
A Detection Mechanism for Internal Attacks on
Pull-based P2P Streaming Systems

Hatem Ismail
DEEDS Group, TU Darmstadt

hayman@deeds.informatik.tu-darmstadt.de

Stefanie Roos
University of Waterloo

stefanie.roos@uwaterloo.ca

Neeraj Suri
DEEDS Group, TU Darmstadt

suri@cs.tu-darmstadt.de

Abstract—Online streaming is a popular service for data-
intensive applications such as video streaming. P2P-based stream-
ing solutions are advocated to help reduce costs for both providers
and users. Yet, involving users over data dissemination entails
security risks including a variety of denial-of-service attacks.
While extensive research exists on mitigating varied attack types,
their effectiveness is limited if the attacker can infer information
about the topology such as the identity of nodes that have direct
connections to the source. The attacker can then leverage the
gained insights to place malicious participants in prominent
positions. By dropping chunks that should be forwarded, the
malicious peers degrade the performance in a stealthy way that
does not raise suspicion.

We first demonstrate the feasibility of conducting such attacks.
Accordingly, we propose a detection mechanism that identifies
the attack and removes potential malicious peers from their
disruptive positions. We ascertain, theoretically and through
simulations, that malicious peers cannot misuse the detection
mechanism to gain influence. Our simulation-based study indi-
cates that the proposed detection mechanism is able to detect
malicious peers with up to 80-90% accuracy while inducing a
small overhead of approximately 8%.

I. INTRODUCTION

Streaming content is an essential component of data-driven
infrastructures [1]. Most streaming applications rely on (monop-
olistic) central providers that have significant computing and
communication resources to distribute high quality of service
content to a large audience in a fast and reliable manner. For the
providers, this entails the use of dedicated resources, involves
performance and scalability issues along with considerations of
handling single point of failures. Distributing content via a Peer-
to-Peer (P2P) network significantly lowers the load that the
provider experiences as the participants relay the downloaded
content to other participants. This eliminates the need that
all participants receive their content directly from the source,
i.e., the provider. Consequentially, P2P streaming becomes
an attractive option for alternative distributed providers and
user-generated content to help reduce data delivery costs and
results in lower rates for customers.

However, achieving high reliability in a P2P overlay and
across a dynamic and heterogeneous group of content distrib-
utors is challenging. In addition to the inherent operational
unreliability of benign participants, attackers such as competi-
tors can infiltrate the set of peers and conduct denial-of-service
attacks. In this manner, malicious participants can interrupt or
delay the distribution of the content with the goal of degrading
the quality of service.

In general, nodes in a P2P streaming system connect to a
small set of other nodes, called the neighbor set. The publisher
or the source of the content divides the stream into chunks,
which each contain an equal-sized part of the encoded data, and
forwards these chunks to its neighbors. Nodes in the system
receive chunks from neighbors and forward them to neighbors
that have not previously received the respective chunks. The
selection of neighbors and the choice of neighbors to receive-
from or forward-to differs across protocols [2]. Yet, pull-based
mesh networks are the predominant method in P2P streaming
systems [3]. In a mesh overlay, peers maintain a buffer-map
indicating which chunks they possess. Neighbors periodically
exchange their buffer-maps and request chunks from neighbors
whose buffer-maps indicate possession of the respective chunk.
Peers then forward chunks based on the received requests.

In pull-based systems, there exist several denial-of-service
attacks, known as buffer-map or BM cheating attacks [4]. In
such an attack, malicious nodes might drop or delay chunks.
Alternatively, they might advertise chunks that they do not have.
As detection of the latter is locally possible and the effect of
delaying chunks is at most as severe as entirely dropping
the respective chunks, we focus on a denial-of-service attack
through dropping chunks without advertising them, called Drop-
chunk in the following.

In the past, multiple countermeasures aimed to reduce the
severity of the Drop-chunk attack. However, the majority of
these defences [5]–[7] assume that the attacker is unaware of
the topology of the streaming network and specifically does
not know the headnodes, i.e., the peers connected to the source.
However, previous work indicates that it is relatively easy to
infer the identity of benign headnodes and then target those
important nodes [8]. While countermeasures to these inference
attacks exist, they assume an external adversary that can shut-
down or replace certain nodes [8]–[10]. Hence, the existing
work evaluates neither the impact of nor protection mechanism
against internal colluding attackers, i.e., attackers that insert
nodes under their control into the system pretending to be
regular participants.

In this paper, we first illustrate the effectiveness of internal
attacks based on malicious headnodes. Consequently, we
propose a mechanism for detecting Drop-chunk by keeping
track of peer satisfaction. If the cumulative satisfaction level
of a group of peers drops below a certain threshold, the source
replaces all headnodes associated with the group with randomly

2

chosen peers. Hence, our detection and mitigation mechanism
efficiently reacts to a detected low quality of service rather
than explicitly identifying the misbehavior of one or more
specific nodes. Note that we focus on attackers that control a
low fraction of nodes, as attackers controlling the majority of
nodes can trivially control most of the communication, even
without gaining strategic positions such as headnodes.

Using a simulation study, we show that the proposed
detection mechanism effectively restores peers satisfaction,
even in a scenario where the attacker controls all headnodes.
Our mechanism introduces only a small signaling overhead of
approximately 8% supporting the claim of being efficient.

A theoretical analysis complements our practical results,
focusing on the opportunities to abuse the detection mechanism.
Indeed, the detection algorithm prevents malicious nodes from
replacing benign headnodes with malicious nodes unless they
control a large fraction of the total number of nodes. Further-
more, maintaining malicious headnodes despite generally low
satisfaction levels is not possible for the considered attacker.

II. INTERNAL ATTACK MODEL

In this section, we introduce the concept of internal attacks in
streaming P2P overlays. Our focus is on attacks on availability
that aim to intercept data chunks from the source. We start by
introducing the attack characteristics such as target, budget, and
malicious nodes placement. Subsequently, our main discussion
outlines the Drop-chunk adversarial behavior.

A. Target, budget and placement

The target of the internal attack is to severely degrade
the user’s satisfaction by interrupting the stream close to the
source, thus preventing dissemination between benign peers.
The budget x of the attacker corresponds to the number of
nodes controlled by the malicious party. In accordance with
the attack goal of maximizing impact, the attacker aims to use
its budget to occupy the source’s neighbor list. Note that in a
real streaming system, the typical size of the source’s neighbor
list is 20-30 entries [11], [12], which highlights the feasibility
of conducting an internal attack using a very small budget.

We assume an attacker to (a) have a budget x, and (b) be
capable of assigning malicious peers as headnodes. Potential
ways of assigning headnodes include (1) joining the overlay
as early as possible in case of a pre-announced time for a
streamline, (2) taking down the source’s benign headnodes, or
(3) abusing peers’ replacement mechanisms [8]. Hence, the
attacker initially assigns xh ≤ x of its resources as headnodes.
As the attacker’s main objective is to fully occupy the source’s
neighbor list, the optimum value of xh for the attacker, is
xh = |NeighborList|. If full exploitation of the source’s
neighbor list is not feasible when the attack is being initiated,
the attacker continuously tries to increase the value of xh.

The rest of malicious peers x−xh are connected as neighbors
to the xh headnodes. Such a placement is the best strategy for
the attacker since the impact caused by the x − xh peers is
maximized due to their relative closeness to the source, i.e.,
a larger fraction of benign peers experience a longer service

degradation till a sufficient amount of benign peers receive and
start disseminating the stream. Given the fact that inferring the
overlay’s topology is indeed feasible [8], [9], the attacker is
capable of inferring the existing headnodes to optimally place
malicious peers as headnodes. Knowing the headnodes allows
the attacker to place malicious nodes in their neighborhood,
which also results in an effective disruption of the stream
dissemination if the budget is sufficiently high.

B. Drop-chunk adversarial behavior

We now discuss the main adversarial behavior that gets
executed based on the attacker’s target and budget. Let M be
the set of malicious peers that collaboratively execute Drop-
chunk. When m ∈ M receives a chunk from a neighbor, m
drops the chunk. In particular, m never advertises chunks in its
BM , except to the neighbor it received the chunk from. Indeed,
it keeps on requesting the dropped chunks from other benign
peers b ∈ B, where B is the set of benign peers. This scenario
guarantees that: (a) malicious peers are less susceptible to
being suspected as the requesting benign peers are not aware
that m indeed received those chunks, and (b) detecting m’s
direct or close connection to the source, inferring the overlay’s
topology, is not possible, which lowers the probability of m
being suspected.

Note that this behavior minimizes the detection susceptibility
of malicious peers. The reason is that other BM cheating
strategies result in eventually declaring a certain suspect, e.g,
if m keeps on sending correct BM updates but never sends
the actual chunk, honest nodes will eventually suspect m.

III. DETECTION MECHANISM

In this section, we explain our detection mechanism, starting
with an overview of the different steps followed by a detailed
description of each step. The goal of the detection algorithm
is to restore the user’s satisfaction in the face of a Drop-chunk
attack. The key idea of our method is to replace headnodes
associated with peer groups of low satisfaction levels.

Throughout the section, we assume that nodes authenticate
their messages using digital signatures. The source keeps track
of participants’ verification keys and can hence establish the
authenticity of messages. In particular, malicious nodes cannot
forge responses of honest peers to influence the mechanism. We
assume that neighboring nodes periodically exchange messages
stating that they are neighbors. These proofs of neighborhood
are signed and contain a time stamp. In this manner, u can
proof if v is (or has recently been) its neighbor.

A. Mechanism Overview

We illustrate the underlying ideas of the detection mechanism
in Figure 1. When a malicious peer m performs a Drop-chunk
attack, benign peers b are unable to immediately identify the
malicious behavior. Specifically, m never sends the actual
BM that represents the chunks it currently possesses, i.e.,
m is only requesting chunks it already has. Thus, detecting
a violation in this case is not straight-forward. In particular,
nodes are generally unable to identify a suspected attacker

3

b

Detection Trigger1

b

Detection Request and Replies 2

b

3 Filing a complaint and source response

S

4 Execute decision and forwarding

b
Yes

𝑠𝑎𝑡𝑏 < 𝜎

Complaint

𝐻𝑛, 𝑃𝑛

Fig. 1: Detection process for Drop-chunk. S denotes the source.

based only on local information. In the remainder of the section,
we present a mechanism that allows nodes to collaboratively
identify suspects that are subsequently removed as headnodes.

The detection consists of four steps, starting with an initial
trigger of dissatisfaction at one peer and potentially terminating
in replacing one or several headnodes. First, when a peer b
suspects a Drop-chunk attack based on its local observations, b
sends a detection request to all peers in its neighbor list. Second,
each peer receiving a detection request prepares a response.
Third, the initiator b decides based on the received responses if
they should file a complaint to the source. If b decides to file
the complaint, b sends it on behalf of the participating peers
in the request. Afterwards, the source verifies the complaint,
reacts accordingly, and responds to b, detailing the steps taken.
The reaction of the source is either the replacement of one
or several headnodes or the rejection of the removal request.
Finally, b reacts based on the received response from the source
and then forwards the source’s reply to the other participants
in the complaint, who in turn execute the same procedure.

The node b bases its decision on whether to initiate a request
or forward a complaint on a number of threshold parameters,
which we summarize in Table I together with various system
parameters governing the attack.

TABLE I: Acronyms

Var. Description Var. Description
Hn headnodes in a complaint Pn potential candidates
x no. of malicious peers xh mal. headnodes
BM buffer-map x− xh mal. non-headnodes
sat peer satisfaction level σ satisfaction threshold
tdrop min. drop responses κ no. allowed det.

B. Detection Trigger

In order to start a detection request, the node b has to
experience a low satisfaction level. The satisfaction of a peer
is defined as the fraction of missed chunks, i.e., the continuity
of the stream according to the Hit/Hit+miss chunk ratio.
In a nutshell, b starts a detection request if its satisfaction is
below a satisfaction threshold σ. However, to limit the ability

of malicious peers to incorrectly accuse benign peers and
increase the load through false detection requests, the concrete
conditions that result in a detection request from b are:

1) b’s current satisfaction level satb is less than the prede-
fined threshold, i.e., satb < σ.

2) The number of drop detection requests sent by b in the
time interval tdet is less than κ.

3) b has not initiated or replied to any other Drop-chunk
detection request that the source has not decided on yet.

The second and third condition guarantee that peers cannot
abuse the mechanism via triggering or participating in multiple
detection requests in parallel. Moreover, restricting concurrent
requests for benign peers is sensible as their low satisfaction
level is already noted in their reply to previous requests.

C. Processing a Detection Request

Let D denote the set of queried peers, i.e., the neighbors
of the initiator b if b executes the protocol honestly. When
receiving a detection request, a peer d ∈ D hence first checks
if it can participate in any more requests. If so, d replies with
its satd and a time stamp, both signed by its private signature
key. The time stamp prevents the attacker from replaying
benign peers’ previous (low) satisfaction levels, as only recent
satisfaction levels are valid.

D. Filing and Processing a Complaint

Upon receiving a feedback from its neighbors, b decides
whether to file a complaint or not. If so, the source verifies
the complaint and potentially removes some of its headnodes.

Filing a complaint: b will start processing the replies once
all nodes in D have replied or a time-out treplies occurs. We
assume that the source’s address is publicly known and b can
send a complaint to the source directly.
b sends a complaint if the average satisfaction level indicated

in the responses is below a threshold σ and at least tdrop peers
replied to the request. More specifically, let sat1, . . . , satz be
the satisfaction levels expressed in the replies and satb be b’s
satisfaction level. Assuming a sufficient number of replies, b
files a complaint to the source if:

1

z + 1

(
satb +

z∑
i=1

sati

)
< σ. (1)

Otherwise, b either starts another detection request depending
on κ or waits until allowed to send another detection request.

Once b decides on filing a complaint according to the
aforementioned conditions, b generates a complaint message to
the source containing the IDs of all nodes in D, recent proofs
of neighborhood, and the received satisfaction levels including
signatures and time stamps.

The reason for requesting at least tdrop replies is to prevent
a few malicious nodes from accusing benign headnodes. By
imposing a lower bound on the requested number of replies,
a considerable number of malicious nodes has to use one of
their κ requests. We present an in-depth analysis on how these
constraints prevent misuse in Section IV.

4

Processing a Complaint at the Source: The source s first
verifies the content of the complaint. First, the source rejects
any complaint from a node b that has already participated in κ
requests. If s does not reject the complaint, s then removes any
satisfaction levels without valid signatures from the complaint.
Furthermore, s removes any responses from nodes that have
exceeded their participation limit or are participating in two
complaints at the same time.

If the remaining valid responses still indicate an average
satisfaction level of less than σ, the source:

1) divides the set of peers in D into two sets Hn and Pn,
where Hn is the set of headnodes peers that exist in the
complaint.

2) removes all peers in Hn from its neighbor set.
3) randomly connects to another |Hn| peers.
4) adds peers (excluding peers in Hn) from its neighbor list

to Pn, where Pn = NeighborList\Hn (NeighborList
is the set of peers in a neighbor list).

5) sends a Complaint Reply to b containing Hn and Pn.
The reason for choosing random new headnodes rather than
nodes participating in the complaint is to lower the incentive
for complaints by malicious peers. Even if such a complaint
is successful, the new headnodes are likely benign, meaning
that the malicious nodes did not gain anything from initiating
the request apart from slightly increasing the load.

Processing a Complaint Reply & Forwarding: Finally, when
b receives the complaint Reply from the source, b

1) Disconnects from all peers in Hn. Note that b does not
blacklist peers in Hn from its neighbor list due to the
fact that those peers are not proven malicious.

2) Connects to |Hn| peers from Pn, in case |Hn| > |Pn|,
peers connect to |Pn|+ (|Hn| − |Pn|) random peers.

Subsequently, b forwards the complaint to the other participants,
i.e., D \Hn, who in turn execute steps 1 and 2.

E. General Notes

The detection mechanism does not aim at expelling peers
from the system. Simply removing headnodes remarkably
benefit the system. Indeed, the only peers that get blacklisted
are those who violate the detection mechanism constraints, i.e.,
participating in more than a single request at a time or initiating
more than κ requests. The reason for this leniency lies in the
potentially high chance of removing headnodes that are benign
but exhibit a low performance. In general, the main target of
the detection mechanism is to enhance peers’ satisfaction level
while keeping peer replacements and signaling overhead low.

IV. ANALYSIS

We focus on characterizing the behavior of malicious nodes
aiming to subvert the detection mechanism to remove honest
headnodes and retain malicious ones. More precisely, we show
that successfully accusing a benign headnode of cheating
requires that the malicious peer issuing a complaint presents a
neighbor list that is either dominated by malicious peers or by
benign peers with unusually low satisfaction levels. Similarly,

preventing the removal of a malicious headnode requires that
a high number of the neighbors are malicious.

A. Falsely Accusing Benign Headnodes

We start by considering the case that malicious nodes want to
misuse the detection mechanism to remove a benign headnode.
Note that there are reliable methods to identify headnodes [8],
so malicious peers are likely to know if one of their neighbors
is a headnode. The malicious node m initiating a request with
the goal of removing one benign headnode can manipulate the
set D of nodes m forwards to the source. In other words, after
querying all nodes in its actual neighbor list, m might send only
subset of the responses as well as responses from additional
nodes to the source. If possible, m chooses these responses in
such a manner that the source will remove the benign headnode.
There are restrictions guiding the construction of D that m
has to take into consideration:
• m should include the benign headnode it aims to remove.
• m cannot include benign nodes that are not in its actual

neighbor list, as m has no valid proofs of neighborhood.
• m does not have to include all peers that are in its actual

neighbor list, as there is no possibility to detect excluded
neighbors short of asking all peers in the system if they
are neighbors of m.

• m can include malicious peers that are not in its actual
neighbor list, as these peers are willing to generate false
proofs of neighborhood. Only the inclusion of malicious
nodes that can participate in a Drop-chunk request, i.e.,
those that have not yet reached their limit of Drop-chunk
request participation, is beneficial for the success of the
request. Malicious peers contained in D claim that their
satisfaction level is 0 to maximize the chance of removal.

When deciding on a set D, m tries to minimize the number
of malicious nodes in D in order to use as few of the κ requests
per node as possible. Preposition 4.1 gives a lower bound on
the number of required malicious nodes.

Preposition 4.1: Let m be a malicious neighbor of a benign
headnode h with satisfaction level sath. Assume that m has k
benign neighbors v1, . . . , vk sorted by their satisfaction levels
sat1 ≤ sat2 ≤ . . . ≤ satk. Then, to successfully remove h, m
has to include at least c responses of malicious nodes, including
m itself, in the set D of forwarded responses such that:

c = max
(
1, (2)

argminc′inN

 1

tdrop

sath +

tdrop−c′−1∑
i=1

sati

 < σ

)
Proof: To remove a headnode h, there has to be a detection

request containing the responses of h and n ≥ tdrop− 1 nodes
with satisfaction levels s1, . . . , sn and 1

n+1 (sh +
∑n

i=1 si) <
σ. The node m aims to minimize the number of involved
malicious nodes c because each malicious node can only
participate in κ detection requests per interval. At the same
time, m has to ensure that the average satisfaction level of
the involved nodes is below σ and that the request includes

5

at least tdrop nodes in total. As m files the request, at least
one malicious node has to be included. In other words, m
solves the optimization problem of finding a minimal c and a
set of integers I ⊂ {1, . . . , k} such that i) c+ |I|+ 1 ≥ tdrop,
ii) 1

c+|I|+1

(
sath +

∑
i∈I sati

)
< σ, and iii) c ≥ 1. Choosing

the lowest satisfaction levels indeed solves the optimization
problem and results in Eq. 2.

For simplicity, Preposition 4.1 considers the case that only
one headnode is contained in m’s neighbor list. In the presence
of several headnodes, m has to slightly adapt its attack strategy.
If additional malicious headnodes are neighbors of m, m does
not include the respective nodes in D to avoid accidentally
causing the removal of malicious headnodes. In contrast, if
additional benign headnodes are neighbors of m, m will include
all of them in D if the detection request can be successful. If
success is not possible due to the high satisfaction level of the
included headnodes, m successively removes each headnode
using the strategy outlined in Preposition 4.1.

B. Retaining Malicious Headnodes

Now, we consider the case that malicious nodes collude
to retain one or several malicious headnodes when a benign
peer initiates a detection request. All malicious nodes in the
respective neighbor list will provide a satisfaction level of
1 to prevent the removal of a malicious node. We assume
that malicious neighbors will try to prevent the removal of
malicious headnodes even if the request can additionally result
in the removal of benign headnodes. This assumption seems
reasonable as the removal of a benign headnode is unlikely
to lead to additional malicious headnodes, indicating that
retaining existing malicious headnodes is of higher importance
than removing benign headnodes. Preposition 4.2 provides the
condition governing the success or failure of the Drop-chunk
request in the face of the proposed adversarial behavior.

Preposition 4.2: Let m be a malicious headnode and b be a
benign neighbor of m that initiates a detection request due to its
low satisfaction level satb. Assume that b has k benign neigh-
bors v1, . . . , vk with satisfaction levels sat1, sat2, . . . , satk.
In addition, b has y malicious neighbors, which includes the
malicious headnode, and k ≥ tdrop. Then the removal of m
fails if and only if:

1

k + y + 1

(
y + satb +

k∑
i=1

sati

)
≥ σ. (3)

Proof: The claim follows directly as all y malicious peers
will set their satisfaction level to 1 and Drop-chunk requests
with an average satisfaction of at least σ are not successful.

V. EVALUATION

The goal of this section is to address two research questions:
First, we quantify the severity of Drop-chunk. Second, we
evaluate the proposed detection mechanism’s performance in
terms of effectiveness and efficiency. We start by describing
the simulation model and set-up before detailing the simulation
results and their interpretation for both research questions.

A. Simulation Framework, Parameters and Metrics

Our simulation framework builds on OSSim [13]. OSSim
is a packet level simulator for DONet [5], a pull-based online
streaming overlay. All our overlays use the network topology
generator GT-ITM [14] with 1000 peers connected to 400
edge router. Furthermore, our simulation time is 500s and the
presented results are averaged over 10 runs.

We differentiate between malicious and benign peers when
considering their online times. We assume that malicious peers
join the overlay early and do not leave before the content
dissemination ends in order to maximize their impact. In
contrast, benign peers join based on Pareto distribution and
leave according to Lognormal distributions, as motivated by
real-world measurements [15]. Benign peers can rejoin the
overlay in a uniform distribution around 10s. For both case
studies, the streaming rate is 400kbps, the chunk size 2500B
and the buffer size 30s.

The following metrics characterize the performance.
Satisfaction sat: The satisfaction is the fraction Hit/Hit+

miss of chunks peers receive in time, averaged over all peers.
Avg. Loss lo: Indicates the average number of chunks that

peers do not receive in time, averaged over all peers.
Detection Overhead DO: The detection overhead describes

the communication overhead created by the detection mech-
anism. More formally, it is the ratio of messages exchanged
in the system due to the detection mechanism and all signal-
ing messages: (1) BM requests, (2) BM updates, and (3)
neighboring requests, accepts and rejects.

Benign Ratio per Neighbor List BRNL: The benign ratio
per neighbor list measures the fraction of benign peers in the
source’s neighbor list.

B. Case 1: Drop-chunk Severity

In this case study, we evaluate the impact of Drop-chunk
on two different network scenarios: (1) DONet, and (2)
DONet+SWAP [8]. We consider SWAP to check how replace-
ment mechanisms of headnodes affects the attack. We use the
same total number of peers but vary the attacker’s budget. As
malicious peers aim to occupy the closest peers to the source,
the remaining size of the overlay is not a factor on the impact
of the Drop-chunk attack.

Given the source’s neighbor list size LS = 10, we choose the
following combinations for the attackers budget (xh, x− xh):
(10, 0), (5, 15), (7, 49), (8, 24). Here, x−xh = 49 denotes that
7 malicious peers are connected to each of the 7 malicious
headnodes. We start with analyzing the attack’s impact on
DONet and then we evaluate the resilience of SWAP to the
attack.

Figure 2a displays the average chunk loss ratio. Unsurpris-
ingly, the average loss is 100% when xh = LS = 10, which
means that the source’s LS is utterly saturated with malicious
headnodes, i.e., no chunks are transmitted to the rest of the
overlay. Thus, the average peer satisfaction is always 0%.

If xh < 10, the average loss initially reaches up to 82%
for (xh, x − xh) = (7, 49), for (xh, x − xh) = (5, 15), the
loss ratio is 54% and 73% for (xh, x − xh) = (8, 24), as

6

(a) Average loss

(b) Average peer satisfaction

Fig. 2: Attack’s impact on DONet

shown in Figure 2a. If xh or x− xh increases, benign peers
experience severe service degradation for a longer time period.
Benign peers close to the source suffer from overload, leading
to a high ratio of missed chunks. Nevertheless, the loss ratio
decreases once a fraction of benign peers are able to serve the
rest of the overlay.

Figure 2b presents the average peer satisfaction level sat.
As a consequence of experiencing high chunk loss rate, higher
values of xh and x− xh result in lower peer satisfaction over
time, where benign peers at (xh, x − xh) = (5, 15) restore
their satisfaction level at approximately 340s, which is earlier
than at (xh, x− xh) = (7, 49) and (xh, x− xh) = (8, 24).

Now, we analyze the attack’s impact while SWAP is
operating. During SWAP, peers nominate new headnodes and
forward these nominations to the source. Malicious peers abuse
the mechanism by nominating other malicious peers at each
nomination round. Moreover, malicious peers connected to
benign headnodes are eventually nominated to the source and
thus can occupy the source’s neighbor list LS.

As shown in Figure 2a, comparing the same values at
(xh, x− xh) = (5, 15) for both DONet and SWAP show that
the impact of the attack is more significant if SWAP is active.
Before the source’s LS is saturated with malicious peers at
t = 80s, the average loss is in fact decreasing, However, as soon
as malicious peers control the neighbor list, the average loss
increases up to 97%. For the same reason, the satisfaction level
of benign peers eventually decreases to 6%, which highlights
the unsuitability of SWAP against our proposed attack.

C. Case 2: Detection Mechanism Performance

We now evaluate the performance of the detection mech-
anism. Benign peers execute the detection mechanism as
described in Section III whereas malicious peers aim to misuse
the mechanism. More precisely, malicious peers reply with a
satisfaction level of 0 if the complaint might remove a benign
peer and 1 if it might remove a malicious peer.

(a) Average BRNL

(b) Average peer satisfaction

(c) Detection overhead

Fig. 3: Detection mechanism performance

In order to do so, we chose (xh, x − xh) ∈
{(5, 40), (8, 40), (10, 30)} to assess the performance of the
mechanism in severe attack conditions. The satisfaction thresh-
old σ is set to 0.95 to measure if peers are able to fully
restore their satisfaction level when the detection mechanism
is operating. The detection mechanism is effective starting
t = 250s to allow for a reasonable amount of peers to join the
overlay to adequately assess the efficiency of the mechanism.
In this scenario, every peer is allowed to initiate κ = 10
detection requests for tdet = 500s, and the minimum number
of responses to generate a complaint is tdrop = 3. We discuss
the effect of varying those parameters later on.

As depicted in Figure 3a, we observe an increase in the
benign headnodes ratio in the source’s neighbor list after the
detection mechanism starts operating at t = 250s. For instance,
if (xh, x− xh) = (5, 40), the source successfully attains 80%
benign headnodes due to the detection mechanism. For (xh, x−
xh) = (8, 40), the BRNL ratio increases up to 90-100%,
which reflects the efficiency of the detection mechanism in
replacing malicious headnodes to restore peers’ satisfaction
levels. Even if the source is initially only connected to malicious
headnodes, i.e., xh = 10, the detection mechanism is capable
of restoring a BRNL to approximately 80%.

Figure 3b illustrates the average restored peer satisfaction
level when the detection mechanism is active. For all considered
attack budgets, the average satisfaction level quickly increases
to 95-100% for (xh, x− xh) = (5, 40), (8, 40). For xh = 10,
the average satisfaction increase from 0% to almost 60% in

7

a time span of 250s. The reason of the quick increase is that
the number of initial detection requests sent to the source
results in replacing a high fraction of the source’s headnodes.
Moreover, malicious peers are unable to misuse the mechanism,
as indicated by the absence of degradation in satisfaction levels.

Figure 3c depicts the average detection overhead induced by
our mechanism. The maximum overhead due to the detection
mechanism is 8% for all scenarios. As peers are eventually
satisfied, the number of detection requests initiated decreases
and the overhead decreases to 4% at t = 500s, i.e., peers
stop invoking the mechanism. Moreover, the maximum number
of detection requests that can be initiated is dependent on κ,
which is set to 10 in this scenario. Thus, smaller values of κ
result in lower overhead. In fact, varying tdrop between 3, 4
and 5 has little impact on the detection performance, indicating
that nodes receive sufficient replies.

In summary, our simulation study highlights the effectiveness
efficiency of the detection mechanism against Drop-chunk
attacks, even in the presence of an attacker that initially controls
the majority of nodes close to the source.

VI. RELATED WORK

We overview the prominent existing work on attacks and their
detection in the context of P2P streaming systems. Most prior
work has considered three attack types: (i) pollution attacks,
i.e., flooding the overlay with arbitrary content and claiming
it to be relevant chunks, (ii) free riding, i.e., participating in
the overlay without contributing, and iii) cheating attacks, i.e.,
maliciously dropping packets or manipulating buffer-maps.

Pollution attacks are one of the most common attacks [16].
Strategies such as network coding [17] and [18] can effectively
mitigate these attacks.

In contrast, the main approach to counter free riding are
incentives [6], [19], i.e., rewarding peers that distribute the
stream to others. However, these strategies are only effective
for peers that aim to minimize their level of participating.

Cheating attacks are severe DoS attacks, performed to
maximize the damage to the overlay and preventing peers
from downloading the stream. Antiliar is a general defense
mechanism against a diverse set of attacks, including dropping
and buffer map manipulation [7]. Mainly, Antiliar tracks
peers behaviors in a secure progress log and thus, detecting
misbehaving peers by identifying irregularities in the log. While
highly effective, Antiliar relies on expensive cryptographic
operations that are unsuitable for devices with low CPU
resources. Moreover, Antiliar uses a central entity to review
the logs, creating additional security and privacy problems.

An alternative decentralized approach [10] relies on redun-
dancy by enforcing diversity when requesting chunks. In this
manner, the attacker has to control a higher fraction of nodes
to achieve any severe damage by cheating. The work focuses
on attacks on headnodes yet assumes an external attacker that
can take over arbitrary nodes at will. In this context, the idea
of swapping headnodes frequently to mitigate the impact of the
attacker’s control significantly decrease the attack severity [8].

As shown in Section V, internal attackers can undermine the
swapping protocol and gain the position of headnodes.

VII. CONCLUSION & FUTURE WORK

In this work1, we focus on the class of internal inference
attacks for pull-based overlays. The attacker conducts a BM
cheating attack after placing malicious peers as headnodes.
We show that the attack severity significantly increases the
chunk loss ratio, accompanied by low satisfaction level expe-
rienced by benign peers. As a countermeasure, we propose a
detection mechanism where peers are able to collaboratively
file a complaint to the source when their average aggregated
satisfaction drops below a certain threshold so the source can
replace suspicious headnodes.

Our simulations show that the detection mechanism is
capable of restoring 95-100% of peers satisfaction level while
removing 80-90% of malicious headnodes from its neighbor
list while inducing a low overhead of approximately 8%. As
an ongoing work, we focus on evaluating the resilience of
our approach against various BM cheating strategies and
integrating anonymous monitoring for proactive defense.

REFERENCES

[1] Emule Digital Content. http://emule.com.
[2] Sasi, L. et al. A Survey on Peer to Peer Video Streaming Systems. Proc.

IJRECE, 3, 2014.
[3] Zhang, J. et al. Modeling and Performance Analysis of Pull-based Live

Streaming Schemes in Peer-to-Peer Network. Computer Communications,
40:22–32, 2014.

[4] Cui, Y. et al. Impact of Buffer Map Cheating on the Streaming Quality
in DONet. In Proc. ICCS, pages 817–824, 2007.

[5] Zhang, X. et al. CoolStreaming/DONet: A Data-driven Overlay Network
for Peer-to-peer Live Media Streaming. In Proc. INFOCOM, pages
2102–2111, 2005.

[6] Habib, A. and Chuang, J. Incentive mechanism for peer-to-peer media
streaming. In Proc. IWQOS, pages 171–180, 2004.

[7] So, K. and Reeves, S. Antiliar: Defending Against Cheating Attacks in
Mesh Based Streaming. In Proc. P2P, pages 115–125, 2012.

[8] Nguyen, G. et al. SWAP: Protecting pull-based P2P video streaming
systems from inference attacks. In Proc. WoWMoM, pages 1–9, 2016.

[9] Nguyen, G. et al. RBCS: A resilient Backbone Construction Scheme for
Hybrid Peer-To-Peer Streaming. In Proc. LCN, pages 261–269, 2015.

[10] Nguyen, G. et al. On the Resilience of Pull-based p2p Streaming Systems
Against DoS Attacks. In Proc. SSS, pages 33–47, 2014.

[11] Huang, Y. et al. Challenges, Design and Analysis of a Large-scale
P2P-vod System. In Proc. ACM SIGCOMM, pages 375–388, 2008.

[12] Vu, L. et al. Measurement and Modeling of a Large-scale Overlay for
Multimedia Streaming. In Proc. QSHINE, pages 3:1–3:7, 2007.

[13] Nguyen, G. et al. Ossim: A Generic Simulation Framework for Overlay
Streaming. In Proc. SCSC, pages 30:1–30:8, 2013.

[14] Zegura, E. et al. How to model an internetwork. In Proc. INFOCOM,
pages 594–602, 1996.

[15] Veloso, E. et al. A hierarchical characterization of a live streaming media
workload. ACM Transactions on Networking, 14:133–146, 2006.

[16] Gkortsilas. I. et. al. Detecting and Isolating Pollution Attacks in Peer-to-
peer VoD Systems. In Proc. EuCNC, pages 340–344, 2016.

[17] Fiandrotti, A. et al. Simple countermeasures to mitigate the effect of
pollution attack in network coding-based peer-to-peer live streaming.
IEEE Transactions on Multimedia, 17:562–573, 2015.

[18] Kang, X. et al. A Trust-based Pollution Attack Prevention Scheme in
Peer-to-peer Streaming Networks. Computer Networks, 72:62–73, 2014.

[19] D. Li. et al. Defending Against Buffer Map Cheating in DONet-Like
P2P Streaming. In IEEE Trans. Multimedia, pages 535–542, 2009.

1Research supported in part by EC H2020 CIPSEC GA #700378 and BMBF
TUD-CRISP

