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Abstract—Scaling out database management systems
(DBMSs) requires distributed coordination, which can
easily become a bottleneck. Recent work on speeding up
distributed transactions has addressed this problem by
proposing scale-out techniques that are deeply integrated
with the concurrency control mechanism of the DBMS.

This paper explores the design of modular coordination
layers, which encapsulate all scale-out logic and can be
applied to scale out any unmodified single-server DBMS.
It proposes Gyro, a modular coordination layer that runs
on top of a collection of single-server DBMS instances
and interacts with them only through their client interface.
Gyro distributes the load by ensuring that as many requests
as possible are executed by only one DBMS instance. Our
experiments show that modular distributed coordination is
practically viable and can be much faster than traditional
distributed transaction protocols using two-phase commit.

I. INTRODUCTION

Online transaction processing (OLTP) applications,
such as online shopping services, bidding services, or
social networking systems, need scalability to support
demanding workloads. These applications store their
persistent state in a database management system (DBMS)
that supports transactions with strong consistency guar-
antees. When the application load exceeds the capacity
of a single DBMS server, it is necessary to scale out to
multiple servers. This is typically achieved by partitioning
the database and using distributed transactions.

Standard protocols for distributed transactions lock data
at different servers until lengthy cross-server coordination
is completed, creating a major bottleneck. This motivated
a large volume of work on speeding up distributed
transactions while preserving strong consistency [31], [8],
[17], [27], [23], [11], [2]. This work proposes new DBMS
designs where the concurrency control mechanisms for
single-server transactions and distributed transactions are
deeply intertwined. This makes it hard to port scale-out
mechanism across different DBMSs and to add scale-out
support to existing DBMSs.

In this paper, we explore a fundamentally different
approach: is it practically viable to encapsulate all scale-
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out logic into a coordination layer that is separate
and independent from the rest of the DBMS? Such
a modular coordination layer should run on top of
a collection of single-server DBMS instances. Each
DBMS instance supports single-server transactions and
executes transactions independently; it does not support
distributed transactions or any other scale out mechanism
to coordinate with other instances. The coordination layer
can interact with DBMS instances only through their
standard client interface. Therefore, the coordination layer
can control when a transaction is submitted to which
DBMS instance, but not how the transaction is executed.
In addition, the coordination layer has no knowledge of
the current state of the DBMS: when deciding where
to send a transaction, it only has limited information,
namely the type of the transaction and its input parameters.
Finally, a truly modular solution should not require
modifications to the application logic running on top
of the DBMS, although it may analyze and instrument it.

A modular design like the one described above
has many benefits over a monolithic DBMS design.
Recent hardware innovations such as new multi-core
and parallel architectures, in-memory computing, non-
volatile memory, and novel storage systems, have lead to
the design of new DBMSs, whose concurrency control
mechanisms are optimized for single-server performance
and do not readily support distributed transactions (see
for example [25], [29], [26]). A modular coordination
layer can scale out these DBMSs without modifying them
or redesigning their efficient local concurrency control
mechanisms. Modularity also enables picking the best
scale-out mechanism for the application at hand without
modifying the DBMS or the application itself.

In this paper, we show that a modular scale-out ap-
proach is practically viable. We introduce Gyro, a modular
coordination layer that can scale out unmodified single-
server DBMSs while guaranteeing serializability [19]. In
order to effectively scale out, Gyro executes as many
client requests as possible at only one DBMS instance.
Determining which requests can be executed locally
by which instance requires analyzing the application



code. Gyro comes with a request classification tool that
automates the classification of requests for standard OLTP
applications that use simple WHERE clauses. The tool
is sufficient to automate the analysis of the benchmarks
we considered, TPC-W and RUBiS.

Our Gyro implementation runs Java applications run-
ning on top of unmodified JDBC-compatible databases.
We used Gyro to scale out unmodified reference imple-
mentations of TPC-W and RUBiS. In both workloads,
most transactions can be executed by a single DBMS
instance. In a LAN setup, where all servers are running
within one datacenter, Gyro increases maximum through-
put by 4.2x and decreases minimal latency by 58.6x
compared to MySQL Cluster, a popular system that layers
two phase commit on top of an existing DBMS (MySQL).
This is remarkable since Gyro provides a significantly
stronger consistency guarantee (serializability instead of
read committed isolation) and it interacts with MySQL
instances solely through a JDBC client interface. In a
WAN (i.e., geographically distributed) setup, scaling out
from one to five locations using Gyro reduces latency by
up to 47.9x and increases throughput by up to 2.8x.

Overall, we make the following contributions:
• We present Gyro, a distributed coordination layer

that adheres to the modular scale-out paradigm;
• We propose sound criteria and an automatic classifi-

cation tool to partition a workload using a modular
coordination layer while preserving consistency;

• We show that modular coordination is a practically
viable approach: using Gyro to scale out the MySQL
DBMS in a significant improvement over its standard
two-phase commit layer, MySQL Cluster.

II. RELATED WORK

Distributed Transactions. The problem of designing
modular concurrency control is complementary to much
recent work that speeds up serializable distributed trans-
actions. Callas [27] provides different degrees of isolation
to different group of transactions based on their need.
Tebaldi [23] combines different concurrency control
mechanism in a single system. These systems optimize
not only distributed but also single-server concurrency
control. TAPIR [30] combines replication and distributed
transactions in one protocol. Yesquel [2] introduces a
novel distributed tree data structure. FaRM [11] uses
RDMA to speed up transactions. Transaction chop-
ping [22], [31], [17] modifies applications by chopping
its transactions into sub-transactions. It assumes that the
application can be chopped such that there are no “SC
cycles” and only the first sub-transaction can abort and
rollback. Gyro does not impose these restrictions.

Percolator [20], Omid [13], and Calvin [24], implement
concurrency control and transactions on top of basic
key-value stores, as opposed to single-server DBMSs
with transactional support, and unlike Gyro implement
distributed transactions. ElasTraS [10], G-Store [9], and
MegaStore [4] only support ACID transactions within a
single partition and do not offer full transactional support.
Weakly consistent scale-out. Recent work proposes
strengthening weak consistency with invariants, like
in the Red/Blue model [15], the Explicit Consistency
model [5], and Invariance Confluence [3]. Requiring
developers to define good invariants is challenging. Also,
even with invariants, the system will still show a weakly-
consistent behavior that would not occur in a sequential
execution. By contrast, Gyro supports strong consistency.
Treaties. Treaties have replicas split the value of a certain
numerical field and share the splits. Treaties apply to
applications that make small commutative modifications
to a shared global quantity at different replicas. Examples
of treaties are the escrow protocol [18], the demarcation
protocol [6], Homeostasis [21], and time-limited war-
ranties [16]. Work related to the idea of treaties has
also investigated relaxed notions of consistency such as
bounded inconsistency [28] or consistency rationing [14].
Gyro is more generic since it does not make assumptions
on the application, as treaties do.

III. GYRO OVERVIEW

Gyro targets multi-threaded applications that store their
state on a database management system (DBMS) and
scales them out by running them on multiple instances.
Clients issue requests to an instance of the application,
which can run, for example, in an application server like
Apache Tomcat. To serve a request the application invokes
a sequence of queries, enclosed in a single transaction,
on a DBMS instance. Gyro assumes that the DBMS
guarantees serializability of concurrent transactions.
Gyro Architecture. Figure 1 shows an example deploy-
ment with two DBMS instances. The DBMS instances
are stand-alone: they do not need to support distributed
transactions or even to communicate with each other.
Gyro guarantees that DBMS instances are consistent and
ensures the serializability for all transactions executed
in the system. Each application instance is automatically
instrumented with an instance of Gyro at compile time.
We refer to a Gyro instance as an application instance
with its local Gyro instrumentation.

Before an application thread starts executing a client
request (Step 1 of Figure 1), the instrumentation invokes
Gyro, which checks whether the request is local or global
(Step 2). If the request is local, the application thread
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Fig. 1: Gyro system with two instances. The numbered
arrows indicate the execution flow of global operations.

goes ahead and completes the request without further
involvement by Gyro. Otherwise, Gyro holds up the
global request by pausing the thread until it is allowed to
proceed by Gyro’s coordination protocol. At that point,
Gyro gives back control to the application thread by
resuming it (Step 3). Next, the application thread executes
the global request on the DBMS (Step 4). Global requests
are always executed by only one DBMS instance. Gyro
instruments the application logic to record all updates
executed on the DBMS by the global request. After
the request has completed, the coordination protocol
propagates these state updates to other instances. State
updates received by a Gyro instance are applied directly
on the local DBMS instance (Step 5). The state accessed
by global requests is fully replicated.

IV. REQUEST CLASSIFICATION

The key to scalability in Gyro is to maximize the
number of local requests. We now discuss how Gyro auto-
matically classifies local and global requests. Concretely,
consider the example of an online shopping application
with the following possible transactions:

createCart(cart_id);
addItem(cart_id, item_id, order_qty);
order(cart_id);

The transactions allow clients to create a cart, add items
to the cart, and eventually proceed to checkout. Each
cart and item is assigned a unique id. The ITEMS table
associate each item id with its current availability in
stock. Each row in the SHOPPING_CARTS table indicate
a certain quantity of a item that has been added to
a cart. The createCart transaction inserts a new
cart row with id cart_id in the SHOPPING_CARTS
table. The addItem transaction adds a row in the
SHOPPING_CARTS. Before adding items to a cart,
addItem checks in the ITEMS table whether the items
are in stock. The order transaction proceeds to the
checkout of a cart, again after verifying in the ITEMS
table that all items in the cart are available in stock.

In the rest of the paper, we refer to the procedures
the application offers to clients as transactions. Each
transaction can have a certain number of input parameters.
A request corresponds to a client request to execute the

create cart 1 create cart 2

add item to cart 1 add item to cart 2

order cart 1 order cart 2

Request partition 1 Request partition 2

G

o1 o2 o1 reads from o2

o1 o2 other conflicts

L

KEY:

Fig. 2: Partitioning of the online store example. The order
request is global, the other requests are local.

transaction with a set of concrete values for its input
parameters. For example, a request can be the invocation
of order(5) to order items in the cart with id 5.

In order to distribute load, Gyro maps each possible
client request with a unique Gyro instance. It routes each
request to the right Gyro instance based on the transaction
and the input parameters invoked in the request (Step 1
in Figure 1). These predicates are determined through a
process called request partitioning, which maps each
request to a partition, which in turn maps to a single Gyro
instance. The partitioning also indicates whether a request
is global or local. Partitioning can be automated for
typical OLTP applications, as discussed in Section VI, but
it can also be manual. We will discuss how to characterize
a correct request partitioning shortly.

In our example, a request partitioning could partition
requests based on their cart_id parameter. We have one
request partition per cart id. This ensures that all requests
related to the same cart are routed to the same Gyro
instance. Multiple request partitions (each for a different
cart id) can map to the same Gyro instance. When a
client request reaches the application, Gyro intercepts
the request to determine whether it is local (Step 2 in
Figure 1) based again on the request partitioning.
Correctness of Request Partitioning. Obtaining a re-
quest partitioning is an offline process. Determining the
correctness of the partitioning requires the extraction of
read/write sets. Conflict analysis looks at the write and
read sets for each request in terms of rows of the database
and groups them by transaction. For each transaction,
conflict analysis considers an over-approximation of the
write and read sets for all possible database states and
all possible values of those input parameter that are free,
i.e., not bound by the request partitioning predicate. In
our online shopping example, the cart_id parameter
is bound and used for the partitioning. Therefore, the
addItem and order transactions need to consider all
possible items that may be added to a particular cart,
since item_id is a free input parameter.

The next steps is to analyze the conflicts among
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transactions. The result of conflict analysis for our
online shopping example is depicted in Figure 2, which
considers only two request partitions corresponding to
two different cart ids. Requests in the same partition
have write-write and read-write conflicts because they
may all edit the same rows in the SHOPPING_CARTS
table. Also, order transactions from the two partitions
have read-write and write-write conflicts because they
may all access the same items in the ITEMS table. An
order transaction for cart 2 writes items into the ITEMS
table that may be read by addItem for cart 1. So the
execution of the order transaction modifies the behavior
of the addItem transactions in other partitions. We
say that the addItem transaction for cart 1 reads from
the order transactions for cart 2. Note that order
transactions do not read from addItem transactions in
other partitions: an addItem transaction for cart 1 only
writes data related to cart 1, which is not read by any
order transaction for cart 2.

After performing conflict analysis, we can classify
requests as local or global as follows:

Definition 1: A client request r is local iff no other
request from a different request partition reads from r.
A request that is not local is global.

This correctness criterion can be applied to any request
classification. In the example of Figure 2, createCart
and addItem requests are local, while order requests
are global. Note that requests for the same transaction can
be classified differently based on their input parameters.

V. THE GYRO COORDINATION LAYER

Overview. Local requests can be executed locally by the
DBMS instance they are mapped to since their updates
are only visible to requests in the same partition. On the
other hand, global requests require coordination among
Gyro instances. First, they are executed by the instance
they are mapped to (Step 4 in Figure 1) before their
results are combined into a special write-only state update
request that can be propagated to the rest of the instances
(Step 5 in Figure 1). Propagating state updates instead of
requests eliminates the need for propagating transactions
that are local to other instances, even if they determine
the behavior of global requests. Note that our description
of Gyro’s protocol omits the details of the state machine
replication protocol used to make each Gyro instance fault
tolerant where each Gyro instance replica is associated
with a replica of the DBMS instance.
Coordination algorithm. Each Gyro instance (simply
instance in the following) runs an instance of the
algorithm (see Algorithm 1), which is executed in parallel
by multiple threads. When an instance p receives a client
request, it uses the classification criterion to determine

whether the request is local (Step 2 of Figure 1). Local
requests are executed by the local DBMS instance, using
a standard client interface, and a reply is immediately
sent back to the client without coordination (Lines 2-4
of Algorithm 1, Steps 3-4 of Figure 1). Global requests
are held up at the application side until Gyro instances
agree on a total order of execution.

There are several ways to agree on this total order. The
current implementation of Gyro uses a protocol called
Conveyor Belt, which is token-based and inspired by
chain replication. Conveyor Belt passes a token among
instances in a predefined order to ensure that global
requests are totally ordered. At any time, only the instance
holding the token is allowed to execute global requests.
This instance is called primary. The other instances
append the requests to a queue Q for execution at a later
time (Line 6). Note that the queue Q must be thread-safe
since Algorithm 1 is multi-threaded.

Upon receiving the token T , instance p invokes one
RECEIVETOKEN(T ) event at p, becoming the primary.
Like any other event, a specific RECEIVETOKEN(T )
event is handled in isolation by a single thread, while
multiple other threads might be concurrently handling
client requests. The token contains a sequence of tuples
〈u, q〉 where u is the state update request corresponding
to a global request that has previously been executed
by some instance q. As soon as an instance becomes
primary, it executes all the state updates requests from
other instances at the local DBMS (using its client
interface) and removes its own updates as they have
been already seen by all other instances (Lines 8-12,
Step 5 of Figure 1). Note that if multiple instances map
to the same DBMS instance, it is necessary to ensure
that state update requests are applied only once. This is
easy to guarantee since the order in which instances pass
the token is fixed and globally known. Next, the primary
executes the global requests that have been enqueued
locally into Q. In order to ensure liveness, the primary
copies an atomic snapshot Q′ of the Q queue containing
global requests submitted to p that have been waiting for
execution (Line 13). This is because Q is concurrently
modified by multiple threads that can submit global and
local requests. Without copying an atomic snapshot, p
might stay stuck executing incoming global requests in Q
that are constantly being appended by other threads, and
never give up the token. Then, p iterates over all global
requests that have been pending up to that point in the Q′

queue (Lines 14-18, Step 3-4 of Figure 1). The instance
submits each request to the local DBMS instance, using
its client interface. It then sends a reply r to the client
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Algorithm 1: Conveyor Belt algorithm for in-
stance p

1 upon receive 〈REQ, o, c〉 msg from client c where
2 if o ∈ Lp then
3 r, ∗ ← DBMS.execute(o);
4 send 〈REPLY, r〉 msg to c;
5 else
6 append 〈o, c〉 to Q;

7 upon event RECEIVETOKEN(T )
8 foreach 〈u, q〉 ∈ T do
9 if p = q then

10 remove 〈u, q〉 from T ;
11 else
12 DBMS.execute(u);
13 Q′ ← atomic-snapshot(Q);
14 foreach 〈o, c〉 ∈ Q′ do
15 r, u← DBMS.execute(o);
16 append 〈u, p〉 to T ;
17 send 〈REPLY, r〉 msg to c;
18 remove 〈o, c〉 from Q;
19 PASSTOKEN(T );

c and appends the resulting state update request u to
the token before removing the requests that have been
appended. Finally, the instance gives up the primary role
by calling PASSTOKEN(T ) to pass the token to the next
instance (Line 19).

For lack of space, we have included details about
the implementation of the Conveyor Belt protocol and a
formal correctness proof in the appendix.

VI. AUTOMATIC REQUEST CLASSIFICATION TOOL

Gyro includes an automatic request classification
tool that analyzes the application code and outputs the
classification criteria used by the Gyro runtime to classify
requests as local or global and route them to the right
instance. The tool applies to common OLTP applications
using simple SQL queries with WHERE clauses in equality
form and is sufficient to automatically process our two
benchmarks, TPC-W and RUBiS, without modifications.
For application with more complicated SQL queries, the
request classification must be obtained manually.

In this section we show how we extract read and write
sets from the source code and describe the automated
partitioning algorithm which takes the read and write sets
as inputs and generate an optimal request partitioning.
Identifying read and write sets. An OLTP application
usually has a relatively small number of transactions,
which can correspond to a huge number of possible re-
quests. Therefore, the static analysis algorithm determines
the read and write sets at the granularity of transactions.
An entry e in either sets is a pair e = 〈A,C〉, where A
is a set of accessed attributes and C is a condition.

The accessed attributes set in the read set contains all
table attributes (i.e., columns) that are read and returned as

output of the transaction. A write set contains all attributes
that are updated by the transaction. The condition of a
read or write set is the predicate used to select the specific
rows in the table for which the attributes are modified.

The tool analyzes applications consisting of a set of
transactions that access a database through SQL queries.
For example, the doCart transaction in TPC-W updates
a shopping cart with id sid by adding, removing or
updating item with id iid in a quantity q.

doCart(sid, iid, q){
...(abridged code)...
exec("UPDATE SHOPPING_CARTS
SET QTY = q WHERE ID = sid
AND I_ID = iid");
...(abridged code)... }

The static analysis algorithm looks at all SQL state-
ments contained in the transaction, regardless of the
execution path. We used Java parser [1] to extract SQL
queries and to map input parameters to the used query
parameters. Each SQL statement corresponds to an entry
in a read or write set. Consider for example the SQL
statement highlighted in the pseudocode and rename
the table SHOPPING_CARTS as SC for brevity. This
statement corresponds to a write set entry e. The accessed
attribute for e is specified in the UPDATE clause, so
e.A =SC.QTY. INSERT queues also correspond to
entries in the write set and their accessed attribute is
specified in the INSERT statement, while for read set
entries the accessed attribute corresponds to the SELECT
query. The condition of the entry corresponds to the
content of the WHERE clause of the query, so in this
case e.C = (SC.ID = sid ∧ SC.I_ID = iid).
The condition binds the value of the input parameters
of the transaction, i.e., sid and iid in this case, with
the values of the table attributes of the specific rows for
which the attributes in e.A are accessed by the transaction,
SC.ID and SC.I_ID = iid in our example.
Conflict detection phase. The partitioning algorithm
is illustrated in Algorithm 2. The first phase of the
algorithm is conflict detection, which looks at all pairs of
transactions that have a conflict on some table attribute.
A conflict between transactions occurs if some of the
requests relative to these transactions can conflict. For
each pair of transactions (t, t′), the algorithm builds a
condition predicate Ct,t′ , in disjunctive normal form,
that expresses the condition that the values of the input
parameters of t and t′ must take so that a conflict occurs
on the same row(s) of the same table(s). In other words,
the condition characterizes the set of requests of the two
transactions that are conflicting. If a conflict between the
two transactions is possible, Ct,t′ is added to a set called
Conflicts. Note that we also consider conflicts between
two requests of the same transactions where t = t′.
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Algorithm 2: Partitioning Algorithm.
input : Set T of transactions
input : Read set Rt and write set Wt for each transaction t
output : Array P of partitioning parameters P [t] for each

transaction t

// Conflict detection
1 foreach pair t, t′ ∈ T do
2 Ct,t′ ← false;
3 if ∃r ∈ Rt, w ∈Wt′ : r.A ∩ w.A 6= ∅ then
4 Ct,t′ ← Ct,t′ ∨ (r.C ∧ w.C);
5 if ∃w ∈Wt, r ∈ Rt′ : w.A ∩ r.A 6= ∅ then
6 Ct,t′ ← Ct,t′ ∨ (w.C ∧ r.C);
7 if ∃w ∈Wt, w′ ∈Wt′ : w.A ∩ w′.A 6= ∅ then
8 Ct,t′ ← Ct,t′ ∨ (w.C ∧ w′.C);
9 if Ct,t′ is satisfiable then

10 Conflicts ← Conflicts ∪ Ct,t′ ;
// Partitioning optimization

11 return minP cost(P,Conflicts);

// Estimate the volume of conflicts
12 function cost(P , Conflicts)
13 foreach Ct,t′ ∈ Conflicts do
14 k ← P [t];
15 k′ ← P [t′];
16 foreach table attribute A do
17 remove all clauses (k = A ∧ k′ = A ∧ . . .)

from Ct,t′ ;
18 if Ct,t′ not satisfiable then
19 remove Ct,t′ from Conflicts;
20 return

∑
Ct,t′∈Conflicts weight(t) + weight(t′);

Let us consider again the TPC-W example. The
createCart transaction creates a new row in the
SHOPPING_CARTS table (SC) such that SC.ID =
sid, where sid is the id of the shopping cart:

createCart(sid){
...(abridged code)...
exec("INSERT INTO SHOPPING_CARTS
(ID) VALUES (sid)");
...(abridged code)... }

The write set of createCart contains entry e = 〈
SC.ID ,SC.ID = sid 〉. Given the write set of
doCart, we derive that there is a write-write conflict
between the two transactions with condition Ct,t′ :
(SC.ID = sid) ∧ (SC.ID = sid’) ∧ (SC.I_ID = iid’)

where sid is a parameter of createCart and sid’
and iid’ are parameters of doCart.
Partitioning optimization phase. The next phase is
called partitioning optimization and it finds the request
partitioning array P that minimizes global requests. The
partitioning can reduce the cost of conflicts by mapping
two conflicting requests to the same partition, and thus
DBMS instance, such that the conflict becomes local.

The cost function finds out the potential a request
partitioning has to eliminate conflicts. Consider two
transactions t and t′ that conflict, and let k and k′ be
the parameters used for their partitioning. Gyro uses the
same deterministic routing function for all requests, so
two requests with the same value of their partitioning

parameters k and k′ will be sent to the same Gyro
instance. Therefore, all conflicts that arise because of
a necessary condition k = k′ will be local to one DBMS
instance, and they will not require global coordination.
The most common case when this condition arises is
when k and k′ are used to identify a row based on the
value of the same attribute A, so there is a clause in the
conflict condition of the form: (k = A ∧ k′ = A ∧ . . .).

In our TPC-W example, let P be a request partitioning
array such that sid is the partitioning parameter for both
doCart and createCart transactions. The conflict
condition in the previous equation is of the form (k =
A ∧ k′ = A ∧ . . .), where k =sid, k′ =sid’, and
A =SC.ID. This condition is equivalent to saying that
the conflict among the two transactions arises only if
sid =sid’. The same deterministic routing function
is used for both transactions, so conflicting requests will
always be sent to the same DBMS instance. We can thus
remove this conflict from the Conflicts set.

After removing all conflicts that become local thanks to
the request partitioning array P , we estimate the cost of
the remaining global conflicts by summing up the weight
of the conflicting transactions in Conflicts. Estimates of
the relative frequency of the transactions can be used for
better cost estimations while assigning a weight of 1 to
each transaction yields a minimal number of conflicts.

The algorithm finally searches for the request parti-
tioning array that minimizes the cost. In the workloads
we considered, as in most transactional workloads, the
number of transactions and their parameters is not very
large, so an exhaustive search of all possible partitionings
to find the best one is feasible. However, the algorithm
can also use more sophisticated search strategies.

VII. EVALUATION

To evaluate Gyro, we designed three sets of experi-
ments. First, we evaluate the fraction of local requests
in a workload that is sufficient to see performance
improvements with Gyro. Then, we compare Gyro against
a traditional two-phase commit protocol. Finally, we
analyze the performance of Gyro in a WAN setting.
A. Experimental Design
Experimental setup and the baseline. We implemented
Gyro in Java (about 2k LOC). Each Gyro instance
instruments a local application instance running on
Tomcat, and interacts with the DBMS solely through a
standard JDBC interface (see Figure 1). DBMS instances
are stand-alone and do not interact with each other.

We conducted our experiments on resource-constrained
Amazon EC2 instances. Beyond reducing the cost of
running the experiments, this choice made it easier to
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Application Transaction classification Read-only TotalL G L/G
TPC-W 15 5 – 13 20
RUBiS 14 4 8 17 26

TABLE I: Request classification for the case studies:
Number of local (L), global (G), and local/global (L/G)
transactions. Some of these transactions are read-only.

saturate the system and thus show the relative speedup of
scaling up. Therefore, our evaluation focuses on relative
speedups, which measure the benefit of using Gyro,
rather than on absolute performance figures, which would
just measure the performance of the DBMS and the
hardware configuration Gyro runs on top of. We run our
experiments on Amazon EC2 using T2 Medium instances.
These are among the most resource-constrained instances
made available by Amazon. Each instance has 4 GB of
RAM, two virtual cores and is equipped with an Amazon
EBS standard SSD with a maximal bandwidth 10000 of
IOPS. The instances run Ubuntu Server 14.04 LTS 64,
MySQL 5.5.49-0 and Apache Tomcat 7.0.52.

In the LAN experiments, all servers are located in the
same site (datacenter) in Germany. For the WAN (geo-
graphically distributed) experiments, we place servers in
five different sites to simulate a geographically distributed
system. The sites are in Germany (G), Japan (J), US
east (US), Brazil (B), and Australia (A). We add these
locations in the aforementioned order. For example, a
configuration with three locations consists of servers in
G, J, and US. Table II reports the inter-site latencies
among servers. The intra-site latency, relevant for the
local setup, is about 20 ms. We used separate client
instances with identical configurations as the servers and
are located in the same sites. In the WAN setting, we use
five client machines in every configuration, one for each
location, and direct requests to the closest Gyro instance.
We equally distribute client threads across the clients and
measure end-to-end throughput and latency at client side
in all our experiments.
Choosing benchmarks. We use a set of three bench-
marks. The first is a synthetic micro-benchmark, where
clients can be tuned to produce a specific mix of local
vs. global requests. We use this benchmark to evaluate
pure coordination cost, so transactions are void: they are
processed by Gyro but not submitted to the DBMS. Then,
we used two other benchmarks that are commonly used
in related work such as [15], [31]: TPC-W, an on-line
book store [7], and RUBiS, an auction website [12].

We applied our request classification tool on the code
of these benchmarks without modifications. The results
of the analysis is reported in Table I. For TPC-W, the
local transactions mainly involve updating customer data,

Locations G J US B A
Germany (G) X 253ms 92ms 193ms 314ms

Japan (J) X 153ms 282ms 188ms
United States (US) X 145ms 229ms

Brazil (B) X 322ms

TABLE II: Inter-site latencies among WAN locations.
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Fig. 3: Micro-benchmark: latency of global and local
requests with different frequencies of local requests.

and are partitioned by customer id, or manipulations of
the shopping carts, and are partitioned by cart id. Global
transactions involve ordering books or administrative
transactions such as updating the books list. In Rubis,
we use a double-key scheme, whereby many transactions
are partitioned by both customer id and item id. If both
parameters route to the same Gyro instance, the request
is considered local, otherwise it is considered global.
The local transactions involve the user browsing through
his personal profile. Global transactions include a global
search for items or browsing through a user’s own bought
items. Local/global transactions involve bidding, buying
and selling, and may be local or global depending on
the values of the input. Read-only transactions are local
transactions that do not modify the database.

We use the default bidding mix with 15% actual
bidding operations for RUBiS and the shopping mix with
30% ordering operations for TPC-W. Both workloads
simulate a typical usage of the systems but still exhibit
a considerable number of local operations that can be
leveraged by Gyro.

B. Local vs. Global Request Ratio
The performance of Gyro depends critically on the

fraction of local operation requests. To analyze the effect
of different local operations ratios on Gyro we used a
synthetic workload where we can precisely specify these
ratios. The execution time of operations (global or local)
is fixed to 5ms. We use a WAN setup to magnify the
negative impact of global operations. We use clients at
five locations, servers at three locations, and vary the
percentage of local operations in the workload from 0% to
90%. As discussed in Section VII-A, our analysis focuses
on relative speedups rather than absolute performance.

If the throughput of the system is not saturated, Gyro
minimizes latency as long as the fraction of local requests
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Fig. 4: Micro-benchmark: throughput and latency with
different frequencies of local requests.
is 70% or higher (Figure 3a). In all our case studies,
the fraction of global requests was below 30%. Local
requests have very low latency in a non-saturated system
since they do not require coordination. Global requests
have much higher latency, more than 3x higher than
local requests, since they must circulate between Gyro
instances in three locations. But as long as we have many
more local requests than global ones, the average latency
is low and dominated by the latency of local requests.

Global requests saturate the system if they exceed 30%
of the workload. Interestingly, it is not only the latency of
global requests that grows; the latency of local requests
also grows, albeit less significantly. This is because more
and more global requests need to be executed at all
instances, defeating the advantages of scaling out. The
latency of global requests also starts dominating the mix
as their relative frequency grows. This sensitivity to the
rate of global operations is magnified when local requests
alone are sufficient to saturate the system (Figure 3b).

In terms of maximum throughput we observe that, un-
surprisingly, the performance of Gyro is highly sensitive
to the fraction of local operations in the workload, even in
the top range of the spectrum (see Figure 4). For instance,
with a workload of 30% of local operations, the system
starts to saturate already around 600 ops/sec, while in a
workload of 90% local operations the saturation starts
only around the 5477 ops/sec.
C. Gyro vs. 2PC

We now show the practical viability of our modu-
lar scale-out approach by comparing with a standard
two-phase commit protocol. This protocol represent a
common baseline for comparison across many scale-up
algorithms. Since we use MySQL as reference DBMS,
we consider MySQL Cluster as a target baseline. MySQL
Cluster can only provide the read committed isolation
level, whereas Gyro provides serializability, which is
significantly stronger and more expensive to achieve.
Nonetheless, Gyro is still able to achieve a large speedup
over MySQL Cluster.
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Fig. 5: Scalability of Gyro vs. MySQL Cluster.

We choose a LAN setting for this experiments since it
is more favorable for MySQL Cluster. Overall distributed
transactions perform much better over LANs than over
WANs. We also use the two standard benchmarks , TPC-
W and RUBiS, described in Section VII-A.

MySQL Cluster requires users to specify how to
partition data. For fairness, we have adopted the same
data partitioning for both Gyro and MySQL Cluster.
We first ran Gyro’s request classification tool on the
code of both benchmarks. From the request classification
logic, we extracted the resulting data partitioning scheme
and applied it to MySQL Cluster. Each server acts as a
MySQL Cluster server and a data node that stores exactly
one data partition. We additionally designate one server
as the manager for the initial setup.

We examine the ability of both approaches to scale
out. In this local setting, we intensify the workload by
increasing the number of clients. In Figure 5 we show
how the peak throughput develops while varying the
number of DBMS instances (and thus of Gyro instances)
in the system for TPC-W and RUBiS, focusing around
the maximum of the curve. Peak throughput is defined
as the maximum throughput a system can sustain while
ensuring an average latency of less than 2000ms.

Figures 5a and 5b show the same trend for both
TPC-W and Rubis: as the number of DBMS instances
grows, the increased cost of distributed coordination
eventually outweighs the gain of additional resources
to run transactions that require no coordination. This
upper bound in scalability represents the inherent cost
of achieving strong consistency in the workloads we
consider, which are not perfectly partitionable.

Both figures 5a and 5b show that Gyro scales much
better than MySQL Cluster. This is remarkable given that
Gyro only uses a standard client interface, and provides a
stronger consistency guarantee (see Section VII-A). In the
case of TPC-W we can see that while the performance of
MySQL Cluster starts to degrade with configurations of
more than 4 nodes, Gyro continues to deliver at a much
higher throughput until it reaches a configuration of 13
DBMS instances. On the other hand, with the RUBiS
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workload, Gyro reaches a point of saturation at the same
configuration, namely 12 DBMS instances, as MySQL
Cluster but still consistently achieves higher throughput.
Overall, Gyro outperforms MySQL Cluster both in terms
of maximal throughput and latency by up to 58.6x for
latency and about 4.2x for throughput in the case of TPC-
W. For RUBiS, Gyro achieves a 1.4 maximal throughput
speedup and reduces the latency up to 35.7x.

Gyro performs significantly better than MySQL Cluster
because distributed transactions, which are used by the
latter, lock rows across multiple servers. The necessary
coordination with remote machines in MySQL Cluster
prevents the progress of concurrent conflicting trans-
actions that access the same rows while multi-server
coordination is completed. In contrast, when a Gyro
instance receives global operations that require remote
coordination, it merely enqueues the operations until the
token is received. This allows other concurrent local
operations to make progress. Gyro holds local operations
only for a short period of time when a server has
the token and executes global operations. Otherwise, it
solely resorts to the local DBMS locking mechanism for
transaction concurrency.

TPC-W and RUBiS show different results due to
different read-only operation ratios. In TPC-W many of
the local operations are write operations that, in MySQL
Cluster, involve distributed transactions. Therefore, TPC-
W benefits tremendously from operation partitioning. The
RUBiS workload contains more local operations, but a
much larger fraction is read-only. RUBiS thus profits from
the read-only transaction optimizations implemented by
MySQL Cluster. These results highlight that existing
DBMSs already require minimal coordination for read-
dominated workloads, making Gyro a better fit for write-
heavy, and thus hard to scale out, workloads.

D. Gyro on WANs
The previous experiments showed that Gyro outper-

forms a two-phase commit protocol even in a LAN setting,
which favors 2PC. We now evaluate the performance of
Gyro in a WAN (i.e., geographically distributed) setting,
where coordination is even more expensive and scalability
is more challenging. We use two baselines: (1) a single
server deployment of standard MySQL (without Gyro)
(centralized), and (2) Gyro optimized to run only read-
only requests as local, while all the rest are global (read-
only). Read-only optimizations are common in many
systems. We show that the performance benefits of Gyro
go well beyond a simple read-only optimization.
Latency. First, we compare the latency of Gyro in dif-
ferent configurations when the system is not overloaded.

Configuration TPC-W RUBiS
Centralized 1390ms 416ms
Gyro – 2 671ms (2.1x) 182ms (3.3x)
Gyro – 3 436ms (3.2x) 155ms (2.7x)
Gyro – 5 29ms (47.9x) 35ms (11.9x)

Read-Only – 2 902ms (1.5x) 145ms (2.9x)
Read-Only – 3 521ms (2.7x) 131ms (3.2x)
Read-Only – 5 129ms (10.8x) 96ms (4.3x)

TABLE III: Request latency with light load in WAN.

In Table III, we report the latency improvement over the
centralized setting of each configuration, from two to
five servers with TPC-W and RUBiS. Gyro achieves a
significant latency reduction, of more than one order of
magnitude, thanks to its low need for coordination. For
instance, TPC-W with 3 DBMS instances the latency
is 3.2x less than that of a centralized server and 2.7x
less for the read-only baseline. The performance is best
when a DBMS instance is available in every geographical
location of the clients. In fact, for the 5 DBMS instances
configuration, the latency is 47.9x less for TPC-W and
11.9x for RUBiS. In contrast, the latency when using the
read-only optimizations is only 10.8x less for TPC-W
and 4.3x for RUBiS. This is because the majority of
operations can be served by the local DBMS instance
where clients are located. This is especially the case for
the five DBMS instances case where the latency is at its
lowest: 29ms for RUBiS and 25ms for TPC-W.
Latency vs. Throughput. We now shift our attention to
both throughput and latency with more intense workloads
(Figure 6). We stress the system by increasing the number
of clients until the latency reaches 5 seconds. The single
server in the centralized case starts to saturate quickly.
By scaling to five locations, Gyro increases throughput
by up to one order of magnitude.

Read-only optimization significantly reduces latency
and increases throughput for both workloads and espe-
cially for RUBiS which is more read-dominated. Gyro,
however, has a much greater impact as it allows the local
execution of many more operations, both read-only and
not. Overall, Gyro improves the maximum throughput
compared to the read-only setting. For instance, in the
five DBMS instances configuration there is an increase
of the maximal throughput by 291% for TPC-W and
181% for RUBiS. In terms of scalability, Figures 6a
and 6b show that Gyro scales very well until at least five
geo-locations, which is a fairly high number in many
practical settings. By contrast, the read-only baseline
maxes out already with three DBMS instances, especially
with TPC-W where the gain from using additional DBMS
instances in terms of throughput is marginal due to the
increased cost of coordination. The difference in terms
of throughput between the WAN and LAN setting is
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Fig. 6: GYRO vs. baselines in a WAN setup.

due to the longer time it takes for the token to make
a round. Consequently, more global operations queue
up and when the token is received they take longer to
process. Execution of local operations also is slowed
down as they are executed concurrently with the global
operations.

VIII. CONCLUSIONS

This paper introduced Gyro, a modular coordination
layer that scales out unmodified DBMSs while preserving
serializability in both LAN and WAN settings. We
used Gyro to scale out two unmodified applications
running on top of MySQL, a popular DBMS. We also
described a static analysis tool to automate adding to
applications the instrumentation that is necessary for
using Gyro. Our evaluation shows the practical viability
of using modular concurrency control: Gyro substantially
outperforms a standard and popular two-phase commit
protocol implementation, MySQL Cluster.
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APPENDIX
A. Correctness

We now show the correctness of the Conveyor Belt pro-
tocol. Gyro assumes that each DBMS instance guarantees
serializability for the requests it executes locally. We must
show that this sequential order that is consistent with
some global sequential order. A local execution order Oi

for a DBMS instance i is valid if and only if it respects the
following rules: (R1) A request r mapped to i is ordered
according to the sequential execution order at i; (R2) A
global request gk mapped to k 6= i is ordered according to
the sequential execution order of the state update request
u(gk) at i; (R3) A local request lk mapped to k 6= i
can be ordered arbitrarily. The first rule guarantees that
Oi is consistent with the execution order at instance i.
The second rule ensures that state updates for remote
global request must be executed in the same order as
the original global requests. The third rule is acceptable
since local requests mapped to remote instances do not
directly influence the behavior of requests executed at
instance i (and in fact, they are not executed by i).

Assume now, by contradiction, that there exists a
divergence between the local (and valid) execution orders
Oi and Ok at two instances i and k. Let ri and rk
be the first two requests that diverge in Oi and Ok,
respectively, starting from the beginning. Since this is the
first divergence and each request appears only once in an
order, rk (resp. ri) never appears before the divergence
in Oi (resp. Ok). We assume that the divergence is
unavoidable, meaning that there is no other valid ordering
of Oi or Ok that avoids the inconsistency - otherwise,
it would be sufficient to consider that valid alternative
ordering to obtain consistency.

Consider first the case where both ri are rk are global
requests. Since the total order of global requests enforced
by the token passing scheme, this situation cannot arise
and we reach a contradiction with (R2). Consider now
the case where either ri or rk is a local request. Assume
ri is local, w.l.o.g. If ri (resp. rk) is not mapped to k
(resp. i), it is possible to insert ri (resp. rk) into the
position of rk (resp. ri) in Ok (resp. Oi) and shift all
other requests to their successive position. This order
would be compatible with (R3) so the divergence would
be avoidable, which is a contradiction. If ri is mapped to
k and rk is mapped to i, then we can push ri to a later
point in Oi and replace it with its following element and
obtain a new order O′i. Using the same logic with the
new order O′i we either end up in a different case, and
thus reach a contradiction, or we end up in this case for
all elements in the original Oi following the divergence
point. In the latter case, since all elements in Oi after the

divergence point are local and mapped to k, it is possible
to avoid the divergence by inserting rk into the position
of ri in the original Oi and shift all other requests to
their successive position. This order would be compatible
with (R1) since there are no other requests in Oi mapped
to i after rk. The divergence would thus be avoidable, a
contradiction.

B. Implementation
Next, we describe how our implementation of Gyro

handles the extraction of state updates that are propagated
to the rest of the instances and an optimization for
concurrent processing of global operations.
Extracting state updates. Gyro transparently and au-
tomatically instruments the application code to extract
state updates from the execution of global client requests.
It records changes to the DBMS state by intercepting
interactions between the application and the DBMS,
which occur through JDBC. Every time the application
begins executing a global request, the instrumentation
generates a request object that is used to store the state
updates. Gyro then uses the request object as a wrapper
to JDBC: every time the application invokes a statement
s mutating the state (e.g., UPDATE), it does so through
the requests object instead of JDBC. The request object
appends s to the sequence of SQL query statements
invoked within the request and then passes s to JDBC. At
the end of the transaction, the sequence of SQL statements
in the request object represents the sequence of state
mutations that constitute the state update.
Optimizing the execution of global requests. Gyro
is able to parallelize the execution of global requests
(Lines 14-18 of Algorithm 1). Concurrency makes it hard
to add state updates to the token in the same order in
which they are executed. This is possible if the DBMS
respects the following commit ordering property: a request
t cannot invoke a commit before all requests that are
serialized before t have committed. One common way
for DBMSs to ensure commit ordering is to ensure
serializability through the use of pessimistic locking:
before a transaction accesses a row i, the transaction
acquires a lock for i and releases it only after the
transaction is committed or aborted. Therefore, any
concurrent transaction t′ for a request o′ that has a conflict
with t will not be able to invoke commit until t has
committed and released its locks, which satisfies commit
ordering.

If the DBMS supports commit ordering, Gyro activates
the parallel execution of global requests. When the
application requires a transaction t for request o to
commit, Gyro intercepts this call, appends to a reference
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queue U the state update uo produced by o, and then
invokes the commit. Because of the commit ordering
property, the thread executing t′ will append o′ to U
only after t has finished appending o, so the order of the
requests in U is consistent with the execution order of t
and t′. Updates that do not conflict can be added to U in
any order: Gyro uses a concurrent queue implementation
to allow safe concurrent updates from multiple threads.

If the DBMSs does not satisfy the commit ordering
property, Gyro simply executes requests in Q sequentially
as specified by Algorithm 1
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