
SENTRY: A Novel Approach for Mitigating
Application Layer DDoS Threats

Heng Zhang∗, Ahmed Taha∗, Ruben Trapero∗, Jesus Luna§∗ and Neeraj Suri∗
∗TU Darmstadt, Germany §CSA (Europe), United Kingdom

Email:{zhang, ataha, rtrapero, jluna, suri}@deeds.informatik.tu-darmstadt.de, jluna@cloudsecurityalliance.org

Abstract—Cloud services are attractive with their advocated
technical and economic advantages of transparent resource
access, scalability, elasticity and multiple others. However, Cloud
services also suffer from multiple infrastructure and application-
level threats, with the application-layer distributed denial of
service (DDoS) attack being one of the harder ones to mitigate.
These attacks typically block the targeted servers by consuming
the available resources to result in performance degradation
along with the reduced availability of services. While some
existing schemes (e.g., intrusion detection/protection) are effective
for selective attacks, the evolving application layer DDoS attacks
are often able to bypass them.

We address this problem by proposing and validating a novel
and efficient methodology, termed SENTRY, that specifically aims
to mitigate application-layer DDoS attacks. SENTRY utilizes
a challenge-response approach that: (a) analyses the attackers
physical bandwidth resources, (b) dynamically adapts to the
varied work load scenarios, and (c) blocks suspicious service
requests from dishonest clients.

I. INTRODUCTION

Distributed denial of service (DDoS) attacks constitute a
non-trivial security threat for Cloud service providers where
the attacks overload the victim server systems to result in
degraded services. Most DDoS attacks target the easy-to-attack
transport layer (layer 3 of OSI TCP/IP stack) and network
layer (layer 4 of OSI TCP/IP stack) of a communications
system. The attacks directed at these layers are designed
to flood a network interface with attack traffic in order to
overwhelm its resources and deny its ability to respond to
legitimate traffic.

While network attacks are still a significant challenge due
to their scale, the DDoS attacks targeting the application
layer may prove to be a more vexing long-term challenge
[1]. This challenge arises due to the increasing number and
complexity of web applications along with the large network
bandwidths of the systems hosting these applications [2] where
the attack progressively depletes (versus typical flooding in
classical DDoS) the resources from a web or application
server. For example, an attack incident occurred at Bitbucket
Data Center1, where the data center was intermittently out
of service for over 12 hours [4]. Furthermore, the increasing
number of web applications and the shortage of techniques to
mitigate DDoS attacks makes them highly attractive targets.
Typically, the application layer DDoS attack (a) produces
less network traffic than traditional DDoS attack in network

1A mainstream code-hosting software-as-a-service (SaaS) provider [3].

channels making their detection hard, (b) causes higher system
overhead with the same amount of attacking requests traffic
than the traditional DDoS attack in the server side, and (c)
displays higher possibility to bypass intrusion and detection
systems than the traditional DDoS attack.

In order to address such application layer DDoS attacks, we
propose a novel security mitigation scheme called SENTRY.
SENTRY takes advantage of the remote user’s local uplink
bandwidth to (a) interactively examine the legitimacy of the
request in order to dynamically mitigate the resource flooding
caused by the application layer DDoS attacks, and (b) to
dynamically restrict resource exhaustion effects. Fundamen-
tally, an uplink bandwidth based challenge-response process
is imposed on predefined types of service requests. Overall,
our schema for mitigation of application layer DDoS attacks
makes the following contributions:
• SENTRY works at the middleware/protocol level to alle-

viate the configuration workload caused by dealing with
lower-level network details, and allows add-on production
line deployment for Cloud service providers.

• SENTRY is adaptable to support servers handling varied
workload scenarios.

• SENTRY aims to defeat the potential dishonest attempts
by launching a physical bandwidth based challenge-
response process to thwart “smart” adversaries intending
to cheat. Consequently, it blocks suspicious service re-
quests from dishonest clients.

Our evaluation shows that the SENTRY can effectively
mitigate application layer DDoS attacks in practice as demon-
strated with four different use cases.

This paper is organized as follows. Section II presents
the basic characteristics of application layer DDoS attacks.
Section III details the attacker and victim models on which we
quantify the performance impact of these attacks. In Section
IV, we detail the design of the attack mitigation scheme.
Section V presents the experimental evaluation to validate the
effectiveness of SENTRY. In Section VI, we overview related
works on mitigating application layer DDoS attacks.

II. BACKGROUND

The application layer DDoS attack is a sophisticated DDoS
attack that stealthily depletes the available resources on victim
servers. Compared to the traditional networking layer oriented
DDoS attacks, the application layer DDoS attacks present three
main characteristics as follows.



Firstly, the application layer DDoS attack is a workload-
enhancing attack that manifests the denial of service via
resource-starving performance degradation where the re-
sources commonly consist of CPU cycles, I/O, physical mem-
ory and network bandwidth. Although Cloud server systems
possess massive system resources, a specific type of resource
could still become the bottleneck of the overall system per-
formance in some cases. For instance, while the Amazon
Cloud service has huge network traffic handling capability, an
XML and HTTP protocol based application layer DDoS attack
targeting Amazon EC2 resources [5] resulted in a complete
saturation of the EC2 resources.

Secondly, the application layer DDoS attack is an asymmet-
ric DDoS attack [6]. The application layer DDoS attack targets
very specific application protocols, which entail characteristi-
cally high overhead services. The attacker sends a few but
selective high overhead service requests to target servers from
multiple exploited client hosts resulting in excessive system
overhead for the target servers to process them. As a result,
the application layer DDoS attack can keep deteriorating the
system performance until the target servers are completely out
of service.

Thirdly, the application layer DDoS attack is a stealthy
type of attack that initiates “normal” service requests that then
bypass the “anomalous” behavior focused intrusion detection
systems. For example, the authentication service is a necessary
application service in many Cloud service systems. But it is
vulnerable to the masquerading signature attack that consumes
considerable system resources to run the verification process
[7]. By distributing the masquerading service requests across
multiple attacking sources, the application layer DDoS attack
produces “minor” traffic changes that elude the (high) traffic
analysis based intrusion detection systems.

Given such characteristics, the need is to develop a mit-
igation solution that can block attacking service requests
from dishonest clients. To achieve this purpose, our proposed
scheme designs a resource based challenge-response scheme
for mitigating application layer DDoS attacks. The proposed
scheme interactively challenges and validates the service re-
quests from the remote clients in order to block the suspicious
attacking requests.

III. MODELS

In this section, we (a) describe the attacker model used for
performing the application layer DDoS attacks and (b) present
the victim model on which we measure the performance
impact of these attacks.

A. Attack Model

The goal of the attacker is to overwhelm one or more
server resources so that the legitimate clients suffer from high
service latency and low throughput. This goal can be made
by decreasing the quality of the service provided to their
clients. Hence, the first step needed for designing an effective
mitigation approach is to characterize the potential behavior
of the attackers. To this end, one of the possible methods is

to identify the high overhead operations associated with the
victim services as depicted in Figure 2 which shows the system
workload state in different cases as follows:
Mode A. This is the normal operational case (without at-

tacks) where a server becomes overloaded while
processing a high amount of different user service
requests within a short period. These heterogeneous
service requests swarm into the server continuously
as shown in Mode A in Figure 1. Different types of
service requests present different appearance ratios
in the requests flow and cause different processing
overhead in the server. The salient observation being
that a high-rate of high-overhead services can result
in an overload.

Mode B. This is the application layer DDoS attack case
where the attackers take advantage of selective high-
overhead service requests. The attackers manipulate
the targeted client hosts to send high-overhead types
of service requests. Although the aggregated number
of service requests is not necessarily large, a vic-
tim server is overwhelmed, for a specific resource,
for processing all the incoming service requests.
This Mode B represents the workload caused by
application layer DDoS attacks in Figure 1. Note
that the high-overhead types of service requests
characteristically appear very often in application
layer DDoS attack cases than in normal workload
cases.

Fig. 1: High system workload situation comparison: normal case vs
application layer DDoS attack case

B. Victim Model

Cloud server systems are designed to simultaneously service
high volumes of clients requesting varied services. Our victim
model focuses on those services which are vulnerable to
application layer DDoS attacks. In this paper, we use the
example proposed in [6] as our victim model, which presents
the different system overhead caused by processing different



types of service requests in an online server system. It can
be used to categorize service requests into different classes
according to different levels of processing overhead. Based on
this example, we consider an online bookstore hosted on multi-
tiered architecture as an example of e-commerce application.
Figure 2 shows the variation in processing times for different
service requests in a bookstore application [6].

0 0.5 1 1.5
AdminConfirm

OrderInquiry
CustomerReg

SearchReq
OrderDisplay
ProductDetail

Home
SearchResult
AdminResult
NewProducts

BestSellers
BuyRequest

Average response time (sec)

Fig. 2: Processing times for different synamic contetns requests in
online bookstore application [6]

As shown in Figure 2, the “BestSellers” service request
causes remarkably higher processing overhead than the “Ad-
minConfirm” service request. The reason for such difference
is the different amount of system resources needed to perform
these requests. For example, the “BestSellers” request involves
high resource demanding operations such as inquiring the
database, sorting related results and returning the final result
to the user.

In order to facilitate subsequent discussions in this paper,
we make the following assumptions:

I) We assume that the Cloud service provider can conduct
surveillance on processing the incoming service requests
at the server side. This assumption has been put in
practice by some Cloud service providers. For example,
Amazon offers a monitoring product called “Amazon
CloudWatch” [8] that can check the AWS resources
situation in an approximate real-time mode.

II) We assume that attackers have full control of the ex-
ploited hosts including manipulating the local system
resources of the hosts.

IV. PROPOSED MITIGATION SCHEME

In this section, we propose a resource based challenge-
response scheme for mitigating application layer DDoS at-
tacks. Our mitigation scheme (a) actively challenges the re-
quest senders validity, and (b) filters out suspicious requests
by verifying the responses from the senders. In order to launch
an application layer DDoS attack, attacking participants have
to send a large number of attacking requests to overwhelm a
target server with enough attack strength which refers to the

aggregated sending rate of attack requests to a target server
per second. Therefore, we assume that attacking participants
will make full use of the local bandwidth resources by sending
high overhead service requests more frequently than normal
users whose service requests present a uniform arrival rate
[9]. In consequence, such high overhead service requests
result in excessive system resources consumption. Thus it is a
critical task for a security mitigation solution to minimize the
attack strength for reducing the system overhead. Hence it is
necessary to identify and discard the high overhead attacking
requests from the service request flow by examining the re-
quest responses to specially generated challenge messages. We
explain the proposed mitigation scheme by first describing the
system overview and then detailing the moderator component.

A. System Overview

Our system consists of a Cloud client (or remote client),
a Cloud server and a novel mitigation component called
“Moderator” as depicted in Figure 3. The Moderator is placed
at the server side and is responsible for conducting challenge-
response processes against incoming service requests in order
to mitigate application layer DDoS attacks.

Fig. 3: System overview

The mitigation scheme, as depicted in Figure 3, comprises
the following steps:
Step 1. A remote service client sends a high overhead service
request flow to the server system
Step 2. The moderator component samples the incoming
service requests. Once the high overhead service request is
sampled, a challenge message is issued and sent to the client.
Step 3. The client responds to the challenge message with
local bandwidth resources (This is completely explained in
Section IV-B2).
Step 4. The client’s response received by the moderator is
verified to check whether it is valid or not. The moderator will
drop that sampled service request if it is invalid. Otherwise,
it will forward this service request to the server.
Step 5 & 6. The requests that are not sampled by the
moderator are served normally by the Cloud server.
Typically, challenges are data structures obtained by consid-

ering parameters from the client, such as CPU cycles, memory



or bandwidth resources. In our work, we have chosen the client
side physical uplink bandwidth as the base for designing the
challenges used in SENTRY. The reason for choosing this are:

I. Most network applications offer their services to remote
clients using the downlink bandwidth resources [10]
(except for few network applications as peer to peer
transmission). This means that using the uplink band-
width for the proposed mitigation scheme resource causes
a limited performance influence on these services.

II. The client bandwidth is strictly managed by his/her local
Internet service provider (ISP) and cannot be modified
by DDoS attackers. Therefore, client bandwidth resource
becomes a good base to design the challenges due to its
strong speculation-proof property.

B. Moderator Description

The moderator component manages the challenge and re-
sponse processes. It works as an intermediate component
for challenging the selected high overhead service requests
and verifying the corresponding responses. Each challenge
message encloses the expected size of the response to be sent
back by the senders. At the same time, it is independent from
the server which facilitates the deployment.

The moderator workflow is depicted in Figure 4. It consists
of several internal modules, namely Probing Module, Chal-
lenge Module, Receiving Module, Relay Module and Failure
Handling Module.

Fig. 4: Internal design and process diagram of moderator

1) Probing Module: The probing module (PM) is respon-
sible for sampling the incoming service requests from clients.
It works as a flexible sampler with different possible config-
urations that can be used to adapt the sampling rate. These
configurations are adjusted (by the server administrator) by
modifying the following two parameters:
• Sampling target (STarget ): STarget specifies the targeted

type of service requests sampled by the PM. In this
paper, we set the high overhead type service requests
to be the STarget , as these are the type of requests used
in our attacker model (cf., Section III-A). For example,

we assume that the service requests of type “BestSellers”
specified in the victim model (cf., Section III-B) are the
sampling targets from all the other request types specified
in the victim model. This means, only “BestSellers”
requests are sampled from all types of service requests
received by the server.
For example, in Figure 5 the session of Client N contains
all service requests with different overhead types. The
light dark blocks refer to those low overhead service
requests submitted by Client N. The medium dark blocks
refer to medium overhead service requests from Client
N and the deep dark blocks refer to the high overhead
ones. The specific configuration of STarget depends on
how much system resources will be allocated for the
moderator component. The more system resources are
available for the moderator, the more types of service
request can be added into STarget .

• Sampling Probability (SProb): SProb specifies the percent-
age of sampled requests (SProb). For example, if SProb is
20% then one out of five target service requests is sam-
pled for subsequent challenge-response process. Thus,
according to the previous example 20% of “BestSellers”
type requests are sampled and sent to the next module.

Fig. 5: User session based random service request sampling diagram

Once these parameters are configured, the PM is ready to
execute the sampling task for the moderator. At the end of this
process, the successful sampled target service request (denoted
as Req) is sent to the Challenge Module as shown in Figure
4.

2) Challenge Module: The challenge module (CM) issues
challenge messages for every sampled request received from
the PM. The challenge message is a standard HTTP/1.1
response message with the challenge information embedded
in the message body. As there are different type of service
requests, we introduce a weighted challenge algorithm (based
on the algorithms specified in [11]) to classify the sampled
service request Req into three different main groups according
to their type. Namely, Group Glow contains requests with
low overhead. Group Gmedium contains requests with medium
overhead. Group Ghigh contains requests with high overhead.



In this challenge message, the CM asks the client for a spe-
cific amount of binary data (specified in the challenge message
as shown in Figure 6). The client sends a response message
containing binary data with the specified size as shown in
Figure 6. The weighted challenge algorithm generates the
challenge size (CZ) according to the type of Req such that:

CZ =


δ, if Req ∈ Glow

(α+1)δ, if Req ∈ Gmedium

δβ +(α+1)δ, if Req ∈ Ghigh

(1)

where α, β and δ are positive integers that can be configured
to customize the size of the challenge depending on the Req
group (low, medium or high). More details about the algorithm
complexity analysis are given in [11]. In order to thwart
potential guessing attempts from advanced attackers, all these
three variables’ values are randomly generated within a set of
specified ranges. Once CZ is calculated and generated, it is
added to the challenge message as depicted in Figure 6.

Fig. 6: Challenge and response messages

3) Receiving Module: The receiving module (RM) receives
and validates the response of the challenge from the remote
client. Its main responsibility is, firstly, to check the actual size
of the challenge response. Then the RM verifies whether the
received response size matches with the challenge response
size specified by CM. The RM also uses the client’s Session
ID (denoted by SIDReq) to identify the sender of Req and
forward or discard the client’s service request Req. More
specifically, the RM receives the HTTP request message with a
POST method, which is the response to the challenge message
issued by the CM. This response message contains the required
data submitted by the remote client. The RM retrieves the
client’s session information SIDReq from the message header
and checks the size of the binary data in the message body.
Then, it compares the retrieved response information from
the clients and the issued challenge information from the
CM. If the response matches the issued challenge message,
Req is assumed to be sent from a honest client for correctly

making an uplink bandwidth response to specified challenge
size. Therefore, RM will route this request Req together with
its session information SIDReq to the Relay Module (REM) for
further process. On the other side, if the response mismatches
the issued challenge message, Req is marked as a suspicious
attacking request. As a result, the RM sends this request Req
and its session information SIDReq to the Failure Handling
Module (FHM) as depicted in Figure 4.

It is worth highlighting that not all the failures in this
challenge-response mitigation process are from attackers.
Some legal clients might also occasionally suffer from some
transient connection congestion or hardware failures. In this
case, it is expected that the clients will resubmit their service
requests and make correct responses when challenged again by
the moderator. However, attackers can either not make correct
responses to the challenge messages or only a limited number
of attacking service requests can be processed by server
systems if they are “smart enough” to mimic all behaviors
of a normal client. For the former case, all attacking requests
are filtered out thoroughly. For the latter case, the attacking
strength is significantly minimized as only a limited amount
of attacking requests get processed at the server and most
of the attacking requests are blocked by unsuccessful uplink
bandwidth resource responses.

4) Relay Module: The relay module (REM) acts as moder-
ator’s output interface and its main responsibility is to forward
the sampled service request Req to the server system. Obvi-
ously, any non-sampled service requests are directly relayed
to server systems by REM as shown in Figure 4.

5) Failure Handling Module: The failure handling module
(FHM) is an optional module in our design. Once a sam-
pled service request Req failed to make a correct response
to corresponding challenge message, it will be handled by
the FHM. The FHM is responsible to execute some post-
challenge processes, which comprise intrusive IP banning,
request redirecting, user information logging and so on.

V. EVALUATION & DISCUSSION

In this section, we evaluate the performance of the mod-
erator component for several configurations. We discuss the
results corresponding to each setting, and subsequently outline
the comparisons with contemporary works to illustrate the
advantages of our design.

A. Experiment

SENTRY consists of three elements as specified in Section
IV-A (cf., Figure 3): a web server, a moderator and a Cloud
client. The web server is implemented using a Jboss appli-
cation server and Mysql to offer the database services. We
used the victim model shown in Section III-B as our web
server. The moderator consists of a set of developed JSP files
deployed on the Jboss application server. The Cloud clients
are modeled as emulated browsers which are used to emulate
human clients’ operations by sending different type of service
requests to the web server. Emulated browsers send different
service requests to the online bookstore application scenario



(a) Sampling rate 0% (SProb = 0%) (b) Sampling rate 33% (SProb = 33%)

(c) Sampling rate 66% (SProb = 66%) (d) Sampling rate 80% (SProb = 80%)

Fig. 7: System overhead graph with different sampling rates

such as searching books, inquiring Best Sellers, registering
new accounts, confirming orders and so on. Furthermore,
we deploy a group of emulated browsers to act as attack
participants in order to frequently submit high overhead attack
requests.

In our experiment, we deployed more than 600 concurrent
emulated browsers, where 100 of them were specially config-
ured as attacking participants to deliberately submit attacking
service requests specified by STarget . These attacking service
requests took up to 25% amount of the overall service requests.
We configured the sampling parameter STarget to be modeled
as “BestSellers” type request for referring to high overhead
service request (cf., Section III-B), and “Search” type request
for medium overhead service request as specified in Equation
1. In addition, we also configured SProb with different sampling
rates (0%, 33%, 66%, and 80%) to investigate the behavior
of the moderator in different situations. Thus, we measured
the system workload at each of the defined four sampling
rates. To perform this, we collected 600 seconds of system
workload data after the web server entered the stable status.
The workload graph of our tests is presented in Figure 7. It
consists of four sub-graphs for plotting each test. In these sub-
graphs, the X-axis is the testing time (in seconds) and each
time unit represents 50 seconds. The Y-axis shows the server
workload (in percentage).

1) Attack Scenario with SProb = 0: The first experiment
presents the server working at full load with the moderator
deactivated. In this case, the overall emulated browsers are
connected to the web server to request various kinds of

services simultaneously. As shown in Figure 7a , the web
server’s average work load is full. The server received up to
79097 service requests from the emulated browsers. Therefore,
the online bookstore server is overloaded and the service is
likely suffering a denial of service attack.

2) Attack Scenario with SProb = 33%: In the second ex-
periment, the moderator is activated and the sampling rate
is configured at 33%, which means 1/3 of submitted search
and bestsellers requests are sent to the moderator. As shown
in Figure 7b, web server’s average work load is reduced to
88.17%. The server system received 78787 service requests
from emulated browsers, while 5599 service requests failed to
get served due to incorrect responses to challenge messages.

3) Attack Scenario with SProb = 66%: In the third exper-
iment, the moderator is activated and the sampling rate is
configured with 66%, which means that 2/3 of the submitted
search and bestsellers requests are sent to the moderator. As
shown in Figure 7c, web server’s average work load decreased
to 81.14%. The server system received 79157 service requests
from emulated browsers. While, 10518 service requests failed
to get served due to their incorrect responses to challenge
messages.

4) Attack Scenario with SProb = 80%: In the fourth exper-
iment, the moderator is activated and the sampling rate is
configured with 80%. As shown in Figure 7d, web server’s
average workload further decreased to 62.80%. The server sys-
tem received 79281 service requests from emulated browsers.
While, 12310 service requests failed to get served due to their
incorrect responses to challenge messages.



TABLE I: Experimental Results Assessment Table

Data Moderator Sampling Rate
0 33% 66% 80%

Mean System Load 100% 88.17% 81.14% 62.80%
Blocking Rate 0 7.11% 13.29% 15.53%
False Negative Rate N.A 13.86% 19.47% 22.36%

B. Discussion

From these experiments, three specific type of data have
been collected and presented in Table I, namely mean system
load, blocking rate and false negative rate.

The mean system load reflects the performance of the
moderator component and the effectiveness of SENTRY. As the
first row in Table I shows a monotonic system load decrease
from 100% (when moderator is deactivated, SProb = 0) to
88.17% (with SProb = 33%) and further dropped to 81.14%
when the sampling rate raised to 66%. The system load
decreases to 62.80%, when SProb is 80%. From the above
data, the application layer DDoS attack threat is successfully
mitigated.

The reason for the system load drop is that attack partic-
ipants are controlled by attacking scripts. Those scripts are
not able to decode moderator’s challenge messages and make
correct bandwidth responses accordingly. In case any attacker
is “smart enough” to mimic human behavior, the limited client
side bandwidth resource imposes rigid restriction on attacking
scripts, which can not send too many attacking requests to
achieve the service denial purpose.

The blocking rate refers to the percentage of blocked
attacking requests in the entire service request flow when the
moderator is activated. From the second row in Table I, the
blocking rate raises from 7.11% (with 33% sampling rate)
to 13.29% (with 66% sampling rate) and then to 15.53%
(with 80% sampling rate). Considering that 25% of the service
flows are attacking requests, these blocking rates can still be
maintained at high level. For example, it can still block up
to 77.64% attacking requests in the overall attacking service
flow even when the sampling rate is equal to 80%.

The false negative rate shows the mitigation performance
of the moderator component. It refers to the rate of those
attacking requests which SENTRY failed to block. As in the
third row in Table I, the false negative rate increases gradually
as long as we increase the sampling rate. It shows a false
negative rate of 13.86% with 33% sampling rate and 19.47%
with 66% sampling rate and 22.36% with 80% sampling rate.
As a result, the higher the sampling rate is, the higher the false
negative rate is.

VI. RELATED WORK

This section presents a survey on the state of art regarding
to addressing application layer DDoS attacks.

Many researchers have attempted to mitigate the security
threat of application layer DDoS attacks using a variety
of techniques. For example, Stavrou et al. [12] proposed
a heterogeneous countermeasure against DoS attacks based
on a graphical Turing test which is an enhanced version

of the classical CAPTCHA method [13]. Since the classical
CAPTCHA method was breached by the work from Mori and
Malik [14]. This graphical Turing test method consumed a
considerable amount of server resources to generate graphical
CAPTCHAs for remote users.

Yen and Lee [15] introduced a statistical technique to
mitigate the threat of random querying based application
layer DDoS attacks. A potential problem of their technique
is that attacking sources are assumed to generate service
requests in Round-robin mode, which mismatches with the
real attacking scenarios. While Xie et al. [16] presented an
improved semi-Markov model to mitigate application layer
DDoS attack threats by profiling the dynamic access behaviors
of aggregated proxy traffic from remote clients. However, the
semi-Markov algorithm complexity depends on its parameters
which are very challenging to choose.

Seufert and O’Brien [17] presented a machine learning
based defence mechanism to mitigate the DDoS threat. They
collected data from the OSI TCP/IP layer 3, layer 4 and layer
7 from all incoming user requests and employed an artificial
neural networks (ANN) to categorize the user types for the iso-
lation purpose. Unfortunately, it is an expensive computational
task to run the ANN algorithm especially when the traffic is at
a very large scale. In contrast, Yu et al. [18] developed a light
weight application layer DDoS attack mitigation solution by
leveraging the trust property to differentiate attackers from the
normal user group. The trust is derived from a user’s visiting
history and encrypted for the storage. While it can be exploited
by attackers to trigger a significant amount of workload for
computing the trust.

Khor and Nakao [19] designed a self-verifying Proof-of-
Work (sPoW) mitigation solution against application layer
DDoS attack. The sPoW mechanism grants normal users to
access different services by solving different difficulty-level
puzzles. However, it is incapable of defeating high intelligent
adversaries who can pass the puzzle tests.

Furthermore, Wang et al. [20] designed a graphical infer-
ence model based mitigation solution in Software Defined
Network(SDN) which is an emerging network architecture
decoupling data plane and control plane in traditional network
architectures. However, it is an experimental solution and not
feasible to deploy in contemporary network architectures.

Few works addressed the DDoS problem by applying
resource-based schemes. The resources are rigidly constrained
by physical capacity limitations and difficult to be speculated
by malicious attackers. For instance, Abadi et al. [21] proposed
a memory resource based scheme to defeat adversarial clients
by equipping a memory-bounded hard functions. While Wal-
fish et al. [22] proposed a bandwidth resource based scheme to
make normal clients get served with more bandwidth resource
than abnormal ones by requesting all connected clients to join
a bandwidth resource auction. Moreover, Khanna et al. [23]
proposed another bandwidth resource based scheme on the
shared communication channels. However, it is a relatively
heavy-weight solution for deployments in practice.

This review highlights that existing approaches encounter



TABLE II: Comparison Table of Application Layer DDoS Attack Mitigation Schemes

Mitigation Approach Characteristics Comments

Turing test based mitigation scheme [12] Graphic Turing Tests High service latency

High execution overhead

Statistic based mitigation scheme [15] Statistics based High false negative rateStatistical model dependent

Trust based mitigation scheme [18]
Trust analysis based False negative rate depending on attacking profile
Analyzing browsing behaviors Huge amount of log files required

Vulnerable to human behavior mimic attacks

Machine learning based mitigation scheme [17]
Machine learning based

High execution overheadSample collection
Feature extraction algorithm needs training

Software Defined Network (SDN) based mitigation
scheme [20]

SDN based Communication overhead depends on SDN struc-
tureControl network flow with separate planes

Hidden semi-Markov model based mitigation
scheme [16]

Statistic processes based Difficulty in model parameter selectionHigh mitigation rate

Resource based mitigation scheme [22] Bandwidth resource based Client status information required to maintain at
the server sideLegal users get higher service possibility

validity of assumptions or high cost of implementation as
briefly summarized in Table II. Since all these contemporary
security solutions do not satisfactorily or efficiently mitigate
the application layer DDoS attack threat, it forms the premise
for SENTRY.

VII. CONCLUSION

In this paper, we investigated the threat of application layer
DDoS attacks against server systems. In order to mitigate
this threat, we propose an uplink bandwidth based challenge-
response mitigation scheme (called SENTRY) with flexible
mitigating capability and strong speculation-proof property. In
addition to evaluate the performance of the proposed mitiga-
tion scheme, we implemented SENTRY in a software compo-
nent called “Moderator” that is deployed at the server side.
The experimental results collected from the evaluation pro-
cess demonstrate the effectiveness of the proposed challenge-
response mitigation mechanism. Therefore, the proposed mit-
igation scheme can assist servers to thwart the application
layer DDoS attacks by reducing unnecessary system overhead
which caused by processing the attacking service requests. In
future work, we will focus on addressing the tunability of the
moderator’s sampling parameters to improve performance.

VIII. ACKNOWLEDGMENT

Research supported by Hessen LOEWE TUD CASED.

REFERENCES

[1] Akamai Technologies, “Akamai state of the internet security
report,” 2015, https://www.akamai.com/us/en/multimedia/documents/
report/q4-2015-state-of-the-internet-security-report.pdf.

[2] S. Ranjan, K. Karrer, and E. Knightly, “Wide area redirection of dynamic
content by internet data centers,” Proc. of INFOCOM, pp. 816–826,
2004.

[3] Atlassian, “Bitbucket Data Center,” https://bitbucket.org.
[4] Glenn Butcher, “Atlassian subject to Denial Of Service attack,”

2011, http://blogs.atlassian.com/2011/06/atlassian subject to denial
of service attack.

[5] S. VivinSandar and S. Shenai, “Economic denial of sustainability (edos)
in cloud services using http and xml based ddos attacks,” International
Journal of Computer Applications, vol. 41, no. 20, pp. 11–16, 2012.

[6] S. Ranjan, R. Swaminathan, M. Uysal, and E. Knightly, “Ddos-resilient
scheduling to counter application layer attacks under imperfect detec-
tion,” Proc. of INFOCOM, pp. 1–13, 2006.

[7] J. Mirkovic and P. Reiher, “A taxonomy of ddos attack and ddos defense
mechanisms,” In SIGCOMM Computer Communication Review, vol. 34,
no. 2, pp. 39–53, 2004.

[8] Amazon Inc, “Amazon CloudWatch,” 2015, https://aws.amazon.com/
cloudwatch/details/?nc2=h ls.

[9] Y. Xie and S. Yu, “A large-scale hidden semi-markov model for anomaly
detection on user browsing behaviors,” In Transactions on Networking,
vol. 17, no. 1, pp. 54–65, 2009.

[10] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R. Rockell,
T. Seely, and C. Diot, “Packet-level traffic measurements from the sprint
ip backbone,” In IEEE Network, vol. 17, no. 6, pp. 6–16, 2003.

[11] R. Sedgewick and K. Wayne, In Algorithms. Pearson Education, 2011.
[12] A. Stavrou, J. Ioannidis, A. Keromytis, V. Misra, and D. Rubenstein, “A

pay-per-use dos protection mechanism for the web,” Proc. of Applied
Cryptography and Network Security, pp. 120–134, 2004.

[13] L. Von, M. Blum, N. Hopper, and J. Langford, “Captcha: Using hard ai
problems for security,” Proc. of EUROCRYPT-Advances in Cryptology,
pp. 294–311, 2003.

[14] G. Mori and J. Malik, “Recognizing objects in adversarial clutter:
Breaking a visual captcha,” Proc. of Computer Society Conference on
Computer Vision and Pattern Recognition, pp. I–134, 2003.

[15] W. Yen and M. Lee, “Defending application ddos with constraint random
request attacks,” Proc. of Asia-Pacific Conference on Communications,,
pp. 620–624, 2005.

[16] Y. Xie, S. Tang, X. Huang, C. Tang, and X. Liu, “Detecting latent attack
behavior from aggregated web traffic,” In Computer Communications,
vol. 36, no. 8, pp. 895–907, 2013.

[17] S. Seufert and D. O’Brien, “Machine learning for automatic defence
against distributed denial of service attacks,” Proc. of International
Conference on Communications, pp. 1217–1222, 2007.

[18] J. Yu, C. Fang, L. Lu, and Z. Li, “A lightweight mechanism to mitigate
application layer ddos attacks,” Proc. of Scalable Information Systems,
pp. 175–191, 2009.

[19] S. Khor and A. Nakao, “Daas: Ddos mitigation-as-a-service,” in Proc.
of Applications and the Internet, 2011, pp. 160–171.

[20] B. Wang, Y. Zheng, W. Lou, and Y. Hou, “Ddos attack protection in the
era of cloud computing and software-defined networking,” In Computer
Networks, vol. 81, pp. 308–319, 2015.

[21] M. Abadi, M. Burrows, M. Manasse, and T. Wobber, “Moderately
hard, memory-bound functions,” In Transactions on Internet Technology,
vol. 5, no. 2, pp. 299–327, 2005.

[22] M. Walfish, M. Vutukuru, H. Balakrishnan, D. Karger, and S. Shenker,
“Ddos defense by offense,” In SIGCOMM Computer Communication
Review, vol. 36, no. 4, pp. 303–314, 2006.

[23] S. Khanna, S. Venkatesh, O. Fatemieh, F. Khan, and C. Gunter, “Adap-
tive selective verification: An efficient adaptive countermeasure to thwart
dos attacks,” In Transactions on Networking, vol. 20, no. 3, pp. 715–728,
2012.


