
Efficient Verification of Distributed Protocols Using Stateful Model Checking

Habib Saissi, Péter Bokor, Can Arda Muftuoglu and Neeraj Suri
TU Darmstadt, Germany

Email: {saissi, pbokor, arda, suri}@cs.tu-darmstadt.de

Marco Serafini
Qatar Computing Research Institute, Qatar

Email: mserafini@qf.org.qa

Abstract—This paper presents efficient model checking of dis-
tributed software. Key to the achieved efficiency is a novel stateful
model checking strategy that is based on the decomposition of
states into a relevant and an auxiliary part. We formally show
this strategy to be sound, complete, and terminating for general
finite-state systems.

As a case study, we implement the proposed strategy within
Basset/MP-Basset, a model checker for message-passing Java
programs. Our evaluation with actual deployed fault-tolerant
message-passing protocols shows that the proposed stateful op-
timization is able to reduce model checking time and memory
by up to 69% compared to the naive stateful search, and 39%
compared to partial-order reduction.

I. INTRODUCTION

Software model checking (MC) [14], [16] is a practical
branch of verification for checking the actual implementation
of the system. The wide usability comes at the price of low
scalability as the model checking of even simple single-process
programs can take several hours (or go off-scale) using state-
of-the-art techniques [23].

Verification complexity gets even worse for concurrent
programs that run on loosely coupled processes. Our focus
is on distributed protocols for various mission-critical (fault-
tolerant) applications where rigorous verification is desired.
Example applications include atomic broadcast [21], storage
[12], diagnosis [29], etc. Although the verification of fault-
tolerant distributed systems is known to be a hard problem due
to concurrency and faults, MC has proven to be useful for de-
bugging and verifying small instances of deployed protocols;
recent approaches include MaceMC [22], CrystalBall [30],
Modist [31], [18], Basset [25] and its extensions/optimizations
[4], [5], [28].

In MC, the possible executions of a system are modeled
in terms of a state graph, where states (i.e., nodes) can be
thought of as snapshots of the entire system (e.g., state of the
servers, clients, communication channels) and transitions (i.e.,
edges) model any event that may alter the system’s state (e.g.,
lines of code, function blocks). For MC to be scalable, the size
of the graph must be feasible to manage, a challenge that is
often referred to as the state explosion problem. An efficient
and simple approach is stateful depth-first search [10], where
the state graph is abstracted by 1) a sequence of states (called
stack) that corresponds to the last run of the system, and 2) a
set of states that have been explored during the model checking
(called visited states).

In this paper, we propose a general and sound approach to
reduce the size of both the stack and the visited states for im-
proved scalability of MC. Key to the proposed reduction is the

concept of decomposition that we observe to be present in the
implementation of real systems. For example, implementations
of distributed systems are typically decomposed into different
aspects or execution modes (i.e., runnable configurations of
the system under verification) of the system such as syn-
chronization, GUI, automatic execution, or logging. Despite
the richness of implementations, the specifications subject to
model checking very often consider only a subset of all these
aspects. Roughly speaking, our reduction approach consists in
utilizing decomposition so that only selected aspects are model
checked against the specification without having to modify the
implementation.

a) Our Theoretical Contributions: We propose a formal
framework that characterizes decomposition by distinguishing
between relevant and auxiliary state information. The decom-
position is always with respect to a subset of all transitions of
the system corresponding to the execution mode of interest.
We show a use of this characterization for more scalable state-
ful depth-search, called decomposition-based stateful search,
and prove the soundness of the proposed approach. The input
of the framework (beside the specification of the system) is
a sound decomposition. Although showing the soundness of
a decomposition can be as hard as model checking itself, we
argue that this can be done using suitable static analysis and
we justify this claim by showing an implementation for general
distributed systems implemented in Java.

b) Our Prototype Implementation: We implement the
proposed decomposition-based stateful model checking within
Basset [25], [4], an explicit-state model checker for general
message-passing Java programs. We then apply our decom-
position framework to optimize the verification of distributed
message-passing algorithm. In this decomposition, the auxil-
iary part of the state stores the latest messages delivered by a
process. This is utilized only for debugging, that is, to analyze
runs where the desired properties of the system are violated
This execution mode is irrelevant, say, for the fault-tolerance
aspects of the system and the corresponding state information
can be safely decomposed as auxiliary.

c) Our Evaluation: We use our prototype implementa-
tion to evaluate the proposed decomposition-based stateful
search with various fault-tolerant message-passing protocols
such as Paxos consensus [24], Zookeeper atomic broadcast
[21], and distributed storage [1]. The decomposition-based
stateful optimization improves on the naive stateful search
both in terms of search time and memory by up to 69%. We
also compare decomposition-based stateful search with partial-
order reduction [13], an optimization known to be efficient for

s1

s4

s2

s3

s5 s6

Stack operations

Push s1
→Push s2
Push s3

Push s4

Push s5

Push s
Pop s
Pop s5

Pop s4

Push s6

Pop s6

Pop s3

→ Pop s2

Pop s1

(a)

s
(b)

p1 sends
m1 , m2 to p2

Switch context
from p1 to p2

p2 consumesm1

p2 consumesm2

p2 consumes
m1 ,m2

s 5 stores:
last message
delivered:m2

s6 stores:
last messages
delivered:m1 ,m2

p2 sends
ACK to p1

s1

s4

s2

s3

s5

s

p1 sends
m1 , m2 to p2

Switch context
from p1 to p2

p2 consumesm1

p2 consumesm2

p2 consumes
m1 ,m2

p2 sends
ACK to p1

Stack operations

Push s1

Push s3

Push s4

Push s5

Push s
Pop s
Pop s5

Pop s4

Pop s3

Pop s1

Fig. 1: (a) Naive depth-first search (DFS) and (b) decomposition-based stateful search.

fault-tolerant message-passing protocols [4], [5]. Our experi-
ments show that the two optimizations, when used together,
result in enhanced reductions achieving an improvement of
39% compared to settings with partial-order reduction only.

The paper is structured as follows. After a motivating ex-
ample, we present in section III our decomposition framework
and prove the correctness of the DBSS algorithm. In section
IV and V, we discuss the implementation of DBSS within
MP-Basset and evaluate our experimental results. Section VI
discusses other related work, and we conclude with section
VII.

II. MOTIVATING EXAMPLE

We give the intuition of the proposed reduction approach
through a simple message-passing example with two pro-
cesses, p1 and p2. Process p1 sends two messages m1 and m2

to process p2. Process p2 stores in its local state the messages
it receives. It is possible for m2 to arrive later than m1 at p2
due to network delays and p2 can process available messages
(m1 and m2) in one atomic step. After receiving m1 and m2,
p2 sends an acknowledgement message to p1.

Figure 1(a) shows the state graph of the this example system
as explored by a naive DFS and the corresponding operations
of the search stack. Note that s5 and s6 are different states
because they store different messages histories.

a) Decomposition: Suppose that the message history
information is not subject to the verification. As a result, this
part of the state is labeled as auxiliary. This decomposition
is sound with respect to the transitions shown in Figure 1
because these transitions only depend on the non-auxiliary
(i.e., relevant) part of the state. Note that although the system
may contain additional transitions, in Figure 1 only those
transitions are depicted that are relevant in target execution
mode.

b) Selective Hashing: We propose a reduction frame-
work for more scalable stateful depth-first search by making
use of the decomposition of a system. Firstly, we introduce
selective hashing, which modifies the naive search in that it

only stores the relevant state in the set of visited states. In
our example, the state graph resulting from selective hashing
is shown in Figure 1(b). Note that states s5 and s6 collapse
into the same state because they only differ with respect to
their message histories. The gain of selective hashing is that
it directly reduces the size of the state graph that is explored
by the model checker.

c) Selective Push-on-Stack: Secondly, we introduce se-
lective push-on-stack, which is based on the observation that
the transition system may have single enabled transitions,
i.e., transitions that are exclusively enabled in a state. Since
single enabled transitions are non-concurrent with any other
transitions, states where these transitions are executed do not
have to be used for backtracking, although they have to be
remembered as visited states. Therefore, states with single
enabled transitions do not have to be pushed onto the search
stack. Consider the single enabled transition t from s2 to s3 in
Figure 11. Since t is the only transition that can be executed
in s2, no state remains unvisited if s2 is not backtracked
by the search. The application of selective push-on-stack to
our example single-enabled transition leads us to the search
stack in Figure 1(b), where s2 is not involved in any stack
operation. The information of visiting s2 is stored in a different
stack, which is returned when a counterexample is found. Note
that selective push-on-stack visits the same states as the naive
search but in shorter time with fewer stack operations.

III. GENERAL REDUCTION FRAMEWORK

Our general model for decomposition is presented in Section
III-A. The proposed verification approach and its properties are
explained in Section III-B and Section III-C, respectively.

A. System Model

We adopt a general and abstract model of programs [2],
[3]. The program maintains a global state and can execute
transitions (e.g., line of codes) to reach other states. Formally, a

1Note that t is not the only single enabled transition in the example.

program is represented as a transition system TS = (S, S0, T)
where:
• S is a finite set of possible states of the program.
• S0 ⊆ S is a set of initial states. For simplicity, we assume

that there is a single initial state sI ∈ S0.
• T = {t | t ⊆ S × S} is a finite set of transitions.
A transition t ∈ T is enabled in state s ∈ S and we write

t ∈ enabled(s), if there is s′ ∈ S such that (s, s′) ∈ t.
Consequently, we define enabled(s) as a set of transitions
enabled in s. To simplify the discussion, we assume that
transitions are deterministic, i.e given a state s ∈ S and a
transition t ∈ T enabled in s, there is a single state s′ ∈ S
such that (s, s′) ∈ t. A path of the model is defined as a finite
sequence s1

t1−→ s2
t2−→ s3...

tn−1−−−→ sn, where s1, ..., sn ∈ S,
t1, ..., tn−1 ∈ T and for all 1 ≤ i < n it holds that
(si, si+1) ∈ ti. For convenience, we write s1

t1...tn−1−−−−−→ sn . A
state s is called reachable if there exists a path sI

t1...tn−−−−→ s.
a) Decomposition: Let TS = (S, S0, T) be a transition

system, where T may be a subset of all transitions of the sys-
tem corresponding to the execution mode under verification.
We decompose a state s ∈ S into two states: A “relevant”
part srel ∈ Srel and an “auxiliary” part saux ∈ Saux such that
s = (srel, saux). Whether a state fragment can be marked
as relevant depends on the system and the property being
checked. This should be done by a domain expert.

To formalize our approach, we introduce the function h :
S → Srel, to extract the relevant part of states such that for
a state s = (srel, saux) ∈ S we have h(s) = srel. Given two
states s, s′ ∈ S, a transition t ∈ T with (s, s′) ∈ t is said to
be single enabled in s iff t is the only transition enabled in s.
Intuitively, a single enabled transition is non-concurrent with
any other transition.

Intuitively, we require that, given two states s and s′ ∈ S
with the same relevant part, a transition t is enabled in s only
if it is enabled in s′. Moreover, the execution of t in s and
s′ results in two states s1 and s′1 with the same relevant part.
Formally, we characterize a sound decomposition as:

Definition 1 (Decomposition). Given a transition system
TS = (S, S0, T) and a set Srel of states, we say that TS
can be decomposed along Srel if:
• (State decomposition) S ⊆ Srel × Saux.
• (Transition decomposition (1)) ∀s, s′ ∈ S, t ∈ T : h(s) =
h(s′) ⇒ (t ∈ enabled(s) ⇔ t ∈ enabled(s′)).

• (Transition decomposition (2)) ∀s, s′, s1 ∈ S, t ∈ T :

(h(s) = h(s′) ∧ s
t−→ s1) ⇒ (∀s′1 ∈ S : s′

t−→ s′1 ⇒
h(s1) = h(s′1)).

B. Decomposition-based Stateful MC

a) Preserved Specifications: We assume that the spec-
ification of the system is given in form of state properties.
As state properties refer to the “global” state of the system,
they constitute a key class of properties of various distributed
systems [30], [31], [28], [18]. Formally, given a transition
system TS = (S, S0, T), we define a state property f as S →
{true, false}. The state property holds for a transition system

function DBSS(TS , f)

1 Stack stack ← ∅
2 Set reached← ∅
3 Stack CE-stack ← ∅
4 State s← sI
5 stack .push(s)
6 CE-stack.push(h(s))
7 while stack 6= ∅ do
8 while enabled(s) 6= ∅ do
9 Transition t← next(enabled(s))

10 enabled(s)← enabled(s) \ {t}
11 State s′

t←− s

12 //selective hashing
C1 if h(s′) 6∈ reached then
C2 reached← reached ∪ {h(s′)}
13 CE-stack.push(h(s′))
14 //selective push-on-stack
C3 if next(enabled(s′)) is not single enabled s′ then
15 stack .push(s′)
16 s← s′

17 if ¬f(s) then
18 return s, CE-stack
19 s← stack.pop()
20 while h(s) 6= CE-stack.peek() do
21 CE-stack.pop()
22 return true

Algorithm 1: Decomposition-based stateful search
(DBSS) algorithm for transition system TS and state
property f .

if it returns true for every reachable state. Let TS = (S, S0, T)
be a transition system that can be decomposed along a set of
states Srel and f : S ∪Srel → {true, false} a state property.
We say that f is decomposed if for all reachable s ∈ S it
holds that f(s) = f(h(s)). Intuitively, f depends solely on
the relevant part of a state.

b) The Algorithm: Algorithm 1 shows the pseudo-code
of the proposed decomposition-based stateful search (DBSS).
The call next(enabled(s)) non-deterministically returns one
transition from enabled(s). The calls pop and push respec-
tively correspond to the usual stack operations of removing and
adding an element to the stack. Calling peek returns the top-
most element of the stack without removing it. In principle,
the DBSS algorithm modifies the naive depth-first search
(DFS) algorithm. The algorithm uses a stack to remember
the explored paths. The stack is also used for backtracking in
case of branching. To avoid redundancy by visiting a state
more than once, the set reached stores the visited states.
The use of reached constitutes the fundamental optimization
of the stateful search. The outer loop at line 7 assures that
every visited state is checked for branching. The loop at line
8 guarantees that every enabled transition is explored.

The first modification to DFS is selective hashing in lines
C1 and C2. Instead of remembering in reached a new visited
state s, the algorithm remembers only the relevant state part
(C2). Two states with the same relevant parts are considered
to be equivalent (C1). Note that, in contrast to the reached
set, the entire state is pushed on the stack. This corresponds
to allowing the verification of unmodified implementations,
where transitions can be meaningfully executed only in full-

fledged states containing both the relevant and auxiliary parts.
The second modification is selective push-on-stack in line C3.
Instead of pushing every newly visited state s′ onto the search
stack, s′ is only pushed if the transition enabled in s′ is not
a single enabled transition. Since the single enabled transition
is the only enabled transition in s′, no branches that possibly
lead to new reachable states are missed. We add another stack
to the algorithm, CE-stack, to keep track of the relevant part
of the states that compose the explored path. CE-stack also
serves the purpose of keeping track of all executed transitions
including those skipped from backtracking because of selective
push-on-stack. If a bug is found, that is the condition in line
17 holds, we return the reached state s and CE-stack as a
counterexample path leading to the state violating the property.
Otherwise, the state property holds and true is returned.

c) Liveness Model Checking: Using the notations from
the definition above, as DBSS explores a subset of TS′ which
behaves like TS, the algorithm can be modified to generate
TS. Doing so, standard algorithms can be used to check
liveness properties (e.g. written in temporal logics [10]) that
cannot otherwise be expressed through state properties.

d) Analysis: By exploiting decomposition, the DBSS al-
gorithm explores only a “relevant state graph”. In other words,
given a transition system TS′ that can be decomposed along
S, the transition system explored by DBSS simulates another
transition system TS = (S, S0, T) which is subsumed by
TS′. Intuitively, given some state property f , DBSS(TS′, f)
explores a transition system that behaves like TS. As TS is
subsumed by TS′ (and is thus a smaller transition system),
DBSS improves time and memory efficiency over DFS of TS′.
This analytic claim will be substantiated by our experiments
in Section V. Formally, we can define a subsumption relation
between the two transition systems TS′ and TS:

Definition 2 (Subsumption). Given two transition systems
TS = (S, S0, T) and TS′ = (S′, S′0, T

′), we say that TS′

subsumes TS and write TS ⊆ TS′ if:
• TS′ can be decomposed along S and
• ∀s, s1 ∈ S : (∃t ∈ T : s

t−→ s1) ⇔ (∃t′ ∈ T ′,∃s′, s′1 ∈
S′ : s′

t′−→ s′1 ∧ h(s′) = s ∧ h(s′1) = s1).

Note that there is no need of proving that the above
subsumption relation indeed applies for TS′ and the transition
system explored by DBSS(TS′, f). The above discussion
has been added to better highlight the source of reduction of
DBSS.

C. Correctness of DBSS

We now show that the DBSS algorithm can be used for the
verification of decomposed state properties without missing
bugs and also without falsely concluding the truth of the
property. Formally, we prove that the algorithm is sound,
complete and terminating. The proofs of the theorems appear
in the Appendix.

Theorem 1 (Soundness). Given a transition system TS and a
decomposed property f , if DBSS(TS, f) returns true, then
f holds for TS.

The algorithm returning true is a guarantee that the verified
program satisfies the property f .

Theorem 2 (Completeness). Given two transition systems TS′

and TS such that TS ⊆ TS′ and a decomposed property f ,
if DBSS(TS′, f) returns s and CE-stack, then:
• ¬f(s) and s is reachable in TS′ and
• CE-stack contains a path from h(sI) to h(s) in TS

where sI is the initial state of TS′.

In case a bug violating a property f is found, DBSS returns
a state where f does not hold, and a path in the subsumed
transition system leading to it. In practice, such a path is
sufficient for debugging as the subsumed system contains all
relevant state information.

Theorem 3 (Termination). DBSS(TS, f) terminates for any
transition system TS and state property f .

The termination of the program follows directly the assump-
tion that the transition system is finite-state and the algorithm
is based on DFS.

IV. IMPLEMENTING DBSS IN JPF/MP-BASSET

In this section, we present a general application and imple-
mentation of the conceptual reduction framework described in
Section III. The following application instantiates, implements,
and evaluate the decomposition-based reduction framework
for general message-passing systems written in Java. A direct
implication of our results is the enhanced scalability of model
checking Java-based implementations of message-passing sys-
tems. We also discuss how our implementation can be used
for symmetry reduction of replication-based (fault-tolerant)
message-passing protocols.

We implement the proposed decomposition-based stateful
search (DBSS) within the MP-Basset model checker for
message-passing systems [4]. 2 The source of our implemen-
tation of DBSS/MP-Basset can be downloaded under [33]. In
the core of MP-Basset, the model checker Java Pathfinder
[32] (JPF) implements depth- and breadth first search of
multi-threaded Java programs. MP-Basset builds upon JPF’s
architecture to enable writing and model checking message-
passing Java programs. In essence, JPF consists of the core
search engine and a model. Intuitively, the core is responsible
for the search, whereas the model constitutes the Java program
under verification. The model, in this case MP-Basset, runs in
a separate Virtual Machine implemented by JPF. JPF itself is
implemented in Java and it runs within the Java Virtual Ma-
chine of the host system. Our decomposition based approach
extends JPF’s core with selective hashing and push-on-stack.
As the reduction is based on the decomposition of the system,
this information is obtained from the JPF Virtual Machine,
which contains all system-specific information. Communica-
tion between core and model is done via JPF’s Model Java
Interface (MJI). First in Section IV-A we will discuss how
our decomposition model applies to the MPBasset case study.

2Our instrumentation would analogously apply for Basset [25], the precur-
sor of MP-Basset.

Section IV-B (respectively, in Section IV-C) explains how the
hash function (and auxiliary predicate) is implemented within
the architecture of Basset/MP-Basset and JPF.

A. Decomposition

From Definition 2, TS = (S, S0, T) corresponds to the
message-passing program as defined in Basset/MP-Basset’s
input language (a Java library for message-passing), whereas
TS′ = (S × Saux, S

′
0, T

′) is determined by the program
executed by the JPF virtual machine. The argument that it
is a sound decomposition implicitly follows from the (sound)
implementation of the model checkers Basset [25] and MP-
Basset [4]. Every Java method specified by the message-
passing program can always be executed if the method’s guard
(a concept implemented by Basset/MP-Basset) is enabled. In
Basset/MP-Basset, Saux contains the set of messages pro-
cessed by the last transition, as explained in the example in
Section II. Note that Saux might contain any data as long as the
decomposition property can be shown. We (manually) verify
that state properties are decomposed by checking if the prop-
erty (Java assertion) only involves variables of the message-
passing program and other variables for context switching
required to satisfy transition decomposition.

B. Selective Hashing

The JPF’s stateful optimization is implemented by seri-
alizing the state of the JPF Virtual Machine; the outcome
of serialization is stored as a reached state. We explain this
mechanism using code excerpts of JPF core (Figure 2). The
serialization uses two data structures, a (reference) queue (line
19) and a buffer (line 20). The queue is an array containing
references of objects in the JPF Virtual Machine. The buffer
is an array of integers where each element holds the value
of a primitive type. Initially, the queue contains references
of the topmost classes of program. The serialization of the
system state is done by calling the process method (line 3).
The references in the queue are processed one-by-one (line
5) where the reference itself (line 29) and the content of
the referenced object is added to the buffer (lines 37-55).
Every object is a composition of primitive (e.g., int) and non-
primitive types (e.g., HashMap). If it is a primitive type, its
value is added to the buffer (line 53), otherwise the reference
is added to the end of the queue for further processing (line
50). The serialization of the state terminates if every reference
in the queue has been processed (line 4). Finally, JPF uses a
hashing function (not depicted) to compute the hash value of
the buffer.

a) Serialization Example: Consider the simple actor pro-
gram in Figure 3 written in Basset’s Java library. Actors
correspond to processes in our general system model. The
driver class is used to create the initial actors. In this example,
two actors of class FooActor are created. For simplicity,
no message is sent in this example. Consider the state of
the system after executing the main function of the driver
class. In this state, the process method of the serializer is
called with refQueue=[ref a1, ref a2] where ref a1 and ref a2
denote the references of the two actors. As a result of the

public class ReferenceQueue {
//...
public void process(ElementInfoProcessor proc) {

for (Entry e = markHead; e != null;) {
proc.processElementInfo(e.refEi);

 //...
 }

}
public void processActorQueue(MPSerializer proc) {

for (Entry e = markHead; e != null;) {
//...
processNamedFields(ei, ci, fields);

}
}

}
public class MPSerializer extends FilteringSerializer {
//FilteringSerializer implements ElementInfoProcessor {

//...
 protected ReferenceQueue refQueue;

protected IntVector buf = new IntVector(4096);
public void processElementInfo(ElementInfo ei) {

Fields fields = ei.getFields();
ClassInfo ci = ei.getClassInfo();
//SELECTIVE HASHING
if (StringSetMatcher.isMatch(

ci.getName(),
includeClasses,
excludeClasses)) {

buf.add(ci.getUniqueId());
actorQueue = new ReferenceQueue();
actorQueue.add(ei);
actorQueue.processActorQueue(this);
//...
//processNamedFields(ei, ci, fields);

}
}
protected void processNamedFields(

ElementInfo ei,
ClassInfo ci,
Fields fields){

FinalBitSet refs = getInstanceRefMask(ci);
//...
int[] values = fields.asFieldSlots();
for (int i = 0; i < values.length; i++) {

//...
int v = values[i];
if (refs.get(i)) {

//...
actorQueue.add(ei);
//refQueue.add(ei);
//...

} else
buf.add(v);

}
}
//..

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

Fig. 2: Selective hashing via modified serializer in JPF. Text
in bold shows our changes.

public class FooActor extends Actor{
int id;
FooClass fooClass;
public FooActor(int id){

this.id=id;
fooClass=new FooClass(id);

 }
 class FooClass{
 int foo;

public FooClass(int id){
foo=id+10;

 }
}

}
public class Driver extends TestDriver {

public static void main(String[] args) {
//...
ActorName a1, a2;
a1=PlatformUtil.createActor(FooActor.class,1);
a2=PlatformUtil.createActor(FooActor.class,2);
//...

}
}

Fig. 3: Message-passing system with two actors.

serialization (before calling the hash function), the buffer
will contain [1, 2, 11, 12] (whereas refQueue will contain
[ref a1, ref a2, ref foo1, ref foo2] where ref foo1 and ref foo2 de-
note references of FooClass in a1 and a2, respectively).

b) Our Design of Selective Hashing: The heart of our
implementation of selective hashing is an additional condition
(lines 25-28) applied during serialization. This condition en-
forces the rule that a reference is only processed if it is selected
for inclusion.3 In our current setting (not depicted) the set of
excluded classes is empty whereas the set of included classes
consists of classes extending Actor and the class (called Cloud)
holding the set of pending messages. A new reference queue
is created for each such class and it is processed recursively
(lines 30-32) similar to the original serializer. We remark that
this mechanism cannot be implemented using the standard JPF
API. Although include/exclude classes are supported by JPF,
they are used to include/exclude every reference in the queue.
Therefore, JPF’s serializer makes no difference between an
object reference within and outside an actor (or Cloud) class.

c) Our Structured Serialization: We now explain another
benefit of our solution which relates to symmetry reduction
[26], a promising optimization of model checking of dis-
tributed systems. Intuitively, most distributed systems are sym-
metric with respect to replicated processes, where replication
may serve different goals such as fault-tolerance or enhanced
performance. It has been shown that symmetry reduction can
be extremely efficient in various practical applications of dis-
tributed systems [26], [6]. Unfortunately, symmetry reduction
has not yet established itself as an efficient software verifica-
tion technique. In fact, to the best of our knowledge, the only
attempt to implement general purpose symmetry reduction
for software verification was the SymmSpin extension of the
Spin model checker [7], an implementation that is no longer
maintained [37].

Our modified JPF serializer for selective hashing paves
the way for implementing symmetry reduction for message-
passing systems à la Basset/MP-Basset. We aim at process-
based symmetries that arise from the free permutation of local
process states.4 JPF serializes the current state irrespective of
the structure of the state. Therefore, we call JPF’s serialization
unstructured. The unstructured approach is in contrast to ours
where actors (processes) and pending messages are serialized
in isolation and appended to the final result. We call this
structured serialization, which we apply for selective hashing.
We observe that structured serialization can also be used for
implementing symmetry reduction. The idea is that the output
of structured serialization can be used to canonicalize (or
normalize [20], [7]) the state, which corresponds to mapping
each state into a unique state by permuting the local states of
processes. Canonicalization is the common way to implement
symmetry reduction [26] because it allows that only canoni-
calized states (and their successor states) need to be explored.
Note that canonicalization is impossible using the unstructured
serializer because the local state of a process is unknown to

3Our implementation utilizes Basset’s StringSetMatcher method.
4There are efficient techniques to detect such symmetries [20], [6].

public class JVM {
//...
public boolean forward () {

//...
//SELECTIVE PUSH-ON-STACK
if (isBranchState()){

backtracker.pushSystemState();
updatePath();

}
}
private boolean isBranchState() {

if (getChoiceGenerator() != null &&
!(getChoiceGenerator() instanceof

ThreadChoiceGenerator))
return true;

 return false;
}
//..

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Fig. 4: Selective push-on-stack with JPF’s choice generators.
Text in bold shows our changes.

the serializer, as shown in the following example.
d) Symmetry Example: Assume that the system in Figure

3 is symmetric with respect to the IDs of the actors. This
means that another execution of the system where actor a1 and
a2 are given IDs, respectively, 2 and 1 (and not 1 and 2 as in
Figure 3) is indistinguishable by the property of interest (i.e.,
the property holds or fails in both executions). The result of un-
structured serialization in these two execution examples would
be [1, 2, 11, 12] and [2, 1, 12, 11], respectively. Let the first state
be the canonicalized state. After serialization, it is impossi-
ble to find out that [2, 1, 12, 11] can be canonicalized into
[1, 2, 11, 12] because the information that 〈1, 11〉 and 〈2, 12〉
constitute the local state of actor a1 and a2, respectively, is
dismissed throughout serialization. The structured serializer,
on the other hand, outputs [1, 11, 2, 12] and [2, 12, 1, 11] for
the respective states and it is aware of the information of how
states are structured along processes, i.e., [〈1, 11〉, 〈2, 12〉] and
[〈2, 12〉, 〈1, 11〉]. Therefore, our structured serializer makes the
canonicalization of the states for process symmetries possible.

C. Selective Push-on-Stack

Our implementation of selective push-on-stack is based on
JPF’s mechanism for the systematic exploration of branching
execution. Intuitively, the execution of the Java program can
branch if, given a state of the program, methods of different
threads can be executed concurrently. In JPF, choice gen-
erators are used to associate such methods with the state.
Depending on the interactions between processes (which are
Java threads), they are obtained automatically by JPF (using
a coarse over-approximation of concurrency) or they are
registered by the user. Every time a new state is visited by
JPF, the forward method is called (see Figure 4) and the
state is pushed onto the search stack (line 8). According
to the proposed selective push-on-stack strategy, this push
operation is done conditionally (line 6). The condition in
our implementation is specific to Basset/MP-Basset where we
know that a choice generator of type ThreadChoiceGenerator
corresponds to single enabled transitions. This choice gener-
ator is responsible for switching context between actors (cf.
example in Section II) and it never specifies branching the

execution (i.e., the set of enabled transition in the current state
consists exactly of one transition). Therefore, selective push-
on-stack can be implemented simply by checking if the current
choice generator is a ThreadChoiceGenerator (lines 12-16).

V. EVALUATION WITH FAULT-TOLERANT PROTOCOLS

In this section, we evaluate DBSS with representative fault-
tolerant message-passing protocols. We measure the gain of
DBSS compared to the highly optimized model checker MP-
Basset [4], [5]. The evaluation compares model checking time
and memory (the number of visited states) for MP-Basset and
DBSS.

a) Target Protocols and Properties: Our evaluation is
based on the following protocols: Paxos consensus [24], a
regular register protocol in the style of ABD [1] , and Zab
atomic broadcast [21]. We argue that these protocols constitute
a representative and practical selection of fault-tolerant large-
scale protocols. Firstly, these are all crash-tolerant protocols.
The crash fault-model is widely used, also because a large
and practical class of non-crash faults can be transformed
into crash faults, as shown in [11]. Secondly, Paxos, regular
register, and Zab are conceptual and/or known to be practically
relevant. For example, Paxos algorithm is in the core of com-
mercial replication services [31], or the Zab protocol is part of
Yahoo’s Zookeeper open-source library used in different real
deployments [35]. As the implementation of the protocols is
not available to us5, we use our prototype Java implementation
in each case. In our evaluation, we use different settings of the
above protocols (see description in Table I). In addition to the
protocols and their specified properties, we inject faults in each
protocol and/or its properties to evaluate the debugging feature
of DBSS. Note that we injected subtle faults, e.g., liveness of
Zab [21], [28] or safety of Faulty-Paxos2 [24], to challenge
the model checker.

b) Experimental Setup/Reduction Types: We run our
experiments in a Deterlab testbed [34] with 2GHz Dual Xeon
processors and 2GB memory, running on Ubuntu v.10.04. We
compare the execution times and total number of visited states
of different reduction types for each protocol. For compara-
bility, DBSS uses the same scheduling of the transitions as
MP-Basset’s naive search.

First, we evaluate stateful against stateless model checking.
Note that the search always terminates for our acyclic exam-
ples. We then evaluate DBSS without selective push-on-stack6.
DBSS without selective push-on-stack experiments show the
added benefit of push-on-stack technique exclusively. We only
expect time reduction for these experiments, as this reduction
type cannot achieve memory reduction. The third reduction
type measures the performance of DBBS, as explained in
Section III-B. Finally, we apply stateful partial-order reduction
(POR) alone (base case), then in combination with DBSS.7 We

5Although Zookeeper is an open-source project, the code of Zab cannot be
extracted as a stand-alone protocol.

6In this reduction type, a new state s′ is always pushed onto the stack even
if the condition of line C3 in Algorithm 1 does not hold.

7MP-Basset implements different POR algorithms; we apply static POR for
our experiments as it is more efficient than dynamic POR for the considered
class of protocols [5].

use POR wherever it is applicable. For example, MP-Basset’s
implementation of POR does not apply for Zab (see more
details later about the assumptions made by POR and DBSS).

We use the following notations to display our results in
Table I. We write OK if the model checker proves that the
property holds for the given instance of the protocol, otherwise
a counterexample (CE) is returned. In fault-injected instances,
the search is stopped after finding the first bug, hence the
search is non-exhaustive. We write N/A (not available) if POR
is not available for the experiments or the reduction percentage
is not available due to timeout (192 hours). For exhaustive
searches that end with timeout, the value in the states column
indicates the number of visited states at the time when the
search stops.

c) Reduction Results: The results of our experiments are
shown in Table I. Our main observations are as follows:
• Stateful outperforms stateless search. The stateful

search finishes earlier than the stateless one in all exhaus-
tive and fault-injected experiments – only the reduction
of stateful over stateless search is depicted in Table I. In
some cases (e.g. Paxos(6)), the stateful search terminates
where the stateless search is infeasible (given our time-
out). In other cases, stateful model checking reduces the
search time by up to 94% compared to stateless model
checking.

• DBSS improves efficiency. DBSS is highly efficient as
shown by the exhaustive search results, reducing the
total number of visited states by up to 57% and model
checking time by up to 54%. It also finds bugs up to 69%
faster than stateful model checking.

• Selective push-on-stack time efficient. Selective push-
on-stack reduces model checking time by up to 9%
(see Register (5) experiment) – fault-injected cases with
DBSS without selective push-on-stack are not displayed
as they follow the same reduction trend as the exhaustive
experiments.

• DBSS efficient with POR. When DBSS is used with
POR, DBSS reduces model checking time and memory
by up to 39%, compared to the experiments with only
POR.
d) Assumptions by POR/DBSS: The reduction achieved

by POR can be significantly more than by DBSS. For example,
POR reduces model checking time by 98% for Paxos (6),
whereas DBSS achieves a reduction of 54%. This is only
true given the assumptions made by POR that the execution
of certain transitions is commutative [13]. The soundness of
POR can only be guaranteed if this assumption is verified.
DBSS, in contrast to POR, makes no assumptions about
the commutativity of transitions. For example, the simple
static analysis in MP-Basset’s POR implementation [5] is not
applicable for Zab to verify the assumptions required by POR.
DBSS is still applicable in this case and it achieves a time
reduction of up to 69%.

e) Scalability: We observe that the reduction achieved
by DBSS changes with the number of processes. In fact, the
time reduction of “DBSS + POR” is 18%, 33%, and 28%,

Protocol (# of processes) Description Result Property Reduction type States Time Time reduction∗

Paxos (6) 2 proposers each issuing ≤ 1 proposal, OK Agreement

MP-Basset stateful 13,044,613 22h19m N/A

3 acceptors, and 1 learner

DBSS without SPoS 5,606,047 11h01m 51% (over SF)
DBSS 5,606,047 10h22m 54% (over SF)
POR 191,081 23m43s 98% (over SF)

DBSS + POR 117,369 14m22s 39% (over POR)

Faulty-Paxos (6) CE Agreement

MP-Basset stateful 96,802 10m3s 94% (SL)Paxos(6) setting +
DBSS 70,543 8m20s 17% (SF)One acceptor accepts all proposals
POR 3,050 36s 94% (SF)(instead of those without prohibiting promise)

DBSS + POR 2,786 31s 14% (POR)

Faulty-Paxos2 (7) CE Agreement

MP-Basset stateful >71,914,839 >192h N/APaxos(6) setting with 3 proposers∗∗ +
DBSS >66,651,310 >192h N/AOne acceptor remembers last accepted proposal
POR 129,533 21m18s N/A(instead of highest numbered accepted proposal)

DBSS + POR 124,976 19m29s 9% (POR)

Register (5) OK Regularity

MP-Basset stateful 89,041 7m31s 14% (SL)
3 base objects, 1 reader DBSS without SPoS 59,306 6m20s 16% (SF)

(single writer) DBSS 59,306 5m39s 25% (SF)
POR 10,896 1m5s 86% (SF)

DBSS + POR 8,590 53s 18% (POR)

Register (5)

Register(5) setting +

CE Wrong
regularity

MP-Basset stateful 4,965 34s 66% (SL)
Read finishing after concurrent write DBSS 3,376 27s 21% (SF)

to return written value POR 1,936 24s 29% (SF)
(instead value of last preceding write) DBSS + POR 1,483 20s 17% (POR)

Register (6) Register (5) setting with 4 base objects OK Regularity

MP-Basset stateful 2,269,797 5h22m 90% (SL)
DBSS without SPoS 1,475,845 4h31m 16% (SF)

DBSS 1,475,845 4h8m 23% (SF)
POR 96,641 11m1s 97% (SF)

DBSS + POR 57,187 7m26s 33% (POR)

Register (6) Register (5) setting with 4 base objects CE Wrong
regularity

MP-Basset stateful 94,348 10m49s 85% (SL)
DBSS 56,222 8m14s 24% (SF)
POR 4,642 51s 90% (SF)

DBSS + POR 4,642 48s 6% (POR)

Register (7) Register (6) setting with 5 base objects OK Regularity

MP-Basset stateful 51,465,807 >192h N/A
DBSS 35,692,316 >192h N/A
POR 2,986,657 8h21m N/A

DBSS + POR 1,656,212 6h3m 28% (POR)

Zab (6) 3 leaders, 3 followers CE∗∗∗ Liveness∗∗∗∗
MP-Basset stateful 4,580 54s 86% (SL)

DBSS 1,876 26s 38% (SF)
POR N/A N/A N/A

Zab (7) 4 leaders, 3 followers CE Liveness∗∗∗∗
MP-Basset stateful 8,198 2m4s 80% (SL)

DBSS 3,132 38s 69% (SF)
POR N/A N/A N/A

TABLE I: Evaluation results of DBSS with/without selective push-on-stack (SPoS) compared with MP-Basset with/without
stateful and partial-order reduction (POR) optimizations. Time reduction is computed with respect to base cases MP-Basset
stateless (SL), stateful (SF), and stateful with partial-order reduction (POR). ∗State reduction is not shown as it is proportional
to time reduction. ∗∗At least three proposals needed to violate agreement for Faulty-Paxos2. ∗∗∗Exhaustive search infeasible
for smallest meaningful Zab instance. ∗∗∗∗Zab is not live in general [21]; liveness is encoded as state property [28].

for the register with 5, 6, and 7 processes, respectively. One
reason of this trend can be in the majority voting mechanism
that the register (similarly to Paxos and Zab) uses for fault-
tolerance. The majority of voters contains 2, 3 and 3 processes
for Register (5), (6) and (7), respectively. A larger majority
means more “equivalent” states for selective hashing because
the writer has more choice in contacting different voters to
observe the same voting result. This explains the improved
reduction from 18% to 33%; and also the more or less constant
reduction of 33% and 28%. Note that DBSS experiments
(without POR) show a slightly different trend for the register:
25% and 23% for Register (5) and (6) (timeout for Register
(7)). We speculate that there are collisions on the outputs of
the hash function due to the large number of states in these
experiments.

VI. RELATED WORK

a) Model Checkers.: Mainstream software model check-
ers include explicit-state checkers for C programs such as
Verisoft [14] and Spin [19], for Java programs [32], symbolic
execution engines such as DART for C [16] or KLEE for

low-level (byte)code [8], and dedicated solutions for message-
passing systems such as Modist [31] or Mace [22]. Selective
push-on-stack is inherently related to depth-first search and,
as such, it can be implemented in any explicit-state model
checker (like Verisoft, Spin, Modist, or Mace). On the other
hand, selective hashing is not restricted to explicit-state model
checking and it can also be used to decrease the number of
variables needed for a symbolic encoding of the state.

Some model checkers (such as Mace [22]) offer the user
an interface to exclude certain state information from the
representation of the state. As a result, similar to selective
hashing, the excluded state information is not considered by
stateful model checking. It is, however, left to the user to
guarantee the correctness of model checking. Our notion of
decomposition formalizes a sufficient condition of correctness,
which can be applied by users of these model checkers.

b) Reductions: Broadly-studied and intuitive reductions
are partial-order (POR) [13] and symmetry reductions (SR)
[26]. Figure 1 demonstrates that DBSS is not a special case
of these reductions. Firstly, POR is based on the idea of
swapping the order of commutative transitions but the path

(s1 → s2 → s3 → s6 → s) that is excluded in the
reduced state graph in Figure 1(b) cannot be obtained by re-
ordering the transitions of another path in the graph. Formally,
considering the mainstream POR semantics, Figure 1(b) is
not a stubborn/persistent/ample set reduction of (a) because in
every state of the reduced state graph the number of enabled
transitions is the same as in the unreduced one. Secondly, SR
is based on the symmetrical structure of the state graph but
there is no such symmetry in Figure 1(a). Formally speaking,
there is no permutation acting over the set of states (the formal
notion of symmetry [26]) that would preserve the transition
relation: In order to symmetry reduce Figure 1(a) into (b), a
permutation would have to transpose s5 and s6 but these two
states are ”asymmetric” because of s4.

To the best of our knowledge, all known reduction ap-
proaches that work with depth-first search, such as SR, POR,
or dynamic interface reduction (DIR) [18], can be directly
combined with DBSS. Reductions of stateless model checking
such as symmetric transitions [15] or dynamic partial-order re-
duction [17] would only benefit from selective push-on-stack.
The reduction achieved by DBSS is based on the assumption
of a sound decomposition. Other reductions are also based
on (other) assumptions: POR assumes the commutativity of
executing transitions, SR depends on symmetric execution
patterns, DIR needs to be tailored depending on how the
execution of different processes can interleave.

In a recent brief announcement [27], we sketched a prelim-
inary outline of the idea of DBSS.

VII. CONCLUSION AND FUTURE WORK

We have proposed decomposition-based stateful search
(DBSS) as an improvement of explicit-state software model-
checking. Given a sound decomposition we showed the cor-
rectness of DBSS. Also, we have built a proof-of-concept
implementation based on the Java Pathfinder search engine
for general message-passing Java programs. Our evaluation
of DBSS with various representative fault-tolerant message-
passing protocols shows extensive reduction both in time and
state space. We also show that DBSS is able to improve over
existing partial-order reductions (POR). The approach can be
automated and applied to general implementations using static
analysis to infer a sound decomposition of the system as a pre-
processing phase before running DBSS.

APPENDIX

For convenience, given a transition system TS and a decom-
posed property f , we may refer to DBSS(TS, f) by writing
DBSS(TS). We introduce the following terminology to ease
the following discussion. A state s is said to be explored and
transition is fired if there is a state s′ such that line 11 of
DBSS is executed.

First, we show that assuming that a state s is not yet
explored, all transitions in enabled(s) are fired by DBSS.

Lemma 1. Given a transition system TS = (S, S0, T), if a
state s′ ∈ S is explored in DBSS(TS) and the condition of
line C1 holds, then every t ∈ enabled(s′) is fired in s′.

...

s1
t1

s2
t 2

si

σ

=hash s '
t i t i

si+1
t i+1 t i+1

.....
.si+ j1

=hash s j1
t i+ j1

=hasht i+ j1

s1
j1

...

si+ j1+1
t i+ j1+1 t i+ j1+1

σ j 1

...
t n−1

sn

t n−1

s j k
j k−1

...

σ j k

=hash

=hash

s '1

s ' j1

=hash

Fig. 5: Illustration of proof of Lemma 2.

Proof: Let t be a transition in enabled(s′). If t is
next(enabled(s′)), then t is fired in the next iteration of the
while loop in line 8. Otherwise, if enabled(s′) > 1 (cf.
condition of line C3), s′ is pushed onto the stack and every
transition t′ 6= t ∈ enabled(s′) is fired when s′ is backtracked
in the depth-first search. Note that s′ is guaranteed to be
backtracked after each transition fired in s′ because the state
graph is finite.

We prove that if a state is reachable in TS, there is at least
a state explored by DBSS(TS) with the same relevant infor-
mation. We will use the following notation for convenience:
Given a path σ =s1

t1...tn−1−−−−−→ sn and sn
tn...tl−1−−−−−→ sl , the

path s1
t1...tl−1−−−−−→ sl can be written as σ

tn...tl−1−−−−−→ sl.

Lemma 2. Given a transition system TS = (S, S0, T), ∀s ∈
S, if s is reachable in TS, then there exists a state s′ ∈ S
such that h(s) = h(s′) and s′ is explored by DBSS(TS).

Proof: The proof is indirect and is illustrated in Figure
5 using the following notation: Given two states s, s′ ∈ S,
we write s =h s

′ if and only if h(s) = h(s′). Indirectly, we
assume the following: Let sn ∈ S be a reachable state in TS
so that there is no other state s′′ explored by DBSS(TS) with
h(sn) = h(s′′). Let σ′ =s1

t1...tn−1−−−−−→ sn be a path leading
to sn in TS. We know that n > 1 because the initial state
sI = s1 is explored by the algorithm. Consequently, there must
be 2 ≤ i < n such that ti is not fired in si. Lemma 1 implies
that the condition of line C1 does not hold when si is explored.
This means that there is a state s′ reachable via a path σ
explored by DBSS(TS) such that h(s′) = h(si) and h(s′) 6∈
reached when explored. i < n since otherwise sn would be
explored. From Definition 1 (transition decomposition (1)),
we also know that ti ∈ enabled(si) and ti ∈ enabled(s′).
Furthermore, ti is fired in s′ (Lemma 1) and it holds that
h(si+1) = h(s′1) where s′ ti−→ h(s′1) (transition decomposition
(2)). Let 0 < j1 ≤ n−i be the highest natural number such that

σ
ti−→ s′1

ti+1...tj1−1−−−−−−−→ s′j1 is explored by DBSS(TS). Because
of transition decomposition, we know that h(s′j1) = h(si+j1).
Therefore, j1 = n − i would imply a contradiction, as this
would mean that there is a state s′′ such that h(sn) = h(s′′)
which is explored. Since j1 is the highest such index, Lemma
1 implies that the condition of line C1 does not hold when s′j1
is explored. So there must be a state sj1 reachable via a path
σj1 explored by DBSS(TS) such that h(sj1) = h(s′j1) and
h(sj1) 6∈ reached when explored. Because of transitivity, we
know that h(sj1) = h(si+j1). Let 0 < j2 ≤ n− i− j1 be the

highest natural number such that σj1
ti+j1−−−→ sj11

ti+j1+1...tj2−1−−−−−−−−−→
sj1j2 is a path explored by DBSS(TS). We know from Lemma
1 and the decomposition definition that such a path exists and
that h(sj1j2) = h(si+j1+j2). Since j2 is the highest such index,
Lemma 1 implies that the condition of line C1 does not hold
when sj1j2 is explored. So there must be a state sj2 reachable via
a path σj2 explored by DBSS(TS) such that h(sj2) = h(sj1j2)
and h(sj2) 6∈ reached when explored. We know that h(sj2) =
h(si+j1+j2). Continue the construction. Let 0 < j1, j2, ..., jk
be natural numbers such that i + j1 + j2 + ... + jk = n.
The construction ends because 1 ≤ k ≤ n − i. Inductively,
we have that h(sn) = h(s

jk−1

jk
). Since sjk−1

jk
is explored by

DBSS(TS), we have a contradiction.

Theorem 1 (Soundness).

Proof: Assume that DBBS(TS, f) returns true. This
means that for every state s explored by DBSS(TS, f), we
have f(s). Now we suppose that there exists a reachable state
s′ ∈ S such that ¬f(s′). From Lemma 2 we know that there
exists a state s′′ ∈ S′ explored by DBSS(TS, f) such that
h(s′′) = h(s′). Since f is decomposed, we have ¬f(s′′) which
is a contradiction.

Theorem 2 (Completeness).

Proof: DBSS(TS′, f) returns a state s and CE-stack
when the condition in line 17 is satisfied. This means that
we have ¬f(s). Since s is explored by DBSS it is trivially
reachable in TS′.

Now we prove that CE-stack contains a path leading to
h(s) in TS. Since DBSS is a DFS, the sequence of states in
the CE-stack when exploring s is a path σ from h(sI) to
h(s). The path exists in TS because of Definition 2.

Theorem 3 (Termination).

Proof: Assuming that the calls in the algorithm terminate,
we have to check whether the two loops at line 8 and 7
terminates. The loop at 8 terminate because in each iteration
one element is removed from enabled(s) (line 10) and the
number of enabled transitions is finite. In line 7, no more states
are pushed to the stack once every state has been explored and
therefore included in reached. Since the number of states is
finite and after each iteration one element is removed from
the stack (line 19), the loop terminates after a finite number
of iterations. Note that the loop at line 20 is guaranteed to
terminate since the set of relevant parts of states in stack is
included in CE-stack.

REFERENCES

[1] H. Attiya et al. Sharing Memory Robustly in Message-Passing Systems.
J. ACM, 42(1):124–142, 1995.

[2] H. Attiya, et al. Distributed Computing. John Wiley and Sons, 2004.
[3] P. Bokor, et al. On Efficient Models for Model Checking Message-

Passing Distributed Protocols. FORTE, pp. 216–223, 2010.
[4] P. Bokor, et al. Efficient Model Checking of Fault-Tolerant Distributed

Protocols. In DSN, pp. 73-84, 2011.
[5] P. Bokor, et al. Supporting Domain-Specific State Space Reductions

through Local Partial-Order Reduction. In Proc. ASE, pp. 113–122,
2011.

[6] P. Bokor, et al. Role-Based Symmetry Reduction of Fault-Tolerant
Distributed Protocols with Language Support. In Proc. ICFEM, pp.
147-166, 2009.

[7] D. Bonacki, et al. Symmetric Spin. Journal on Softw. Tools for Techn.
Transfer, 4(1):92–106, 2002.

[8] C. Cadar, et al. KLEE: Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs. In OSDI, pp. 209–224,
2008.

[9] E. M. Clarke, et al. Exploiting Symmetry in Temporal Logic Model
Checking. Formal Methods System Design, 9(1-2):77–104, 1996.

[10] E. Clarke, et al. Model Checking. MIT Press, 2000.
[11] M. Correia, et al. Practical Hardening of Crash-Tolerant Systems. In

USENIX ATC, pp. 453–466, 2012.
[12] S. Ghemawat et al. The Google File System. In SOSP, pp. 29–43, 2003.
[13] P. Godefroid. Partial-Order Methods for the Verification of Concurrent

Systems: An Approach to the State-Explosion Problem. Springer, 1996.
[14] P. Godefroid. Model Checking for Programming Languages using

VeriSoft. In POPL, pp. 174–186, 1997.
[15] P. Godefroid. Exploiting Symmetry when Model-Checking Software. In

Proc. FORTE. pp. 257–275, 1999.
[16] P. Godefroid, et al. DART: Directed Automated Random Testing. In

PLDI, pp. 213–223, 2005.
[17] C. Flanagan, et al. Dynamic Partial-Order Reduction for Model

Checking Software. In POPL, pp. 110–121, 2005.
[18] H. Guo, et al. Practical Software Model Checking via Dynamic Interface

Reduction. In SOSP, pp. 265-278, 2011.
[19] G. J. Holzmann. The Spin Model Checker. Addison-Wesley, 2004.
[20] C. N. Ip, et al. Better verification through symmetry. Formal Methods

Sys. Design, 9(1-2):41–75, 1996.
[21] F. P. Junqueira, et al. Zab: High-Performance Broadcast for Primary-

Backup Systems. In DSN, pp. 245-256, 2011.
[22] C. Killian, et al. Life, Death, and the Critical Transition: Finding

Liveness Bugs in Systems Code. In NSDI, pp. 243-256, 2007.
[23] V. Kuznetsov, et al. Efficient State Merging in Symbolic Execution. In

PLDI, pp. 193-204, 2012.
[24] L. Lamport. The Part-time Parliament. ACM Trans. Comp. Sys.,

16(2):133–169, 1998.
[25] S. Lauterburg, et al. A Framework for State-Space Exploration of Java-

Based Actor Programs. In ASE, pp. 468–479, 2009.
[26] A. Miller, et al. Symmetry in Temporal Logic Model Checking. ACM

Computing Surveys, 38(3), 2006.
[27] C. A. Muftuoglu, et al. Brief announcement: MP-State: State-Aware

Software Model Checking of Message-Passing Systems. In SSS, 2012.
[28] C. A. Muftuoglu, et al. Scalable Verification of Distributed Systems

Implementations via Messaging Abstraction. In SOSP WiP section,
2011.

[29] M. Serafini, et al. Application-Level Diagnostic and Membership
Protocols for Generic Time-Triggered Systems. IEEE Trans. TDSC,
8(2):177–193, 2011.

[30] M. Yabandeh, et al. CrystalBall: Predicting and Preventing Inconsisten-
cies in Deployed Distributed Systems. In NSDI, pp. 229–244, 2009.

[31] J. Yang, et al. MODIST: Transparent MC of Unmodified Distributed
Systems. In NSDI, pp. 213–228, 2009.

[32] http://babelfish.arc.nasa.gov/trac/jpf/
[33] http://www.deeds.informatik.tu-darmstadt.de/home/homepages/peter/mp-

basset/
[34] http://www.isi.deterlab.net/
[35] http://hadoop.apache.org/zookeeper/
[36] http://www.macesystems.org/wiki/macemc
[37] http://www.win.tue.nl/ lhol/SymmSpin/

