
deQAM: A Dependency Based Indirect Monitoring Approach for Cloud Services

Heng Zhang, Jesus Luna, and Neeraj Suri
Dept. of Computer Science

TU Darmstadt, Germany
Email:{zhang, jluna, suri}@deeds.informatik.tu-darmstadt.de

Ruben Trapero
Atos Research & Innovation

Calle de Albarracin 25, Madrid, Spain
Email: ruben.trapero.external@atos.net

Abstract—Cloud service monitoring is a critical need for
both providers and customers to assess the state of resources
and the level of delivery of services. However, existing Cloud
service monitoring methods are typically inapplicable in case
the targeted service parameters are inaccessible, e.g., Cloud
Service Providers do not allow external access to some service
parameters for varied reasons (proprietary IPR, privacy issues,
security concerns or simply access difficulties). Hence, alternate
Cloud service monitoring approaches are needed to address
this issue. Nonetheless, Cloud services are not provided in
isolation and very often share common resources with other
services that naturally introduces service dependencies between
different services. In this paper, we propose a novel Cloud
service monitoring approach which targets such dependencies
to conduct indirect monitoring of inaccessible Cloud service
parameters by using monitoring information collected from
other Cloud services. The proposed monitoring approach can
also assess the reliability of the monitored result. The presented
case study validates the applicability of the proposed indirect
monitoring approach.

Keywords-Service Security; Service Security Assurance; Ser-
vice Monitoring; Cloud Services;

I. INTRODUCTION

Cloud service monitoring is an important quality assur-
ance mechanism for the actors involved in the provisioning
of Cloud services. For example, Cloud service monitoring
mechanisms are used by Cloud Service Providers (CSPs)
to manage Cloud services such as getting up-to-date service
information, planning maintenance tasks or checking the ful-
fillment of the service agreements also for Cloud Customers.
Cloud service monitoring mechanisms are also used by third
parties, such as by certification auditors which rely on the
monitoring information to issue certificates.

Although Cloud service monitoring is crucial for the
actors involved in the Cloud, existing Cloud service moni-
toring mechanisms are effective only if the related parameter
information is directly accessible on the provider’s side
[2][3][10][11][14]. However, many providers do not allow
external parties to access specific service parameters for
many reasons, such as privacy reasons, security concerns or
lack of proper access interfaces. In these cases, the existing
monitoring mechanisms become inapplicable. As a result, it
is necessary to design a new Cloud monitoring mechanism
to address this gap.

Given that Cloud services often share common resources
and work on top of the same platform or infrastructure1,
it is inevitable that dependencies exist between some Cloud
services. As a result, these service dependencies can be used
for developing the new Cloud service monitoring mechanism
which can monitor those inaccessible parameters of the
Cloud service by using the parameter information collected
from other Cloud services.

For example, a Cloud secure storage service does not
allow external parties to directly monitor parameters related
to the data security level which is an important aspect of
a SecSLA2. To help Cloud service customers validate the
SecSLA compliance, third parties such as security auditors
can use service dependencies to indirectly monitor these
parameters. In the case of a Cloud secure storage service
we can suppose that it works as the combination of three
different services, namely an authentication service (SAuth),
an encryption service (SEncypt), and a storage service
(SStore). Therefore, the security auditor can check parameter
information from SAuth to see whether the access is from a
legitimate user or it can also access to information from
SEncypt to see which type of encryption applied on the
user data. However, two major challenges need to be solved
for designing an indirect monitoring mechanism for Cloud
services: (1) how to quantitatively use service dependencies
for monitoring service parameters, and (2) how to evaluate
the reliability of the result from the indirect monitoring.

We address these challenges by proposing a novel indirect
monitoring scheme. The proposed approach takes advantage
of service dependencies for which the value of service
parameters can be quantitatively formulated with the pro-
visioning level of Cloud services, and indirectly monitored
by aggregating the relevant provisioning levels. To the best
of our knowledge, our work is the first attempt to address the
indirect monitoring issue in Cloud. The contributions are:

1) An indirect Cloud service monitoring approach
termed dependency-based Quantitative Aggregation
Methodology (deQAM ) which parameterizes service

1An example is the Cloud storage service Dropbox is working on top of
AWS S3. cf. https://aws.amazon.com/customerapps/1955

2SecSLA is a legal agreement negotiated and contracted between the
Cloud Service Provider (CSP) and the Cloud Service Customer (CSC) to
guarantee Cloud services delivered with the specific security assurance.



dependencies to monitor the target parameter’s value.
2) A reliability assessment approach which evaluates the

confidence level of the monitoring result.
3) A case study to validate the applicability of the pro-

posed monitoring approach.
The rest of this paper is organized as follows. Section II

presents some basic considerations for designing the indirect
monitoring approach. Section III elaborates the proposed
monitoring approach. Section IV shows the applicability
of the approach on a case study for deQAM . Section V
discusses the case study results. Section VI presents the
related work, and Section VII concludes the paper.

II. BASIC CONCEPTS

This section reviews several basic issues related to de-
signing an indirect Cloud service monitoring approach.

A. Cloud Service Provisioning & Indirect Monitoring
The provision of Cloud services typically involves multi-

ple supporting services and also multiple service providers
where many services or service providers also share common
resources or infrastructure. Taking a Cloud secure storage
service for example, it offers the service of encrypting and
storing client’s data in Cloud using a service hierarchy such
as the one depicted in Fig. 1.

Cloud Secure Storage 
Service (STarget )

Microsoft Azure
(MSA)

Cloud Encryption 
Service (SEncypt)

Cloud Authentication 
Service (SAuth )

Dropbox Storage 
Service (Sdpbx)

Google App Engine 
(GAE)

Google Compute 
Engine (GCE)

Amazon Web Services 
(AWS)

Amazon Simple 
Storage Service (S3)

Figure 1. A Cloud secure storage service’s service provisioning hierarchy

With the above service provisioning hierarchy, some
parameters of the Cloud secure storage service could be
indirectly monitored by third parties without requiring direct
access to these parameters. For example, the data security
level is an important security parameter for Cloud service
customers (CSCs) using this Cloud secure storage service
(STarget). However, this security parameter is impossible to
be directly monitored due to privacy protection concerns.
Other parameters can be monitored by third parties from
other Cloud services residing in the same hierarchy. The
possible examples could be the supported encryption algo-
rithm list in the Cloud encryption service (SEncypt), authen-
tication notification messages in the Cloud authentication
service (SAuth) or the bug report of the security module
in Microsoft Azure (MSA). For example, by studying the
related parameters collected from other Cloud services in
Fig. 1, it is possible for third parties to indirectly monitor
the parameter data security level.

B. Service Dependency & Characterization

Service dependency is the directed relation between dif-
ferent services, which refers to one service (a.k.a dependent
service) subjected to the persistent constrains from another
or multiple services (a.k.a. antecedent service) [19]. Service
dependency specifies the provisioning of services that de-
pends on its antecedent services, which might affect the
provisioning of the dependent service (e.g., degradations
or disruptions or failures) [23]. For the aforementioned
example, the provisioning of the Cloud secure storage ser-
vice (dependent service) depends on its antecedent services,
namely the Cloud authentication service and the Cloud
encryption service in order to meet the security requirements
of the storage service. Therefore, the service dependency has
deep influence on the service provisioning of Cloud services.

From the monitoring perspective, the following character-
istics of service dependency are worth highlighting:

Direction: The dependency direction states the directional
information that identifies the dependent and the antecedent
in the service dependency. It can assist in trimming the
service dependencies by removing the irrelevant services.

Type: The dependency type reflects antecedent services
imposing different types of influence on dependent services.
The influence is either the decisive type (enable/disable) or
the indecisive type (altering to some extent), affecting the
dependent service provisioning.

Strength: The dependency strength represents the degree
of dependent services relying on their antecedent services.
The higher dependency strength implies the closer service
provisioning of dependent services relying on their an-
tecedent services.

C. Uncertainty & Data Estimation

Uncertainty is a key issue in designing an indirect moni-
toring approach. Uncertainty, which is caused by the incom-
pleteness of knowledge about the monitoring target, deviates
the value of the monitoring result from the real value [24].

However, the indirect monitoring approach takes the pa-
rameter information from antecedent services without the
complete knowledge of the target parameter in dependent
services. Therefore, it is nontrivial to address the uncertainty
problem for the indirect monitoring approach. In practice,
a common solution to address the uncertainty issue is to
determine a confidence level (typically 95%) for evaluating
the reliability of the monitoring result.

III. THE PROPOSED deQAM METHODOLOGY

This section presents the details of the dependency-based
Quantitative Aggregation Methodology (deQAM ) as the
proposed indirect Cloud monitoring approach.

A. System Overview

The dependency-based quantitative aggregation methodol-
ogy (deQAM ) is the indirect monitoring approach proposed



to monitor the parameters of Cloud services. deQAM uses
the related parameter information collected from antecedent
services to monitor the dependent service parameter which
is difficult to be monitored directly. deQAM adopts a
multi-step process to achieve the indirect monitoring as
shown in the bottom boxed part of Fig. 2. Briefly, the
“utility mapping” step converts the parameter value to a
utility level as explained in Section III-B. The “dependency
parameterization” step generates the trimmed parameterized
service graph with service dependencies. The “monitoring
result inference” step computes the utility of the target
parameter. The “monitoring result generation” step generates
the indirect monitoring result by mapping the target parame-
ter utility back to the parameter value. The “result reliability
evaluation” step addresses the reliability issue by estimating
the monitoring result’s reliability at a 95% confidence level.
These steps are detailed in Section III-C.

 Utility Mapping

Dependency 
Parameterization

Monitoring 
Result 

Inference

Result Reliability 
Evaluation

Target Cloud 
Services

Antecedent 
Cloud ServiceAntecedent 

Cloud 
Service

Antecedent 
Cloud 

Service

Related 
Information

Computed 
Utility 

Trimmed 
Parameterized 
Service Graph

Monitoring 
Result with 
Confidence 

Level

Service 
Dependency

Monitoring 
Result 

Generation

Parameter
Estimator

deQAM

Parameter
Value

Utility of 
Target 
Parameter 

Figure 2. The structure of indirect monitoring methodology (deQAM )

B. Transformation of Dependency

deQAM treats the service dependency as quantitative
constraints on the Cloud service provisioning. It uses utility
as the quantitative unit for representing the influence that
the service parameter value has on the service provisioning.
deQAM categorizes the utility into two classes.

Eigen utility: Eigen utility represents the basic provision-
ing level of the dependent service affected by the value of
other parameters in the same service. If the eigen utility
is exceptional (i.e. lower than some thresholds), a serious
problem might have occurred with the service provisioning,
such as service dysfunctional, interrupted or completely
down.

Contributed utility: Contributed utility represents the
dependent service’s provisioning level affected by the value
of parameters of antecedent services. According to the
different types of influence, it is further categorized into
two types, namely the mandatory-type contributed utility
and the optional-type contributed utility. Specifically, the
mandatory-type contributed utility represents the decisive
influence on the provisioning of the dependent service which
decides whether the dependent service is provisioned or
not. The optional-type contributed utility represents the
indecisive influence affected on the provisioning level of the

dependent service which increases the service provisioning
level based on the basic provisioning level.

As a result, the utility of the service parameter value is
the sum of the eigen utility and the contributed utility.

C. Design of deQAM

deQAM is a multi-step indirect Cloud service monitoring
approach that quantitatively analyzes the utility as follows.

Step 1. Utility Mapping: deQAM starts the monitoring
process by mapping the parameter value Vp, collected from
antecedent services, onto utility Up. Based on the discussion
in Section III-B, we propose two different conversion rules
(depicted as f B for Boolean and f N for Numerical) for
mapping the parameter value Vp onto utility Up and the
inverse conversion rules (depicted as f−1B and f−1N ) for
the back-mapping process.

f B : Vp 7→ Up =

{
1 Vp ∈ Sen
0 Vp ∈ Sdis

f−1B : Up 7→ Vp =

{
Vp ∈ Sen Up = 1

Vp ∈ Sdis Up = 0

The parameter value Vp having the dominant influence
on the dependent service’s provisioning is mapped to the
boolean value by using f B , in which Sen is the set of the
value for enabling the service provisioning (e.g., yes, enable
or activate) and Sdis is the set of the value for disabling
the service provisioning (e.g., no, disable or inactive). For
example, the parameter value of login failure message is
V1 = true/false, its utility is mapped onto U1 = 0/1 by
using f B when the service provisioning is disabled/enabled.

f N : Vp 7→ Up =
Vp − Vp min

Vp max− Vp min

f−1N : Up 7→ Vp =
Up − Vp min

Up max− Up min

The parameter value Vp having the influence of increasing
the provisioning level of the dependent service is mapped
to the numerical value in the range of [0, 1] by using f N ,
in which Vp max and Vp min are the upper and the lower
boundary of Vp’s varying range. For example, the parameter
value of CPU usage rate varies in the range of [0, 100%]. If
the collected CPU usage rate is V2 = 62%, then its utility
U2 is mapped onto 0.62 by using f N . In a similar way,
the parameter value of client storage quota is an element
of the set {250GB, 500GB, 750GB, 1000GB} and can be
regarded as varying in the range of [0, 1] which is divided
into four parts. Then the utility of corresponding elements
are mapped onto 0.25, 0.5, 0.75, 1 by using f N .



Step 2. Service Dependency Parameterization: deQAM
characterizes service dependencies with the parameterized
service dependency graph which consists of a set of vertexes
representing Cloud services and a set of edges represent-
ing parameterized dependencies between different Cloud
services. The parameterized service dependency graph is
defined as:

 S4
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S3

D21 = [α21, β21, γ21] D41 = [α41, β41, γ41]

D32 = [α32, β32, γ32 ]

E1

E2

E3

G=(V, E)
V={S1, S2, S3, S4 }
E={E1, E2, E3 }
αmn  : dependency direction 
βmn  : dependency type
γmn  : dependency strength

Figure 3. An example of the parameterized service dependency graph

Definition. A parameterized service dependency graph is
a multi-parameter directed graph denoted with G = (V,E),
in which:
• V are the vertexes of Graph G which represents a finite

set of Cloud services denoted by V = {S1, S2, ..., Si}. Si
means the i-th service.
• E are the directed edges of Graph G which represents a

finite set of dependencies between different services denoted
by E = {E1, E2, ..., Ej}, Ej means the j-th service
dependency between two Cloud services. Ej is characterized
with a three-parameter vector ~Dmn = [αmn, βmn, γmn] to
parameterize service dependencies obtained from the service
provisioning hierarchy as illustrated in Section II-B.
αmn: It is the parameter specifying the target-oriented

dependency direction between two different Cloud services.
Specifically, if the antecedent service is Sm and the de-
pendent service is Sn (Sm, Sn ∈ V ) and both services are
directly or indirectly affect a given target service, its value is
1. Otherwise, if Sm and Sn does not affect the given target
service, the value of dependency direction is −1.
βmn: It is the parameter representing the different types

of influence of the Sm’s parameter value on the Sn’s service
provisioning. Its value is assigned to 0 to indicate the
decisive influence dependency, while its value is assigned
to 1 to indicate the indecisive influence dependency.
γmn: It is the parameter defining the rate that the utility

mapped from Sm’s parameter value contributes onto Sn’s
service provisioning level caused by the service dependency.
It is a real number in the range of [0, 1].

Based on the parameterized service dependency graph
G, deQAM adopts a target-centric service dependency
trimming method which examines dependencies with regard
to the target service (STarget) and recursively checks the
corresponding antecedent services to remove irrelevant ser-
vice dependencies (i.e. service dependencies do not affect

the monitoring result) as specified in Algorithm 1. The
trimming algorithm takes advantage of a set of services
(denoted by Sx) and a set of corresponding parameterized
dependency vectors (denoted by Ey) derived from these
services regarding to the target service. By recursively com-
paring the dependency direction αxt of every service in Sx,
the trimming algorithm can finally generate the minimized
service dependency graph (denoted by G

′
) with regard to the

target service. In addition, the trimming algorithm traverses
all nodes (services) of the graph to do the dependency
direction (αxt) comparison. Therefore, the complexity for
the trimming algorithm isO(n), where n is the node number.

Algorithm 1 Target-Centric Service Dependency Trimming
Algorithm
Require: parameterized service dependency graph G =

(V,E) of i vertexes and j edges.
Ensure: trimmed parameterized service dependency graph

G
′
= (V

′
, E
′
).

1: set Sx ∈ V = {S1, S2, ..., Si}, Ey ∈ E =
{E1, E2, ..., Ej};

2: set V
′
= {STarget} and E

′
;

3: while before the element number of V
′

no longer
changes do

4: for each element S
′ ∈ V ′ do

5: set St = S
′
;

6: for each element Sx ∈ V
⋂
Sx 6= St do

7: if Ey ∈ E
⋂
αxt == 1 then

8: add Sx and Ey’s dependency ~Dxt into V
′

and
E
′

respectively;
9: end if

10: end for
11: end for
12: end while
13: return Trimmed parameterized service dependency

graph G
′
= (V

′
, E
′
)

Step 3. Monitoring Result Inference: Based on the
trimmed parameterized service dependency graph G′, utility
Uϕ of the inaccessible parameter ϕ of the target service
STarget is inferred by using parameterized dependencies.
The utility computation process consists of three different
parts as follows:

Eigen utility: The eigen utility UE ϕ of the inaccessible
parameter ϕ of STarget is decided by the baseline of
the service provisioning. It is the threshold of the service
provisioning without considering any dependency from an-
tecedent services.

Mandatory-type contributed utility: The mandatory-
type contributed utility UM ϕ of the inaccessible parame-
ter ϕ of STarget is computed by using the dependencies
which impose the dominant influence on the provisioning of



STarget. Due to the dominant influence of the dependency
type, the mandatory-type contributed utility UM ϕ is the
product of all boolean utilities mapped from the antecedent
services’ parameter value with decisive influence on the
service provisioning of STarget (i.e. when βmn = 0). It
can be computed as follows:

UM ϕ =

l∏
1

Ul (1)

In Equation (1), l is the number of service dependencies
with βmn = 0 in G

′
and Ul is the utility mapped from the

antecedent service Sl’ parameter value Vl.
Optional-type contributed utility: The optional-type

contributed utility UO ϕ of the inaccessible parameter ϕ
of STarget aggregates the utility computed by all optional-
type service dependencies. However, it requires to compute
the utility caused by the ripple-effect of service dependency
which is the phenomenon of the influence (either quanti-
tative or qualitative) propagation from antecedent services
to dependent services [17]. Therefore, the optional-type
utility computation needs to include both the direct and the
ripple-effect optional-type contributed utility computation.
As a result, deQAM computes the optional-type contributed
utility UO ϕ as:
• Ripple-effect optional-type contributed utility: The

ripple-effect optional-type contributed utility U
(o.r)
mn is the

optional utility indirectly contributed by the parameter of
antecedent service Sm to the parameter of dependent service
Sn. Given a three-node dependency chain in the trimmed
parameterized dependency graph G

′
, it can be represented

as {Sm → Sk → Sn}. This dependency chain consists
of an antecedent service Sm, an intermediate service Sk
and a dependent service Sn. The ripple-effect utility U (o.r)

mn

propagating from Sm to Sn is computed as:

U (o.r)
mn = (γmk · Um) · γkn (2)

In Equation (2), γmk ·Um is the optional utility mapped from
Sm’s parameter value Vm and contributed to Sk. Multiplying
the coefficient γkn, it results in the final optional utility
contributed to the inaccessible parameter’s utility of Sn.
• Direct optional-type contributed utility: Based on the

ripple-effect optional-type utility computation method, the
direct optional-type contributed utility U (o.d)

mn is computed as
the simplified form, in which the dependency chain contains
only two nodes as {Sm → Sn}. Accordingly, the direct
optional-type contributed utility is computed as:

U (o.d)
mn = γmn · Um (3)

The output of Equation (3) is the optional utility mapped
from the parameter value of Sm and contributed to the
inaccessible parameter’s utility of Sn.

Based on Equation (2) and (3), the optional-type
contributed utility UO ϕ of the inaccessible parameter ϕ of

STarget is aggregated as:

UO ϕ =

p∑
1

q∑
1

U (o.r)
mn +

r∑
1

U (o.d)
mn (4)

In Equation (4), p is the number of dependency chains
related to STarget, q is the number of all non-adjacent
antecedent services of STarget in each dependency chain,
and r is the number of direct antecedent services of STarget.

Inaccessible service parameter utility inference: As a
result, utility Uϕ of the inaccessible parameter ϕ of STarget
is computed with the results from the three different parts
as:

Uϕ = UM ϕ · (UE ϕ + UO ϕ) (5)

In Equation (5), the mandatory-type contributed utility
UM ϕ is the dominance over the utility Uϕ of the inacces-
sible parameter ϕ of STarget like the switch.

Step 4. Monitoring Result Generation: The monitoring
result generation step maps the derived utility Uϕ back to
the inaccessible parameter’s value Vϕ. To do so, we apply
the inverse conversion rules f−1B and f−1N in Step 1 for
the back-mapping process. However, the special attention
is required to manage the case of mapping the parameter
value Vϕ back to a given set, because the computed utility
may not exactly match any element in the set. Therefore, we
propose to assign the derived utility Uϕ to the nearest utility
mapped from some element value in the set. For example,
if the derived utility Uϕ is 0.32 which does not match any
utility in the set like {0.25, 0.5, 0.75, 1}. However, its two
adjacent elements are 0.25 and 0.5. As a result, utility Uϕ is
replaced by 0.25 which has the minimum deviation to 0.32
than others.

Step 5. Result Reliability Evaluation: Because the mon-
itoring result is inferred by deQAM indirectly, it suffers
from uncertainty which has to be estimated. Therefore, it
is necessary to address the uncertainty issue by evaluating
the reliability of the generated monitoring result Vϕ of the
inaccessible parameter ϕ of STarget.

The deQAM ’s inference process relies on the service
dependency parameters αmn, βmn, and γmn from Step 2.
As the value of γmn is generally derived by studying the
empirical experimental data or the knowledge of the experts
[22], the incomplete knowledge of γmn is the source of
uncertainty for the indirect monitoring result Vϕ. Therefore,
we estimate γmn based on a statistic evaluation approach
to assess the confidence level of the generated monitoring
result Vϕ.

The evaluation approach is designed with the assumption
that γmn is derived with the best knowledge of the experts
or the best-effort study on empirical experimental data. In
other words, the value of γmn applied in deQAM ’s utility
computing process is the most likely approximation of the
real strength of the dependency. Consequently, uncertainty
ξmn is defined as the deviation between the approximation



value and the true value of γmn. As a result, the distribution
of uncertainty can reflect the reliability of γmn. Specifically,
the variance of the uncertainty distribution σmn is inversely
proportional to the reliability of γmn. Apart from the vari-
ance σmn, the mean of the uncertainty distribution µmn is
set to 0 due to no intentional bias introduced for deriving
γmn according to the assumption. Meanwhile, the Gaussian
distribution is commonly used for modeling the uncertainty
problem. Therefore, the distribution of γmn’s uncertainty
follows the Gaussian distribution N(0, σmn). As the value
of γmn is independently obtained, the uncertainty ξ(Vϕ)
of the generated monitoring result Vϕ is the aggregation
of all γmn’s uncertainty. Thus, ξ(Vϕ) follows the Gaussian
distribution as:

ξ(Vϕ) ∼ N(0,
∑

σmn) (6)

However the true value of σmn is generally unknown. Hence,
we adopt the mean of the square products of the uncertainty
differences to estimate the true value of σ̂2

ξ(Vϕ) obtained from
Equation (6) as:

σ̂2
ξ(Vϕ) =

1

t

t∑
1

(γmn − γmean)2 (7)

In Equation (7), γmean is the mean value of all γmn
participated in the utility computation process. While t is the
total number of γmn participated in the utility computation
process. Accordingly, a χ2-distribution can be obtained
based on Equation (7) as:

χ2(t) ∼
∑t

1(γmn − γmean)2

σ2
ξ(Vϕ)

=
t · σ̂2

ξ(Vϕ)

σ2
ξ(Vϕ)

(8)

Therefore, the χ2-distribution statistic characteristic can be
used to determine the confidence level (1 − c) to assess
the reliability of the generated monitoring result Vϕ [6].
Based on the distribution (8), the confidence level 1 − c
of σ2

ξ(Vϕ) is derived to represent the generated monitoring
result’s reliability [13] as:

(

∑t
1(γmn − γmean)2

χ2
(1− c

2 ,t)

,

∑t
1(γmn − γmean)2

χ2
( c
2 ,t)

) (9)

IV. CASE STUDY

deQAM is applied to an example Cloud service to infer
the inaccessible service parameter as an initial effort to val-
idate the proposed approach. To the best of our knowledge,
it is the first study for conducting indirect monitoring on the
inaccessible parameter of the Cloud service.

Fig. 4.(a) depicts the service provisioning hierarchy of a
Cloud service with other services. Without loss of generality,
we assign the parameters ϕs1 and ϕs2 of services S1 and
S2 (respectively) holding the optional-type dependencies in-
directly and directly to the parameter ϕs5 of the service S5,
the parameter ϕs3 of the service S3 holding the mandatory-
type dependencies to the parameter ϕs4 of the service S4 and

 S3

S5

S2

S1

 S4

(a)

 S3

S5

S2

S1

 S4

D25 = [1, 1, 0.8] D35 = [1, 0, 1]

D34 = [-1, 0, / ]

D12 = [1, 1, 0.9 ]

(b)

φS5

φS4φS3

φS2

φS1

Figure 4. (a) The raw service provisioning hierarchy for Cloud service
S5
(b) The parameterized service dependency graph for Cloud service S5

the parameter ϕs5 of the service S5. The target monitoring
parameter ϕs5 , with the possible value varying range of
[0, 100%], is unable to be monitored directly. However, the
other information of the parameter from the other services
can be collected as in Table I. Then, deQAM conducts the
indirect monitoring process as follows:

Table I
CASE STUDY: INFORMATION COLLECTED FOR INDIRECT PARAMETER

MONITORING

Parameter Dependent Cloud services
Location Service 1 Service 2 Service 3 Service 4 Service 5
Name ϕs1 ϕs2 ϕs3 ϕs4 ϕs5 (Target)
Value Type Numerical Numerical Boolean Boolean Numerical
Variation Range [0,100%] Lv 1/2/3/4/5 (in)activated (un)available [0,100%]
Collected Value 30% Lv 1 activated available N.A
Trimming Status Keep Keep Keep Removed Keep
DepDirection (αmn) α12 = 1 α25 = 1 α35 = 1 Removed N.A
DepType (βmn) β12 = 1 β25 = 1 β35 = 0 Removed N.A
DepStrength (γmn) γ12 = 0.9 γ25 = 0.8 γ35 = 1 Removed N.A

• Step 1. Utility Mapping To monitor parameter ϕs5 ,
deQAM starts by mapping the value of the parameters
collected from the antecedent services onto utility. By using
the proposed conversion rules f B and f N , the utility of
the value of the collected parameters (ϕs1 , ϕs2 , ϕs3 ) are
converted as:
Uϕs1

= 30%
100%−0 = 0.3

Uϕs2
= Lv1
{Lv1,Lv2,Lv3,Lv4,Lv5} =

0.2
1.0−0 = 0.2

Uϕs3
= 1, since ϕs3 is a Boolean and Vϕs3

is activated.
• Step 2. Service Dependency Parameterization deQAM

constructs the parameterized service dependency graph G
for conducting the utility analysis of ϕs5 . As in Fig.
4.(b), G contains 5 vertexes denoting the 5 different Cloud
services and 4 edges specifying the dependency with the
three-parameter (αmn, βmn and γmn) vectors. Then, the
target-centric dependency trimming algorithm is executed
to remove the irrelevant services based on the inputs of
G and αmn. The output of the algorithm is the trimmed
parameterized service dependency graph G

′
which removes

S4 as denoted in dotted form. Since the service dependency
~D34 is irrelevant to the utility analysis for monitoring ϕs5

and its directional parameter α34 sets to −1 in the figure.
• Step 3. Monitoring Result Inference deQAM com-

putes the utility of the parameters collected from S1, S2
and S3.
∗ Eigen utility: ϕs5 ’s eigen utility UE ϕs5

is decided by
the basic provisioning level of S5. In this case study, we set
UE ϕs5

to 0.5.



∗ Mandatory-type contributed utility: deQAM computes
the mandatory-type contributed utility UM ϕs5

by using the
monitoring information collected from S3. As Uϕs3

= 1,
the mandatory-type contributed utility is computed as:
UM ϕs5

=
∏1

1 Uϕs3
= 1

∗ Optional-type contributed utility: deQAM computes
the optional-type contributed utility UO ϕs5

by using the
monitoring information collected from S1 and S2. Accord-
ing to Equation (2) and (3), S1’s ripple-effect optional-type
utility U (o.r)

15 and S2’s direct optional-type contributed utility
U

(o.d)
25 are computed respectively as:
U

(o.r)
15 = (γ12 · Uϕs1

) · γ25 = 0.216

U
(o.d)
25 = γ25 · Uϕs2

= 0.16
By Equation (4), ϕs5 ’s optional-type contributed utility

UO ϕs5
is:

UO ϕs5
= U

(o.r)
15 + U

(o.d)
25 = 0.376.

∗ Inaccessible service parameter utility inference: Based
on the above computation, utility Uϕs5

of the inaccessible
service parameter ϕs5 is derived by Equation (5) as:
Uϕs5

= UM ϕs5
· (UE ϕs5

+ UO ϕs5
) = 0.876.

• Step 4. Monitoring Result Generation deQAM maps
utility Uϕs5

back to ϕs5 ’s value to generate the monitoring
result Vϕs5

. By applying proposed inverse conversion rule
f−1N , the monitoring result Vϕs5

of the inaccessible parame-
ter ϕs5 is generated as follows. Because Uϕs5

is 0.876 and
the varying range of Vϕs5

is [0, 100%], the monitoring result
Vϕs5

is derived as:

Vϕs5
=

Uϕs5

Uϕs5 max−Uϕs5 min
·100% = 0.876

1−0 ·100% = 87.6%

• Step 5. Result Reliability Evaluation deQAM de-
termines the confidence level of the generated monitoring
result by using Equation (9) and the value of γmn specified
in Table I. In this case study, we assess the reliability of the
monitoring result V ϕs5 with the confidence level (1− c) of
95% (i.e. 1−c = 0.95). By checking the χ2 distribution table
[13], we find χ2

( 0.05
2 ,3)

= 0.216 and χ2
(1− 0.05

2 ,3)
= 9.348.

According to Equation (7) and (9) and Table I,
γ12 = 0.9, γ25 = 0.8, γ35 = 1, γmean = (γ12 + γ25 +

γ35)/3 = 0.9.
σ̂2
ξ(Vϕs5

) =
1
3

∑3
1(γmn − γmean)2 = 0.12+0.12

3 = 0.0067∑3
1(γmn−γmean)

2

χ2

(1− 0.05
2

,3)

= 0.12+0.12

0.226 = 0.0926∑3
1(γmn−γmean)

2

χ2

( 0.05
2

,3)

= 0.12+0.12

9.348 = 0.0021

As a result, deQAM determines the uncertainty variance
σ̂2
ξ(Vϕs5

) of the generated monitoring result Vϕs5
of inacces-

sible parameter ϕs5 is 0.0067 and the 95% confidence level
is derived as the interval of (0.0021, 0.0926).

V. DISCUSSION

Our case study shows that deQAM can successfully
infer the monitoring result by using the dependencies across
Cloud services. The study also shows that deQAM can
evaluate the reliability of the monitoring result by giving

a 95% confidence level of the uncertainty estimation. The
variance of uncertainty is as small as 0.0067. This implies
that the monitoring result is unlikely to unexpectedly deviate
from the true value of Vϕs5

. Meanwhile, the 95% confidence
level is based on the interval of (0.0021, 0.0926). This
narrow confidence interval constrains the randomness of
the uncertainty variance. The narrow confidence interval
disables the potential big deviation of the real uncertainty
variance. As the uncertainty variance 0.0067 falls within the
confidence interval, the reliability of the monitoring result
is statistically sound.

Our case study also utilizes different types of parameters
commonly existing in Cloud services. For instance, the
parameter with a varying range represents the service pa-
rameter with variable status like CPU usage rate as in IaaS.
Similarly, the parameter selected from a set represents the
service parameters with several possible levels like different
encryption levels of Cloud encryption services. Moreover,
the parameter with boolean value represents the service pa-
rameter with the switch-effect like authentication parameters
deciding the access to Cloud services. Therefore, the case
study demonstrates deQAM ’s capability of handling most
of the common service parameter types used in the Cloud.

VI. RELATED WORK

The indirect monitoring for Cloud service is a novel
research topic that is only beginning to garner attention.
Thus, some works that likely have potential value for design
the indirect monitoring approach are surveyed below.

One related field is about service dependency though
most works in this field focus on describing the notion
of “dependency” from varied perspectives. For example,
Winkler et al. [19] classified the service dependencies into
discrete types for creating the service dependency model.
Eppinger et al. [15] presented the design structure matrix
(DSM) for refining the service dependency. Likewise, Qi et
al. [16] proposed a dependency graph to analyze the services
by trust. However, Garvey et al. [4][21] proposed a func-
tional dependency network analysis framework (FDNA) by
studying the characteristics of service dependency. Similarly,
Guariniello et al. [1][5][9] proposed the system behavior
modeling methodologies by improving the FNDA.

Another related field is about uncertainty, as the indi-
rect monitoring approaches have to address the reliability
issue by assessing the uncertainty of the generated moni-
toring results. For example, Wang et al. [7] proposed an
adapted backward Cloud generator algorithm to address
the uncertainty of service quality. Tang et al. [8] proposed
a Bayesian based methodology to address the prediction
uncertainty of service level agreement violations in Cloud.
Furthermore, Huynh et al. [12] proposed a state-based
policy framework to assess the monitoring quality caused
the uncertain. Moreover, Galland et al. [20] proposed the
different data value estimation algorithms to address the



uncertainty. Additionally, Li et al. [6] proposed a weighting
optimization algorithm to address the uncertainty concern by
discriminatingly assigning different weights to data sources.
As contemporary work, Yin et al. [18] proposed a semi-
supervised learning method to reduce the uncertainty.

VII. CONCLUSION

Indirect monitoring for Cloud services is an emerging
challenge introduced by the inaccessibility of multiple Cloud
service parameters. However, the existing monitoring ap-
proaches typically are inapplicable without direct access to
those service parameters. Therefore, we propose deQAM
as a dependency-based quantitative aggregation indirect-
monitoring methodology to specifically address this gap.
deQAM introduces the utility to correlate the inacces-

sible parameter of the dependent Cloud service with the
related accessible parameters of antecedent Cloud services
by using the service dependency. Furthermore, deQAM also
adopts a multi-step utility computing procedure to infer the
inaccessible parameter’s value as the indirect monitoring
result. Additionally, deQAM evaluates the reliability of the
monitoring result by specifying its confidence level.

The advantages of our approach are the capability of
monitoring the inaccessible Cloud service parameters and
the adaptability of working in many other indirectly moni-
toring scenarios. Currently, deQAM can deal with the static
indirect monitoring case. In the future, we plan to improve
deQAM for dealing with the dynamic monitoring scenario,
in which the value of relevant parameters change over time.
Overall, our paper provides a valuable starting point for
exploring indirect monitoring in Cloud.
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