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Abstract—Multiple databases and repositories exist for collect-
ing known vulnerabilities for different systems and on different
levels. However, it is not unusual that extensive time elapses, in
some cases more than a year, in order to collect all information
needed to perform/publish vulnerability scoring calculations for
security management groups to assess and prioritize vulnera-
bilities for remediation. Scoring a vulnerability also requires
broad knowledge about its characteristics, which is not always
provided. As an alternative, this paper targets the quantitative
understanding of security vulnerabilities in the context of insuffi-
cient vulnerability information. We propose a novel approach for
the predictive assessment of security vulnerabilities, taking into
consideration the relevant scenarios, e.g., zero day vulnerabilities,
for which there is limited or no information to perform a
typical vulnerability scoring. We propose a new analytical model,
the Vulnerability Assessment Model (VAM), which is inspired
by the Linear Discriminant Analysis and uses publicly avail-
able vulnerability databases such as the National Vulnerability
Database (NVD) as a training data set. To demonstrate the
applicability of our approach, we have developed a publicly
available web application, the VAM Calculator. The experimental
results obtained using real-world vulnerability data from the
three most widely used Internet browsers show that by reducing
the amount of required vulnerability information by around 50%,
we can maintain the misclassification rate at approximately 5%.

Index Terms—CVSS, LDA, security quantification, vulnerabil-
ity assessment.

I. INTRODUCTION

The ability to accurately and quantitatively measure the
criticality of vulnerabilities in a meaningful and repeatable
manner allows organizations to understand their infrastructure
and focus on areas where security investments can be most
effective in lowering the overall risk for the business [1].
Consequently, vulnerability scoring constitutes the process
for describing the risk that a specific vulnerability presents;
and quantifying the criticality of vulnerabilities forms a key
foundation for information security research and practice.
However, in most of the cases, there is a paucity of vulnera-
bility information needed to perform a meaningful criticality
assessment.

The existing approaches, e.g., [2], [3], [4] for vulnera-
bility management do not provide sufficient support in the
case of insufficient information availability. The Common
Vulnerability Scoring System (CVSS [5]) is a widely used
scoring system (e.g., adopted by the U.S. National Vulner-
ability Database – NVD – [6]) that in order to develop an
accurate quantitative vulnerability assessment requires (i) a
generalized information model describing the risk associated

with a vulnerability and, (ii) expert knowledge to evaluate all
six parameters characterizing that vulnerability. Unfortunately,
practical experience with CVSS shows that there is a paucity
of vulnerability information needed to perform a meaningful
criticality assessment. Actually, several months might elapse
after the discovery of a vulnerability to get its detailed reports
and scores published [7]. This is the case for example with
zero-day vulnerabilities, which constitute a serious threat for
organizations. They occur when a security flaw in code is
discovered and code exploiting the flaw appears before a fix
or patch is available. Additional information security measures
to perform the vulnerability assessment in these cases of
insufficient information availability should be taken.

The lack of information to assess a vulnerability, directly af-
fects risk management processes of organizations and software
vendors that need to prioritize their efforts/investments in order
to mitigate the problem. It is worth noticing that assessing a
vulnerability in the case of insufficient information is useful
for CVSS users, but also for other established assessment
schemes such as [2], [3] and [4].

In this paper, we design and evaluate the Vulnerability
Assessment Model (VAM) based on the Linear Discriminant
Analysis (LDA). We show that LDA, a well established
statistical method, is suitable to compute, with a high degree
of confidence, a vulnerability’s score based on its character-
istics, which are derived from publicly available vulnerability
databases [6], [8] or information system vendors.

The key advantages of applying LDA on vulnerabilities are
(a) to predict the severity of a new vulnerability even if all
required information is not available, and (b) to classify and
to manage the resulting risk (e.g., by using a less vulnerable
software) before the vulnerability scores are published.
The main objective of this work is not to propose another
vulnerability scoring system, but we aim to empower non-
expert users and to enhance existing scoring systems like
CVSS with the techniques to assess vulnerabilities in a timely
and confident manner, especially in the case of insufficient
vulnerability information.
Paper Contributions: Our key contribution is a novel vulnera-
bility score prediction model that delivers a quantitative score
for evaluating the criticality of security vulnerabilities, in the
context of insufficient information availability.
- We propose VAM, an LDA-based model that provides
accurate predictive scores with less input information and gives
confidence estimates on the predicted scores, reducing the



dependency on human expert knowledge.
- A publicly available 1 implementation of the model, the
VAM Calculator, is presented for tangible applicability of our
approach. The empirical validation of our approach is demon-
strated by applying it to real-world vulnerability data from
the National Vulnerability Database (NVD) [6] to show the
accuracy and confidence levels of the calculated vulnerability
scores.
- The quantitative impact of each vulnerability characteristic
used to calculate the score on the quality of the results is
studied and presented. We show that with less information it
is possible to predict the corresponding score within specific
confidence levels.
Paper Organization: Section II discusses contemporary efforts
on vulnerability scoring and their limitations. Our system
model and basic terminology along with a brief introduction
to LDA appear in Section III. In Section IV and V, we present
our LDA-based VAM, and detail our approach to predict
and compute a vulnerability score. The implementation (VAM
Calculator) and empirical validation appear in Section VI.

II. RELATED WORK

There exist varied academic and applied approaches to
manage and assess vulnerabilities. Projects described in [2],
[3], or [4] define a list of detected vulnerabilities, typically
ranked using qualitative assessment such as low, medium,
high. As these approaches are qualitative in nature, they do
not support the differentiation between vulnerabilities of the
same class of severity. Other efforts [5], [9] propose quan-
titative metrics for calculating scores reflecting the severity
of vulnerabilities based on published vulnerability reports.
They introduce CVSS, which is a vulnerability scoring system
to provide a standardized method for rating vulnerabilities.
Furthermore, the design decisions leading to the weights and
mappings used to calculate CVSS scores are discussed in [10].
Acknowledging the merits of these efforts, there is still an im-
portant open challenge of generating acceptable vulnerability
scores in the absence or paucity of published vulnerability
reports, e.g. in the case of zero-day vulnerabilities. Our work
addresses this specific problem and proposes an approach to
calculate vulnerability scores in the context of insufficient
information availability. In the next section we introduce our
system model as well as some basics of the terminology used
throughout the paper.

III. PRELIMINARIES AND BASIC TERMINOLOGY

First, we present our system model and discuss the re-
quirements on quantitative vulnerability criticality assessment.
Then, we briefly present the basics of the LDA, which consti-
tutes the basis for our VAM.

A. System Model

We consider software systems that support the business
processes inside public and (or) private organizations. The
organizations’ assets need to be protected from attackers

1http://quant-security.org
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Fig. 1. System Model

seeking to exploit the software vulnerabilities. ISO 17799
defines a vulnerability as a “weakness of an asset or group
of assets that can be exploited by one or more threats” [11].
In this paper, we consider only software vulnerabilities, but we
are planning to extend this concept to hardware, cross systems
and composed vulnerabilities.

Figure 1 shows the different elements related to our system
model. We assume the availability of experts (in general devel-
opers or system administrators) who can estimate the values of
different basic characteristics/properties CH of a vulnerability
v such as the impact on availability, confidentiality, and
integrity, with high confidence. The considered vulnerabilities
are weaknesses that can be exploited by attackers to compro-
mise the target system. Though vulnerabilities imply deliberate
exploitation, our approach can be easily used to quantify the
criticality of vulnerabilities to accidental failures, provided a
data set for dependability weaknesses exists analogous to the
vulnerability data available in open vulnerability databases (cf.
Section II). As fine-granular values of indicators and measures
are often difficult to use/understand by managers and average
system users, it is common to aggregate them quantitatively
to a holistic score, and then to automatically map the score
to n classes reflecting the criticality level of the considered
vulnerability. To this end, we define risk classes r, in which
each vulnerability should be classified. The number of defined
classes are changeable depending on the model requirements.
In order to differentiate between the considered classes, one
usually defines threshold values that constitute the boundaries
between the risk classes r. Without loss of generality, we
propose to use an intuitive scale of three risk classes, i.e., Low,
Medium, and High. In Section V we provide a solution on how
to calculate the threshold values to delimit these classes.

B. Design Requirements

Based on the analysis of the state of the art (cf. Section
II), the requirements for a predictive vulnerability assessment
solution are the following:

• R1: The vulnerability assessment should predict and deliver the
score for each vulnerability even if the available information
about that vulnerability is insufficient, i.e., it is not possible to
assess all vulnerability characteristics CH.



• R2: The assessment model should support the quantitative
and automatic aggregation of the low-level criticality indica-
tors/measures into one high level criticality measure.

• R3: The assessment outcome should be easy to use and under-
stand by users, developers and managers.

• R4: The underlying vulnerability assessment model should be
system-agnostic.

• R5: The results of the vulnerability assessment should be repet-
itive, i.e., one should get the same result upon each assessment
of the same vulnerability.

From these requirements, we propose and apply a method-
ology that takes an input a subset of features CH which
characterize different classes of vulnerabilities, and delivers
an estimated score for a new vulnerability as output. Intu-
itively, the accuracy of obtained predictive scores should be
proportional to the number of CH taken into account for the
assessment. In other words, if all CH are considered by the
predictive model, then a score equal to the actual CVSS should
be obtained. In the next subsection we investigate LDA, a
generic statistical technique for the classification of objects.
Our hypothesis is that insight into security measurements
could be gained by applying analytical techniques to historical
security vulnerability data (e.g., from NVD) in order to iden-
tify trends and correlations utilizing LDA, to discover unex-
pected relationships, and to reveal other predictive interactions
that may exist.

C. Basics of the Linear Discriminant Analysis

In the following, we briefly present the background of
LDA required to comprehend our approach. For a detailed
description of the LDA approach, we refer to [12]. LDA
is a multivariate method used in statistics to differentiate
between two or more groups with respect to some specific
variables. The objective of this method is to classify objects
(vulnerabilities in our case) into one specific group (i.e., risk
class) based on a set of variables, which describe the objects
(i.e., CH). This property of LDA fulfills our R4.

The LDA process usually comprises 5 steps that we briefly
describe in the following:
- Step 1: Definition of Groups G: The objective is to clearly
delineate the groups from each other with respect to the
variables. This assumes that the variables that are the most
appropriate to separate those groups are well determined.
The number of groups G should not exceed the number of
the object variables. In addition, for comparability reasons,
the groups should have the same covariance structure.
Furthermore, enough training data (objects) should be
available for each group (minimum is twice the number of
the variables) [13].
- Step 2: Definition of Discriminating Function: The generic
discriminant function is used to predict the group of a new
observation as:

z(x1,x2, ...,xn) =
n

∑
i=0

ai ∗ xi (1)

where z is the so-called Discriminant Score (z-score), ai are
the Discriminant Coefficients (weights) for each characteristic,
and xi the estimated values of the characteristics (e.g., elements
of the set CH). This property of LDA fulfills R2, and R5 as
the final result does not change over time. More details on
calculating these parameters is presented in Section V-C.
- Step 3: Determination of the Discriminating Function Pa-
rameters: The discriminating function is formed such that the
separation between the groups is maximized, and the distance
within each group is minimized.
- Step 4: Classification into Groups G: We use the classifi-
cation procedure from Fisher [14]. The classification is a 1-1
mapping, i.e., no new observation can be mapped to two or
more different elements of G. This LDA property fulfills R3
as the classification into groups (e.g., low, medium, high) is
intuitively comprehensible for human users.
- Step 5: Validation of Classification: To estimate the quality
of classification, the probability of misclassification or error
rate is used [12].
With LDA we investigate the characteristics of each vulner-
ability class and the mapping criteria for class membership
assignments. The objective is to use the discriminant function
in order to categorize a new vulnerability, for which we do
not know the criticality score neither the class, based on only
a subset of its characteristics. For a new vulnerability v, the
z-score is a quantitative value used to classify v into one of
the defined groups G. This property makes LDA suitable to
be used in our vulnerability score prediction process. Even if
not all the values CH are available, a vulnerability score z for
v can be predicted using LDA (fulfills R1) as described in the
following section.

IV. VULNERABILITY ASSESSMENT TECHNIQUE

We present a brief overview of our proposed approach for
model-based predictive assessment of the severity of vulnera-
bilities. Furthermore, we detail the proposed model’s lifecycle,
i.e., model building, use, and recalibration.

A. Overview of our Approach

VAM considers the specific characteristics (elements of
CH) relevant to a vulnerability, and calculates a quantitative
predictive score z that can give accurate information about
the associated risk class r. The model describes how to
calculate a numerical score for the corresponding vulnerability
by substituting each one of its characteristics and associated
weights into a discriminating function. The resulting score z
quantifies the risk level of the vulnerability v being studied.
VAM also classifies vulnerabilities according to their score
into risk categories r in order to make the numeric score z
intuitively comprehensible for human users, which yields a
non-fuzzy classification, i.e., the metric space is partitioned
by the risk categories.

Typically, each model should first be built, and then main-
tained/recalibrated as necessary. Accordingly, we structure the
remainder of this section for detailing VAM’s model building,
use and recalibration operations.



B. VAM - Model Building

Figure 2 depicts our 7-step vulnerability assessment model
including the steps of the LDA (grey shaded in Figure 2)
and extended by Step 2 and Step 7 in order to (a) address
the model variable definition’s phase, which is dependent on
the LDA application area, and (b) validate the results and
recalibrate the model coefficients if necessary. The VAM
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Fig. 2. VAM-based Vulnerability Assessment - LDA-related steps are grey
shaded

building phase covers the first 4 steps of VAM (cf. Figure 2),
which are the following:
- Step 1 - Definition of Risk Groups r: The classes to be
discriminated can be defined by some preceding analysis of
the existing vulnerabilities. It is also possible to utilize the
classes published by open vulnerability databases such as
the National Vulnerability Database [6] and the Open Source
Vulnerability Database [8], i.e., low, medium, and high.
- Step 2 - Definition of Vulnerability Characteristics: The
set of characteristics CH to take into account for the model
is defined. As described in our vulnerability model, we
consider a generic vulnerability template that fits to most
known vulnerability databases and defines a wide range of
characteristics (e.g., CVSS characteristics [5]).
- Step 3 - Selection of the Observations: In order to train
VAM, we consider a set of vulnerabilities representing the
totality of an existing vulnerability collection, e.g., from a
publicly available vulnerability database such as the NVD.

- Step 4 - Estimation of the Vulnerability Assessment
Function: The LDA prescribes to use the defined groups and
variables along with the randomly selected set of observations
in order to estimate the vulnerability assessment function
presented in Eq. 1.

C. VAM - Model Use: Predictive Scoring of a New Vulnera-
bility

After building the VAM model, we can use it to score and
classify new vulnerabilities, e.g., zero-days even in the absence
of some of its characteristics (CH). VAM can be used to label
a new vulnerability v with its score z and then classifies v into
one of the predefined risk classes (typically Low, Medium,
High). Unlike the model building, assessing the risk of a new
vulnerability requires only two key steps of the VAM model
(cf. Figure 2):
- Step 5 - Calculation of the Vulnerability Assessment Score:
The vulnerability assessment function is utilized for cal-
culating the vulnerability assessment score (z-score). After
calculating this quantitative score for a new vulnerability, we
are able to determine the group that this vulnerability belongs
to.
- Step 6 - Classification into Groups: The function presented
in Eq. 1 is also utilized to assign a new vulnerability to one
of the pre-defined classification groups. Groups are defined
through the borders/thresholds separating them. The proposed
model uses this function to calculate a set of threshold values,
which are required to separate the criticality groups from each
other.
In order to compute the risk of a new vulnerability v, we utilize
the automated generation of z for v provided that the values
for a subset of the set of characteristics CH can be estimated
by an expert. Being a z-score, the VAM-based score has no
specific units of measure (see Eq. 1).

D. VAM - Model Validation/Recalibration

In Step 7, the z-scores calculated for the training set of
known vulnerabilities are compared with the actual results
from published reports about the same vulnerabilities. If the
z-scores are not satisfactory, then further training sets of
vulnerabilities are needed in order to enhance the accuracy
of the results. In other words, a model becomes stale if Steps
2 and 4 are no longer valid (see Figure 2). Model recalibration
implies that Steps 2 and 4 have to be revised as done in the
model building phase.

V. CASE STUDY: VAM MODEL BUILDING BASED ON NVD

In order to validate the proposed vulnerability score pre-
diction methodology, in the following we apply VAM steps
depicted in Figure 2 utilizing the vulnerability data made
available by the NVD, which uses CVSS scores [5]. For Step
1 we adopt the widely used risk classification (Low, Medium
and High), which is also used by CVSS, so that we have a
common basis for comparison.



A. Step 2 - Vulnerability Model

We follow a generalized vulnerability model in the sense
that we consider the existing approaches (see Section II)
and utilize the NVD terminology. Each vulnerability v is
associated with a unique identifier (e.g., CVE-2012-1234), a
text describing the actual vulnerability (incl. affected software
products), and a set of characteristics CH, where each element
can have a value. The expert knowledge is needed here,
especially in defining the different values for each element
of CH from a selection list. We utilize the following basic
characteristics (elements of CH), as used by the CVSS:

• Access Vector AV : Reflects how the vulnerability could
be exploited.

• Access Complexity AC: Measures how complex it is for
an attacker to exploit the existing vulnerability.

• Authentication Au: Reflects the level of identity verifica-
tion prior to being granted access to the system.

• Confidentiality Impact (or Loss) C: If the vulnerability is
successfully exploited, which impact has this exploitation
on the data confidentiality (assets).

• Integrity Impact (or Loss) I: If the vulnerability is suc-
cessfully exploited, which impact has this exploitation on
the data integrity.

• Availability Impact (or Loss) A: If the vulnerability is
successfully exploited, which impact has this exploitation
on the availability.

B. Step 3 - Selection of Observations

In order to build the model and set the coefficients of the
calculating function, we need a set of observations (see Step
3 in Figure 2), which are vulnerabilities with well known CH
and risk levels. We consider the vulnerabilities publicly avail-
able on the National Vulnerability Database along with their
respective CVSS scores. We follow an exhaustive approach
in the sense that we consider, as a global training data set,
all existing NVD vulnerability entries (56639 at the time of
writing this paper) in the process of training the model and
calculating the coefficients of the z−function.

C. Step 4 - Vulnerability Model Calibration

The objective is to estimate the values of a set of char-
acteristics (parameters) of a specific vulnerability. In order
to set the parameters of the model (configure the model),
a set of vulnerabilities with known scores is required. A
weighing (quantification) of the parameters is also needed.
Each element of CH will be denoted as an ordered set of
values, where each value represents the risk level associated
with that element. During the calculation process, these quali-
tative values (e.g., no, partial, complete impact) are mapped to
quantitative values, e.g., ( 1

3 ; 2
3 ;1) as used in this paper. For the

characteristics defined in our vulnerability model, the resulting
ordered sets for the qualitative values are shown below:

Access Vector AV = { l < ln < en } where:
- l = Local, a local access means that the vulnerability is
exploitable if the attacker has physical access to the system or a
local account.
- ln = Local Network, requires that the attacker has access to
either the broadcast or collision domain of the vulnerable system.
- en = External Network, exploitable with network access.
Access Complexity AC = { h < m < l } where:
- h = High, specialized access conditions exist.
- m = Medium, the access conditions are less specialized.
- l = Low, specialized access conditions do not exist.
Authentication Au = { mi < si < n } where:
- mi = Multiple instances.
- si = Simple instance.
- n = None.
Confidentiality Impact C = { ni < p < c } where:
- ni = No Impact.
- p = Partial Impact.
- c = Complete.
Integrity Impact I = { ni < p < c } where:
- ni = No Impact.
- p = Partial Impact.
- c = Complete.
Availability Impact A = { ni < p < c } where:
- ni = No Impact.
- p = Partial Impact.
- c = Complete.

D. Step 5 - Calculating the Vulnerability Criticality Function
The vulnerability criticality function is utilized to calculate

the numeric z− score (cf. Eq. 1) of a new vulnerability. It is
computed based on the assigned values for the characteristic
(sub)set CH of the vulnerability under assessment, just as
presented in Section V-C. For the vulnerability criticality
function defined in Eq. 1, a1, a2,..., an are constants and
consider the linear combination of the elements of the vector
x from the discriminant function presented in Eq. 1.

In order to set the coefficients ai for each characteristic
value, we define the optimization criterion as the separation
between the distributions of the set of observations to be
the ratio of the variance between the classes to the variance
within the classes. Adopting the LDA methodology described
in [12], we calculate first y, which contains the averages of
the characteristics’ values (cf. Section V-C) inside the vector
y for each risk class of the training data set.

y =
(

AV , AC, Au, C, I, A
)

Then we use Fisher’s approach to determine the coefficients
values ai, by defining the covariance matrix in the following
form 2:

S =


a11 a12 ... a1n
a21 a22 ... a2n
... ... ... ...
an1 an2 ... ann


2The interested reader is referred to [14] for further details.



where n is the number of CH elements (6 in our case). Then
we calculate a = S−1(y1− y2), where y1 contains the average
values of CH elements for the first risk class (low/medium),
and y2 for the second one (high/critical), using the training
data set described in Section V-B. The result is the vector a
containing the coefficients ai of the z−function variables:

a =
(

a1, a2, ..., ..., an
)

Applying these coefficients, we get the final discriminating
function (cf. Eq. 1).

E. Step 6 - Classification into Groups

The z−score resulting from applying VAM can be used to:
(a) quantitatively compare two or more new vulnerabilities
with respect to their criticality, and (b) rank a set of new
vulnerabilities in order to prioritize them (on which ones to
focus the efforts first). In order to facilitate the use and the
interpretation of the z−score for users and developers, we
can utilize risk classes reflecting the criticality level of the
new vulnerabilities as introduced in Section IV-A (i.e., Low,
Medium and, High). To classify a new vulnerability v, it is
needed to calculate z and the midpoints, which are the critical
measurement values that are responsible to classify a new
observation (vulnerability) v to one of the risk groups that
we can define. Therefore, a mapping from the NVD reports’
characteristics to the VAM characteristics is required. For
this calibration phase, the average values of high (zhigh) and
low (zlow) risk classes are used to calculate the midpoint, as
shown in Eq. 2:

zmid =
1
2
∗ (zhigh + zlow) (2)

Using the midpoint and the maximum and minimum scores
(zmax, zmin) obtained from calibration calculations, we define
three groups for high, medium and low risk classifications of
vulnerabilities. The boundary between the low and medium
risk class (blow,medium) is shown in Eq. 3:

blow,medium = (zmid− zmin)/2+ zmin (3)

Finally, the boundary bmedium,high between the medium and
high risk is computed as in Eq. 4:

bmedium,high = (zmax− zmid)/2+ zmid (4)

F. Step 7 - Model Validation

In our approach we perform regular updates of the local
vulnerability repository from the NVD, so that the z-function
coefficients vector can be recalculated and updated accordingly
for more accurate vulnerability score predictions. Once VAM
is built, it can be used to predict the z−scores of new
vulnerabilities even in the context of insufficient information
availability, i.e., if not all the values of CH are available or
can be estimated.

G. Example

We consider the zero-day vulnerability CVE-2013-2743,
which was published on the NVD on Apr. 2nd, 2013 and has
no CVSS score at the time of writing this paper. This vulnera-
bility is currently undergoing analysis and not all information
is available. It allows remote attackers to bypass authentication
via a crafted integer in the step parameter for WordPress
plugins. Based on the currently available vulnerability descrip-
tion, we have the following values for the VAM vector y in
this case (AV : en,AC : −,Au : n,C : p, I : p,A : p). Utilizing
the global training data set described in Section V-B and
calculating the result of the z−function using our implemented
VAM tool would give a z−score of 0.81949 (81.95%, high
criticality) with a confidence level 83.85% (calculated based
on historical prediction data). With this predicted score a
sysadmin might be able to take corrective/preventive measures
(e.g., downgrading the software, or even switching to another
vendor), instead of waiting for an official NVD score. In
Section VI we empirically validate our approach using NVD
data and evaluate its results.

VI. PROTOTYPE IMPLEMENTATION AND EMPIRICAL
EVALUATION

To demonstrate the real-world applicability of our approach,
we have implemented VAM Calculator, a publicly available
web application running on a JBoss application server. Figure
3 depicts the architecture and the building blocks of the
VAM Calculator. As mentioned in Section V, our scoring
methodology experiments considered in this section are based
on the NVD terminology and parameters. We compare the
obtained VAM scores to the corresponding CVSS scores, but
in general, and as described in [15], we can use any other
scoring system as a reference for the comparison.

National 
Vulnerability  

Database 
(NVD)

Application Server Databases

Public Vulnerability Database

(Locally stored)

VAM Calculator 

Visualization Tool

VAM Database

VAM Server

User

Fig. 3. VAM Calculator: Building Blocks

A. VAM Calculator

As depicted in Figure 3, our locally stored VAM vulnerabil-
ity database contains a total number of 54161 entries, which
have been downloaded from the NVD, with the following
CVSS-defined criticality categories: Low = 3661, Medium =
25522, High = 24978. One of the basic functionalities of



TABLE I
TRAINING DATA SETS USED IN OUR EXPERIMENTS

Set ID Software Product # of Vulns.
GTDS Global Training Data Set 54161
MFF Mozilla Firefox 754
GC Google Chrome 535
MIE Microsoft Interner Explorer 412

the VAM Calculator is to predict and calculate a vulnera-
bility score. Furthermore, it might be used to calculate a
vulnerability score even using less vulnerability characteristic
values (i.e., CH). The calculated VAM score can be visualized
together with a mapping to the corresponding CVSS scale,
along with the confidence level of the calculated score. For a
good visualization of the level of confidence, charts presenting
the potential deviation of the calculated score to CVSS scores
are visualized.
The user can then compare and evaluate the vulnerability
scores for every possible combination of vulnerability charac-
teristics. The significance of every vulnerability characteristic
compared to the others can be assessed through the calculated
confidence level of each combination. It is also possible to
visualize the best and worst characteristic combinations based
on their confidence levels.
The VAM Calculator described in this section was used to
empirically validate our methodology. The obtained results are
presented next.
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Fig. 4. Firefox: VAM vs. CVSS scores using the CH-Combination (AC,C,I)

B. Experimental Results

We use VAM Calculator to run several experiments of
different natures. We differentiate two types of experiment
campaigns (i) the first is based on our Global Training Data
Set (GTDS), which contains all NVD vulnerability records
independently from the affected software products, and (ii)
three different software-specific training data sets sets (MFF,
GC and MIE, cf. Table 1), which are associated with the three
most widely used Internet browsers, namely Mozilla Firefox
(from ver. 0.1 to ver. 19.0.2), Google Chrome (from ver.
0.1.38.1 to ver. 21.0.1180.57), and Microsoft Internet Explorer
(from ver. 5.01:sp4 to ver. 10). These three browsers are also
within the top 7 software products with the highest number
of disclosed vulnerabilities in the NVD [6] (as of May 31th,
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Fig. 5. Chrome: VAM vs. CVSS scores using the CH-Combination (AC,C,I)

2013). Corresponding to the defined training data sets, we
define evaluation data sets containing (i) 1000 vulnerabilities
independently from the affected software products, and (ii) re-
spectively 100 registered NVD vulnerabilities related to MFF,
GC, and MIE. We calculate VAM scores and compare with
the actual CVSS scores and classifications. VAM accuracy is
assessed through the misclassification rate, which is defined as
the ratio of misclassified vulnerabilities with respect to their
risk classes r. Table II summarizes the obtained results for
the data sets defined in Table VI-A. Our first observation is
that using the product specific training data sets provides more
accurate predictions (lowest misclassification rates) than using
the more general GTDS set. Furthermore, we also investigate
which different subsets of CH provide the most accurate
predictions.

C
V

E
-2

0
1
2
-1

8
7
2

C
V

E
-2

0
1
1
-1

2
5
7

C
V

E
-2

0
1
2
-1

8
8
2

C
V

E
-2

0
1
2
-0

0
1
0

C
V

E
-2

0
1
1
-1

9
9
2

C
V

E
-2

0
0
2
-2

4
3
5

C
V

E
-2

0
1
1
-1

9
6
2

C
V

E
-2

0
1
1
-1

2
4
6

C
V

E
-2

0
1
2
-1

5
4
5

C
V

E
-2

0
1
1
-4

6
8
9

C
V

E
-2

0
1
2
-1

8
7
6

C
V

E
-2

0
1
2
-1

5
2
3

C
V

E
-2

0
1
2
-1

8
8
1

C
V

E
-2

0
1
2
-1

8
7
9

C
V

E
-2

0
1
2
-1

8
7
5

C
V

E
-2

0
1
2
-0

1
7
0

C
V

E
-2

0
1
2
-0

1
7
2

C
V

E
-2

0
1
2
-0

1
5
5

C
V

E
-2

0
1
1
-2

0
0
1

C
V

E
-2

0
1
1
-1

9
9
8

C
V

E
-2

0
1
1
-1

9
9
5

C
V

E
-2

0
1
1
-1

9
9
9

C
V

E
-2

0
1
1
-1

9
6
1

C
V

E
-2

0
1
1
-1

9
6
4

C
V

E
-2

0
1
1
-1

2
6
63

4

5

6

7

8

9

10

S
co

re

Low/Medium Threshold

Medium/High Threshold

VAM

CVSS

Fig. 6. IE: VAM vs. CVSS scores using the CH-Combination (AC,C,A)

For space reasons, we only show the chronologically last
50 registered NVD vulnerabilities and their respective CVSS
scores in ascending order. Figures 4, 5, and 6 depict the
accuracy of VAM results using the 3 vulnerability character-
istics CH, which provide the most accurate score predictions,
i.e., the vector (AC,C,I) for Firefox and Chrome, and the
vector (AC,C,A) for IE. The highest misclassification rate is
5.23%. This means that by reducing the amount of required
vulnerability information (CH values) by 50%, we maintain
the misclassification rate under an acceptable threshold. The
question why some vulnerability characteristic combinations
provide more accurate results than others, depends on how
the overall CVSS base score is calculated. While, it depends



TABLE II
SUMMARY OF THE OBTAINED RESULTS - LEGEND: No. CH: CONSIDERED

NUMBER OF CHARACTERISTICS, Miscl. (specific): MISCLASSIFICATION
RATE USING MFF, GC, AND MIE RESPECTIVELY, Miscl. (GTDS):

MISCLASSIFICATION RATE USING GTDS.

SW Product No. CH Best CH Combinations Miscl. (specific) Miscl. (GTDS)

Firefox

6 (AV,AC,Au,C,I,A) 2.31% 2.87%
5 (AC,Au,C,I,A) 3.63% 4.10%
4 (AC,Au,C,I) 3.86% 6.12%
3 (AC,C,I) 4.71% 7.92%

Chrome

6 (AV,AC,Au,C,I,A) 1.83% 2.35%
5 (AC,Au,C,I,A) 2.43% 2.57%
4 (AC,Au,C,I) 2.98% 3.11%
3 (AC,C,I) 4.89% 6.64%

Internet Explorer

6 (AV,AC,Au,C,I,A) 1.20% 3.65%
5 (AC,Au,C,I,A) 1.34% 4.43%
4 (AC,C,I,A) 3.28% 5.71%
3 (AC,C,A) 5.23% 8.42%

on the weights associated with each characteristic: according
to the CVSS scoring equations [5] the weight of the CVSS
Impact subscores (i.e., C, I, A) is 0.6 while the Exploitability
(AV, AC, Au) is weighed with a coefficient of 0.4. On the
other hand, we observed that CH combinations without the
AV parameter delivered relatively accurate results. The reason
seems to be that in 98% of the considered software-specific
training data sets vulnerabilities, the value given to AV was
exactly the same (i.e., Network), therefore “masquerading” its
impact in calculating the overall CVSS score.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced VAM, a novel vulnera-
bility assessment methodology created to objectively provide
fine-grained quantifications of the risk level associated with a
software vulnerability in the context of insufficient information
availability. In VAM, each vulnerability is characterized by a
set of features that can be quantified in order to represent an
assessment score. VAM proposes the use of a Discriminant
Analysis technique to map this vulnerability assessment score
to a meaningful criticality class (e.g., low, medium and high),
therefore easing the risk management process. One key benefit
of VAM is its ability to predict the score of a new vulnerability
(using a previously trained model), so it might be possible
to calculate the risk associated with vulnerabilities that have
not been scored yet such as zero-day vulnerabilities. Our
experimental results using the NVD data of three widely-
used internet browsers show that the vulnerability assessment
scores obtained with VAM are congruent with those obtained
via CVSS, however VAM’s level of granularity and special
prediction features add an extra value not found in the existing
approaches.

We plan to extend VAM’s functionality in order to (1)
recalibrate and correct the model w.r.t. inaccuracies that might
be discovered during the model use, (2) compose the vul-
nerability assessment scores from different subsystems. The
latter extension is of particular importance to Service Oriented
Architectures and the Cloud. Furthermore, an interesting as-
pect to investigate concerns the training data set. Our belief
is that insight into the nature of historical vulnerability data
could be of interest, to determine the time window to consider
while choosing the training data sets; i.e., sliding the time

window of the chosen data might have different effects on
results accuracy. Finally, both the VAM methodology and the
Discriminant Analysis technique can be further extended to
create a security metrics framework, able to provide assess-
ment scores not only for vulnerabilities but also for security
countermeasures that take into account factors such as the
economic costs of (in)security.
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