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ABSTRACT
Cloud monitoring is an essential mechanism for helping secure
cloud services. Thus, a plethora of monitoring schemas have been
proposed in recent years. Particularly, a newly proposed indirect
monitoring mechanism outperforms others with the unique merit
of addressing scenarios where the information of the monitoring
target is not directly accessible. To conduct indirect cloud security
monitoring, a key prerequisite is to obtain a special set of monitor-
ing data termed “monitoring path”. However, how to ascertain the
monitoring path is still an open issue.

In this paper, we propose Flashlight as a novel monitoring path
identification mechanism to address the gap where the information
of monitoring targets is inaccessible. For this purpose, Flashlight
first introduces a novel data reduction technique to filter unneces-
sary monitoring information. Second, Flashlight develops a data as-
sociation approach to identify the monitoring path by utilizing data
relations and data attributes. Third, Flashlight devises a monitoring
property graph to support fine-grain monitoring path identification
as well as represent identified monitoring paths. In addition, the
efficacy of our proposed approach is demonstrated by the case stud-
ies where Flashlight successfully identifies the monitoring paths
for underpinning indirect cloud monitoring.
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1 INTRODUCTION
Cloud monitoring is a critical mechanism to help secure cloud ser-
vices, and at the same time validating the compliance of security
requirements proposed by cloud service customers (CSCs). It uti-
lizes collected monitoring information for ensuring data security,
managing service performance, protecting user privacy, and other
objectives. Consequently, a variety of cloud monitoring schemas
have been proposed in recent years [4, 5, 9, 16, 29, 33, 34]. The
proposed monitoring schemas are predominantly developed based
on an assumption where the monitoring information is directly
accessible. In reality, only a very few of monitoring information
can be accessed by CSCs. For example, CloudWatch that targets
monitoring applications and resources in Amazon Web Services
(AWS) only provides the CSCs with a small number of monitoring
metrics, such as CPU utilization, disk read/write behaviors, net-
work traffic, and status check reports [3]. In many cloud services,
some monitoring information is also restricted to be accessed by
the CSCs. For instance, the version information of OpenSSL library,
which is adopted by a Software-as-a-Service (SaaS) cloud service
provider (CSP) for securing network communications, is important
for monitoring the Heartbleed attack [21] but cannot be directly
accessed for security reasons. Unfortunately, the proposed schemas
cannot deal with this situation where particular monitoring infor-
mation is inaccessible. The situation obstructs CSCs to check the
security compliance of the subscribed cloud services.

The challenge of lacking direct access to particular monitoring
information has recently been addressed by an indirect cloud mon-
itoring mechanism [40]. This indirect monitoring mechanism is
developed based on the observation that cloud services typically
do not function on a standalone basis but could share system re-
sources in some situation. Resource sharing could introduce data
associations which can be exploited by attackers [14, 35, 41]. For
example, a study [26] reports that the AES [20] and RSA [27] secret
keys can be stolen by exploiting the data association introduced by
memory resource sharing in virtualized environments, while such
data associations can also be utilized to monitor cloud services. The
proposed monitoring mechanism particularly takes advantage of
the data association termed “monitoring path”, which is formed by
a set of accessible monitoring data and related data relations, to
indirectly infer the inaccessible monitoring information. For ex-
ample, the encryption overhead of the cloud service depends on
the adopted encryption method and the size of the target file to
encrypt. By aggregating the monitoring path that is formed by the
information of the target file size, the adopted encryption method,
and the dependency, the indirect mechanism can infer the informa-
tion of encryption overhead which cannot be directly monitored.
While the proposed indirect monitoring mechanism exhibits its
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unique advantage of monitoring the particular information that
is inaccessible for a variety of reasons (e.g., technical difficulties,
intellectual property protection issues, or privacy concerns), the
key problem of ascertaining monitoring paths to enable the indirect
cloud monitoring has not been addressed.

The monitoring path is difficult to ascertain due to several rea-
sons. First, it is hard to discern the valuable monitoring information
that is relevant to help identify monitoring paths. Massive moni-
toring data is continuously collected by cloud security monitors,
while only a small portion of monitoring data is useful for spotting
potential data associations utilized as the monitoring paths for per-
forming indirect cloud monitoring tasks. An effective technique for
filtering the irrelevant monitoring data from the collected data is
demanded. Second, there is a lack of quantitative techniques to as-
sociate useful monitoring data for generating the monitoring path.
Given a set of monitoring data and a monitoring target, a valid quan-
titative technique is required to identify the data association that
underpins the indirect monitoring on the inaccessible information
of the monitoring target. Third, there is an absence of an effective
schema that can not only represent the identified monitoring paths
but also further support identifying monitoring paths in a complex
scenario. It is difficult to properly represent the identified monitor-
ing paths with existing representation mechanisms. Especially, the
monitoring data involved complex data relations (e.g., service de-
pendency, time causality, or data consistency) introduces additional
challenges for identifying monitoring paths. Without properly as-
certaining monitoring paths , the efficacy of the proposed indirect
monitoring mechanism is substantially jeopardized.

In this paper, we follow the research direction of the emerging
indirect cloud monitoring and thus propose Flashlight as a novel
monitoring path identification mechanism to address the aforemen-
tioned gap. Given a set of collected monitoring data and the related
information (i.e., data attributes and data relations), our proposed
mechanism can select useful monitoring data from the collected
data set, identify particular data associations as the monitoring
paths, and represent the identified monitoring paths together with
other useful information. To this end, Flashlight first makes use of
the data attributes to obtain valuable monitoring data by filtering a
significant amount of trivial monitoring data. Next, Flashlight takes
advantage of the data relations to identify data associations (i.e.,
monitoring paths) by utilizing the statistical characteristics of the
collected monitoring data. Finally, Flashlight proposes a monitoring
property graph to represent the identified monitoring paths and
other complex information of the collected monitoring data (i.e.,
values, attributes, relations, and associations) which underpins the
fine-grain monitoring path identification. By employing Flashlight,
security professionals can conveniently obtain monitoring paths
for performing indirect cloud monitoring rather than manually con-
ducting a cumbersome monitoring path analysis which is not only
requiring a profound knowledge of all the collected monitoring
data but also strictly subject to the scale of the collected data set.

To the best of our knowledge, our work is the first monitor-
ing path identification mechanism for facilitating indirect cloud
monitoring. In summary, we make the following contributions:

(1) We introduce a novel monitoring path identification mecha-
nism that can discern valuable monitoring data and ascertain
monitoring paths for performing indirect cloud monitoring.

(2) We propose a novel monitoring property graph with the
advantage of representing complex information (i.e., data
value, data attributes, data relations, data associations, and
monitoring paths) in order to improve the efficacy of the
indirect cloud monitoring methodology.

(3) We evaluate the efficacy of the proposed mechanism with
identifying monitoring paths that help indirectly monitor
different classes of practical security threats in cloud.

The remainder of this paper is organized as follows. Section 2 out-
lines the issues behind the monitoring path identification. Section
3 formulates the monitoring path identification problem. Section 4
details the design of the proposed mechanism. The effectiveness of
the proposition is evaluated in Section 5 by performing case studies
on real cloud security threats. Section 6 reviews related work.

2 BACKGROUND
To motivate the issues, we first present two prominently reported
security threats to highlight the significance of monitoring path
identification for achieving effective service security compliance
monitoring by using the indirect cloud monitoring mechanism.
Subsequently, we analyze the reported threats to provide insights
on the monitoring data underpinning our design.

2.1 Existing Threats
Our work is motivated by the CSC’s pragmatic requirement of
monitoring the security compliance of cloud services. Effectively
monitoring security compliance requires in-depth understanding
of the links among monitoring data collected from cloud services
whose security compliance might be violated by security threats.

2.1.1 The access-driven cache attack. A typical security require-
ment from the CSC is about the encryption key management which
targets keeping the applied encryption key in safe. However, it is
difficult to monitor the compliance of this security requirement
without perceiving the valid monitoring path. For example, an
access-driven cache attack (ADCA) aims to exploit the timing be-
haviors of cache accesses so as to compromise the confidentiality of
cloud services. Gullasch et al. [11] present an access-driven cache
attack which enables an unprivileged spying process to recover the
secret key of a running encryption process (AES-128). To conduct
such an attack, the attacker exploits the knowledge of the cache
specification, namely the cache access status (hits/misses), CPU cy-
cles, and AES-128 encryption protocol. It is challenging to monitor
the security compliance which might be probably violated by this
particular attack, if the interlinked data associations across the data
elements are not fully understood.

2.1.2 The resource-freeing attack. The CSC also puts emphasis
on the business continuity management to assure the service avail-
ability varying within the specified range. Nonetheless, it is labori-
ous to monitor the compliance of this security requirement without
deeply understanding the monitoring data. For instance, a resource-
free attack (RFA) targets the imperfect isolation mechanism of the
virtual machine (VM) hypervisor. The attacker introduces crafted
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interference on a victim VM to trigger a performance bottleneck
which leads the victim VM to free up the system resource for the
beneficiary VM. Varadarajan et al. [32] present the RFA case to
exploit the hypervisor isolation policy (i.e., the fair-sharing policy)
to free up the network resource from one web service to another
web service, even though both web services should equally share
the network resources. In this case, the attacker implements the
attack by exploiting the knowledge of, CPU utilization, high CPU
overhead service request, and the crafted attack process. Likewise, it is
also critical to discover the compliance violation caused by the RFA
attack with effectively understanding collective data associations.

2.2 Example Interpretation
These examples highlight the challenge of monitoring the security
compliance of cloud services without gaining an insight on the col-
lective monitoring data. The key point for addressing this challenge
is to identify the “useful” associations across the monitoring data.
A data association can be regarded as the monitoring path, which is
formed by a sequence of monitoring data and data relations, used
for monitoring the security compliance. To identify the monitoring
path, two dominant issues need to be properly considered.

First, the monitoring data collected from the cloud carries much
more information than just the data value. Considering to monitor
Distributed Denial of Service (DDoS) attacks, a lot of monitoring
data is collected by security monitors. The value of monitoring data
(e.g., the amount of incoming user requests) can provide important
information for monitoring DDoS attacks. Besides, some special
types of monitoring data might have higher criticality than other
collected data (e.g., the file accessing data or the process context
data) in the context of the DDoS attack monitoring. Moreover,
monitoring data might be subject to various relations such as time
causality or service dependency.Without a collective understanding
of the monitoring data, it is difficult to identify the monitoring path.

Second, an effective data association technique for identifying
the monitoring path is missing. While a large number of cloud
monitoring techniques have been proposed by researchers [4, 5,
18, 30], these techniques target monitoring the specific individual
data (e.g., parameters, values, or formats). Given the paucity of data
association mechanisms, these approaches cannot properly monitor
the security compliance that may be violated by particular security
threats (e.g., ADCA or RFA) mentioned in Section 2.1. Determining
such data associations underlies our proposed approach.

2.3 Data Relation
Relations across the monitoring data is indispensable for identifying
data associations in the raw monitoring data set [7]. Data relations
encompass a wide range of aspects, such as causality, consistency,
or dependency. For example, data dependency is a common type of
data relation existing among many cloud services. Data dependency
is observed between the Heartbleed attack and the OpenSSL library
which is a widely used cryptography library for encrypting the
network connection between a cloud server and its clients. Namely,
if the OpenSSL library supporting the Heartbeat mechanism has the
version number of “1.0.1” (excluding “1.0.1д”) [21], the Heartbleed
attack could take effect. Therefore, the indispensable knowledge
on such dependency helps identify data associations.

Besides, the attribute of monitoring data is also the critical knowl-
edge that can be used to facilitate identifying data associations. In
this paper, we particularly consider the collected monitoring data
with two different attributes, namely reducibility and criticality.

Reducibility is used to capture the necessity of the monitoring
data. For example, when Dropbox conducts the directory scan-
ning operation (by running the “pcscd” daemon), this operation
can produce a lot of repetitive monitoring information (i.e., read-
ing/accessing operations recursively conducted in the specified
path) [36]. From a monitoring perspective, the repetitive data does
not convey any additional useful information. Therefore, the repeti-
tive data can be reasonably reduced by leveraging data reducibility.

Criticality is used to capture the significance of the monitoring
data. For every monitoring target, the collected monitoring data
has different levels of importance. As the ADCA example shows,
the monitoring data of cache access status (hits/misses) has more
importance than file accessing status with respect to monitoring the
security compliance that may be violated by this particular security
threats. Accordingly, the collected monitoring data can be weighted
by taking advantage of the data criticality.

3 PROBLEM FORMULATION
On this background, we now present a formalization of the moni-
toring path identification problem.

In this paper, we consider the scenario that contains a set of
monitoring data D = {d1,d2, · · · ,dk } (for some k ∈ N) collected
by deployed security monitors and a set of data relations R =
{R1,R2, · · · ,Rl } (for some l ∈ N) existing among the collected data.
The data relation Ri is a function Ri : {D} → P (D). The output of
the function is a subsetDi = {di1,di2, · · · ,di j } (for some j ∈ N, 1 ⩽
i ⩽ l) where di j is collected monitoring data represented by a 3-
tuple di j = (vi j , ri j , ci j ). For monitoring data di j , vi j represents its
value, ri j ∈ {reducible, irreducible} represents its data reducibility,
and ci j ∈ [0, 1] represents its data criticality. That is to say, when
the relation Ri functions on the data setD, a corresponding subset
of monitoring data Di can be obtained.

This scenario targets the monitoring data collected by taking
advantage of data relations (e.g., causality, consistency, or depen-
dency) and data attributes (e.g., criticality and reducibility). Notably,
data relations and attributes of monitoring data can be derived by
utilizing the expert knowledge or applying existing approaches
[10, 24, 39]. For the sake of simplicity, we assume that one collected
monitoring data is subject to only one type of relation. As a matter
of fact, even though the collected monitoring data may be subject to
multiple types of relations, it is necessary to consider one specific
type of relation for monitoring the information of a specific target.

dmn dmn+1 dm’n’dm’n’-1

intermediate data

starting data ending data

data relation data relationdata relation

Figure 1: An Example of Monitoring Path

With the above definitions, we define a monitoring path p as a
structure that begins from a monitoring data dmn ∈ D (m,n ∈ N)
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via a sequence of intermediate monitoring data and ends at another
monitoring data dm′n′ ∈ D (m

′

,n
′

∈ N). For each intermediate
data of monitoring path p, it associates a predecessor with a suc-
cessor. The association between adjacent monitoring data in the
monitoring path reflects relations between the data. As depicted in
Figure 1, the monitoring path p is composed of starting data dmn ,
ending data dm′n′ , and a set of intermediate data (e.g., dmn+1 or
dm′n′−1). Two adjacent data dmn ,dmn+1 are required to belong to a
common data relation: dmn ,dmn+1 ∈ Ri (D) for some 1 ⩽ i ⩽ l . By
synthesizing such data associations, monitoring path p bridges the
accessible monitoring data and the inaccessible monitoring target
so as to enable the indirect monitoring task.

In this paper, we propose to identify the monitoring data asso-
ciation by utilizing the data attributes and the data relations. The
monitoring path identification problem is defined as follows.

- Given a relation set R,
- Given a monitoring data set D, where the collected moni-
toring data di j is equipped with two data attributes : data
reducibility ri j and data criticality ci j ,

▷ The monitoring path identification problem is to identify a
set of monitoring paths P = {ps ; s ∈ N} where ps is the sth
monitoring path in P.

4 PROPOSED METHODOLOGY
In this section, we detail the proposedmethodology.We first provide
an overview of the framework of the proposed mechanism. Based
on the framework, we explain the specific design step by step.

4.1 Methodology Overview
The key point of the monitoring path identification is to identify the
relevant monitoring data associations. We take advantage of data
relations and data attributes as discussed in Section 2.3 to identify
data associations. As a result, we propose a multi-step monitoring
path identificationmechanism as depicted in Figure 2. The proposed
mechanism contains three steps as follows.

(1) Reducible intra-relation data association takes a set of moni-
toring data D and a set of data relations R as the input to
execute the association process for deriving the data associ-
ation with the same relation.

(2) Weighted inter-relation data association takes data associa-
tions derived from different relations (Step 1) as input to
associate them as a complete monitoring path.

(3) Monitoring path representation takes the relevant informa-
tion from the previous steps as the input for representing
the identified monitoring paths in the proposed monitoring
property graph where the represented monitoring informa-
tion (i.e., data values, data attributes, data relations, and data
associations) facilitates monitoring path identification when
the monitoring data involves with more complex relations.

4.2 Methodology Design
We now detail the proposed multi-step methodology as demon-
strated in the framework that is depicted in Figure 2.

4.2.1 Reducible intra-relation data association. To identify the
data associations in the monitoring data set, Flashlight first reduces

the input data set by utilizing data attributes (i.e., reducibility) and
then ascertains data associations with the identical relation therein.

In practice, the collected monitoring data set is not necessarily
completely required for conducting the specific monitoring task.
Considering the Dropbox example in Section 2.3, we notice that
even though a large amount of monitoring data is collected (i.e.,
the repetitive low-level file system accessing data), the meaningful
monitoring information is about the scanning operation that trig-
gered the “pcscd" process. In other words, the repetitive low-level
data does not provide much meaningful monitoring information.

diidii-1
dii+2

dii+3

dii+1

dii-1 dii

Irreducible

Reducible

Irreducible Association Reducible Association 

dii-1 : data of /bin/dd

dii    : data of /bin/pcscd

dii+1 : data of /dev/sda0

dii+2 : data of /dev/tty1

dii+3 : data of /bin/mount

Raw Data Before Reduction

Necessary Data After Reduction

Figure 3: An Example of Data Reduction

Without loss of generality, we explain the data reduction process
in Figure 3 which consists of five nodes (monitoring data) and six
edges (data associations). In this figure, we use full circles to repre-
sent irreducible monitoring data (e.g., dii can denote the monitoring
data of “pcscd" process), while dashed circles denote reducible mon-
itoring data (e.g., dii+1 is the monitoring data of the low level file
system accessing operation occurred in hard disks). The solid edge
represents the irreducible association between a pair of the irre-
ducible monitoring data. In contrast to the solid edge, the dotted
edge represents the reducible association which is introduced by
the reducible monitoring data. In this example, the “pcscd" process
is executed by calling /bin/dd command. Then, the “pcscd" process
repetitively performs a series low level of operations like mounting
storage devices (/bin/mount ), reading hard disks (/dev/sda0), or
accessing TTY devices (/dev/tty1). From a monitoring perspective,
monitoring information of those repetitive operations does not
give more help and thus can be properly reduced. Therefore, by
removing the reducible monitoring data, the original graph can be
reduced to a simpler structure as a two-node association between
dii−1 and dii . This data reduction process is conducted by examin-
ing the value of ri j in the triple di j as defined in Section 3. To be
specific, if ri j equals to “reducible", di j will be removed from the
input data set. Otherwise, di j will be kept in the data set.

After filtering the unnecessary data, Flashlight proceeds to an
intra-relation data association process. By running a relation-based
monitoring process (e.g., a monitoring process collects several data
in terms of the service dependency), certain monitoring data com-
binations frequently appear in the collected monitoring data set.
For example, Transport Layer Security (TLS) handshake request
and response messages frequently appear on Port 443 (i.e., the
HTTPS port) during monitoring the Heartbleed attack. Such data
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Cloud Monitoring Data Set

Flashlight

Cloud Monitoring Data Set

Cloud Monitoring Data Set

Monitoring Data Relation

Monitoring Data Set (D)

Monitoring Data Relation

Monitoring Data Relation

3.) Monitoring Path Representation

1.) Reducible Intra-Relation Data AssociationInput Interface 

Data Relation Set (R)

Monitoring Data Reduction

Data Association (Same Relation)

2.)  Weighted Inter-Relation Data Association

Data Association Weight Computation

Data Association (Different Relation)

Data

Relation

Reduced Data

Identified Data Association (Single Relation)

Computed Association Weight

Identified Monitoring Path

Monitoring Property Graph Generation

Monitoring Property Graph

Figure 2: The Framework of the Monitoring Path Identification Methodology

co-appearance indicates the existence of an association among the
monitoring data. The frequency of the co-appearance also reflects
the association degree of the data. With the above observation, the
intra-relation monitoring data association is defined as follows.

Definition 1. Let (di j−1,di j ) be a pair of monitoring data subject
to the same relation Ri . The monitoring data association between

di j−1 and di j is denoted as A|
di j−1
di j

: di j−1
⊎
di j .

In this paper,
⊎

is the symbol used for representing the associa-
tion between two different objects, such as two different monitoring
data or two different monitoring data associations.

Flashlight adopts two metrics (i.e., the support and the confi-

dence) to characterize the data associationA|di j−1di j
inspired by work

[1] that utilizes the two metrics to quantify statistic properties of
different objects to discover existing associations among the objects.

The support (sup) of the data association A|di j−1di j
denotes the

proportion of the collected monitoring data sets which include both
di j−1 and di j . It captures the co-appearance rate of two monitoring
data by representing with the probability of the data co-appearance.
Therefore, the formula for computing support is given as follows.

sup (A|
di j−1
di j

) = σ (di j−1
⋂

di j ) (1)

In Formula (1), σ (di j−1
⋂
di j ) presents the proportion of the

monitoring data sets containing both di j−1 and di j . These data sets
are collected by the monitoring process with utilizing relation Ri .

The confidence (conf) of the data associationA|di j−1di j
denotes the

ratio of di j in the collected monitoring data sets which contain
both di j−1 and di j . It captures the conditional probability of di j ’s
appearance given di j−1’s appearance. Accordingly, the formula for
computing confidence is given as follows.

conf (A|
di j−1
di j

) =
σ (di j−1

⋂
di j )

σ (di j−1)
(2)

In Formula (2), σ (di j−1) presents the proportion of the monitor-
ing data sets containingdi j−1. Likewise, these data sets are collected
by the relation Ri based monitoring process.

As the monitoring data appearance is regarded as a random
variable, the correlation between different data also needs to be

considered. A common method to quantify the random variables’
correlation is to compute the Pearson correlation coefficient of the
given variables. However, the Pearson correlation coefficient is
generally hard to compute [31]. To effectively capture the correla-
tion between monitoring data, Flashlight introduces the ambiguity
which can not only represent monitoring data correlations but also
be easier to determine by applying an optimized solution as follows.

amb (A|
di j−1
di j

) =

√
p (di j−1,di j )

p (di j−1) · p (di j )
· σ (di j−1

⋂
di j ) (3)

In Formula (3), σ (di j−1
⋂
di j ) is sup (A|

di j−1
di j

), p (di j−1) is the
probability of di j−1, and p (di j ) is the probability of di j . p (di j−1,di j )
is the joint probability of both data.

By applying Formulas (1)(2)(3), the intra-relation data associ-
ations can be identified over data set Di and the identification
results can be presented by an association vector I (A|di j−1di j

) =

(sup (A|
di j−1
di j

), conf (A|
di j−1
di j

),amb (A|
di j−1
di j

)).
With this data association process, Flashlight can apply it in

a stepwise mode for associating more data subject to the same
relation. For example, to associate the next monitoring data di j+1,
Flashlight regards the derived data association A|di j−1di j

as a whole
(i.e., like one “virtual data”) and applies the intra-relation data
association process to identify the association vector I (A|di jdi j+1

).
The data association process keeps executing until no more data
can be associated according to the predefined threshold or baseline.

4.2.2 Weighted inter-relation data association. In many scenar-
ios, the monitoring path is a combination of multiple data associa-
tions derived from different data sets subject to different types of
relations. Therefore, the inter-relation data association technique
is proposed based on the following idea: In Step 4.2.1, a set of
data associations are derived by leveraging different data relations.
To properly select and combine the derived data associations, the
inter-relation data association can be achieved.

To perform the inter-relation data association, we consider two
different components: the precedent and subsequent. The precedent
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is the data association that is about to be combined with another
data association. The subsequent is the data association selected for
the combination. The combination of both components can be also
regarded as a random event where both precedent and subsequent
appear at the same time with respect to monitoring a specific target.

Different from the intra-relation data association where the data
is subject to the same relation, the inter-relation data association
needs to select the subsequent for the precedent. One common prac-
tice for making selections is to consider the criticality of the se-
lection object. As a result, we propose a weighting method for
selecting the subsequent based on considering the criticality.

As the subsequent is a data association that contains a set of
monitoring data, we propose to adopt the mean value of the data
criticality in the subsequent as its weight. Formally, the weight of
the data association is defined as follows.

Definition 2.Weight W of a data association is the mean value
of the data criticality of the association which can be computed as

W (A|
dih
dio

) =W (dih
⊎
· · ·
⊎

dio ) =
1

o − h

j=o∑
j=h

ci j (4)

Where, A|dihdio
(h ⩽ o;h,o ∈ N) represents the data association of

dih
⊎
· · ·
⊎
dio and ci j is the data criticality of di j .

By comparing weightW , the data association of the maximum
valueW in all the identified intra-relation associations is selected
as the subsequent for a given precedent. The association process of
precedent and subsequent can be carried out similarly to the intra-
relation data association by regarding the identified associations
as random variables. As a result, the identified inter-relation data
association is regarded as the identified monitoring path which
contains a set of monitoring data subject to different data relations.

4.2.3 Monitoring result representation. After executing the data
association processes, Flashlight represents the output of the mon-
itoring path identification process with a graph. Moreover, the
graph needs to be able to represent complex information, such as
the collected monitoring data, the corresponding data value, the
data attribute, the data relation, and the identified data associa-
tion so as to support the proposed data association process to deal
with more complex monitoring scenario. Unfortunately, common
graphical methods cannot meet these requirements.

To address this problem, Flashlight introduces the Monitoring
Property Graph inspired by [28]. Compared to other graphical rep-
resentations, the proposed monitoring property graph is capable of
representing a variety of data information as depicted in Figure 4.
The definition of the monitoring property graph is given as follows.

V5

V2

V6

V3

V4V1

Labela

Label a

La
be

l b

Label
b

Key1 : Value1

Key3 : Value3

Key2 : Value2

Key4 : Value4

Key5 : Value5
Key6 : Value6

Label
c

Label a

Figure 4: An Example of Monitoring Property Graph.

Definition 3. A monitoring property graph G = (V ,E, λ, µ ) is an
edge-attributed multi-graph, where V is a finite set of vertices which
represent the monitoring data di j . E ⊆ (V ×V ) is a finite set of edges

which refer to the data associations A|di j−1di j
. λ : E → Σ is a labeling

function that specifies the edges E with the selected labels Σ for stating
the association vector I (A|dihdio

), and µ : V → K ×S annotates vertices
with key-value pairs, where k ∈ K (K is the key set) represents the
key (e.g., name) and s ∈ S (S is the value set) represents the value.

Figure 4 shows a monitoring property graph consisting of six
vertices {V1,V2,V3,V4,V5,V6} and six edges with three different
kinds of labels {labela , labelb , labelc }. Every vertex is annotated
with the key-value pair (e.g.,V1 is annotated withKey1 andValue1).
Notably, the monitoring property graph is a multi-graph that allows
multiple edges between two vertices. For example, two edges exist
betweenV2 andV6 while each edge has a different label (i.e., Labelb
and Labelc ). Therefore, the monitoring property graph can address
the challenge that monitoring data involves multiple relations.

The proposed monitoring property graph enhances the monitor-
ing path identification, as it supports the data association process
functioning in complex data relation scenario with fine granularity.
Namely, the data association process can be conducted on selected
monitoring information (i.e., data value, data attribute, and data
relation) of the monitoring property graph. As an example, if moni-
toring data involves more than one data relation, it can be regarded
as a compound of several “virtual data” where each “virtual data”
only involves one single data relation. Therefore, the data asso-
ciation process can be conducted with finer granularity so as to
effectively identify more monitoring paths.

5 EVALUATION
We evaluate the effectiveness of the proposed methodology for
helping secure cloud services by performing case studies on two
different classes of security threats. The evaluation tasks focus on
addressing two critical questions as follows.
• Can Flashlight identify the monitoring path for supporting
indirect cloud monitoring on the known security threats
while some key monitoring information is inaccessible?
• Can Flashlight identify the monitoring path for supporting
indirect monitoring on the unknown cloud security threats
with existing monitoring information?

In the following parts, we present the details of the case studies as
well as the related discussions.

5.1 Experimental Settings
We evaluate Flashlight’s efficacy of ascertaining monitoring paths
to help monitor real security threats by simulated experiments. To
this end, we set up an Apache web server for simulating a cloud
service where the storage functionality is supported by the installed
Samba server (version 4.5.9). Besides, we adopt the HTTPS pro-
tocol to secure the communication between the web server and
simulated users. We adopt the vulnerable OpenSSL library (version
1.0.1) to implement the TLS protocol for the HTTPS connections.
To simulate the situation that only limited amount of monitoring in-
formation is available in real cloud, we deploy a network monitor to
capture the amount of incoming TCP requests (d11), the amount of
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port 443 requests (d12), the amount of HTTPS responses (d13), and
the amount of odd-place logins (d21). Additionally, we deploy a sys-
tem activity monitor to capture the amount of privilege-required op-
erations (d22), process overhead (d31), and network traffic overhead
(d32). Some relevant data is also required to be collected by leverag-
ing expert knowledge or statistics analysis on security databases
like CVSS1, NVD2, or exploit-DB3. In our experiments, the obtained
relevant data consists of data relations (i.e., time causality R1 and
service dependency R2), data reducibility (reducible / irreducible),
data criticality, and monitoring data appearance probabilities. We
list the collected information in Table 1 which contains three data
relations, two data attributes, and four different kinds of normalized
data appearance probabilities.

5.2 Case Study
5.2.1 Case I : The Heartbleed Attack. For many cloud ser-

vices, some security threats are difficult to monitor as the particular
monitoring information for characterizing the threats is inacces-
sible. For example, the Heartbleed attack is a notorious security
threat that can compromise the CSC’s security requirements by
exploiting the code flaw of OpenSSL cryptography library (version
1.0.1). By sending crafted packets, attackers are able to retrieve
memory content that may contain confidential information (e.g.,
user passwords, credit card numbers, or other sensitive information)
from the cloud service adopting the vulnerable OpenSSL library
for encrypting service communications over port 443 [8]. However,
the OpenSSL version information that can characterize if the cloud
service prone to the Heartbleed attack cannot be directly accessed
by the CSC, as it is restricted by the underlying CSP (i.e., a PaaS
provider deploys the OpenSSL library to offer the encryption func-
tion). To highlight Flashlight’s virtue of ascertaining the monitoring
path for indirectly monitoring security threats without the access
to the key information, we perform a case study on identifying the
monitoring path of the abstracted Heartbleed attack.

Flashlight performs the monitoring path identification process
by utilizing the collected information as follows.

Step 1. Reducible intra-relation data association: Flashlight
first starts the reducible intra-relation data association process
over the monitoring data subject to same relation. Table 1 lists
three different types of relations: R1 (causuality),R2 (dependency),
and R3 (abnormality). Accordingly, three different data sets can be
derived : D1 = {d11,d12,d13}, D2 = {d21,d22}, and D3 = {d31,d32}.
As the value of the collected monitoring data di j does not affect the
identification process, Table 1 simply denotes the real data value as
vi j . The listed data is used for performing association processes.

Prior to running the association process, Flashlight filters the less
valuable monitoring information from the raw data set. Namely,
Flashlight starts with removing the reducible data which is listed in
Table 1. In this case, the data reduction procedure is only applicable
on D1 where d11 is marked as reducible. As a result, the intra-
relation data association can be applied on three different data pairs
as d12

⊎
d13, d21

⊎
d22 and d31

⊎
d32.

1http://www.cvedetails.com
2https://nvd.nist.gov
3https://www.exploit-db.com

By (1)(2)(3), the association vector of A|d12d13
is computed as:

sup (A|d12d13
) = σ (d12

⋂
d13) = 0.83

conf (A|d12d13
) =

σ (d12
⋂
d13)

σ (d12)
=

0.45
0.83

= 0.54

amb (A|d12d13
) =

√
0.45

0.83 · 0.62
· 0.83 = 0.85

Therefore, the relation R1-based data association can be iden-
tified as I1 = (0.83, 0.54, 0.85). Similarly, the association vector
of A|d21d22

is computed as: sup (A|d21d22
) = 0.34, conf (A|d21d22

) = 0.65,

and amb (A|d21d22
) = 0.90. Hence, the relation R2-based data asso-

ciation can be identified as I3 = (0.34, 0.65, 0.90). Additionally,
A|

d31
d32

is computed as: sup (A|d31d32
) = 0.25, conf (A|d31d32

) = 0.68, and

amb (A|d31d32
) = 0.97. Thus, the relation R3-based association can be

identified as I5 = (0.25, 0.68, 0.97).

Step 2. Weighted inter-relation data association: Based on
the identified intra-relation data associations, Flashlight proceeds to
execute the weighted inter-relation data association. As discussed
in Section 4.2.2, the key point for performing inter-relation data
association is to select the proper subsequent by considering the
data association weight which is decided by the mean value of
the data criticality of a data association. As a result, the weight of
association A|d12d13

can be computed by applying Formula (4) as

W (A|d12d13
) = (c12 + c13)/2 = (0.53 + 0.41)/2 = 0.470

Similarly, the weights of associationA|d21d22
isW (A|d21d22

) = 0.925 and

W (A|d31d32
) = 0.775 respectively. In terms of the computed weights,

the selected subsequent for the precedent A|d12d13
is A|d21d22

rather

than A|d31d32
, asW (A|d21d22

) >W (A|d31d32
). Therefore, the vector of the

inter-relation data association of A|d12d13

⊎
A|

d21
d22

can be computed

as: sup (A|d12d13

⊎
A|

d21
d22

) = 0.45, conf (A|d12d13

⊎
A|

d21
d22

) = 0.44, and

amb (A|d12d13

⊎
A|

d21
d22

) = 0.95. The inter-relation (R1 and R2) data

associationA|d12d13

⊎
A|

d21
d22

is identified as I2 = (0.45, 0.44, 0.95) that
is monitoring path p1 for helping monitor the Heartbleed attack.

The obtained monitoring path p1, which consists of four moni-
toring data as the Port 443 request amount (d12), the HTTPS request
amount (d13), the odd-place login amount (d21), and the privilege-
required operation amount (d22), can be interpreted as follows. By
taking advantage of causality (i.e., relation R1), the association be-
tween the HTTPS requests and the OpenSSL responses is identified
as I1 = (0.83, 0.54, 0.95) where the high sup and conf value indi-
cates the evident co-appearance between HTTPS requests and the
corresponding responses observed on port 443 (the well-known
port for HTTPS protocol). In addition, the amb value is 0.95 which
refers to a very strong correlation between the two behaviors. By
leveraging the service dependency (i.e., relation R2), the associa-
tion between the odd-place logins and the unexpected privilege
escalations is identified as I3 = (0.34, 0.65, 0.90) that indicates a
strong correlation (amb = 0.90) existing between the two behav-
iors at a noticeable rate (sup = 0.34, conf = 0.65). It implies the
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Table 1: Case Study: An Excerpt of The Collected Monitoring Data Set for Conducting Monitoring Path Identification

The Information of the Collected Monitoring Data Set
Data ID d11 d12 d13 d21 d22 d31 d32
Data Name TCP Req. Port 443 Reqst. HTTPS Resp. odd-place logins Privilege ops. Proc. Overhead NW. Overhead
Relation R1 R1 R1 R2 R2 R3 R3
Data Value v11 v12 v13 v21 v22 v31 v32
Data Reducibility reducible irreducible irreducible irreducible irreducible irreducible irreducible
Data Criticality 0.30 0.53 0.41 0.87 0.98 0.79 0.76
Data Appearance N.A 0.83 0.62 0.34 0.27 0.25 0.18
Data Appearance N.A 0.45 0.22 0.17
Data Appearance N.A 0.20 N.A
Data Appearance N.A N.A 0.10

privilege-required operations (e.g., service subscription alteration
or user password modification) performed by the “CSC” logged
in from odd places with correct password. Moreover, the inter-
relation association of the two identified associations is computed
as I2 = (0.45, 0.44, 0.95) which reveals that a portion (sup = 0.45,
conf = 0.44) of the user requests (i.e., the port 443 activities) are
very likely to result in these privileged operations (amb=0.95).

5.2.2 Case II: The SambaCryAttack. In practice, many undis-
closed threats that can stealthily undermine the security compliance
of cloud services are hard to be monitored as no knowledge about
the threats is available. For instance, the SambaCry attack is a re-
cently exposed security threat that can violate the cloud service’s
security compliance [22]. The attack exploits the vulnerability of
Samba services (version 3.5.x ∼ 4.6.4) that is widely deployed in
cloud for offering file and printing services. By uploading a crafted
library encapsulated with malicious codes to a writable shared
folder, an attacker can remotely subvert the cloud systems and per-
form arbitrary operations (e.g., privilege escalations). Nevertheless,
it is hard to monitor such a threat in cloud due to a lack of the
specific attack details. To demonstrate Flashlight’s merit of identify-
ing the monitoring path for helping to monitor unknown security
threats with existing monitoring information, we conduct a case
study on identifying the monitoring path regarding the abstracted
SambaCry attack that simulates an unknown cloud security threat.

To support indirectly monitoring the threat, Flashlight identifies
the monitoring path with the collected information as follows.

Step 1. Reducible intra-relation data association: With the
obtained association information (i.e., I1, I3, and I5) derived in the
previous case study, Flashlight does not need to rerun the intra-
relation association process and thus can directly proceed to carry
out the inter-relation data association.

Step 2. Weighted inter-relation data association: Flashlight
performs the weighted inter-relation data association by consider-
ingA|d31d32

as the precedent, as a strong data correlation between the
process overhead (d31) and the network traffic (d32) is indicated by
a high amb (A|d31d32

) value (0.97) in the computed I5.
By comparing the identified intra-relation association weights,

Flashlight selectsA|d21d22
as the subsequent for theA|d31d32

based on the

inequality ofW (A|d21d22
) = 0.925 > W (A|d12d13

) = 0.470. Therefore,

theweighted inter-relation data association vector forA|d21d22

⊎
A|

d31
d32

is computed as: sup (A|d21d22

⊎
A|

d31
d32

) = 0.22, conf (A|d21d22

⊎
A|

d31
d32

) =

0.45, and amb (A|d21d22

⊎
A|

d31
d32

) = 0.77. Thus, the inter-relation

(R2 and R3) data association A|d21d22

⊎
A|

d31
d32

is identified as I4 =
(0.22, 0.45, 0.77) which is regarded as the monitoring path p2 for
supporting indirectly monitoring the SambaCry attack.

The identified monitoring path p2, which contains monitoring
data as the odd-place login amount (d21), the privilege-required
operation amount (d22), the process overhead (d31), and the net-
work traffic (d32), can also be explained as follows. By examining
the abnormality (i.e., relation R3), the association between the high
overhead of a particular process and the high network traffic is
identified as I5 = (0.25, 0.68, 0.97) where the high amb value 0.97
refers to a very strong correlation between them at an unnotice-
able rate (sup=0.25, conf =0.68). As aforementioned, the association
between the odd-place logins and the privilege-required escalation
is identified by leveraging the service dependency (i.e., relation
R2) as I3 = (0.34, 0.65, 0.90) that reveals the privilege-required
operations caused by the users log in from odd places. The inter-
relation association between the two data associations is identified
as I4 = (0.22, 0.45, 0.77) which indicates the abnormal high traf-
fic closely correlating with the odd-place login user’s behavior
(amb=0.77) of initiating the particular brute-force attack process
secretly (sup=0.22, conf =0.65). Specifically, the attack is stealthily
mounted by subverting the Samba service with uploading a crafted
library file of attack codes to the user’s writable shared folders.

5.2.3 Monitoring path representation. Flashlight introduces a
novel schema termed monitoring property graph for represent-
ing the identified monitoring paths p1 and p2 together with re-
lated monitoring information over the given monitoring data set
in Figure 5. With the monitoring property graph, related mon-
itoring information can be comprehensively characterized in a
quantitative way. Every collected monitoring data is represented
by a vertex annotated with a key-value pair where the key is the
data ID and the value is a vector representing the data value and
data attributes (reducibility and criticality). For example, the mon-
itoring data of an HTTPS response message is denoted by a key-
value pair as d11 : (v11, reducible, 0.30), where d11 is the key and
(v11, reducible, 0.30) is the value key representing the data value
(v11), the data attributes (reducibility = reducible and criticality
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Figure 5: The Generated Monitoring Property Graph

= 0.30). Noticeably, the data reduction is shown as a dotted line
representing the reducible data d11 and its association with d12
in Figure 5. Besides, every data association is represented by an
edge annotated with an association vector. For instance, data as-
sociation between d12 and d13 (i.e., A|d12d13

) is denoted by an edge
annotated by the identified association vector I1 = (0.83, 0.54, 0.85)
where each value respectively represents the value of support (sup),
confidence (conf), and ambiguity (amb). Moreover, the identified
monitoring paths can also be represented in this graph, namely
monitoring path p1 : A|d12d13

⊎
A|

d21
d22

(highlighted with blue color)

and p2 : A|d21d22

⊎
A|

d31
d32

(highlighted with red color). Both monitor-
ing paths consist of four different monitoring data respectively.

Discussions. The case studies demonstrate Flashlight’s advan-
tages of identifying monitoring paths in different situations. The
details of running the indirect cloud monitoring approach with the
identified monitoring paths (p1 and p2) follow the descriptions in
[40] and are not further detailed here. Besides, Flashlight also has
several characteristics which are worth mentioning as follows.

Flashlight takes advantage of the basic knowledge (i.e., data
relations and data attributes) to identify monitoring paths which
are challenging to be achieved by pure manual analysis. As security
experts require to have very in-depth knowledge for performing
the manual analysis [19], it is very likely for the experts to overlook
some important monitoring paths without sufficient expertise.

While machine learning approaches (like principal components
analysis) can also be used for identifying data associations, the
learning process is not only incurring tremendous computational
overhead but also subject to the scale of the monitoring data set. As
the scale/complexity increment of cloud systems, its applicability is
substantially exacerbated. By contrast, Flashlight adopts a statistical-
based approach for identifying monitoring paths to circumvent the
aforementioned challenges. In fact, Flashlight supports executing
the intra-relation association processes in a parallel mode which is
particularly suitable for applying in cloud scenarios.

Besides, Flashlight can even support fine-grain monitoring path
identifications by leveraging the monitoring property graph. Specif-
ically, when monitoring data involves multiple data relations, the

multi-graph property of monitoring property graph enables to re-
place the vertex representing that multi-relation data with several
virtual vertices where eachvirtual vertex represents the monitoring
data involving one single data relation. Then, the monitoring path
identification process can be performed as usual.

Overall, Flashlight is proposed for working in a static scenario
where all monitoring data stays unchanged during the path iden-
tification process. However, it can be adapted for managing the
dynamic scenario as the static scenario can be regarded as a snap-
shot of the monitoring status in a dynamic cloud system at a specific
time instance. The compiled set of such snapshots (at predefined
intervals) can help capture transitional behaviors.

Threats to validity. While Flashlight can theoretically manage
to identify monitoring paths at any length, proper thresholds on the
support/confidence/ambiguity should be predefined for obtaining
meaningful monitoring paths. As the increment of the path length,
the co-appearance rate of monitoring data keeps dropping down.
Without the appropriate threshold settings, the performance of
Flashlight might be undermined as it costs excessive overhead to
identify an unnecessary overlong monitoring path.

6 RELATEDWORK
Monitoring path identification for securing cloud services is a novel
topic with little specific coverage and with existing related work
focused on general cloudmonitoring and the generic path discovery.

The existing cloud monitoring approaches developed by taking
advantage of different factors (e.g., data relations, timing character-
istics, or topology properties) are applicable only when the moni-
toring parameter/data is directly accessible. For example, Deng et
al. [5] proposed an access policy-based security tracing framework
called LACT to monitor leaked access credentials with respect to
cloud storage services. However, this framework requires all the
relevant monitoring data to be accessible. Du et al. [9] proposed the
ROSIA framework to monitor malicious service providers within a
multi-tenant cloud system by examining the consistency of data
flow. Nevertheless, ROSIA requires the whole data flow to be acces-
sible. A large number of monitoring methodologies (e.g., RAFT [4],
PhisEye[13], MaaS[16]) are proposed for monitoring different as-
pects of cloud services (e.g., service elasticity, transient violations,
or data robustness), while these methodologies become invalid
when losing the direct access to the related monitoring data. Many
other monitoring methodologies (e.g., [2, 29, 34]) are developed by
adopting a distributed model to monitor cloud services by running a
series of local cloud monitoring tasks. Unfortunately, the proposed
methodologies also require direct access to all needed monitoring
information locally.

Even though not directly related to the topic, we found some
research works which might be helpful for addressing the moni-
toring path identification question. A small number of approaches
are proposed for dealing with the path discovery task on an ad-hoc
basis. For instance, CloRExPa [6] is proposed to trace the mali-
cious data modifications inside cloud systems by making use of
the proposed virtual machine state/action graph. In a cloud sce-
nario, it is challenging to construct the state/action graphs when
necessary information is unavailable. Ravindranath et al. [25] pro-
posed a discovery technique to capture the path of the mobile user
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transaction by examining the time latency. Yet, this technique is
developed for mobile systems rather than cloud systems. Several
discovery approaches (e.g., [12, 15, 19]) are proposed by analyzing
relevant statistical properties for locating obfuscated sequences,
searching demanded content, or reconstructing attack scenarios,
respectively. While, these approaches are inapplicable for the cloud
scenario where the analysis process takes a lot of effort. Besides,
some discovery techniques are developed by adopting taint-based
methods. Naderi et al. [17] proposed a hybrid taint-based approach
to discover SQL injections, while Yamaguchi et al. [38] proposed
a taint-based approach to discover the patterns of unknown vul-
nerabilities. However, it is hard to perform the taint process on the
monitoring data collected by security monitors from a monitoring
path identification perspective. Various inference-based discovery
methodologies are also proposed. Olivo et al. [23] proposed an in-
ference methodology to infer a new type of Denial of Service (DoS)
attacks by using particular database attributes. Unfortunately, the
methodology is unsuitable for working in a complex cloud scenario,
as it is hard to obtain all the required information. Additionally,
Yadwadkar et al. [37] proposed an approach to infer victim cloud
tasks by using support vector machine to study system features,
but the approach incurs expensive system overhead for performing
the machine learning process and the feature selection process.

7 CONCLUSION
Indirect cloud monitoring is an emerging and promising security
approach to effectively monitor cloud services where particular
monitoring information is inaccessible. To indirectly monitor cloud
services, the prerequisite is to perform monitoring path identi-
fication which is a novel topic and still in an incipient stage in
the research community. In this paper, Flashlight is proposed as a
systematic approach for addressing the monitoring path identifi-
cation problem by synthetically leveraging the complex relations
and attributes of collected monitoring data. By performing the case
studies on real security threats, Flashlight demonstrates its efficacy
of identifying monitoring paths for security professionals indirectly
monitoring cloud services without directly accessing to particular
monitoring information.

The advantages of our proposed approach are the capability of
managing different types of data relations and the possibility to deal
with various path identification scenarios. In the future, we plan
to automate Flashlight’s monitoring path identification process.
Overall, this paper offers a good starting point for investigating the
monitoring path identification question for securing cloud services.
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