
PBMC: Symbolic Program Slicing for Program
Verification

Habib Saissi †, Péter Bokor ‡, Neeraj Suri †

†Technische Univeristät Darmstadt
‡Bosch/Siemens Home Appliances, Berlin

{saissi, pbokor, suri}@deeds.informatik.tu-darmstadt.de

Abstract. This paper proposes a novel optimization of bounded model
checking (BMC) for better run-time efficiency. Specifically, we define
projections, an adaptation of dynamic program slices, and instruct the
bounded model checker to check projections only. Given state properties
over a subset of the program’s variables, we prove that the proposed
optimization preserves the soundness of BMC.

We propose a symbolic encoding of projections and implement it for a
prototype language of concurrent programs. We have developed a tool
called PBMC to evaluate the efficiency of the proposed approach. Our
evaluation with various concurrent programs justifies the potential of
projections to efficient verification.

1 Introduction

Automated verification of complex programs is known to be a hard problem. The
complexity of the task grows exponentially when the considered programs exhibit
concurrent behavior [28]. Bounded model checking (BMC) [8] is a widely used
verification technique, e.g., [12]. In BMC, a formula encoding the behavior of the
program is computed and passed to an SMT/SAT solver along with the negation
of the property. The solver then checks whether there exists an execution leading
to a state violating the property. Thanks to the recent advances in the field
of SAT solving, bounded model checking is becoming a practical solution for
sound verification of concurrent programs [1, 2, 6]. The efficiency can be greatly
improved by constraining the search space depending on the property of interest.
Concretely, the encoding of the program is constrained by excluding behavior
that is irrelevant or redundant with respect to the property. For example, the
solver can be instructed to partially order (instead of totally order) transitions
of the program, e.g., [6].

In this paper, we propose projections to constrain the search space of a
bounded model checker. Conceptually, projections are slices of a program with
respect to a set of variables. They are especially useful for the analysis of con-
current programs. For example, a projection with respect to the local state of
a process may exclude transitions of other non-interfering processes. As a re-
sult, the interleavings of the excluded transitions (exponential in the number



2

of transitions) do not have to be considered by the solver. Intuitively, projec-
tions consist of executions which only contain transitions directly or indirectly
affecting the variables of interest.

Contributions. Our first contribution is that we introduce projections, an
adaptation of program slices to general transition systems, and show that they
preserve the relevant safety properties of a program. The idea of projections is a
general one and it is independent of how the program states are explored. Our
second contribution is that we present a symbolic encoding of projections for
concurrent programs; we call the encoding PBMC (projection-based BMC) be-
cause it can be used for efficient bounded model checking. Note that although we
concentrate on concurrent programs our result equally holds for single-threaded
programs. Interestingly, PBMC can be seen as a form of dynamic program slic-
ing [5]. In contrast to existing program analysis approaches where static program
slicing is applied prior to the actual analysis, e.g. [12,14,26]1, PBMC enumerates
slices on-the-fly. The resulting slices are as precise as the dynamic ones because
they are calculated based on feasible executions. To the best of our knowledge,
PBMC is the first application of dynamic program slicing with BMC. Our final
contribution is that we implement a prototype of PBMC and use it to verify
simplified versions of a set of concurrent programs where program slicing in its
traditional form fails to reduce the size of the program. The experiments show
substantial verification time reductions compared to traditional BMC.

The paper is organized as follows. Section 2 and 3 provide a motivating ex-
ample and discusses the related work. In Section 4, we formalize and prove the
correctness of projections. Section 5 describes the symbolic encoding of projec-
tions and Section 6 shows our evaluation results.

2 Motivating Example

We motivate our approach using a simple example. Consider the program shown
in Figure 1a consisting of three concurrent and sequential processes sharing
different variables and an array B. We label the instructions on the different
program locations l1, l2, l3 and l4. Assume that we are verifying a property which
involves only the variable y. That is, we are interested in the values that y can
take in any possible run of the program. There are 12 possible interleavings of
the instructions. Assuming that initially a = 0, b = 1, x = 0 and B[k] = 10+k for
every k-th position in the array, we list in Figure 1b the possible runs which may
be relevant. Every transition in the runs corresponds to a concrete execution of an
instruction. For instance, t5 and t2 are two different transitions, but correspond
to the same instruction l4. When analyzing the program statically2, one can
only reason in terms of instructions. By doing that, it is clear that the program
contains three “dependencies”: The execution of l3 always depends on that of
l1 because l1 always writes to variable a which l3 reads from. For the same

1 Please refer to Section 3 for more details.
2 Ignoring our assumption about the initial values of the variables.



3

reason, the execution of l4 depends on l3. More interestingly, the execution of l3
depends on l2 only if a = b. This corresponds in Figure 1b to the sequence σ3, as
transition t3 writes in a position in B that t7 reads from. We refer to σ1, σ2 and σ3
as projections of the program on the set of variables {y}. Intuitively, in order to
preserve all the possible values that y can take, it is enough to consider sequences
where every transition t either writes to y, or there is another transition after it
which also writes to y and transitively depends on t. For example in σ3, transition
t3 is included because it influences t7 which in turn influences t8. Transition t8
is kept in the projection since it writes to y. In general, projecting a run on a
set of variables F means that we keep every transition that writes to variables
in F or affects another transition after it already included in the projection.

(a) An example concurrent program.

(b) 3 projections on y out of 12 possible runs.

Fig. 1: A motivating example

Given that the safety property of interest involves a subset of variables, the
verification time of such programs can be greatly reduced if we constrain the
exploration to projected executions. We use BMC to symbolically describe the
behavior of the program and add constraints that characterize projections. By
doing so, we constrain the search space of the model checker but still preserve
all possible values that the variables in the property can take. If a state violating
the property is reachable, a projection is returned. Furthermore, as projections
contain only relevant instructions, they are easier to interpret and analyze.

Note that static program slicing techniques [30] applied to this program would
not help in the reduction of the search space as it will return a copy of the whole
program. This is due to the conditional dependencies of instructions accessing
arrays and the concurrency, in which case it’s not clear before execution whether
an instruction affecting a variable of interest v will be actually executed before
another instruction assigning a value to v. For instance, it’s not clear whether
l1 will be executed before l3. Also, if the values of a and b depend on some non-
deterministic behavior, e.g., concurrency or user input, it might not be possible



4

to predict whether a = b. In this case, static program slicing conservatively
over-approximate the slices.

3 Related Work

Program Slicing. PBMC is the first approach to combine dynamic slicing and
BMC. Our proposed technique is based on a notion similar to program slic-
ing [30]. Static program slicing has been used to reduce the size of programs
under verification, e.g., [12, 14, 26]. In these approaches a slice of the program
is computed and passed to the model checker. However, the returned slice is an
over-approximation of the instructions that are in fact relevant to the slicing
criterion. This is due to the fact that inferring dependencies statically, a pre-
requisite for deriving slices, is hard with the presence of concurrency [21, 26].
In PBMC, formulas describing precisely when dependencies occur are generated
passed to a solver along with the verification formula. In dynamic slicing [5],
the program is run with concrete input and the slicing is done directly on the
execution path. Although the slices returned by dynamic slicing techniques are
accurate, they only concern the considered execution path. To use dynamic slic-
ing with verification, one would have to enumerate all paths which contradicts
the purpose of using slicing for reducing the number of paths to be explored.
The slicing in PBMC is dynamic since only reachable, and therefore feasible,
paths are sliced.

Partial-Order Reduction. A common technique against state space explosion
is partial-order reduction (POR) [17]. Whereas POR’s reduction comes from
executing commutative transitions in one representative order, in PBMC it is
based on the notion of conflicting read/write operations. Existing POR seman-
tics, however, do not subsume projections. Widely-known POR semantics such
as stubborn sets [9, 28], persistent sets [17], and ample sets [13] guarantee pre-
serving all deadlocks of the program. In some cases [17], the preservation of
deadlocks also entails that of local states. On the other hand, projections do not
necessary preserve all deadlocks nor all local states. Existing POR techniques
include [4, 9, 15,18,20,29] among others.

BMC. An interesting way of combining slicing with BMC is described in [16].
Tunneling and slicing based reduction makes use of slicing to decompose a BMC
formula into disjoint smaller instances covering subsets of the program. These
formulas are constructed such that the original formula is satisfiable only if at
least one of the smaller instances can be satisfied. Nevertheless, the used slicing
is static and therefore is imprecise.

Our approach for reduction is similar to MPOR [20], where constraints are
added to the BMC formula to guide the search. The constraints used in this
approach are based on Mazurkiewicz’s traces [23], the underlying semantics for
most POR theories. Our symbolic encoding of the transition system enhances
the encoding used in MPOR. Furthermore, POR and projections are orthogonal
techniques that can be used in combination for better reductions as demonstrated



5

in [14]. This is the case because the definition of path projections alone still al-
lows for two Mazurkiewicz equivalent paths to be considered in the search. We
argue, that our encoding can be augmented by the constraints of MPOR for bet-
ter performance. To see this consider two executions t4, t1, t2, t3 and t2, t1, t4, t3
such that t3 depends on both t1 and t2. From both executions we can derive pro-
jections t1, t2, t3 and t2, t1, t3, respectively. Since there is no dependency between
t2 and t1, both projected executions are Mazurkiewicz equivalent. It follows then
that it is sufficient to consider one of the projections.

Encodings. We adapted the encoding used in [20] which does not require un-
winding of loops as in [12], [10] or [27]. Yet, unwinding loops may be beneficial
and allow different encoding, e.g., using single static assignment form to reduce
the number of variables in the formula. The idea behind projections is inde-
pendent of the used encoding and therefore can be adapted for use with other
BMC formulas. For instance in CBMC [6], transitions are associated with clock
variables that reflect how they are (partially-)ordered. Intuitively, a path corre-
sponds to a partial order over transitions where only dependent ones are strictly
ordered. Thus, constraints are used to enforce a total order on the dependent
transitions. Using such an encoding, the model checker might still explore some
partial orders which are not relevant to the property. Hence, two dependent tran-
sitions will still have to be ordered although they might not have any influence
on the property. Given a subset of variables, we argue that projection constraints
can be added to such an encoding to further reduce the number of interleavings
of dependent transitions. This can be done by constraining the used read-from
relation according to the definition of projections.

Other Symbolic Approaches. Another possibility is to use slicing on-demand
to refine the search for assertion violations. For instance, Path slicing [19] is a
technique that has been implemented within the Blast model checker [7] which
makes use of counterexample guided refinement techniques [11]. In Blast, slicing
is used to simplify the counterexample analysis phase that serves the purpose
of refining the search. Our approach is different from path slicing in the sense
that the search for bugs is constrained from the beginning using projections
to guide the solver toward feasible counterexamples. PBMC, and BMC based
approaches in general, are fundamentally different from Blast, and other tools
such as [22,24,25,29], where the verification formulas are generated and refined
incrementally with the help of the solver. In BMC, a single formula describing the
whole program is computed statically and the exploration work is deferred to the
SMT solver. A comprehensive discussion of the advantages and disadvantages
of incremental generation and refinement of the verification formula over BMC
approaches is beyond the scope of this work.

4 Property Preservation with Projections

4.1 System Model

We abstract programs by general transition systems, where a transition may
read and/or write a set of variables.



6

General Transition Systems. Formally, the system is defined as a tuple
TS = (S, S0, T ) where S, S0 ⊆ S, and T ⊆ S ⇀ S are the set of states, initial
states, and the set of transitions, respectively. In the rest of paper, we will always
write s0 to refer to an initial state.

A program defines a list of atomic instructions (e.g., lines of code). In every
state, the program can execute a transition, corresponding to an instruction, and
deterministically move to a unique successor state. Formally, a transition t ∈ T
is a partial function such that t(s) = s′ iff t can be executed in s and it leads
to state s′. In that case, we say that t is enabled in s. For convenience, we also

write s
t−→ s′ if t(s) = s′.

A finite path σ in the transition system TS is a sequence s0
t1−→ s2

t2−→ . . .
tn−→

sn, also written as s0
t1,t2,...,tn−−−−−−→ sn, such that ti+1(si) = si+1 for all 0 ≤ i < n.

In that case, we write σ ∈ TS.

In addition, we assume that every state s assigns a value s(v) to every v ∈ V ,
where V is the set of variables. Given a set F ⊆ V , we refer to the values assigned
by s to variables v ∈ F by s(F ). We write s(F ) = s′(F ) for two states s and s′,
if for all v ∈ F , s(v) = s′(v).

Dependency Relation. The execution of a transition involves reading from
and writing to a subset of variables. We assign to every transition t a read/write
set of variables, denoted as r(t)/w(t) ⊆ V respectively. A transition t is said
to read from (write to) a variable v if v ∈ r(t) (v ∈ w(t)). The read set of
a transition contains all variables that may have an influence on whether a
transition is enabled and the outcome of its execution. On the other hand, the
write set of a transition consist of the variables that it might modify.

Formally, w(t) is defined such that for every v ∈ V , v ∈ w(t) iff there are

s, s′ ∈ S such that s
t−→ s′ and s(v) 6= s′(v). Note that the write set of a transition

does not include a variable it never modifies. We define the read set r(t) as the
smallest set such that for every s, s′ ∈ S and v ∈ r(t) such that s(v) = s′(v)
then,

– t is enabled in s iff t is enabled in s′, and

– if t is enabled in s then for every v′ ∈ w(t), t(s)(v′) = t(s′)(v′).

We define a dependency relationD ⊆ T×T to model any interference between
transitions. A transition t depends on a transition t′ if t reads from a variable
that t′ writes to. In that case, we also say that t influences t′ and write (t, t′) ∈ D.

Definition 1 (Dependency Relation) Given two transitions t and t′ ∈ T ,
we say that t′ depends on t and write (t, t′) ∈ D iff r(t′) ∩ w(t) 6= ∅.

Note that two transitions only writing to the same variable are not considered to
be dependent as the execution of one of them before the other does not influence
the behavior of latter.



7

4.2 Projections

In this Section, we propose the projection semantics and present a theorem
that guarantees that preserving projections on a set of variables is a sufficient
condition for preserving properties defined over those variables.

First, we give a formal definition of path projections on a set of variables.
Intuitively, a projection of a path σ on a set of variables F is a sequence of
transitions containing every transition t that either writes into a variable in F ,
or there is a transition t′ after it such that t′ depends on t and t′ is also in the
projection.

Definition 2 (Projection) Given a set of variables F ⊆ V and a path σ =

s0
t1,...,tn−−−−−→ sn, σ|F = tj1 , tj2 , ..., tjk is said to be a projection of σ on F , if

1 ≤ j1 < j2 < ... < jk ≤ n and for all 1 ≤ i ≤ n, i ∈ {j1, j2, ..., jk} iff:

(a) w(ti) ∩ F 6= ∅, or
(b) there exists j ∈ {j2, j3, . . . , jk} such that i < j and (ti, tj) ∈ D.

Property Preservation. Our main result is that projections can be used to
constraint the search space of a model checker. For that purpose we must guar-
antee that projections on a set of variables preserve the properties of those vari-
ables. Given two transition systems TS, TS′ and a set of variables F ⊆ V , for

every path σ = s0
t1,t2,...,tn−−−−−−→ sn ∈ TS there exists a path σ′ = s0

t′1,t
′
2,...,t

′
m−−−−−−−→ s′m ∈

TS′ such that sn(F ) = s′m(F ). We then say that TS′ preserves the properties of
F in TS. Furthermore, given two transition systems TS and TS′, we say that TS′

preserves the projections of F in TS, if for every path σ = s0
t1,t2,...,tn−−−−−−→ sn ∈ TS

there exists a path σ′ = s0
t′1,t

′
2,...,t

′
m−−−−−−−→ sm ∈ TS′ such that σ|F = t′1, t

′
2, ..., t

′
m.

Theorem 1 (Property Preservation) Let TS and TS′ be two transition sys-
tems and F ⊆ V a set of variables. If TS′ preserves the projections of F in TS
then it also preserves the properties of F in TS.

We prove Theorem 1 via a series of lemmas. First, we introduce the following
auxiliary definitions: Let ti, tj be two transitions, α = t1t2 . . . tn a sequence of

transitions and σ = s0
α−→ sn be the resulting path. For convenience, we will

write ti ∈ σ and ti ∈ α if i ∈ {1, 2, . . . , n}. Furthermore, if j ∈ {i+ 1, . . . , n}, we
write ti <σ tj or tj >σ ti.

First, we show that between two successive transitions in a projection σ|F ,
the values assigned to F and the variables read by any transition in σ|F after the
second transition remain unmodified by all transitions outside the projection.

Lemma 1 Let σ = s0
t1,t2,...,tn−−−−−−→ sn be a path, F ⊆ V a set of variables and

tk, tk′ two transitions such that tk <σ tk′ and for every tk−1 <σ ti <σ tk′+1

ti /∈ σ|F . For every tk−1 <σ tj <σ tk′+1, tq >σ tk′ such that tq ∈ σ|F and
v ∈ r(tq), sj(F ) = sk−1(F ) and sj(v) = sk−1(v).



8

Proof. Let σ be a path, σ|F its projection on a variable set F ⊆ V , and two
transitions tk and tk′ as described above. We know that for all tk−1 <σ tj <σ
tk′+1, w(tj) ∩ F = ∅. Otherwise, tj would be included in σ|F between tk and
tk′ (Def. 2). This means that sj−1(F ) = sj(F ) = sk−1(F ). Given a transition
tq ∈ σ|F such that tq >σ tk′ , we assume that there is a variable v ∈ r(tq) such
that for a j ∈ {k, . . . , k′}, sj(v) 6= sk−1(v). Let j be the first such an index. This
implies that sk−1(v) = sj−1(v) 6= sj(v). We then have v ∈ w(tj) and therefore
r(tq) ∩ w(tj) 6= ∅. From Definition 1 it follows that (tj , tq) ∈ D. Consequently,
tj should also be included in σ|F . This contradicts our initial assumption.

With the help of Lemma 1 we show that every projection is also a path and that
it reaches a state where the assigned values to variables in F are the same as in
the original path.

Lemma 2 Let σ = s0
t1,t2,...,tn−−−−−−→ sn be a path and σ|F = tj1 , tj2 , . . . , tjk its

projection on variable set F ⊆ V . Then there exists a path σ′ = s0
tj1 ,tj2 ...,tjk−−−−−−−−→ s′k

such that sn(F ) = s′k(F ).

Proof. We separately consider the case where σ|F is empty, i.e. contains no
transition. In this case, we have for every ti ∈ σ, ti /∈ σ|F . From Lemma 1, it
follows that s0(F ) = sn(F ) and σ′ exists as an empty path.

Now we assume that σ|F contains at least one transition. We start by prov-
ing, for every 1 ≤ q ≤ k, the existence of the path that consists of the first q
transitions of σ|F , that s′q(F ) = sjq (F ) and that for every v ∈ r(tj) such that
tj >σ tjq and tj ∈ σ|F , s′q(v) = sjq (v). The proof is an induction on the number
of the first q transitions in the projection. Consider the case of the first tran-
sition tj1 in the projection. Since ∀i ∈ {1, . . . , j1 − 1} ti /∈ σ|F , we know that
s0(F ) = sj1−1(F ), and that for every v ∈ r(tj1), s0(v) = sj1−1(v) (Lemma 1).
Thus, since tj1 is enabled in sj1−1, it is also enabled in s0, and there is a state s′1

such that s0
tj1−−→ s′1 and s′1(v) = sj1(v) for every v ∈ w(tj1) (read set definition).

Since for every v ∈ F such that s0(v) 6= s′1(v) is in w(t) (write set definition), it
follows that s′1(F ) = sj1−1(F ). We assume now that the property holds for the
first q transitions and prove it after considering the q+1-th transition tjq+1

. From
Lemma 1 it follows then that sjq (F ) = sjq+1−1(F ) and sjq (v) = sjq+1−1(v) for
every v ∈ r(tj) such that tj > tjq and tj ∈ σ|F . Using the induction assumption
it follows then that s′q(F ) = sjq+1−1(F ) and s′q(v) = sjq+1−1(v). Consequently,

tq+1 is enabled in s′q and there exists a state s′q+1 such that s′q
tq+1−−−→ s′q+1,

s′q+1(F ) = sjq+1
(F ) and ∀v ∈ w(tjq+1

), s′q+1(v) = sjq+1
(v) (read/write set defi-

nitions). Let v ∈ r(tj) such that s′q+1(v) 6= sjq+1
(v). This means that there is a

variable v′ ∈ w(tjq+1
) such that s′q+1(v′) 6= sjq+1

(v′) which is a contradiction.
Now that we have proved the property, we know that for q = k we have

s′k(F ) = sjk(F ) and that the path σ′ exists. We know that for every i ∈ {jk +
1, . . . , n} we have ti /∈ σ|F and w(ti)∩F = ∅ since otherwise ti would be included
in the projection (Def. 2). It implies then that sn(F ) = sjk(F ) = s′k(F ).

Proving Theorem 1 is now straightforward. Note that Lemma 2 also shows
that a projection preserving transition system TS′ always exists.



9

Proof. Let σ = s0
t1,t2,...,tn−−−−−−→ sn be a path in TS and F a set of variables. The

projection preservation implies that there exists a path σ′ = s0
t′1,t

′
2...t

′
m−−−−−−→ s′m in

TS′ such that σ|F = σ′. From Lemma 2 follows that sn(F ) = s′m(F ).

We have just proved that every reachable combination of values that the
variables in F can take, is also reachable through a projection. In other words,
Theorem 1 allows us to narrow down the search space of a model checker to
projections, while still preserving the soundness of the verification.

5 PBMC: A Symbolic Implementation

In this Section, we show how we implemented projections semantics for process-
based concurrent programs in PBMC.

5.1 Process-Based Concurrent Programs.

First, we informally describe how general concurrent programs can be expressed
as a transition system. We assume a general shared memory model where a set
of processes communicate via shared variables. In the corresponding transition
system, a state consists of variables, and every transition is associated with
a process. Processes are sequential. Sequentiality means that two transitions
that are enabled in a state must be from different processes. Hence, in a state
s, a process has at most one enabled transition. Sequential processes can be
modeled using an auxiliary variable for every process, called program counter.
The program counter variable of a process can only be accessed by the process
itself and designates the instruction that can be executed next.

5.2 Projection Encoding

Given a concurrent program, a property, and a fixed depth k, bounded model
checking encodes a formula that an SMT/SAT solver can check for satisfiability.
The property is true for some path iff the formula is satisfiable. More precisely,
the formula is of the form Φ = ρ ∧ Ψ where ρ denotes the property formula
and Ψ encodes a path of length k. The formula Φ is satisfiable iff there exists a
path of at most k steps that satisfies ρ. To check whether the property ρ is valid
for every possible path of a maximal length k, it suffices to replace it with its
negation in Φ and prove the unsatisfiability of the resulting formula.

In the following, we explain how we encode Ψ to implement projections. The
basic (unprojected) encoding adapts the structure used in [20]. Let F be the
set of variables which appears in the property formula. To model the changes
affecting the state of the program throughout the path we create for every v ∈ V
and 0 ≤ i ≤ k a variable vi to represent the content of v in the i-th state of the
path.



10

Core Formula. A path is only valid if it starts from an initial state. We add
a constraint I to encode this fact.

I :=
∧
v∈V

(
v0 = s0(v)

)
Let L be the set of all the instructions in the program. For every transition
t ∈ T , we refer to the instruction it corresponds to, with inst(t) ∈ L. Given an
instruction l ∈ L, let trans(l) be the set of transitions that are mapped to it.
In every step 0 ≤ i ≤ k − 1, we model the possible selection of an instruction
l using a formula denoted as T il . If no instruction is selected for a step i, for
instance because the length of the returned path is smaller than k, an additional
constraint M makes sure that the variables remain unmodified for that step.
To guide the solver to only consider projections on F , we add a constraint CF .
Setting CF to true results in the solver considering every possible path. To
encode all possible projections on set F , we obtain the following formula:

Ψ := I ∧M ∧ CF ∧
k−1∧
i=0

∧
l∈L

T il

Transition Encoding. For each instruction l ∈ L, we add an instruction con-
straint li that represents the changes that occur when l is executed at step i. We
introduce variables seli that encode the instruction choice in every step: seli = l
iff instruction l was selected for execution in step i. Not that, due to process
sequentiality, the selection of an instruction l implies the execution of a corre-
sponding unique transition t ∈ trans(l) given by the variables vi. To describe
the selection of instructions at different steps we make use of the seli variables
and the instruction constraints:

T il := seli = l =⇒ li

If an instruction l is selected for execution at step i, then li should hold, i.e, the
variables should be updated accordingly. Otherwise, if no instruction is selected
at step i, every variable in the system remains unchanged:

M :=
k−1∧
i=0

( ∧
l∈L

seli 6= l =⇒
∧
v∈V

vi+1 = vi
)

If the depth value k is larger than the length of the path satisfying Ψ , some
steps are filled with “dummy” instructions3. In this case, the solver will spend
some time trying to figure out in which position to place the dummy instructions.
We found it more efficient to force the solver to place those instructions at the
beginning of the path such that there are no gaps, i.e., no dummy instruction is
chosen after a “non-dummy” instruction has been selected. We do this by adding
a formula that further constrains the assignment of the seli variables. We omit
the formula as it is an optimization not necessary for the correctness of Ψ .

3 More precisely, the solver will assign a value to seli which does not correspond to
any of the instructions.



11

Projection Encoding. We describe how the projection constraint CF is gen-
erated for a set of variables F . The dependency relation D is encoded using
variables dij which are true iff there is a transition t1 is executed at step i and
a transition t2 executed at j such that (t1, t2) ∈ D. Specifically, we have:

dij :=
∨
t1∈T

(
seli = id(t1) ∧

∨
t2∈{t|(t1,t)∈D}

selj = id(t2)

)
CF directly translates the definition of projections (Definition 2):

CF :=
k−1∧
i=0

( ∨
t∈{t′|w(t′)∩F 6=∅}

seli = id(t) ∨
k−1∨
j=i+1

dij ∨
∧
l∈L

seli 6= l

)
Informally, for every selected transition ti either it writes into a variable

included in F or there is a transition tj in the projection after it such that
(ti, tj) ∈ D. The last clause allows dummy transitions to be selected without
rendering the formula unsatisfiable.

Examples. We show how we encode instructions based on the examples of
simple assignments and if statements in our process-based concurrent system
model. To model process sequentiality, we define program counter variables pcp ∈
V for every process p.

Let l be an assignment x := e at a process moving the program counter from
loc1 to loc2, then li :=

pcip = loc1 ∧ pci+1
p = loc2 ∧ xi+1 = ei ∧

∧
v∈V \{x,pcp}

vi+1 = vi

Considering an if statement if(c) that moves the program counter from loc1
to location loc2 if c evaluates to true and to loc3 otherwise, we have ti :=

pcip = loc1 ∧
(
(c ∧ pci+1

p = loc2) ∨ (¬c ∧ pci+1
p = loc3)

)
∧

∧
v∈V \{pcp}

vi+1 = vi

Dependency Encoding. To illustrate how the dependency relation is en-
coded, we consider the motivating example in Section 2. Because of conflicting
read/write accesses, we have three potential dependencies: l3 depends on l1, l4
depends on l3 and l3 depends on l2. The first two dependencies hold for any
two transitions associated with the instructions. For instance, every transition
corresponding to l3 depends on every transition associated with l1. On the other
hand, the third dependency holds only if a = b. To encode dij , we must consider
every possible dependency. First, there is a dependency if seli = l3 and selj = l4
or seli = l1 and selj = l3. For the dependency between l3 and l2, we must include
the condition a = b. Concretely, the following should hold: seli = l2, bi = aj

and selj = l3. In summary, to have a dependency between step i and j the the
following formula should hold:

dij := (seli = l1 ∧ selj = l3) ∨ (seli = l3 ∧ selj = l4) ∨ (seli = l2 ∧ (bi =
aj ∧ selj = l3))

The size of a dependency formula depends on the number of potentially depen-
dent instructions and not on the transitions.



12

Implementation. We implemented PBMC using the above encoding in the
Python language. The prototype is based on the Z3 SMT solver and makes use
of its Python API [3]. We developed a simplified language that provides basic
programming constructs such as assignments, if statements and while loops.
The tool supports boolean and integer variables and arrays through the efficient
implementation of their respective theories in Z3. Every program contains a
header with declarations of variables, the number of processes in the program,
an optional initial state assignment and a list of properties to be verified. The
body of the program lists the instructions of every process separately in the style
of the example shown in Figure 1a.

We now explain the workflow of PBMC. First, the program is parsed and
per instruction read/write summaries are created. For instructions accessing an
integer or boolean variables the read/write sets are the same for every match-
ing transition. In the case of instructions involving arrays, we also take note
of the accessed index. Based on the gathered summaries, the dependencies are
inferred. For every two instructions l1, l2, we add a dependency for the corre-
sponding transitions if l1 writes to a variable v that l2 reads from. If v is an
array, we add the condition that the indexes are equal. Next, the tool translates
the parsed program into a Z3 formula as previously shown. Subsequently, the
found dependencies are used to construct the projection constraints which are
added to the formula along with the negated property to be checked and the
optional initial state formula. Then, the solver is called to check the satisfiabil-
ity of the whole formula. In the last step, the output of the solver is interpreted
and a counter example path, if existing, is reconstructed. The returned path is
a projection that leads to a state where the property is violated. The tool can
be started with parameters to set up the length of paths to be considered and
whether projection should be applied.

6 Experiments and Evaluation

In this section, we present preliminary experiments and evaluation of PBMC.
We challenge our approach by choosing four benchmarks where static program
slicing would return a mere copy of the program, and therefore be ineffective, to
demonstrate the potential of using projections in program verification.

Next, we present the used benchmarks:

– Litmus Tests (Litmus): In our first benchmark, we generate random in-
structions accessing shared and local variables. The property we check in
this example is whether variables assume certain values. For this case, we
use 5 configurations ranging from 4 to 8 processes.

– Indexer: Our second benchmark is the indexer program taken from [15].
In this program, a shared hash table is accessed concurrently by different
processes. Every process attempts to insert data into a location of the hash
table. If it is already occupied, the process calculates a new hash value and
retries again. This operation is repeated until an empty location is found.
In the indexer program, dependencies between variable accesses result from



13

Fig. 2: Comparing the total verification time of BMC and PBMC with different
path depths for Litmus 5 and an unsatisfiable property.

writing to and reading from the same hash table location. The property
we consider for this example is whether a hash value collisions can occur,
which is known to be not the case for the configurations we consider in our
setup [18]. We use two configurations with 2 and 4 processes.

– File System (FSys): This example was also adapted from [15]. In this
benchmark, files are associated with inode data structures which point to
memory locations where informations about files are stored. For every mem-
ory location there is a busy bit indicating whether it has been allocated to
an inode. Each inode and busy bit is guarded by a distinct lock to avoid race
conditions. When a process picks an inode and no memory was yet allocated
for it, it tries to allocate a free memory location. Here dependencies are hard
to detect statically because it is not clear in advance in which order inodes
will be assigned by the processes. We check for buffer overflow errors in this
benchmark and use one configuration which consist of 5 processes.

– Dining Philosophers (DPhil): We implemented the dining philosophers
algorithm in our prototype language. The version we use is deadlock and
livelock free. While every philosopher (process) maintains a local state, they
share an array of chopsticks. To check for the availability of chopsticks,
philosophers access the shared array. For simplicity, since collisions can only
occur between neighboring processes, we ignore dependencies involving non-
neighboring processes. A mutex is used to guarantee atomicity of operations
on the shared array elements. The property we are interested in is whether
two neighbor philosophers can be eating at the same time. To challenge
our tool we inject a bug in the program and evaluate its capacity of finding
counter example paths. The injected bug misuses the shared mutex and thus
violates the mutual exclusion property. We set the unrolling depth large
enough such that the counter example can be found. For this example we
use seven different configurations ranging from 5 to 15 processes.



14

Configuration CPU Time (s)
time red.

Name Depth Prop.
BMC PBMC

Solv. Total Solv. Total

Indexer 2 10 UNSAT 19.531 20.116 5.088 5.773 71.30%

Indexer 4 15 UNSAT 15979.298 15981.531 5881.442 5884.755 63.18%

FSys 5 30 UNSAT 37.058 47.376 1.825 58.139 —

FSys 5 60 UNSAT 206.297 227.427 14.879 227.942 —

FSys 5 70 UNSAT 627.547 651.991 40.469 325.797 50%

FSys 5 90 UNSAT 949.518 981.573 10.478 467.558 52.37%

FSys 5 100 UNSAT 735.898 771.039 51.768 617.664 19.90%

DPhil 5 10 SAT 5.921 8.830 7.671 12.665 —

DPhil 7 10 SAT 14.391 19.162 14.945 22.585 —

DPhil 10 10 SAT 51.229 59.460 39.607 52.139 12.31%

DPhil 12 10 SAT 77.121 88.028 66.544 82.618 6.14%

DPhil 15 10 SAT 219.824 235.581 182.689 204.752 13.08%

Litmus 4 20 SAT 10.649 11.348 13.988 15.819 —

Litmus 5 20 SAT 605.336 606.475 654.573 657.102 —

Litmus 6 20 SAT 3888.401 3889.363 908.573 911.550 76.56

Litmus 7 20 SAT 2611.024 2612.562 349.708 353.544 86.46%

Litmus 8 20 SAT >2h >2h 59.738 64.031 Infeasible w/o proj.

Table 1: Comparison of BMC and PBMC in different settings.

For every example we use two setups: BMC and PBMC. In general, we ob-
served a trade-off between the complexity of the generated constraints and the
amount of reduction achieved during the actual solving. In Figure 2, we show the
amount of time spent by PBMC and BMC to verify an unsatisfiable property for
the litmus test example with 5 processes with different path depths. The fluc-
tuations of the performance are explained by the fact that SMT solvers make
extensive use of heuristics to explore the search space. For small path depth
values, the overhead of creating the constraints and handling them by the SMT
solver outperforms the reduction that is achieved by using PBMC. Only after
reaching a threshold path depth of 20, we observed a clear improvement over
BMC. Since the creation of the constraints can be done separately, one can effi-
ciently reduce that threshold by parallelizing the constraint generation process.
Moreover, after reaching depth 27 BMC runs out of memory (after two hours)
while PBMC finishes the verification within approximately 13 minutes.

In Table 1, we measure the improvement brought by our approach over BMC
in terms of CPU time in different setups. In the name column, we append the
number of processes to the name of the used benchmark. For every experiment
we specify the unrolling depth used and whether the property was satisfiable.
For satisfiable properties we write SAT and UNSAT otherwise. The solving time
column shows the amount of time spent by the solver to return an answer exclud-
ing the initial analysis and formula building steps. On the other hand, total time
includes all the steps. In the reduction column, we give the reduction percentage,



15

in terms of total time, of PBMC in comparison with BMC. From comparing the
total and solving times in the table, one can see that as the program complex-
ity increases, the time required for the two initial steps in PBMC’s workflow
becomes insignificant. This means that for small configurations PBMC brings
no improvement in the performance, as the total time is dominated by the time
spent on analyzing the program and constructing the formula. On the other
hand, PBMC clearly outperforms BMC for larger configurations due to substan-
tial reductions in solving time which becomes more significant. In summary, the
results in the table confirms the global trend that was shown in Figure 2. The
relatively small reduction in the dining philosopher example can be explained by
the extensive use of the globally shared mutex. In that example, all the transi-
tions depend on the ones manipulating the mutex. This results in a large number
of dependencies involving all the variables, including those in the property. In
general, the larger the setting is with fewer dependencies involving the variables
in the property of interest, the better is the reduction of PBMC.

7 Conclusion

We have presented projections, a dynamic slicing notion that can be combined
with BMC and proved its correctness. Also, we have implemented PBMC, a
bounded model checker that incorporates projections using a novel BMC en-
coding. By augmenting the BMC formula with projections, PBMC restrains the
search space of the model checker and improves on the efficiency over traditional
BMC. Our evaluation with examples of concurrent programs has shown major
reductions in terms of verification time compared to traditional BMC encoding,
even in cases where static slicing proves ineffective.

References

1. Esbmc. http://www.esbmc.org/. Accessed: 2015-04-10.
2. Llbmc. http://llbmc.org/. Accessed: 2015-04-10.
3. Z3. http://z3.codeplex.com/. Accessed: 2015-04-10.
4. P. Abdulla, S. Aronis, B. Jonsson, and K. Sagonas. Optimal dynamic partial order

reduction. ACM SIGPLAN Notices, 49(1):373–384, 2014.
5. H. Agrawal and J. R. Horgan. Dynamic program slicing. In ACM SIGPLAN

Notices, volume 25, pages 246–256. ACM, 1990.
6. J. Alglave, D. Kroening, and M. Tautschnig. Partial orders for efficient bounded

model checking of concurrent software. In CAV’13, pages 141–157. Springer, 2013.
7. D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The software model

checker blast. International Journal on Software Tools for Technology Transfer,
9(5-6):505–525, 2007.

8. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. Springer, 1999.

9. P. Bokor, J. Kinder, M. Serafini, and N. Suri. Supporting domain-specific state
space reductions through local partial-order reduction. In ASE’11, pages 113–122.
IEEE Computer Society, 2011.



16

10. S. Burckhardt, R. Alur, and M. M. Martin. Checkfence: checking consistency of
concurrent data types on relaxed memory models. In ACM SIGPLAN Notices,
volume 42, pages 12–21. ACM, 2007.

11. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In CAV’00, pages 154–169. Springer, 2000.

12. E. Clarke, D. Kroening, and F. Lerda. A tool for checking ansi-c programs. In
TACAS’04, pages 168–176. Springer, 2004.

13. E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT press, 1999.
14. M. B. Dwyer, J. Hatcliff, M. Hoosier, V. Ranganath, T. Wallentine, et al. Evalu-

ating the effectiveness of slicing for model reduction of concurrent object-oriented
programs. In TACAS’06, pages 73–89. Springer, 2006.

15. C. Flanagan and P. Godefroid. Dynamic partial-order reduction for model checking
software. In ACM Sigplan Notices, volume 40, pages 110–121. ACM, 2005.

16. M. Ganai and A. Gupta. Tunneling and slicing: towards scalable bmc. In DAC’08,
pages 137–142. IEEE, 2008.

17. P. Godefroid, J. van Leeuwen, J. Hartmanis, G. Goos, and P. Wolper. Partial-
order methods for the verification of concurrent systems: an approach to the state-
explosion problem, volume 1032. Springer Heidelberg, 1996.

18. G. Gueta, C. Flanagan, E. Yahav, and M. Sagiv. Cartesian partial-order reduction.
Springer, 2007.

19. R. Jhala and R. Majumdar. Path slicing. In ACM SIGPLAN Notices, volume 40,
pages 38–47. ACM, 2005.

20. V. Kahlon, C. Wang, and A. Gupta. Monotonic partial order reduction: An optimal
symbolic partial order reduction technique. In CAV’09, pages 398–413. Springer,
2009.

21. J. Krinke. Advanced slicing of sequential and concurrent programs. In Software
Maintenance, 2004. Proceedings. 20th IEEE International Conference on, pages
464–468. IEEE, 2004.

22. A. Lal, S. Qadeer, and S. K. Lahiri. A solver for reachability modulo theories. In
CAV’12, pages 427–443. Springer, 2012.

23. A. Mazurkiewicz. Trace theory. In Petri nets: applications and relationships to
other models of concurrency, pages 278–324. Springer, 1987.

24. K. L. McMillan. Lazy abstraction with interpolants. In CAV’06, pages 123–136.
Springer, 2006.

25. C. S. Păsăreanu, W. Visser, D. Bushnell, J. Geldenhuys, P. Mehlitz, and N. Rungta.
Symbolic pathfinder: integrating symbolic execution with model checking for java
bytecode analysis. Automated Software Engineering, 20(3):391–425, 2013.

26. V. P. Ranganath and J. Hatcliff. Slicing concurrent java programs using indus
and kaveri. International Journal on Software Tools for Technology Transfer, 9(5-
6):489–504, 2007.

27. N. Sinha and C. Wang. On interference abstractions. In ACM SIGPLAN Notices,
volume 46, pages 423–434. ACM, 2011.

28. A. Valmari. The state explosion problem. In Lectures on Petri nets I: Basic models,
pages 429–528. Springer, 1998.

29. B. Wachter, D. Kroening, and J. Ouaknine. Verifying multi-threaded software with
impact. In FMCAD’13, pages 210–217. IEEE, 2013.

30. M. Weiser. Program slicing. In ICSE’81, pages 439–449. IEEE Press, 1981.


