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Abstract—Audio/visual recognition and retrieval applications
have recently garnered significant attention within Internet-
of-Things (IoT) oriented services, given that video cameras
and audio processing chipsets are now ubiquitous even in
low-end embedded systems. In the most typical scenario for
such services, each device extracts audio/visual featuresand
compacts them into feature descriptors, which comprise media
queries. These queries are uploaded to a remote cloud com-
puting service that performs content matching for classification
or retrieval applications. Two of the most crucial aspects for
such services are:(i) controlling the device energy consumption
when using the service;(ii) reducing the billing cost incurred
from the cloud infrastructure provider. In this paper we der ive
analytic conditions for the optimal coupling between the device
energy consumption and the incurred cloud infrastructure
billing. Our framework encapsulates: the energy consumption
to produce and transmit audio/visual queries, the billing rates
of the cloud infrastructure, the number of devices concurrently
connected to the same cloud server, and the statistics of
the query data production volume per device. Our analytic
results are validated via a deployment with: (i) the device
side comprising compact image descriptors (queries) computed
on Beaglebone Linux embedded platforms and transmitted to
Amazon Web Services (AWS) Simple Storage Service;(ii) the
cloud side carrying out image similarity detection via AWS
Elastic Compute Cloud (EC2) spot instances, with the AWS
Auto Scaling being used to control the number of instances
according to the demand.

I. I NTRODUCTION

Most of the envisaged applications and services for wear-
able sensors, smartphones, tablets or portable computers
in the next ten years will involve analysis of audio/visual
streams for event, action, object or user recognition, rec-
ommendation services and context awareness, etc. [1]–[7].
Examples of early commercial services in this domain
include Google Goggles, Google Glass object recognition,
Facebook automatic face tagging [8], Microsoft’s Photo
Gallery face recognition, as well as technology described
in recent publications from Google, Siemens and others1.

1See “A Google Glass app knows what you’re looking at” MIT Tech.
Review (Sept. 30, 2013) and EU projects SecurePhone [9], [10] and MoBio
[11], [12].

Figure 1. System hierarchy for a media search application within an IoT
context. Low-power devices send query data to an IoT aggregator using low-
power protocols for the application, network, medium access control and
physical layers, such as MQTT, 6LowPAN, and IEEE 802.15.4 MAC/PHY.
The IoT aggregator sends aggregated query volumes to the cloud-computing
service using TCP/IP.

Figure 1 presents an example of how such applications
can be deployed in practice within an Internet-of-Things
(IoT) context. Energy-constrained devices capture and ex-
tract audio/visual features from audio and/or image streams
and compact such features into feature-descriptor vectors
[7], [13]–[15]. Such feature vectors can be seen asqueries
in a multimedia search application [6], [13]. For example,
Serraet. al. [7] propose beat and tempo feature extraction
for cover song identification. A similar service is now widely
deployed by Shazam. In the visual search domain, several
approaches produce image salient points and then compact
their associated features into compact vectors of 64∼8192
elements [14], [15]. All such compacted feature vectors
can be matched to equivalent vectors of very large content
libraries within a cloud-computing service within the context
of classification, retrieval and similarity identificationfor
so-called “big data” applications. Because devices of the
same type run the same application software for the query
extraction and transmission, they incur, on average, the same
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energy consumption per bit of each type of query. Therefore,
they can be partitioned into “device clusters” that represent
a multitude of identical devices (Fig. 1). An IoT aggregator
can be used to aggregate traffic from each device cluster and
upload it to a remote cloud computing service that carries
out the search operations that provides for recognition and
retrieval purposes [1]–[3], [16].

In this paper, we consider the energy consumption and
billing costs incurred by such applications in a holistic,
system-oriented, manner. Specifically, we derive a paramet-
ric model that allows for the coupling of the energy con-
sumption and cloud billing costs in function of the system
settings, under the assumption of identical devices producing
data traffic with the same statistical characterization. A
key aspect of our model is the derivation of theoptimal
balancingbetween:

1) idle time, where device energy consumption or cloud
billing cost is incurred for no useful output (e.g.,
image acquisition and processing or buffering on each
device that does not lead to query generation, or cloud
servers idling due to small volumes of queries being
submitted);

2) active time, where, despite resource consumption be-
ing incurred for useful output, one does not want to
exceed certain limits in order not to cause excessive
energy consumption in the device or excessive billing
costs from the cloud infrastructure provider.

A key advantage of our work in comparison to previous
work on optimal energy management policies [16]–[19]
and resource prediction and analysis [20]–[23] (see also
[24] and references therein), is that we provide closed-form
expressions for the minimum-required billing cost in order
for each mobile device to remain within the predetermined
energy consumption constraints. In order to validate our
analytic derivations, we utilize a proof-of-concept image
similarity identification application, deployed via:(i) run-
ning the image feature extraction and query generation and
transmission on a Beaglebone Linux embedded platform;(ii)
implementing the back-end query processing for similarity
identification and retrieval on Amazon Web Services Elastic
Compute Cloud (AWS EC2) spot instances. Our results il-
lustrate how the proposed model can be applied to real-world
IoT-oriented query retrieval systems in order to establish
the desired operational parameters with respect to energy
consumption and cloud infrastructure billing. More broadly,
the experimental results reported in this paper exemplify the
efficacy of our framework for feasibility studies on energy
consumption and billing cost provisioning in cloud-based
IoT query processing applications prior to time-consuming
testing and deployment.

The remainder of the paper is organized as follows. In
Section II, we present the system model corresponding to
the application scenarios under consideration. The analytic

derivations characterizing energy-constrained feature extrac-
tion are presented in Section III, where we also derive the
optimal coupling with the utilized cloud-computing service
under three widely-used statistical characterizations for the
query production rate. Section IV presents experimental
results and Section V concludes the paper.

II. SYSTEM MODEL

Within the system hierarchy of Fig. 1, each mobile device
connects to a “repository” service of a cloud provider,
which represents the collecting unit, i.e. a cloud storage
service like AWS Simple Storage Service (S3) or IBM IoT
Foundation. This is where all device queries are uploaded
(e.g., using an application-layer protocol like MQTT) in
order to be processed by the back-end search mechanism
of the service. As shown in Fig. 1, an IoT aggregator can
be present in-between IoT clusters of the same type and
the cloud repository, in order to reshape the IoT query
traffic volume before uploading it to the cloud-computing
service and also carry out other device-specific and service-
specific operations2. The figure shows that the essentials of
the problem boil down to the analysis of the interaction
between each mobile device node and its corresponding IoT
aggregator and cloud computing service.

A. System Description

We assume that the mobile application is running con-
tinuously for a “monitoring” interval ofT seconds. This
interval corresponds to the typical device usage per day, or
in-between battery recharging periods, e.g.,T ∈ [60,18000]
seconds per day. The activation, processing and transmission
is either triggered by the user, or by external events at
irregular times throughout the application’s running time
T . Examples are: user-triggered audio or visual feature
extraction by recording a particular content segment (e.g., as
in the Shazam, Google Voice or Google Goggles services),
or event-driven activation within an audio/visual surveillance
application. We therefore assume that the query data pro-
duction volume duringT seconds is modeled as a random
variable. Finally, we remark that the query data production
and transmission and the cloud billing are not strictly
continuous processes. However, given that we are focusing
on large monitoring intervals comprising tens or hundreds
of seconds, they can be seen as continuous processes.

B. Definitions

1) Query Data Production:The query data production
and transmission by each device is a non-deterministic pro-
cess, because it depends on the frequency of the application

2Depending on the exact application, the IoT aggregator may carry out
authentication or encryption of queries, reformatting of the retrieved results
from the cloud service so that they display correctly on the particular
devices, application/collection of device metadata for service statistics and
advertising, etc. We do not discuss these aspects as they areout of the
scope of the present paper.



invocation (or on event-driven activation alerts), as wellas
on the query size, which may vary, depending on the media
search application. Therefore, the query data volume (in bits)
for each time interval ofT seconds of each device is mod-
eled by random variable (RV)Ψe with probability density
function (PDF)P (ψe). A model for the marginal statistics
of this data volume can be derived by observing the occurred
processing and analyzing the behavior of each device when
it captures image or audio data and produces query bits to
be transmitted to the IoT aggregator. Examples of systems
with variable query data production and transmission rates
include visual sensor networks transmitting image features
[25]–[28], as well as activity recognition networks where
the data acquisition is irregular and depends on the events
occurring in the monitored area [29]–[31].

Beyond individual devices, the query volume uploaded
from each IoT aggregator to the cloud service is modelled
by random variableΨb with PDFP (ψb). The distributions
P (ψe) andP (ψb) will be of the same type (the latter will
be a scaled version of the former) if the IoT aggregator
shapes its uploaded traffic in the manner it receives it. Alter-
natively, if no traffic shaping is performed and the processing
latency at the aggregator is fixed, for an aggregator ofn

devices:

P (ψb) = P (ψe) ⋆ . . . ⋆ P (ψe)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times

, (1)

where⋆ denotes the convolution operator, i.e., the PDF char-
acterizing the uploaded traffic is the result of simple addition
of the RVs modelling the data volumes received by alln

devices. Note that, as the number of devicesn increases,
the corresponding PDFP (ψb) can be approximated with in-
creasing precision via the Half-Gaussian distribution.3 Since
the query data production volume may be non-stationary, we
assume its marginal statistics forP (ψe) andP (ψb), which
are derived starting from a doubly stochastic model for these
processes as explained in related work [32], [33].

2) Energy and Cloud Infrastructure Billing Parameters:
We assume that the production and transmission of one
query bit incurs energy consumption rate ofge Joule-per-bit
(J/b). This rate incorporates the audio or visual capturing,
the feature extraction and compaction process to produce
the compacted feature vector, and the transmission of the
feature vector to the IoT aggregator. Since we are consid-
ering prolonged periods of operation in our analysis and
the utilized sensors, transceivers and embedded processors
consume energy in a stable manner when handing data,
ge can be calculated by averaging several “on” periods
for sensing, processing and transmission for each device
under consideration and normalizing to the amount of bits
delivered to the IoT aggregator. For example, under a visual

3The analysis associated to Half-Gaussian distributed query volumes will
be carried out in future works.

search application,ge would incorporate the energy con-
sumption for the image acquisition, the processing to extract
salient point descriptions, the compaction process to produce
a 256-element feature vector comprising 32-bit numbers
(visual query) corresponding to each image [15], and the
application and transceiver-incurred energy consumptionto
transmit this 8192-bit stream to the aggregator (e.g., using
MQTT and the IEEE 802.15.4e MAC/PHY). Assuming that
the entire process requires on average10−5 J on the mobile
device under consideration, this leads toge ≅ 1.2×10−9 J/b.

On the other hand, given the time-varying nature of the
query data production per device, we also encounter the case
where the device is consuming energy to run the application
(and possibly capture images or audio) in the background
without producing any queries. This corresponds to “idle”
energy consumption by each device with rateie Joule-per-
bit (i.e., ie Joule for the time interval corresponding to the
production and transmission of one query bit). We assume
that the application goes in idle mode during time intervals
where the amount of produced query bits is belowceE [Ψe]
bits, withE[Ψe] the statistical expectation ofΨe. The value
of ce depends on the processing and transmission capabilities
of the device [20], [23], as well as on the specifics of the
application [34]–[36], e.g., the size of the feature vectorper
query, the manner in which query generation is activated,
etc. For instance, regular query generation (e.g., once per
second) will correspond to lower value ofce in compar-
ison to motion-activated query generation, as the motion
detection requires continuous capturing and processing of
data that corresponds to higher percentage of “idle” energy
consumption, i.e., energy consumption that does not lead to
query data generation.

In order to control the overall energy consumption profile
of the application, the expected energy consumption within
T seconds should be equal toEmean Joule and the expected
upper-sided deviation should not exceedEupdev Joule. Both
of these values are provided by the application or device
developer in order to ensure the application does not de-
grade the user quality-of-experience (e.g., sudden drop of
battery life or device/battery overheating), or disrupt other
concurrently-running services on the device.

Analogously, when servers are reserved from the cloud
provider in order to process the queries uploaded by an IoT
aggregator, this incurs billing costs. All cloud computing
services today use some form of autoscaling mechanism in
order to adjust the number of compute instances according
to the demand. For example, in AWS Auto Scaling [37]
one can set rules that scale the utilized compute instances
for every monitoring interval according to the average query
volume received during the previous monitoring interval. A
typical AWS Auto Scaling setup would be4:

4The reported numbers of instances and instance types are only indicative
and can be adjusted per IoT application.



● 3 single-core AWS EC2m3.medium spot instances
when the average uploaded query volume is below a
certain “quota” ofcb query bits (“idle” case),

● 30 spot instances when the query volume exceedscb
bits (“active” case).

Based on current AWS EC2 pricing, each single-core
m3.medium spot instance incurs infrastructure billing cost
of 0.01$ per hour. Assuming that a search operation with
a 256 × 32-bit query requires 10ms of cloud service time
and under the AWS Auto Scaling rules stated above, this
corresponds to billing cost of (approximately):8.3 × 10−8
dollars-per-query under the “idle” case, orib ≅ 1.0 × 10−11
dollars-per-query-bit ($/b);pb ≅ 1.0 × 10−10 $/b for the
“active” case. The quota ofcb query bits can be set according
to the application or the number of devices,n, within each
IoT aggregator.

Beyond the cost of the computing time, billing cost
proportional to the expected query volume per monitoring
interval, E[Ψb], must be accounted for, since all cloud
providers charge for data transfers and storage. Assuming
0.15$ per gigabyte of query volume (based on current AWS
pricing), this leads to (approximately)gb = 1.9 × 10−11

$/b. Finally, in order to remain competitive against other
solutions in the market, the service may wish to set an
expectation that each user should be billed forBmean $ on
average for each device and each monitoring time interval
of T seconds.

Evidently, the large number of system, data production,
energy consumption, and cloud billing parameters makes
the exhaustive exploration of the complete design space
infeasible. Therefore, although not all parameters describing
the overall system are controlled by the same entity, the
creation of an analytic model that can establish closed-form
relationships between the different parameters, as well as
optimal settings under specified conditions for device energy
consumption and billing cost is of the utmost importance.
This is the aim of the next section.

III. C HARACTERIZATION OF ENERGY CONSUMPTION

AND CLOUD BILLING COST

We derive analytic expressions for the expected energy
consumption of a device (and its upper-side deviate), as well
as the expected cloud billing for a group ofn devices on the
same IoT aggregator. This allows us to derive closed-form
conditions that ensure the value ofEmean Joule is met for
each device, while also meeting the corresponding energy
upper-side deviation ofEupdev Joule. We also derive the
conditions that minimize the incurred billing cost and ensure
that the minimum value can be set to the expected billing
of Bmean per monitoring period ofT seconds.

The expected energy consumption of each mobile device

over the monitoring period ofT seconds is:

Eexp = E [Ψe]ge+ie ∫ ceE[Ψe]

0
(ceE [Ψe] −ψe)Pe (ψe)dψe,

(2)
where the integral of the second term expresses the expected
energy consumption for the time that the device will be in
idle mode. We can also express the one-sided variability of
the energy consumption when the application switches from
idle to active state (i.e., when exceeding the(ceE [Ψe])-bit
query volume):

Evar = g2e ∫
∞

ceE[Ψe]
(ψe − ceE [Ψe])2P (ψe)dψe. (3)

Under a given energy budget ofEexp Joule for the monitor-
ing time interval ofT seconds, allowing for a large value for
Evar will incur significant drop in the device battery level
(and possibly other unintended consequences, such as device
overheating, battery degradation, etc.). On the other hand, a
small value ofEvar will limit the query production volume
handled by the device, or may require a very high value
for ce that may not be realistic for the utilized hardware.
Therefore, in this paper we explore this tradeoff by imposing
operational values for the mean energy

Eexp = Emean (4)

and the corresponding upper-side energy deviation

Evar = E2
updev, (5)

and we explore their impact on the system parameters and
the query data production volume.

In a similar fashion, let us now consider the expected
cloud billing cost when receivingn aggregated query vol-
umes fromn devices. We can express this cost via

Bexp = E [Ψb] gb + ib ∫ cb

0
(cb − ψb)P (ψb)dψb

+ pb ∫
∞

cb

(ψb − cb)P (ψb)dψb, (6)

where:E [Ψb] gb corresponds to the data transfer/storage
costs, the first integral corresponds to the partial moment
expressing the “idle” billing cost, and the second integral
corresponds to the “active” billing.

Adding and subtractingpb ∫ cb0
(ψb − cb)P (ψb) dψb in

Bexp, we get:

Bexp = E [Ψb] (gb + pb) − pbcb
+ (ib + pb)∫ cb

0
(cb −ψb)P (ψb)dψb. (7)

Evidently, the expected billing cost depends on the cou-
pling point,cb, as well as on the PDF of the aggregate query
data reaching the cloud service,P (ψb), which is either of
the same form asP (ψe), or it is linked to it via (1). In the
remainder of this section:



● We consider different cases forP (ψe) andP (ψb) to
derive the conditions to match the energy consumption
expression of (2) toEmean in (4) and allow parameter
tuning that guarantees that (3) does not exceed the
thresholdEupdev in (5).

● We derive the number of query bits (quota),cb, that
minimizes the corresponding billing cost of (7) under
various PDFsP (ψb).

● In order for the desired energy consumption and billing
cost parameters to be met concurrently, we associate
the minimum billing cost with the desired value for
the expected billing,Bmean, and the device query
production volume,r, thereby establishing the number
of devices,n, that should be admitted by each IoT
aggregator.

A. Illustrative Case:P (ψe) and P (ψb) are Uniformly
Distributed

When no knowledge of the underlying statistics of the
query generation process exists, one can assume that both
P (ψe) and P (ψb) are uniform over the intervals[0,2r]
and [0,2rn], respectively:

PU (ψe) = { 1
2r
,

0,

0 ≤ ψe ≤ 2r
otherwise

, (8)

and

PU (ψb) = { 1
2rn

,

0,

0 ≤ ψb ≤ 2rn
otherwise

. (9)

This corresponds to the case where the IoT aggregator’s
upload query volume PDF matches the query generation
PDF of (8) and the aggregator merges query volumes of
n devices.

The expected value ofΨe is EU [Ψe] = r bits and the
expected value ofΨb isEU [Ψb] = rn bits. The cases where
ce > 2 or cb > 2rn are of no practical relevance, because:(i)
the first inequality means each device would always be in
idle mode, or(ii) the second inequality means the cloud
infrastructure would be constantly overprovisioned. Thus,
we are only concerned with the case where:0 < ce < 2

and0 < cb < 2rn.
1) Energy Parameter Tuning to Meet the Settings of(4)

and (5): Starting from the device energy consumption, by
using (8) in (2), we obtain:

Eexp,U = (ge + iec2e
4
) r⇔ r = 4Eexp,U

4ge + iec2e
. (10)

In addition, by using (8) in (3), we obtain:

Evar,U = g2e (2 − ce)3
6

r2, (11)

and by substituting (10) in (11), we can express the one-
side variability of the energy consumption between idle and

active state as a function of the idle thresholdce as

Evar,U =
8g2eE

2
exp,U (2 − ce)3

3(4ge + iec2e)2 . (12)

Therefore, by imposing the constraint (4) forEexp,U, we
can derive the value ofr that matches the expected energy
consumption. Moreover, (12) offers a tool to efficiently tune
ce so that the setting of (5) forEvar,U is met. In this
way, one can carry out a detailed exploration of the mean
query production volumes and coupling data volumes per
device that satisfy anya-priori energy settings forEmean

and Eupdev, as well as any energy parametersge and ie,
within the monitoring time intervalT .

Alternatively, from (10) we can derive the activation
thresholdce that guarantees the average energy consumption,
for a given average query volume ofr bits, as

ce = 2
√

Eexp,U − ger
ier

, (13)

provided thatEexp,U > ger, which must be the case or else
the energy constraint does not suffice for the production of
r bits within T seconds. We also note that the constraint
ce < 2 implies in this case thatEexp,U < (ge + ie)r.
These two constraints provide the feasible range for the
expected energy consumption under Uniformly-distributed
query volumes as:Eexp,U ∈ (ger, (ge + ie)r).

Based on (13), the one-side variability of energy consump-
tion can be expressed as a function of the average query
volumer:

Evar,U = 4

3
g2er

2
⎛⎝1 −

√
Eexp,U − ger

ier

⎞⎠
3

. (14)

Via (14), we can numerically determine the value ofr for
which the corresponding one-sided variability of the energy
consumption agrees with the setting of (5).

2) Billing Parameter Tuning to Minimize the Cloud In-
frastructure Billing Cost and Meet the Expected Billing
Bmean: We can now turn our attention to the billing cost
Bexp in (7) for the n-device aggregate query production
volume over the monitoring time interval ofT s. We note
that the first and the second derivative ofBexp with respect
to the coupling pointcb are given by

dBexp

dcb
= −pb + (ib + pb)Fb(cb) (15)

d2Bexp

dc2
b

= (ib + pb)Pb(cb), (16)

whereFb(ψb) andPb(ψb) are the cumulative distribution
function (CDF) and the PDF of the aggregated query volume
Ψb. Therefore, we can conclude thatBexp is a convex
function of cb whenΨb obeys to a continuous distribution
with given PDF and CDF. Moreover, the value ofcb that



minimizes the billing cost is obtained by solving the equa-
tion dBexp

dcb
= 0, i.e.,

cb = F −1 ( pb

ib + pb ) , (17)

whereF −1(⋅) represents the inverse function of the CDF
of Ψb. Assuming any strictly-increasing CDF,cb will be
unique5. Therefore, in conjunction with the fact that∀cb ∶
d2Bexp

dc2
b

> 0, Bexp has a unique minimum in function ofcb.
For the case of uniform distribution, by replacing (9) in

(7), we obtain the average billing cost as

Bexp,U = (gb + pb) rn − pbcb + (ib + pb) c2b
4rn

, (18)

and the optimal coupling point is

cb,U = 2pbrn

ib + pb
. (19)

The corresponding minimum-possible billing cost forcb ∈(0,∞) is achieved undercb = cb,U, and it is:

min{Bexp,U} = (gb + pb − p2b
ib + pb

) rn. (20)

The last equation shows that the minimum billing cost in-
creases linearly to the average query data production volume
of all n devices. If the minimum value is set to anya-priori
determined expected billing, i.e.,min {Bexp,U} = Bmean,
the corresponding device query volume becomes:

rb,U = Bmean

(gb + pb − p2
b

ib+pb
)n. (21)

3) Number of Devices in an IoT Aggregator to Concur-
rently Satisfy Energy Consumption and Billing Costs:In or-
der to meetbothenergy and billing costs:{Emean,Eupdev}
andBmean, we can match the derived query volume of (21)
with re,U derived from (10) and, by tuningce via (13) and
settingcb,U to the value given by (19), derive:

rb,U = re,U⇔ nU = Bmean

(gb + pb − p2
b

ib+pb
) re,U . (22)

The value ofnU of (22) comprises the numbers of devices
that should be accommodated by an IoT aggregator that re-
ceives and transmits queries under the uniform distributions
of (8) and (9) when each device meets the energy settings of
(4) and (5) and the IoT-uploaded volume leads to minimum
billing cost ofBmean.

Overall, via the energy-constrained analysis that derived
(10) and (12) and the cloud-billing optimization that derived
(19)–(22), one can explore different energy and billing

5Even if the CDF is monotonically increasing, all candidate extrema are
equivalent with respect to the derived billing cost.

settings in order to accommodate: particular types of mo-
bile devices (with given energy consumption parameters),
given average query production volume, or given number of
devices per IoT cluster of Fig. 1.

B. Energy-constrained Query Volume Production and Min-
imum Billing Cost under Pareto and Exponential Distribu-
tions

We can now extend the previous calculation to other dis-
tributions expressing commonly observed data transmission
rates in practical applications. We consider two additional
PDFs for Ψ that have been used to model the marginal
statistics of many real-world data transmission applications
and provide the obtained analytic results in this subsection.
The proofs follow the same process as for the uniform
distribution. For each distribution, we couple its parameters
to the average query volume of the uniform distribution,r.
This facilitates comparisons of the energy consumption and
billing cost achievable under different statistical characteri-
zations for the query volume.

1) Pareto distribution and fixed query volume:This
distribution has been used, amongst others, to model the
marginal data size distribution of data production processes
that result in substantial number of small data volumes and
a few very large ones [38], [39]. ConsiderPP (ψe) as the
Pareto distribution with scaleve and shapeαe > 2 (αe ∈ N),

PP (ψe) = ⎧⎪⎪⎨⎪⎪⎩
αe

vαe
e

ψ
αe+1
e

,

0,

ψe ≥ ve
otherwise

. (23)

The expected value ofΨe is EP [Ψe] = αeve
αe−1

bits. Thus, if
we set

ve = αe − 1

αe

r, (24)

we obtainEP [Ψe] = r bits, i.e., we match the expected
query volume per device to that of the Uniform distribution.
The characterization of the energy consumption for queries
with Pareto-distributed volumes is summarized in the fol-
lowing proposition.

Proposition 1. The average energy consumption for Pareto-
distributed device query volumes is given by

Eexp,P = [ge + ie [(αe − 1)αe−1ce(αece)−αe
+ ce − 1]] r, (25)

and the one-sided variation of the energy consumption from
idle mode to active mode is given by

Evar,P = 2g2e (αe − 1)αe−1c2−αe
e

ααe
e (αe − 2) r2. (26)

Proof: See Appendix.
Note that Proposition 1 assumes thatce ≥ αe−1

αe
, since,

otherwise, the device will never switch from active to idle
state. Moreover, from (25), we can derive the average query



volume corresponding to any given values forEexp,P and
ce as

r = Eexp,P

ge + ie [(αe − 1)αe−1ce(αece)−αe + ce − 1] , (27)

and the one-sided energy variance associated tor as

Evar,P = g2e (αe − 1)αe−1c2−αe
e

ααe
e (αe − 2)

×
E2

exp,P[ge + ie [(αe − 1)αe−1ce(αece)−αe + ce − 1]]2 . (28)

A particular case of interest for the Pareto distribution arises
when αe → +∞: in this limit case, the query volume
per device converges to the expectationEP [Ψe] = r, i.e.,
to fixed-volumequery production per monitoring interval.
Then, sincece ≥ αe−1

αe
, the average energy consumption

converges to

Eexp,P = [ge + ie(ce − 1)] r, (29)

asαe → ∞, and the one-side energy variation from idle to
active mode converges to zero (the device is in idle mode
for a portion of the time of every monitoring interval). Then,
the average query volume that meets the expected energy
consumption constraintEexp,P is simply given by

r = Eexp,P

ge + ie(ce − 1) . (30)

2) Exponential distribution:This distribution is relevant
to our application context since the marginal statistics of
compressed image and video traffic have often been modeled
as exponentially decaying [40]. ConsiderPE (ψe) as the
Exponential distribution with rate parameter1

r

PE(ψe) = 1

r
exp(−1

r
ψe) , (31)

for ψe ≥ 0. In this case, the expected value ofΨe is
EE [Ψe] = r bits. The characterization of the energy con-
sumption for queries with exponentially distributed volumes
is summarized in the following proposition.

Proposition 2. The average energy consumption for
Exponentially-distributed device query volumes is given by

Eexp,E = [ge + ie (ce + e−ce − 1)] r, (32)

and the one-sided variation of the energy consumption from
idle mode to active mode is given by

Evar,E = 2g2eexp(−ce)r2. (33)

Proof: See Appendix.
From (32), it is straightforward to derive the average query

volume corresponding to any given values ofEexp,E andce
as

r = Eexp,E

ge + ie [ce + exp(−ce) − 1] , (34)

and the one-sided energy variation associated tor as

Evar,E =
2g2eexp(−ce)E2

exp,E[ge + ie (ce + exp(−ce) − 1)]2 . (35)

In addition, for any given values ofEexp,E and r, we can
also derive the thresholdce as

ce =W0 (− exp(−Eexp,E + ier − ger

ier
))+Eexp,E + ier − ger

ier
,

(36)
whereW0(⋅) is the main branch of the standard Lambert
W function. The corresponding one-sided energy variability
associated toce is given by

Evar,E = −2g2er2W0 (− exp(−Eexp,E + ier − ger

ier
)) . (37)

3) Billing Cost under Pareto and Exponential Distribu-
tion: We now consider the billing cost for the processing
of queries uploaded fromn devices via an IoT aggregator.
Let us first consider the aggregate query volume distribution
modeled via a Pareto distribution with meanEP[Ψb] = rn,
i.e.,

PP (ψb) = ⎧⎪⎪⎨⎪⎪⎩
αb

v
αb
b

ψ
αb+1

b

,

0,

ψb ≥ vb
otherwise

, (38)

whereαb > 2 (αb ∈ N) andvb = αb−1
αb

rn.

Proposition 3. The average billing cost incurred from
processing Pareto-distributed query volumes is given by

Bexp,P = (gb−ib)rn+(ib+pb)(αb − 1)αb−1

α
αb

b

(rn)αbc
1−αb

b
+ibcb.

(39)
The minimum billing cost is obtained when

cb,P = ( ib + pb
ib
) 1

αb αb − 1

αb

rn, (40)

and it is given by

min{Bexp,P} = ⎡⎢⎢⎢⎣gb − ib + ib (
ib + pb

ib
)

1
αb
⎤⎥⎥⎥⎦ rn. (41)

Proof: The proof stems from the evaluation of the
general solution expressed in (17) under the usage of the
Pareto PDF.

In order to ensure that the average billing cost isBmean

and average query volume per device isre,P, the IoT
aggregator must handle

nP = Bmean

re,P [gb − ib + ib ( ib+pbib
) 1

αb ]
(42)

devices. This is derived by settingmin{Bexp,P} = Bmean in
(41) and solving forn. We also note that, when assuming
that the aggregate query volume is Pareto distributed, by
letting αb → +∞, we can analyze the case when the
aggregate query volume at the IoT is fixed and equal torn.



In this case, ifcb ≥ rn, the average billing cost is simply
given by

Bexp,P = (gb − ib)rn + ibcb, (43)

which is minimized by settingcb equal to the mean, i.e.,
cb,P = rn.

Finally, let us consider the aggregate query volume distri-
bution modeled via an Exponential distribution with mean
EE[Ψb] = rn, i.e.,

PE(ψb) = 1

rn
exp(− 1

rn
ψb) , (44)

for ψb ≥ 0.

Proposition 4. The average billing cost incurred from
processing Exponentially-distributed query volumes is given
by

Bexp,E = (gb − ib)rn + ibcb + (ib + pb)nre− cb
nr . (45)

The minimum billing cost is obtained when

cb,E = rn ln ib + pb
ib

, (46)

and it is given by

min{Bexp,E} = (gb + ib ln ib + pb
ib
) rn. (47)

Proof: The proof stems from the evaluation of the
general solution expressed in (17) under the usage of the
Exponential PDF.

In order to ensure that the average billing cost isBmean

and average query volume per device isre,P, the IoT
aggregator must handle

nE = Bmean

re,E (gb + ib ln ib+pb
ib
) (48)

devices. This is derived by settingmin{Bexp,E} = Bmean in
(47) and solving forn.

IV. EVALUATION OF THE ANALYTIC RESULTS

To validate the proposed analytic modeling framework
of Propositions 1–4, we performed a series of experiments
based on a visual sensor network connected to an IoT
aggregator, and eventually to an AWS S3 plus EC2 cluster of
spot instances. The following subsections present the hard-
ware and application specifications, as well as the achieved
results. Beyond our specific experimental results, we ensure
to retain our description as broad as possible in order to
indicate ways to carry out similar experiments within other
IoT-oriented platforms, such as IBM IoT Foundation and
Bluemix, AWS IoT, Cisco OpenStack, etc.

A. System Specification

We utilized a visual sensor network composed of multiple
BeagleBone Linux embedded platforms [41], [42]. Each
BeagleBone is equipped with a RadiumBoard CameraCape
board to provide for the video frame acquisition. For energy-
efficient processing, we downsampled all input images to
QVGA (320x240) resolution. Further, our deployment in-
volved:

1) a portable computer acting as the IoT aggregator, i.e.,
collecting all bitstreams via a star topology withn =
10 nodes and the recently-proposed (and available as
open source) TFDMA protocol [43] for contention-
free MAC-layer coordination;

2) an AWS S3 bucket where the IoT aggregator uploads
all queries via a TCP/IP connection using script code
running on the AWS Command Line Interface;

3) One reserved AWS instance running as the control
server and assigning query volumes from S3 to AWS
EC2 spot instances that serve as compute units; via
AWS Auto Scaling, within each monitoring instance
of T seconds, the number of spot instances are set to:

● 3 when the query volume is belowcb bits (“idle”
case).

● 30 when the query volume exceedscb bits (“ac-
tive” case).

Under our deployment and the utilized application,
the uploaded query vectors are matched with the fea-
ture vectors extracted from80,000 images of similar
content. The corresponding billing rates per query
bit for this matching operation were found to be
ib = 6.27 × 10−11 $/b and pb = 6.27 × 10−10 $/b.
Regarding query traffic upload and storage costs, the
corresponding billing rate per query bit was found to
be gb = 2.09 × 10−10 $/b,

We note that no WiFi or other IEEE802.15.4 networks were
concurrently operating in the utilized channels of the 2.4
GHz band. However, even if IEEE 802.11 or other IEEE
802.15.4 networks coexist with the proposed deployment,
well-known channel hopping schemes like TSCH [44] can
be used at the MAC layer to mitigate such external in-
terference. Moreover, experiments have shown that such
protocols can scale to hundreds or even thousands of nodes
[44]. Therefore, our evaluation is pertinent to such scenarios
that may be deployed in the next few years within an IoT
paradigm [45].

B. Visual Similarity Identification Based on the Vector of
Locally Aggregated Descriptors (VLAD)

Each BeagleBone runs a basic motion detection algorithm
(based on successive frame differencing) that generates a
visual query only when sufficient motion is detected between
the captured video frames. The query vectors were generated
using the state-of-the-art VLAD algorithm of Jegouet.



al. [15], which is based on SIFT feature extraction and
compaction using local feature centers and a PCA projection
matrix, both of which are derived offline via training with
representative video data [15]. The VLAD descriptor (i.e.,
query) size was set to 256 coefficients of 32 bits each.

With respect to the visual feature extraction, dedicated
energy-measurement tests were performed with the Bea-
glebone following the energy measurement setup of our
previous work [41] (repeated tests with a resistor in series
to the Beaglebone board and a high-frequency oscilloscope
to capture the power consumption profile across repeated
monitoring intervals). Under the utilized setup, we measured
the average energy cost to produce and transmit a query
bit, as well as the average initialization cost per frame for
both application scenarios. The resulting energy rates were:
ge = 1.78×10−6 J/b andie = 6.10×10−7 J/b. Moreover, under
the utilized application, the Beaglebone can process up to 1
frame per second while being constantly active. Therefore,
the maximum query rate is 1 query per second, i.e.,8192

b/s. By setting mean query rates such thatE[Ψe] ≤ 2048

bits per second, this theoretically allows for “idle” energy
consumption withce < 3. In practice, we only utilized
ce ∈ (0,2) for “idle” energy consumption (i.e., up to twice
the number of frames captured and processed with no query
generation), as higher values caused system instability.

C. Results with Controlled Query Generation that Matches
the Marginal PDFs Considered in the Theoretical Analysis

Under the settings described previously, our first goal is
to validate the analytic expressions of Section III that form
the mathematical foundation for Propositions 1–2. To this
end, we create a controlled query data production process
on each node by:(i) artificially setting several sets of query
volumes according to the marginal PDFs of Section III
via rejection sampling [46], a.k.a., Monte Carlo sampling;
(ii) setting the mean query volume size per monitoring
interval, r, to predetermined values. The sets containing
query volume sizes are preloaded onto the memory of each
sensor node during the setup phase. At run time, each node
runs a special routine, which, per monitoring intervalt: (i)
reads the corresponding query volume size,v(t), from the
preloaded set;(ii) captures and processesv(t)

8192
frames,(iii)

transmits the producedv(t) query bits to the IoT aggregator;
(iv) if v(t) < ceE[Ψe], captures and processesceE[Ψe]−v(t)

8192

additional frames without transmitting queries. In this way,
we emulate the actual operation of the node under various
query volumes that match the statistical models considered
by our analysis and various thresholdsce for switching be-
tween “idle” and “active” states. This controlled experiment
is designed to confirm the validity of our analytic derivations
when the operating conditions match the model assumptions
precisely.

Indicative experimental results for monitoring time in-
terval of T = 60 s are reported in Fig. 2 and Fig. 3 for
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Figure 2. Average energy consumptionEexp vs. ce. The average query
volume was set tor = 81,920 b. For the case of Pareto distribution, we
usedαe = 4. Lines with markers: Monte Carlo experiments; Lines without
markers: theoretical predictions.
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Figure 3. One-sided energy consumptionEvar vs. ce. The average query
volume was set tor = 81,920 b. For the case of Pareto distribution, we
usedαe = 4. Lines with markers: Monte Carlo experiments; Lines without
markers: theoretical predictions.

r = 81,920 b. It is evident that the theoretical results match
the Monte Carlo experiments regarding energy consumption
for all the tested distributions, with all theR2 values (coef-
ficients of determination) between the experimental and the
model points being above0.998. We have observed the same
level of accuracy for the proposed model under a variety of
data sizes (r) and active time interval durations (T ), but omit
these repetitive experiments for brevity of exposition.

Similar experiments have been carried out in order to
validate the analytic expressions of Propositions 3 and 4
regarding the average billing cost. Specifically, we have
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Figure 4. Average billing costBexp vs. cb. The average query volume
per device was set tor = 163,840 b and the experiment corresponds to
n = 10 devices. For the case of Pareto distribution, we usedαe = 4. Lines
with markers: Monte Carlo experiments; Lines without markers: theoretical
predictions. The circles indicate minimum billing values as predicted by the
analysis in Section III.

submitted indicative queries to the cloud-computing service
with volumes that have been generated according to the
marginal PDFs of Section III via rejection sampling under
various numbers of devices per IoT cluster (n) and various
average query volumes. The aggregated queries are uploaded
to the dedicated S3 bucket for the service and are processed
by a number of instances that is controlled by the AWS Auto
Scaling rules stated in the previous subsection. In this case,
we usedT = 600 s and varied the value ofcb in order to
see the incurred infrastructure billing costs under a variety
of Auto Scaling thresholds.

Fig. 4 presents indicative results under this setup. Ev-
idently, the theoretical results follow the trends of the
experimental data, withR2 coefficients being above0.9983
for all the distributions under consideration. However, the
theoretical predictions always tend to underestimate the
experimental values. This underestimation is due to the fact
that our analysis does not take into account some practical
latency and cost aspects of the service, for example that
switching between “idle”, “active” states is not instantaneous
and other cost overheads (such as the cost of the control
server) are not taken into account by our analysis. Similar
results to Fig. 4 have been obtained for a variety of average
query volumes and monitoring intervals, but are omitted for
brevity of exposition.

D. Results with User Generated Data

We now present system tuning results when repeating
the visual query generation, transmission and cloud-based
processing for 25 monitoring intervals based on real video
captures and VLAD query generation using real data. The
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Figure 5. Probability histogram of query volume forT = 60 s and the
best fit obtained via the Exponential distribution.

experiment was carried out within several offices of the
Electronic and Electrical Engineering Department of Uni-
versity College London, and activation of query generation,
transmission and processing was triggered when people
passed (or moved) in front of the device cameras. Back-
end query similarity identification was done using prestored
VLAD signatures of80,000 images of similar content based
on the AWS setup described in the previous subsection.

Once data has been collected, we fitted6 the query pro-
duction volumes to one of the distributions used in Section
III. In the performed experiment and under monitoring
interval of T = 60 s for the devices, we found that the
query volume histogram agreed best with the Exponential
distribution with r = 82,616 b. For T = {600,1200} s,
the best fit was found to be the Pareto distribution with:
r = 816,250 b and α = 3.89, and r = 1,569,700 b and
α = 3.95, respectively. An example for the fit obtained with
the Exponential distribution is given in Fig. 5. Moreover,
with respect toce, we found that, for all cases of monitoring
intervals under consideration, the system switched between
“idle” and “active” states atce ≅ 0.5. Therefore, our analytic
results utilized this value for all results of this subsection.

Under this setup and with the fitted values for Exponential
and Pareto PDFs, Table I presents the obtained experimental
and theoretical values (via Proposions 1 and 2) for the
expected energy and the upper-sided energy variance for
two monitoring intervals. It is observed that the theoretical
predictions are always within 10% of the experimentally-
derived values. As such, the proposed energy-consumption
model can be used for early-stage testing of plausible appli-
cation deployments with respect to their energy efficiency

6Fitting is performed by matching the average data sizer of each
distribution to the average data size of the JPEG compressedframes or
the set of visual features.



Table I
EXPECTED ENERGY CONSUMPTION AND UPPER-SIDED VARIATION .

EXPERIMENTAL RESULTS AND THEORETICAL PREDICTION. FOR ALL

CASES, WE SETce = 0.5.

Theoretical Experimental

T = 60 s
Eexp = 0.1679 J
Evar = 0.0316 J2

Eexp = 0.1538 J
Evar = 0.0317 J2

T = 1200 s
Eexp = 2.7955 J
Evar = 2.9276 J2

Eexp = 2.8053 J
Evar = 2.8411 J2

Table II
EXPECTED BILLING COST. THE AD-HOC SOLUTION CORRESPONDS TO

SETTINGcb = rn. THE PROPOSED SOLUTION IS OBTAINED WITHcb SET

ACCORDING TOPROPOSITION3.

Ad-hoc Proposition 3 Saving

T = 600 s
n = 10

Bexp = 5.82 ⋅ 10
−4 $

cb = 1.54 Mb
Bexp = 4.70 ⋅ 10

−4 $
cb = 2.51 Mb

19 %

T = 1200 s
n = 10

Bexp = 7.70 ⋅ 10
−4 $

cb = 1.88 Mb
Bexp = 6.25 ⋅ 10

−4 $
cb = 3.09 Mb

19 %

in order to determine the impact of various options, prior to
more detailed experimentation in the field.

To present a further example of this capability, with
the Pareto-distributed query volume statistics forT ={600,1200} s and under the use ofn = 10 devices, we
determined the Auto Scaling threshold,cb, that is expected
to lead to the minimum cloud infrastructure billing cost
based on Proposition 3. Then, we benchmarked the obtained
cost of the system under this threshold against the intuitive
(albeit ad-hoc) setting ofcb = nr, which corresponds to the
Auto Scaling threshold being set to match the average query
volume of alln devices. The results, given in Table II, show
that the obtained billing cost is 19% lower than the case of
the same query volume processing under the ad-hoc Auto
Scaling threshold. In terms of practical deployments, it is
important to emphasize again that not all the system param-
eters can be tuned by the same entity. For example,cb is
controlled by the cloud provider, whereasce depends on the
specific device and the processing task performed. However,
the proposed framework provides an analytic link between
such parameters and the energy and billing costs, that can
be used by the different stakeholders in a variety of ways.
Moreover, the experimental example reported demonstrates
that tuning the system based on the theoretical analysis can
lead to important cost savings under real-world conditions
for cloud-based processing of IoT-generated queries.

V. CONCLUSIONS

We propose a novel theoretical framework for establishing
trade-offs in the energy consumption and infrastructure
billing cost of Internet-of-Things (IoT) oriented deployments
comprising mobile devices generating queries that are pro-

cessed by a back-end cloud computing service. Our analysis
incorporates energy consumption and cloud infrastructure
billing rates when the devices and the cloud computing
system adapt their resource consumption according to the
volume of generated queries by switching between “idle”
and “active” states. Experiments with Beaglebone Linux
embedded platforms and Amazon Web Services (AWS)
based back-end processing for visual query generation,
transmission and similarity detection demonstrate that the
proposed model forms a framework that accurately incorpo-
rates the effect of various system parameters with respect
to energy consumption and cloud billing costs. Therefore,
variations of the proposed analytic modeling can be used
for early-stage analysis of possible deployments, or limit
studies of the expected performance under a wide range
of parameter settings, prior to costly deployments in the
field. Our framework could be expanded in future work
by: (i) expanding our analytic results beyond the specific
cases of distributions used to characterize the query data
volumes; (ii) considering the case of simple aggregation
of the IoT devices’ traffic by the IoT aggregator (Fig.
1); (iii) extending the experimental validation to different
testbeds and applications, e.g., within IBM IoT Foundation
and Bluemix, AWS IoT, Cisco OpenStack, etc.
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APPENDIX

A. Energy Consumption:P (ψe) Is Pareto Distributed

In this case,Ψe is drawn from a Pareto distribution with
scaleve and shapeαe, with αe > 2, as in (23). Note that the
expected value ofΨe is given byEP[Ψe] = αeve

αe−1
. Therefore,

we setve = αe−1
αe

r in order to be consistent with the analysis
carried out for the case of uniformly distributedΨe.

If cer ≤ ve, the device is never in idle state, and
the corresponding expected energy consumption is simply
Eexp,P = ger. Undercer > ve, and by using (23) in (2), we
obtain

Eexp,P = (ge + ie ((αe − 1)αe−1ce(αece)−αe
+ ce − 1)) r. (49)

Thus, the value of the average query volume that meets the
expected energy consumption constraint is

r = Eexp,P

ge + ie ((αe − 1)αe−1ce(αece)−αe + ce − 1) . (50)

Similarly, by using (23) in (3), and undercer > ve, we can
write the upper-sided variability of the energy consumption
when the application switches from “idle” to “active” state
as

Evar,P = 2g2e (αe − 1)αe−1c2−αe
e

ααe
e (αe − 2) r2. (51)



Then, by substituting (50) into (51), we can express the one-
side variability of the energy consumption as

Evar,P = g2e (αe − 1)αe−1c2−αe
e

ααe
e (αe − 2)

⋅
E2

exp,P(ge + ie ((αe − 1)αe−1ce(αece)−αe + ce − 1))2 . (52)

We note thatαe > 2 is a necessary and sufficient condition
for the upper-sided energy variability to be finite.

B. Energy Consumption:P (ψe) Is Exponentially Dis-
tributed

Consider now the case whereΨe is exponentially dis-
tributed with rate parameter1

r
as in (31), with the expected

value ofΨe set toEE[Ψe] = r.
The expected energy consumption at each device can be

computed by substituting (31) in (2), thus obtaining

Eexp,E = (ge + ie (ce + e−ce − 1)) r. (53)

Moreover, the one-side variability for the energy consump-
tion when the application switches from idle to active state
is obtained by substituting (31) in (3), leading to

Evar,E = 2g2ee−cer2. (54)

From (53), we can derive the average query volume that
meets the average energy consumption constraint in function
of the activation ratece:

r = Eexp,E

ge + ie (ce + e−ce − 1) . (55)

Then, by substituting (55) in (54), we obtain the expression
of the upper-sided energy variability associated to a single
device as a function of the activation ratece

Evar,E =
2g2ee

−ceE2
exp,E(ge + ie (ce + e−ce − 1))2 . (56)

Provided thatEexp,E > ger, we can also determine the
activation ratece that guarantees a given average energy
consumption constraint for any average query volume. This
is achieved by solving equation (53) force, thus obtaining

ce =W0 (− exp(−Eexp,E + ier − ger

ier
))+Eexp,E + ier − ger

ier
,

(57)
whereW0(⋅) is the main branch of the standard Lambert
W function [47]. Finally, the corresponding one-side energy
variability is given by

Evar,E = −2g2er2W0 (− exp(−Eexp,E + ier − ger

ier
)) . (58)
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