentage of trials that
involves faults. According to the table, upgrading M1 apparently performs better than upgrading M3

in terms of fault reduction. This matches the prediction made by offline evaluation of Section 6.2 and
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6.3, hence validates the usefulness of our proposed cross-domain noise impact evaluation method-
ology framework.

Table I. Percentage of Trials that Encounter Plant Fault(s)

Scenario Total Number of Faults Faulty Trial Percentage

No Upgrade 49 49%

Upgrade M1 20 20%

Upgrade M3 39 39%

Note as discussed in Section 5.4, the evaluation in Section 6.2 and 6.3 is a theoretical approxi-
mation of the reality. It assumes zero delay to deliver the plant state to the cyber subsystem, and to
calculate and deliver the new reference point value from the cyber subsystem to the physical sub-
system. In our real-world runtime experiment, the aforementioned delay is non-zero, and is in the
order of magnitude of 10ms. The fact that the runtime experiment results still match the theoretical
evaluation results corroborates the following: when the delay is sufficiently small, the theoretical
evaluation is good enough to increase our knowledge and confidence on the real-world 2L-CCPS.

7. CONCLUSION

In this paper, we propose a framework of methodology to evaluate the impact of cross-domain
noise in a generic 2L-CCPS architecture, whose cyber subsystem is a black box to the user. Our
contributions are:

(1) We proposed a benchmark metric and corresponding measurement method to quantify the cross-
domain noise impact to the black box 2L-CCPS.

(2) We further proposed a method to effectively shrink the benchmark, exploiting inter-disciplinary
Lyapunov stability control theories.

(3) We validated the effectiveness and efficiency of our proposed methodology framework with
a representative 2L-CCPS testbed. Particularly, the proposed benchmark shrinking technology
saves us 24.1% of the evaluation effort.

APPENDIX

A. MEANING OF REACHABILITY PROBABILITY

PROPOSITION A.1 (RISK OF TRAJECTORY). Given cross-domain noise RV N , suppose
during [t0,+∞), a 2L-CCPS undergoes k (k > 1) reference point update events, respectively
happened at t0 < t1 < . . . < tk−1. Let Xi (i = 0, . . ., k − 1) denote the plant state right before
the ith reference point update event. Let Ri denote the reachability RV for Xi under N , and
pi = Pr(Ri = 1). Let ̟ denote the probability that the trajectory of X(t) (t ∈ [t0,+∞)) never

reaches Ā (i.e., the 2L-CCPS never encounters plant fault). Then ̟ > Πk−1
i=0 (1− pi).

Proof: Starting from Xi, what happens during [ti, ti+1) (i = 0, . . ., k − 1, where tk
def
= +∞)

is exactly what happens to an elementary trial starting from Xi during [0, ti+1 − ti) (suppose the
elementary trial starts from time 0). Therefore, the probability of not reaching Ā during [ti, ti+1) is

no less than (1−pi). As per Eq. (3), X(t) is continuous on [t0,+∞), therefore, ̟ > Πk−1
i=0 (1−pi).

�

Particularly, if pis are upper bounded by pmax, then ̟ > (1 − pmax)k. In the extreme case, if
pmax = 0, then ̟ = 1. That is, the control CPS has 0 probability of encountering a plant fault.
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B. PROOF OF PROPOSITION 4.2

dV (X(t), Oref(t))

d t
(where Oref(t) ≡ O′

ref(t0))

= ẊTP(X(t)−O′
ref(t0)) + (X(t)−O′

ref(t0))
TPẊ (see Eq. (7))

= (F(X(t)−O′
ref(t0)))

TP(X(t)−O′
ref(t0))

+(X(t)−O′
ref(t0))

TPF(X(t)−O′
ref(t0)) (see Eq. (3))

= (X(t)−O′
ref(t0))

T(FTP+PF)(X(t)−O′
ref(t0))

= −(X(t)−O′
ref(t0))

TI(X(t)−O′
ref(t0)) (see Eq. (6))

= −(X(t)−O′
ref(t0))

T(X(t)−O′
ref(t0)) 6 0. �

C. SHORTEST DISTANCE FROM A BALL TO A CONCENTRIC BALL COMPLEMENT

∀X,Y ∈ Rn, denote dis(X,Y )
def
= ||X − Y ||2 =

√

(X − Y )T(X − Y ). We have the following:

LEMMA C.1. Given Γ > γ > 0, then ∀X,Y ∈ Rn s.t. XTX 6 γ2 and Y TY > Γ2, we
have dis(X,Y ) > Γ− γ.

Proof: Define fY (X)
def
= (X − Y )T(X − Y ), let us first solve the following optimization problem:

min
X

fY (X)

s.t. XTX 6 γ2.

For this problem, we have its Lagrangian L(X, ν) = ||X − Y ||22 + ν(||X||22 − γ2). Using the
Karush-Kuhn-Tucker(KKT) conditions, we have

||X∗||2 − γ 6 0 (23)

ν∗ > 0

ν∗(||X∗||2 − γ) = 0 (24)

(1 + ν∗)X∗ − Y = 0 (25)

Substituting X∗ from Eq. (25) into Eq. (24), we have

ν∗(||X∗||2 − γ) =
ν∗

1 + ν∗
(||Y ||2 − (1 + ν∗)γ) = 0 (26)

As we know Y TY > Γ2 and Γ > γ > 0, then we have ||Y ||2 > Γ > γ > 0. From Eq. (26), we
know either ν∗ = 0 or (||Y ||2 − (1 + ν∗)γ) = 0. If ν∗ = 0, we have X∗ = Y from Eq. (25), and
||Y ||2 = ||X∗||2 6 γ from Eq. (23), which contradicts the fact that ||Y ||2 > γ. Thus, we have

||Y ||2 − (1 + ν∗)γ = 0 ⇒ 1 + ν∗ =
||Y ||2
γ

.

Substituting (1 + ν∗) = ||Y ||2/γ into Eq. (25), we derive

X∗ =
γ

||Y ||2
Y

Then, we have

fY (X)∗ = || γ

||Y ||2
Y − Y ||22 = (||Y ||2 − γ)2.
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Here Y is a given parameter to the optimization problem. As ||Y ||2 > Γ > γ > 0, we have

fY (X)∗ = (||Y ||2 − γ)2 > (Γ − γ)2. That is, ∀X,Y ∈ Rn, if XTX 6 γ2, Y TY > Γ2, and

Γ > γ > 0, dis(X,Y ) =
√

fY (X) >
√

fY (X)∗ > Γ− γ. �

Fig. 13. Minimal distance from a ball to a concentric ball complement

The idea of Lemma C.1 is illustrated by Fig. 13.
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