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Abstract—Cloud services have become powerful enablers for
a variety of smart computing solutions supporting multimedia,
social networking, e-commerce and critical infrastructures among
others. Consequently, as we increasingly depend on the cloud, the
need exists to ensure its effective role as a trustworthy services
platform. Towards this objective, a plethora of cloud monitoring
mechanisms have been proposed which typically assume that the
collected monitoring information is reliably correct. In reality, the
information collected by cloud monitors is often susceptible to
reliability issues (e.g., monitor malfunctions, data corruptions,
or data tampering), and obtaining reliable cloud monitoring
information is still an open issue.
We propose Whetstone as a novel approach to address the gap
where an efficient approach of ascertaining reliable values from
a set of collected monitoring data is required. To this end,
Whetstone first introduces a statistical approach to filter defective
data from the collected data set. Next, Whetstone develops an
optimization approach to quantify the reliability of the collected
data by leveraging the value deviation of the collected data.
Finally, Whetstone devises a weighted aggregation approach for
generating the reliable value based on the obtained information.
We evaluate the proposed approach with different experimental
configurations. The experimental results demonstrate the efficacy
of our approach for successfully generating the maximum likeli-
hood reliable value for raw data sets.

I. INTRODUCTION

Cloud services, by virtue of providing transparent access to
backend distributed resources, are increasingly underpinning a
variety of smart computing projects. For example, a large-scale
Internet of Things (IoT) network may utilize cloud services to
process the massive data collected by the attached IoT devices
which lack the requisite computational resources to locally
process the data [1]. Similarly, a smart community may desire
an intelligent carpooling service to reduce carbon dioxide
(CO2) emissions for protecting the environment. To this end,
the carpooling service takes advantage of a cloud service to
compute optimized taxi dispatching plans [2]. Moreover, a
smart grid achieves to offer sustainable and economic elec-
tricity distribution by utilizing cloud services to manage the
communication of heterogeneous information [3]. As the cloud
enabled applications proliferate, the increasingly dependency
on the cloud also portends the need to ensure the cloud as a
dependable services platform.

In this context, the monitoring of the cloud operations
(for functionality, resource optimizations and especially the
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detection of anomalous behaviors) forms an essential basis
for securing cloud services. As a result, a large number of
monitoring mechanisms have recently been proposed [4]-[9].
However, virtually all existing monitoring schemas assume
that the information collected by security monitors is reliably
correct. However, this assumption can be fallacious for a
variety of reasons, e.g., security monitor malfunctions, unpre-
dictable data/network corruptions, or malicious data tampering
[10]. For instance, security monitors deployed for collecting
monitored data might encounter the problem of transient
malfunctions or failures. As a result, the collected data is
unreliable or even completely flawed. Additionally, the mon-
itored data might be corrupted during recording/transmission
phases by unpredictable factors such as communication chan-
nel congestion or noise [26]. Moreover, the monitored data
might be intentionally tampered by attackers for bypassing
security mechanisms or for fabricating necessary preconditions
for performing subsequent attacks [25]. Therefore, to ensure
that existing monitoring mechanisms generate correct cloud
services monitoring results, the key point is to ascertain the
reliability of the collected data.

In order to improve data reliability, existing methodologies
target obtaining reliable data value in two steps [11][12].
The first step is to measure the value of a given target
multiple times. The second step is to collate the multiple
recorded values to generate a reference representative value.
The commonly adopted aggregation technique is termed Ma-
jority Voting that procures reliable values by taking advantage
of a voting process [13]. Specifically, the value with more
votes (i.e., occurrence frequency) contributes more to the
final procured value in the aggregation process. The value
generated by using this technique is the reference “reliable”
value with respect to the monitored target. Naturally, the value
occurrence directly affects the reliability of the generated
mean value. However, a major drawback of this technique
is in overlooking the important fact that the reliability of
the collected values is distinctive [14]. Supposing that an
unreliable value (e.g., erroneous data) occurs in the collected
value set for many times, the occurrence-based technique fails
to generate reliable value. In other words, this technique is
only applicable when every collected value has the same level
of reliability. Therefore, an approach that is able to generate
reliable values in the presence of raw values with differing
reliability degrees is needed.

To address this gap, we propose a novel methodology



termed Whetstone for obtaining the reliable monitoring infor-
mation from the collected data set in this paper. To this end, we
first adopt a data cleansing approach to filter the unreliable data
by making use of statistical properties of the monitored data.
Then, we propose a data reliability quantification approach
by leveraging the relationship of data reliability and value
deviation. Finally, we develop a novel weighted aggregation
approach to generate reliable values based on the reliability of
collected values.

To the best of our knowledge, our approach is the first work
proposed for deriving reliable data to support monitoring cloud
services. In summary, we make the following contributions:

1) We propose Whetstone as a novel methodology to
generate reliable monitoring values from collected data
by considering the reliability degree of collected data
individually.

2) We propose a quantification approach for ascertaining
the reliability of the monitored data based on an opti-
mization model and theoretically prove the correctness
of the determined reliability results.

3) Our experimental results demonstrate the effectiveness
of the proposed approach to generate the reliable value
via a tunable optimization coefficient.

The remainder of this paper is organized as follows. Section
II describes the considerations of obtaining reliable value
from collected data. Section III models the reliable value
generation problem. Section IV details the design of our pro-
posed approach. Section V evaluates the effectiveness of our
proposition with experiments and makes discussions. Section
VI reviews the related work.

II. BACKGROUND

We first review the challenges of developing an effective
methodology to obtain reliable monitoring values. Next, we
present the main observations that underpin the development
of our proposed methodology.

A. Challenges

Monitored data collected by security monitors contains a va-
riety of useful information (e.g., abnormal workload variation,
unusual service customer logins, or occasional virtual machine
exceptions) for monitoring cloud services. With reliable mon-
itoring data, cloud monitoring mechanisms are expected to
generate correct monitoring results. In reality, the monitored
data suffers from various reliability problems, such as failures
of security hardware (e.g., monitoring devices), errors of data
flows (e.g., communication channels), or manipulations of
data sources (e.g., system log tampering). To address these
problems, a common solution is to repeatedly measure the
value of a given target and aggregate the values for deriving
a reliable value. As mentioned in the introduction, a widely
adopted aggregation technique is developed based on the
majority voting principle of the value receiving more votes
also more important for the aggregation [13]. In practice, the
occurrence of the collected value is generally utilized as the
vote and the mean of collected values is generally regarded

as the reliable value derived by this technique. The major
problem of the technique is that every collected value is
considered as uniformly reliable in the aggregation process.
However, erroneous values and normal values have completely
different significance from a reliability perspective. As a result,
it is questionable to simply aggregate the collected values for
the reliable value generation by merely considering the value
occurrence.

The reliability of monitoring data is the value that represents
the degree of the collected data free from errors during a
monitoring process. From a reliability perspective, the distance
from the collected values to the true value varies. As depicted
in Figure 1, the collected values of a monitored data (denoted
by green square / red parallelogram / diamond / triangle) are all
deviated from the real value (denoted by blue point) to some
extent. If the collected values have tiny deviation (e.g., locating
inside the small radius (r1) dashed circle), the aggregated value
(denoted by magenta point v1) is closer to the real value. While
the collected values have greater deviation (e.g., locating inside
the greater radius (r2) dashed circle), the aggregated value
(denoted by magenta point v2) is less closer to the real value.
These two cases highlight that the reliability of the generated
value is directly affected by the reliability of the collected data.
As a result, two main problems need to be solved for deriving
a reliable value from the collected data. The first problem is

Derived value (v1 , v2)

Collected value (normal data) 

Collected value (corrupted data)

r1
r2

Collected value (tampered data)

Collected value (erroneous data)

r1 Value deviation threshold

r2 Value deviation threshold

True value

v1

v2

Fig. 1. The insight of the collected value regarding monitored data

that the collected data might contain defective values which
involve various reliability issues as aforementioned. Hence, a
data cleansing approach that supports filtering defective data
from the raw data set is needed for obtaining a cleansed
data set. Even with the cleansed data, another challenge is
to develop a proper aggregation approach that can utilize the
cleansed data for generating reliable values.

B. Observations

Two issues are frequently observed in cloud monitoring
activities which also constitute the basis for our proposed
methodology.

The first observation is that the population of the monitored
data value approximately follows a Gaussian distribution given
that the number of collected values is sufficiently large [15].



This high volume data collection is typical for cloud security
monitors and thus the relevance of Gaussian distributions.
According to the statistical property of Gaussian distribution,
if a value is significantly deviated from the mean value (i.e.,
the true value), it has a high likelihood to be defective.

The second observation is that there is an inverse rela-
tionship between the data reliability and the value deviation
regarding a monitored data [10]. Namely, the value of reliable
monitored data is closer to the true value while the value of
unreliable monitored data is distant from the real value. As
an example, system event logs contain valuable information
for securing cloud services. In normal situation, security
auditors/experts can utilize the reliable information extracted
from the event logs (e.g., the log of failed login events) to
discover potential attack behaviors. However, if the log has
been tampered by attackers, the critical information indicating
brute-force password attacks against customer accounts can
be deliberately removed. Thus, the tampered data contains
the information that is quite deviated from the real situation
reflected by the reliable data.

These observations highlight the typical characteristics of
the monitored data. In the next section, we introduce our
proposed approach for generating the reliable value of the
monitored data by taking advantage of these observations.

III. PROBLEM STATEMENT

We now present the problem model of generating the
reliable values of monitored data, and also outline the relevant
notations and terminologies adopted in the paper.

A. Problem Model

In this paper, we particularly consider the problem of gener-
ating reliable value of monitored data for performing security
monitoring on cloud services. Structurally, we describe the
problem with an input-output problem model as follows:

• Input
To obtain a reliable value with respect to a monitored
target T in a Cloud service, a set of monitored data
DT = {dT1 , dT2 , · · · , dTm} (m ∈ N) is collected by a
deployed security monitor for m times. The collected data
dTm denotes the mth measured value of target T . The size
of the collected data set DT is m.

• Output
Based on the obtained data set DT , the output is data d̂T
that represents the reliable value of target T by properly
aggregating all collected data dT1 , d

T
2 , · · · , dTm.

B. Solution Approach

To obtain the reliable value of monitored data d̂T , our
proposed methodology needs to:

• Obtain a set of cleansed data D
′T by precluding defective

data (e.g., corrupted data, erroneous data, or tampered
data) from the raw data set DT .

• Measure the cleansed data’s value deviation for taking
advantage of the inverse relationship between the value
deviation and the data reliability.

• Determine the reliability degree of every cleansed data in
D
′T as a weight for generating d̂T .

• Aggregate the cleansed data and its corresponding
weights to generate the reliable value d̂T .

IV. PROPOSED METHODOLOGY: WHETSTONE

We first overview the Whetstone’s framework prior to de-
tailing the design methodology.

A. System Overview

To obtain reliable monitored data, we propose a multi-step
methodology termed Whetstone. Prior to discussing the design
details, we present the framework of Whetstone in Figure 2.
The framework of our proposed methodology consists of four
major steps summarized as follows.

Security 
Monitor

Reliable
Value

Monitoring
 Target T

Quantify Data 
Reliability

Aggregate Reliable 
Data

Cleanse Defective 
Data

Measure Data 
Deviation

Collected Monitoring Data DT ={dT
1, d

T
2, …, dT

m} 

Cleansed Data
D’T ={d’T1, d’T2, …, d’Tm’ }

 

Measured Deviation of D’T
{dM

1, d
M

2, …, dM
m’ }

 

Determined Weights D’T
{w1, w2, …, wm’ }

 

Whetstone

Fig. 2. Framework of the Proposed Methodology

1) Cleanse defective data: The proposed methodology
starts by conducting a statistical preprocessing process
(i.e., Grubbs’ test) to filter defective data from the raw
monitored data set in order to obtain a cleansed data set
as the foundation for supporting subsequent procedures
(Section IV-B1).

2) Measure data deviation: The methodology measures the
cleansed data so as to obtain the value deviation from a
reference base (Section IV-B2).

3) Quantify data reliability: The methodology introduces
an optimization approach to quantify the reliability of
every cleansed data by taking advantage of the obtained
deviations (Section IV-B3).

4) Aggregate reliable data: Whetstone finally aggregates
the obtained information (i.e., the cleansed data and its
reliability) to generate a reliable value with respect to
a specific monitored target (Section IV-B4).



B. Design Methodology

In this part, we explain the design of the proposed
methodology that enables us to generate a reliable value from
the collected data regarding a monitored target.

1) Cleanse defective data: To obtain a reliable value,
Whetstone first requires to cleanse all collected value so as
to obtain a cleansed set for aggregating a reliable value.
Considering collected values follows a Gaussian distribution
[15], we propose to cleanse the collected values by utilizing
the Grubbs’ test which is a statistical method for identifying
far-deviated data in a data set complying with the Gaussian
distribution [16].

For a set of collected data, the defective data denotes the
most deviated data (i.e., either the greatest or the smallest one)
in the m-element data population DT . Hence, Whetstone first
proposes two hypotheses of the data state as follows.

• H0 : There is no defective data in the collected data set
DT .

• Ha : There is exactly one defective data in the collected
data set DT .

To test the above hypotheses, Whetstone applies the follow-
ing two-sided Grubbs’ test formula [16].

G =

max
i=1,2,··· ,m

∣∣dTi − d̄T ∣∣
s

=

max
i=1,2,··· ,m

∣∣dTi − d̄T ∣∣√∑m
i=1(dTi −d̄T )

2

m−1

(1)

where i ∈ {1, 2, · · · ,m}, G denotes the value of the Grubbs’
test, d̄T represents the mean value of all collected data in DT ,
and s is the standard deviation of DT .

After determining the value of G by Formula (1), Whetstone
can test the hypothesis as follows. Specifically, H0 is rejected
at the significance level α if

G >
m− 1√
m

√
(tα/(2m),m−2)2

m− 2 + (tα/(2m),m−2)2
(2)

In (2), tα/(2m),m−2) represents the t-distribution with m−2
degrees of freedom at the α/(2m) significance level. We set
the value of α to 0.05 in our paper.

Whetstone executes Grubbs’ testing processes in an iterative
manner until H0 is no longer rejected at the specified confi-
dence level α by Formula (2). In consequence, the data that
results in the rejections of H0 in the testing process will be
removed from the raw data set. We denote the cleansed data
set by D

′T = {d′T1 , d
′T
2 , · · · , d′T

m′
} (m

′
6 m;m,m

′ ∈ N)

which is a subset of the raw data set DT (i.e., D
′T ⊆ DT ).

Accordingly, the size of the cleansed set D
′T is m

′
and the

number of removed data is m−m′ .
2) Measure data deviation: After obtaining the cleansed

data set D
′T , Whetstone proceeds to quantify the data re-

liability. As discussed in Section II-B, high reliability data
demonstrates the small deviation from the true value, while
low reliability data demonstrates the high deviation from
the true value. Therefore, the inverse relationship between

data reliability and value deviation can be utilized as an
effective leverage for ascertaining data reliability. Whetstone
takes advantage of the inverse relationship to quantify the
reliability of cleansed data in D

′T .
To this end, Whetstone needs to tackle a major problem of

obtaining the value deviation, as it is challenging to make use
of the inverse relationship for data reliability quantification
without knowing the deviation value.

The prerequisite for obtaining a value deviation is to have
a reference base that is, in theory, the true value with respect
to a monitored target. Ideally, the deviation can be measured
by applying distance formulas (e.g., Euclidean distance) with
the known reference base. However, the ideal reference base
is impossible to acquire due to the fact that the true value is
unknown in practice. To deal with this problem, it is necessary
to introduce an estimated value which functions as the refer-
ence base for value deviation measurement. Considering that
the cleansed data in D

′T is distributed around the true value,
the mean value of D

′T is thus meaningful in estimating the
true value. Hence, we introduce an approximated reference
base ¯d′T for measuring value deviations as follows.

¯d′T =

∑m
′

j=1 d
′T
j

m′
(3)

where j ∈ {1, 2, · · · ,m′}, ¯d′T denotes the approximated
reference base, and d

′T
j denotes the data in set D

′T .
Based on Equation (3), the deviation of the monitored data

can be measured by computing the distance between d
′T
j and

¯d′T as follows.
dMj = |d

′T
j − ¯d′T | (4)

where dMj denotes the measured value deviation between
the monitored data d

′T
j and the base ¯d′T .

3) Quantify data reliability: Besides the deviation ob-
tained by using Equation (4), Whetstone also needs a proper
method to leverage the inverse relationship for quantifying
the reliability of collected data in D

′T . To facilitate the data
reliability quantification, Whetstone introduces the weight w
for representing the data reliability. The definition of weight
is presented as follows.

Definition 1. Weight wj ∈ [0,+∞] is a positive value that
is used to proportionally represent the reliability of collected
data d

′T
j (for some j = 1, 2, · · · ,m′ ).

Noticeably, if the weight is close to the lower bound w = 0,
it means that the data does not contain much valid monitoring
information (i.e., the defective data). If the weight is close to
the upper bound w = +∞, it means that the data is absolutely
reliable (i.e., the true value).

With the help of weights, the data reliability quantification
problem now can be addressed by solving an optimization
problem based on the inverse relationship. Specifically, the
optimization problem targets finding a particular weight as-
signment of the cleansed data so as to yield the minimum
sum of the product of data weights and data deviations. For



this purpose, a data with great given deviation needs to be
assigned with the most possible small weight. The correctness
of such an weight assignment is supported by Theorem 1 as
follows.

Theorem 1. For a finite set of data pairs (dMj , wj) where dMj
is constant and wj is bounded (for some j ∈ {1, 2, · · · ,m′}),
the minimum sum of dMj ·wj can only be achieved on condition
that a great wj is paired with the most possible small dMj .

Proof: Let the deviation set D be sorted as dM1 < · · · <
dMp < · · · < dMq < · · · < dMj and the weight set W also
be sorted as w1 < · · · < wp < · · · < wq < · · · < wj
(1 < p < q < j), the minimum value M is M = dM1 wj +
· · ·+ dMp wj+1−p + · · ·+ dMq wj+1−q + · · ·+ dMj w1.

Supposing there exists a value M
′

= dM1 wj + · · · +
dMp wj+1−q + · · · + dMq wj+1−p + · · · + dMj w1 smaller than
M , then it gives the following inequality as
M −M ′

= (dMp − dMq )(wj+1−p − wj+1−q) > 0

∵ dMp < dMq and wj+1−p > wj+1−q

∴ (dMp − dMq )(wj+1−p − wj+1−q) = M −M ′
< 0

It contradicts to the given inequality. Therefore, there is no
other value smaller than M = dM1 wj + · · · + dMp wj+1−p +
· · ·+ dMq wj+1−q + · · ·+ dMj w1.

Based on the above consideration, Whetstone proposes
the following optimization problem for determining the data
reliability.

Definition 2. Given a set of measured value deviations
D = {dM1 , dM2 , · · · , dM

m′
} and a set of weights w =

{w1, w2, · · · , wm′},

minimize
w

f(w, d) =

m
′∑

j=1

wjd
M
j

s.t. f0(w) =

m
′∑

j=1

α−wj = C

(5)

where α > 1 and C ∈ R+ is a positive coefficient.
The optimization problem consists of two proposed functions.
Namely, f(w, d) is the proposed objective function that can
be optimized by finding the particular weight assignment
specified in Theorem 1. f0(w) is the constraint function that
ensures the optimization of f(w, d) is feasible. Given weight
w is a variable varying within the range [0,+∞], we introduce
an adjustable coefficient C as the bound of the sum of α−wj

for making the optimization process valid.
To make the objective function optimizable, we introduce

a new variable βj to represent α−wj . As a result, weight wj
can be represented by,

wj = −logβjα (6)

To determine the optimal value, the Lagrange function of
the proposed optimization problem thus can be represented

based on Equation (5)(6) as

L(βj , λ) =

m
′∑

j=1

(−logβjα · dMj ) + λ(

m
′∑

j=1

βj − C) (7)

Given that the sum of the equality constraint function
is subject to coefficient C, we can compute the Lagrange
multiplier λ of the Lagrange function (7) on the condition
that the partiality derivative of βj is zero.

λ =
1

C

m
′∑

j=1

dMj (8)

Based on Equation (5)−(8), we determine the value of weight
wj as follows.

wj = − logα
C · dMj∑m′

j=1 d
M
j

(9)

4) Aggregate reliable data: With the quantified data re-
liability, Whetstone is able to aggregate the cleansed data
with respect to a monitored target. According to our problem
model described in Section III-A, the aggregated data can be
denoted by d̂T . To get rid of the potential reliability bias,
Whetstone proposes a weight-based approach to generate d̂T .
In specific, Whetstone determines d̂T by aggregating all the
data in cleansed set D

′T based on the respective reliability
degree derived by Equation (9) as follows.

d̂T =

∑m
′

j=1 wjd
′T
j∑m′

j=1 wj
(10)

In Equation (10), the aggregated data dT considers the relia-
bility contribution of every collected data d

′T
j in an uneven

manner. Overall, the reliability of d̂T is dominated by the
high-weight data that has the high possibility to be more
approaching to the true value.

V. EVALUATION

In this section, we evaluate the efficacy of our proposed
methodology for generating reliable data that underpins cloud
monitoring. Our evaluation is conducted in two steps: 1.)
We assess the effectiveness of Whetstone to generate the
primitive result by cleansing defective monitoring data, 2.)
We investigate Whetstone’s performance towards generating
the reliable value by tuning up the value of the optimization
coefficient. We first describe the settings of our evaluation.
Then, we provide a discussion and interpretations of the
experimental results.

A. Experimental Setting

To evaluate the performance of our proposed methodology,
we perform the evaluation in the scenario where a set of
collected data values is aggregated to generate a reliable
monitoring value. The collected data follows the unknown
Gaussian distribution whose mean is the true value with



respect to a monitored target. The collected data set may
partially contain defective data caused by varied reasons.

To simulate the above scenario, we adopt the following
experimental settings for evaluating our proposed methodol-
ogy. Specifically, we randomly generate a set positive values
for simulating the values of system overhead collected by
security monitors from a target virtual machine which is used
for running cloud services. The generated data set follows
the Gaussian distribution where the standard deviation is set
to σ = 1 and the mean value is set to µ = 80 which is
used as the unknown true value for benchmarking Whetstone’s
performance. To simulate the defective data, we manipulate a
percentage of data in the data set by adding random offsets
while keeping the rest data unchanged. Thus, we create four
defective data profiles which respectively contain 5%, 10%,
15%, and 20% manipulated data.

B. Evaluation on Primitive Results

We first examine the primitive result generated by
Whetstone in data cleanse process. In order to check
Whetstone’s capability of generating more reliable values than
the existing majority voting method, we carry out four rounds
of experiments on the test data set with different numbers of
simulated defective data. In each experiment, we first record
the mean value of the data set where the simulated data is
distant from the mean value of the Gaussian distribution µ.
Such mean value is value generated by applying the majority
voting method. Next, we execute our proposed methodology
to cleanse the defective data and collect the primitive result
which is the mean value of the cleansed data set.

Fig. 3. The primitive results by cleansing defective data

Figure 3 depicts the primitive results that are obtained
from the experiments. In this figure, we present the results
of different test sets with different colors. Namely, the test
set with 5% defective data is in blue, the test set with 10%
defective data is in red, the test set with 15% defective data is
in orange, and the test set with 20% defective data is in green.
From the figure, we observe that Whetstone can successfully
filter most defective data. Compared to the mean value of the
raw data set, the mean value of the cleansed set becomes closer

to the benchmarking line at µ = 80 for every defective data
profile. As an example of the test set with 20% defective
data (shown in green bar), its mean value gets improved
from 78.682 to 79.916 by carrying out the cleansed process.
It is worth noticing that Whetstone successfully filters 15%
defective data which is distant from the benchmarking line in
the experiment. The other 5% defective data is overlooked by
Whetstone as it is not greatly deviated from the benchmarking
line even with adding the manipulated offsets. In the rest three
experiments, we also observe the similar situation that the
defective data is overlooked only when the value deviation of
the defective data is quite tiny. It is worth mentioning that the
primitive result obtained by Whetstone outperforms the result
derived by the existing work that simply aggregate all data for
generating the mean of the raw data set.

C. Evaluation on Final Result

After cleansing defective data, Whetstone still needs to deal
with the remaining data to generate a final reliable value. The
remaining data (including the overlooked defective data) is
deviated from the true value to different extents. To investigate
the performance of our proposed methodology for generating
the reliable value, we perform a series of experiments on the
four cleansed test sets by tuning up the coefficient C with
different values.

Table I presents the evaluation results collected from these
experiments. In this table, the first column represents the
amount of defective data contained in the test set that is
used for evaluating our proposed methodology. The rest of
the columns record the results by adopting different values of
the coefficient C. For each value of C, the generated reliable
value (denoted by Opt.V alue in the table) is recorded. Apart
from that, the symbol of the quantified weight (denoted by
Symbl.W in the table) is also recorded in order to check the
correctness of the determined weight.

From the experimental results in Table I, we observe that
the reliable value generated by Whetstone keeps approaching
towards the true value before crossing the critical point that
denotes the alteration of the weight’s symbol from positive
to negative. After crossing the critical point, the generated
reliable value keeps increasing with assigning greater values to
C. For example, we tune up the value of coefficient C to obtain
the reliable value for the test set with 20% defective data by
using five respective values as C = {2, 5, 10, 50, 100}. Specif-
ically, Whetstone generates a reliable value Opt.V alue =
79.931 when C = 2. The generated value 79.931 is closer
to the true value 80 than the mean value directly obtained by
the cleansed data set which still contains 5% defective data as
mentioned in Section V-B. Tuning up C with greater values,
The reliable value generated by Whetstone at the 95% confi-
dence level also keeps increasing (e.g., Opt.V alue = 79.935
when C = 5 and Opt.V alue = 79.940 when C = 10).
Apart from that, it is worth noticing the alteration of the
weight’s symbols. We can observe that the symbol of weight
is positive when C = {2, 5, 10} while the symbol changes to
negative when C = {50, 100}. As a result, we can regard the



TABLE I
THE FINAL RESULTS GENERATED BY TUNING UP THE COEFFICIENT WITH DIFFERENT VALUES

Coefficient Setting (C)
Percentage of Defective

Data in Cleansed Set
C=2 C=5 C=10 C=50 C=100

Opt.Value Symbl.W Opt.Value Symbl.W Opt.Value Symbl.W Opt.Value Symbl.W Opt.Value Symbl.W
5% 79.987 positive 79.989 positive 79.992 positive 80.014 negative 80.080 negative
10% 80.002 positive 80.005 positive 80.008 positive 80.030 negative 80.106 negative
15% 79.975 positive 79.978 positive 79.982 positive 80.015 negative 80.167 negative
20% 79.931 positive 79.935 positive 79.940 positive 79.983 negative 80.213 negative

critical point located in the range (10, 50). The alteration of
weight’s symbol indicates the validity of the generated value.
Considering the weight is used to represent the reliability
degree of collected data, the weight has to be a positive
value as for its practical significance. If the symbol of weight
becomes negative, it indicates that the generated reliable value
is invalid.

D. Discussions

From the collected experimental results, Whetstone success-
fully demonstrates its capability of generating reliable values
for supporting cloud monitoring. For instance, Whetstone is
able to derive a more reliable value than the mean value of the
data set where the reliability of collected the data is difficult to
known. In addition, it can manage to generate reliable values,
even if the data set might contain defective data. Besides,
Whetstone also possesses several advantages which are worth
mentioning as follows.

Whetstone can generate reliable monitored data values
without assuming all collected data with equal reliability
which is challenging to ascertain without conducting a careful
investigation. From a reliability perspective, it is questionable
for adopting the mean value as reliable value of the collected
data. Whetstone addresses this challenge by quantifying the
reliability of collected data based on its value deviation.

Whetstone introduces a data cleanse process for further
improving the reliability of generated results. By cleansing the
defective data from the raw monitored data set, the remaining
data is less-deviated from the true value and thus provides a
better foundation for quantifying the reliability of collected
data (w) with higher precision.

Whetstone supports generating the reliable value from a set
of collected monitored data in an automatic way. By keeping
tuning up the value of coefficient C, the generated result
keeps approaching towards the true value. Once the tuning up
process yields any negative weight, the automatic process can
be terminated and take the latest result before the alteration of
the weight symbol as the most likely reliable value.

Whetstone is proposed for generating the reliable monitoring
value based on a static data set in our paper, while it can
be adapted to manage the dynamic data flow generated by
deployed security monitors in cloud systems. As a dynamic
data set can be considered as the compilation of many static
data set snapshots sequentially ordered by a temporal order.

VI. RELATED WORK

Our survey work first reveals that the validity of existing
monitoring mechanisms commonly suffer from the issue of
collected data [4]-[9][17]-[20]. For example, Seshaderi et al.,
[17] proposed a hash-based security technique to monitor
remote device state by utilizing the memory information
that is assumed to be collected from a noise-free scenario.
Practically, it is challenging for security monitors to collect
data under the influence of the random noise. Ma et al.,
[18] proposed ProTracer as a monitoring approach to address
advanced persistent threat (APT) attacks by making use of
the logs of system calls and relate events. While the logs are
likely to be tampered by malicious attackers in many cases,
the tampered log information leads ProTracer to generate
incorrect monitoring results. Furthermore, [19] et al., proposed
a flow-analyzing security method for monitoring malwares.
The proposed method is developed to function with the default
prerequisite that the information captured from data flows is
fully reliable. In reality, it is hard to meet such a requirement
without an effective mechanism for checking the reliability of
captured data. Moreover, Gulmezoglu et al., [20] proposed
a machine learning based methodology to monitor cloud
applications in terms of cache-accessing patterns. Without
reliable cache information, it is hard to extract the feature
vector that dominates the correctness of monitoring results
generated by this methodology.

To the best of our knowledge, few work particularly targets
ascertaining reliable monitoring value for achieving reliable
cloud monitoring. We observe the work that is relevant to
the topic of discovering reliable data for different purposes.
For instance, Mahdisoltani et al., [21] proposed a technique to
predict reliable data for improving the reliability of storage
systems by utilizing training data which requires a lot of
effort to prepare. Our proposed approach does not require any
extra preparation and can directly work with collected data.
Additionally, Zheng et al., [22] proposed a data reliability
improvement technique for assigning task packages in an
optimized manner. To elevate data reliability, this technique
carries out an iterative updating process that causes significant
computational overhead. Likewise, Li et al, [10] proposed
a method to improve data source reliability by adopting a
continuous updating process. Compared to both work, our
approach does not need to execute iterations and thus can
reduce the computational overhead. Furthermore, Fan et al.,
[23] proposed a statistical technique to improve data relia-
bility by leveraging the similarity between different topics.



Unfortunately, the value of similarity is hard to obtain due
to the reason that the constraints of the statistical model are
sometimes too difficult to meet. By contrast, our approach does
not need to meet strict constraints for applying it. Moreover, Li
et al., [24] proposed an optimization method to improve data
reliability while it is hard to derive the suitable values of the
optimization parameters without expert knowledge. However,
our approach supports generating reliable value by using the
suitable optimization parameter.

VII. CONCLUSION

Acquiring a reliable value of monitoring data is the key fac-
tor that affects the correctness of monitoring results generated
by cloud monitoring mechanisms. For performing rigorous
cloud monitoring, the methodology to obtain the reliable value
of the collected data is still a challenge. Therefore, we propose
Whetstone as a novel multi-step approach to address this gap.

To obtain the reliable monitoring value of monitored data,
Whetstone starts with cleansing the defective data in collected
data set by taking advantage of the significant deviation
between the value of defective data and the true value. Af-
terwards, Whetstone quantifies the reliability of the cleansed
data by leveraging the relationship of the monitored data’s
reliability inversely proportional to its value deviation from
the true value. Finally, Whetstone successfully generates the
reliable value of the collected data by aggregating the cleansed
data with its reliability in a weighted manner.

The merits of our proposed approach are the capability of
generating reliable value of the collected data and supporting
to ascertain the reliable value by tuning up the value of the
constraint coefficient. In the future, we plan to adapt Whetstone
to manage categorical type cloud monitoring data. Overall,
our paper offers a novel angle for obtaining reliable values of
monitored data to support cloud monitoring.
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