
Compositional Design of RT Systems: A Conceptual Basis for Specification of

Linking Interfaces

Hermann Kopetz

Real-Time Systems Group
TU-Vienna, Austria

hk@vmars.tuwien.ac.at

Neeraj Suri
Dependable Embedded Systems & SW Group

TU-Darmstadt, Germany
 suri@informatik.tu-darmstadt.de

Abstract

Composition of a system is driven by the (a) identification
and specification of basic components, and (b) specifica-
tion of the interactions across the components, i.e., the
communication linkages, that are needed to communicate
value and temporal information across the components
from which the aggregate system results. This paper ad-
dresses compositional design of distributed Real-Time
(RT) systems focusing specifically on the role of specifica-
tion of linking interfaces (LIFs) across components.

1. Introduction

In many engineering disciplines, large systems are built
from prefabricated components with known and validated
properties. The composition of discrete components into a
meaningful aggregate system is achieved via the interac-
tions defined across the components as realized by dis-
semination of messages or alternate underlying communi-
cation paradigms. Ideally, such component linking inter-
faces are stable and standardized entities. Desired proper-
ties of components are functional cohesion and autonomy,
to provide structure and limit the complexity at the system
level. The inner mechanisms of components should be
encapsulated, such that a system designer can use the
components based on their interface specifications. In dis-
tributed computer systems, the components interact by
exchanging messages across service interfaces. This real-
izes the emergent services, i.e., those properties of the
system of components that are not explicitly part of the
components themselves, but come into existence by the
interactions among the components. We call a service in-
terface, that link components together, a linking interface
(LIF) and the precise specification of these is also a pre-
requisite for the reuse of components.

Composability, i.e., the formulation of a whole system
from parts (components), has developed into an actively
researched area. Varied efforts exist, addressing compos-
ability from an abstract perspective dealing with theory of
aspects and formal composition viewpoints. Other efforts
have considered architectural description languages and

SW processes [1] including OO design. A substantial ef-
fort in composability has considered, among other alterna-
tives, the protocol viewpoint [2], the compositional verifi-
cation and validation viewpoints [3,4], to system level
(both dependability and RT oriented) compositions [5,6],
including many other variations of the theme. In spite of a
growing body of work in this area, there is still a lack of
conformal definitions of (a) the elemental components –
SW, system level etc, (b) the interfaces linking the com-
ponents, and (c) the domain-specific guidelines establish-
ing the emergence of relevant system properties from the
compositional process.

Thus, the focus of this paper is on the conceptual basis
of composability, establishing the component definitions,
operational and meta-level specifications, and especially
the specification of linking interfaces in distributed real-
time (RT) systems. We emphasize that the thrust is devel-
opment of the conceptual basis and guidelines to facilitate
compositional LIF based RT system design.

In Section 2, we introduce basic concepts on the notion
of time and components underlying our work. Sec. 3 ex-
plores the notion of composability relevant to RT services
and introduces the concepts of operational and meta-level
LIF specification. Sec 4 details operational LIF specifica-
tions focusing on temporal properties of LIF’s. Sec 5 de-
velops meta-level specifications and details LIF state and
the related service models. We summarize the ramifica-
tions of the developed concepts in Section 6.

2. Basic Concepts

In order to develop our system context, we reiterate ba-
sic concepts essential for understanding the paper.

2.1. The Notion of Sparse Time

In the Newtonian model, commonly used for RT appli-
cations, time progresses along a dense timeline consisting
of an infinite set of instants. A duration (or interval) is a
section of the timeline, delimited by two instants. A hap-
pening that occurs at an instant (i.e., a cut of the timeline)
is an event. An observation of the state of the world at an

instant is an event. The time-stamp of an event is estab-
lished by assigning the observer’s local clock time to the
event immediately after the event occurrence. Given the
impossibility of perfect synchronization of clocks and the
denseness property of real time, there is always the possi-
bility that a single event e is time-stamped by two clocks j
and k with a difference of one tick. The finite precision of
the global time-base (dense time) and the discretization of
time makes it impossible to order events consistently
based on their global time-stamps. This is solved by the
introduction of a sparse time base [7], where time is parti-
tioned into an infinite sequence of alternating durations of
activity and silence. The activity intervals form a synchro-
nized system-wide action lattice.

Regarding temporal ordering, all events that occur
within a specified duration of activity of the action lattice
are considered to happen at the same time. Events that
happen in the distributed system in different components
at the same global clock-tick are thus considered simulta-
neous. Events that happen during different durations of
activity (at different points of the action lattice) and are
separated by the required interval of silence (the duration
of this silence interval depends among others, on the pre-
cision of the clock synchronization [8]) can be temporally
ordered on the basis of their global timestamps. The ar-
chitecture needs to ensure that significant events, such as
the sending of a message, or the observation of the envi-
ronment, occur only during an interval of activity of the
action lattice. The time-stamps of events based on sparse
time can be mapped on to the set of positive integers. It is
then possible to establish the temporal order of events by
integer arithmetic. The timestamps of events that are out-
side the control of the distributed computer system (and
therefore happen on a dense timeline) must be assigned to
an agreed lattice point of the action lattice by an agree-
ment protocol. Agreement protocols are also needed to
achieve a system-wide consistent view of analog values
that are digitized by more than one A/D converter.

The proposed compositional approach, will utilize the
premise that a sparse time base exists across the system.

2.2. Defining Components and Interfaces

Conventionally, a component is a self-contained sub-
system that can be used as a building block in the design
of a larger system. A component provides a desired ser-
vice to its environment across a well-specified interface.
An example of a component is a processor in a computer.
A component can have a complex internal structure that is
neither visible nor accessible to the user. The services
provided by the component, as specified by interfaces,
define its usefulness in an aggregate system.

An ideal component should maintain its encapsulation
(value and temporal) when used in a larger context. The
larger system is constructed from components that can be
integrated without violating the principle of composabil-
ity, i.e., properties that have been established at the com-

ponent level will also hold at the system level (see Section
3.1). In the context of a distributed real-time system, we
consider each discrete computing node as a component
[9], with the component-behavior specified in the domains
of time and value, (this is in contrast to a discrete software
component, which, on its own, does not have a temporal
dimension). Thus, we consider a component as a self-
contained time-aware computational element with its own
hardware (processor, memory, communication interface,
and interface to the controlled object) and software (appli-
cation programs, operating system), which interacts with
its environment by exchanging messages across linking
interfaces (LIFs).

A B

C

Local
Interfaces

(SRLIF)

Local
Interfaces
(SRLIF)

Linking Interaces
(LIF)

Figure 1: A composition of three components, A, B, C
and LIF’s

Figure 1 depicts a system, of three components, that re-
alizes emergent services via timely exchange of messages
across the LIFs. In order to achieve a complexity reduc-
tion, a user should be able to reason about these emergent
services by examining only the LIF specifications. The
internals of the components, including the related local
interfaces, should remain encapsulated; the composition is
driven strictly by LIF level interactions.

It should be noted that the term “interface” represents a
common boundary between two or more components (or
subsystems). Thus, a LIF is characterized by:
(a) Its data properties, i.e., the structure and semantics of
the data items crossing the interface.
(b) Its temporal properties, i.e., the temporal conditions
that have to be satisfied by the interface for both control
and data delivery validity.

The following table further outlines this aspect with an
example set of rules and also illustrates the role of the in-
terface as a conformal check of the messages across it.
Please note that this represents a local level information
check that is valid across a given set of components.

Attribute Interface Feature Check

Valid
A message is valid if it meets CRC, range and
logical checks

Checked
A message is checked if it passes the output as-
sertion

Permitted
A message is permitted with respect to a receiver
if it passes the input assertion of that receiver

Timely
A message is timely if it is in agreement with its
temporal specifications

Correct
A message is correct if its value and temporal
specifications are met

Insidious
A message is insidious if it is permitted but in-
correct (requires a global judgment)

An implication of this interface characterizing is the
consequent simplification of component interactions. In
general, the interface across components can often be a
complex one where the stimuli behind component interac-
tions could be time or event triggered. Similarly, the trans-
fer of data can be absolute state or relative. However, by
our delimiting the validity of information exchange to be
governed with both value and temporal specifications, this
simplifies the component interactions to be direct and
simple interactions across components. It is worth keeping
in perspective, that our driver is real-time system design
where such value and temporal information validity speci-
fications are especially relevant.

When analyzing the interactions between a component
and its environment, we found it useful to distinguish be-
tween four different types of component interfaces. As our
focus is on communication level interfaces, we demarcate
the interfaces and component interactions into the follow-
ing discrete categories, namely:

(i) The Service Providing Linking Interface (SPLIF):
Fundamentally, a component must be a unit of ser-
vice provision. The service is offered to the compo-
nent environment across a SPLIF. It is the primary
interface of a component and is discussed in detail in
Section 3.

(ii) The Service Requesting Linking Interface (SRLIF):
In order to meet its specification, a component may
request services from other components. The corre-
sponding interface is the SRLIF. A user of the SPLIF
may not be aware that a component requests the ser-
vices of other components via SRLIF’s to achieve its
objectives.

(iii) The Configuration Planning (CP) Interface: This is
analogous to a global resource manager used to con-
figure - initial and subsequent – components to pro-
vide the stipulated services in a specified environ-
ment. The access can be sporadic in nature and may
not be time-sensitive.

(iv) The Diagnostic and Management (DM) Interface:
The DM interface provides selective access to the
(operational) internals of the component for monitor-
ing and diagnostic purposes. Since the DM interface
is not exposed during normal component operation,
the DM view is not relevant for the user of a compo-
nent. The DM interface can be used to parameterize a
component in order to optimize it for the given task.

The concepts of an SRLIF and an SPLIF are closely re-
lated to the concepts of a client interface and a server in-
terface in a client-server architecture or the concepts of a
required interface and a provided interface in [10]. It will
be shown later that the interactions between an SRLIF and
an SPLIF are more differentiated than the interactions in
the client-server model. This is the reason why we intro-
duced these new terms. Subsequently, we will use the term
LIF to refer to both interfaces.

It is also important to clearly distinguish between the
state of a LIF and the state of the component that supports
the LIF. Consider a simple example of an e-commerce
server. From the point of view of a particular shopper’s
LIF the articles that are contained in his/her shopping cart
at the chosen instant determine the state of this particular
LIF. Since the server may support many concurrent shop-
ping sessions at any particular instant, the state of the
server component is formed by the articles in all active
shopping carts.

Based on the relations between a component and its
environment we distinguish between two primary compo-
nent types, namely:

Closed Component: Consider a component that inter-
acts with its environment only via a single SPLIF, i.e., the
output messages that are produced at this SPLIF are only a
function of the SPLIF-input messages and the SPLIF state.
We call such a component a closed component. If, the
output messages are a deterministic function (in value and
time) of the input messages and the SPLIF state, we call
such a closed component a deterministic closed compo-
nent. A typical example of a closed component is a com-
ponent that implements a stack providing the well-known
functions of push and pop.
A special case of a closed component is a semi-closed
component. A semi-closed component has, in addition to
the LIF input messages, only one other type of (hidden)
input message, a clock message that is generated by a syn-
chronized clock denoting the instant of the beginning of a
sparse time-granule [12]. While a closed component is not
time-aware, a semi-closed component is time-aware. A
semi-closed component can generate an output message
when the time reaches a certain value without having re-
ceived an input message at its LIF. An example of the
simplest semi-closed component is a clock that generates
periodic output messages after every n time-units, where a
time-unit represents the granularity of the clock.

Open Component: an open component has one or
more SRLIF’s that accept inputs from the natural envi-
ronment. The natural environment refers to reality as it
exists in nature, as opposed to a digital model of reality
[11]. Since the natural environment possesses a boundless
number of properties it is difficult to provide for its com-
plete or rigorous specification.

A special case of an open component is a semi-open
component. This is a component that can exchange data
with the natural environment without delegating control to
the natural environment. A sampling system that periodi-
cally looks at the natural environment under the control of
the component’s internal timer is an example of a semi-
open component. An interrupt-driven component that ac-
cepts interrupts from the natural environment is an exam-
ple of an open component. The class of semi-open com-
ponents is of particular interest for the rest of this analysis.

Connecting closed components to all SRLIF’s of an
open component can transitively close it. An example of

such a transitive closure is the replacement of a controlled
object (the natural environment) by a real-time simulation
model of the controlled object. Conversely, the replace-
ment of a real-time simulation model by a real controlled
object (e.g., hardware-in-the-loop) can transform a closed
component to an open component.

2.3. The RT Context: RT Entities and Images

A distributed RT system is depicted as a set of compo-
nents connected via a RT communication channel. As
mentioned in Sec 2.1, the components are assumed to
have access to a global time base of known precision.

It is important to clearly delineate the representation of
RT state information. Here we have found the notions of
RT entity and RT image introduced in [13, 7] to be highly
useful:

RT Entity: A real-time application is modeled by a set
of relevant state variables, the real-time entities that
change their state as time progresses. Example RT entities
are the set-point of a control loop or the intended position
of a control valve. An RT entity has static attributes that
do not change during the lifetime of the RT entity, and has
dynamic attributes that change with time. Examples of
static attributes include the name, the type, the value do-
main, and the maximum rate of change. The value set at a
particular instant is the most important dynamic attribute.
Another example of a dynamic attribute is the rate of
change at a chosen instant.

The information about the state of an RT entity at a
particular instant is captured by the notion of an observa-
tion. An observation is an atomic data structure

Observation = <Name, Value, tobs>

consisting of the name of the RT entity, the observed
value of the RT entity, and the instant when the observa-
tion was made (tobs). A continuous RT entity can be ob-
served at any instant while a discrete RT entity can only
be observed when the state of this RT is not changing.

RT Image: A real-time image is a temporally accurate
picture of an RT entity at instant t, if the duration between
the time-of-observation and the instant t is less than the
accuracy interval dacc, which is an application specific
parameter associated with the dynamics of the given RT
entity. An RT image is thus valid at a given instant if it is
an accurate representation of the corresponding RT entity,
both in the value and the time domains [13]. While an
observation records a fact that remains valid forever (a
statement about an RT entity that has been observed at an
instant), the validity of an RT image is time-dependent
and is invalidated by the progression of real-time.

2.4. State-Information versus Event-Information

The information exchanged across an interface is either
state information or event information, as explained in the
following paragraphs. Any property of a RT entity that is
observed by a component of the distributed real-time sys-

tem at a particular instant, e.g., the temperature of a ves-
sel, is called a state attribute and the corresponding in-
formation state information. A state observation records
the state of a state variable at a particular instant, the point
of observation. A state observation can be expressed by
the same atomic triple as seen in Sec. 2.3.

For example, the following is a state observation: “The
position of control valve A was at 75 degrees at 10:42
a.m.” State information is idempotent and requires an at-
least once semantics when transmitted to a client. At the
sender, state information is not consumed on sending and
at the receiver, state information requires an update-in-
place and a non-consumable read. State information is
transmitted in state messages.

A change of state of a RT entity that occurs at an in-
stant is an event. Information that describes an event is
called event information. Event information contains the
difference between the state before the event and the state
after the event. An event observation can be expressed by
the atomic triple <Name, Value difference, Time of
event>. For example, the following is an event observa-
tion: “The position of control valve A changed by 5 de-
grees at 10:42 a.m.” Event observations require exactly-
once semantics when transmitted to a consumer. Events
must be queued on sending and consumed on reading.
Event information is transmitted in event messages.

Periodic state observations or sporadic event observa-
tions are two alternative approaches for the observation of
a dynamic environment in order to reconstruct the states
and events of the environment at the observer [14]. Peri-
odic state observations produce a sequence of equidistant
“snapshots” of the environment that can be used by the
observer to reconstruct those events that occur within a
minimum temporal distance that is longer than the dura-
tion of the sampling period. Starting from an initial state, a
complete sequence of (sporadic) event observations can
be used by the observer to reconstruct the complete se-
quence of states of the RT entity that occurred in the envi-
ronment. However, if there is no minimum duration be-
tween events assumed, the observer and the communica-
tion system must be infinitely fast.

3. Specifying LIFs for RT Services

3.1. The Composability Viewpoint

In a distributed system, a given set of components
compositionally realize emergent services by exchanging
messages across LIFs [15]. For example, an n-node sys-
tem defines new (emergent) services such as group mem-
bership, synchronization or agreement.

As a definition, a composition is the act of combining
parts or elements to form a whole [16]. Thus, composabil-
ity is defined as the ease of forming a whole by combining
parts. In our context, the whole is the system and the parts
are the components. The key to composition is identifying

and specifying the interactions across the identified com-
ponents from which the system is desired to be composed.
These interactions represent value and time domain in-
formation, and are required to be semantically and syntac-
tically compatible. Composability is driven by the stipu-
lated property that the composition is supposed to achieve,
e.g., safety or timeliness.

For an architecture to support composability with re-
spect to LIF and RT, it must adhere to the following prin-
ciples:

(1) Independence: A composable architecture should
clearly distinguish between architecture design and com-
ponent design. Principle one of a composable architecture
is concerned with design at the architecture level. Compo-
nents, based on principles of autonomy, need to be de-
signed independently of each other. However, their utility
is obtained if the architecture supports the interface speci-
fication of the LIF’s during LIF design. The interface data
structures must be precisely specified in the value domain
and in the temporal domain and a proper LIF service
model of the component service, as viewed by a user of
the component, must be available (See also Section 3.2).
Only then is the component designer in a position to know
exactly what to expect when from the environment, and
what must be delivered when to the environment by the
component across its LIF. This knowledge is a prerequi-
site for the independent development of the component
software, for reusing a component in a new application
context, and for reasoning about the composition of com-
ponents into a system or system-of-systems.
(2) Invariance: Principle two of a composable architec-
ture concerns the design at the component level. The sta-
bility-of-prior-service principle ensures that the validated
service of a component, both in the value and time do-
mains, is not refuted by the integration of the component
into an encompassing system-of-systems, i.e., ensuring the
invariance of existing properties of components.
(3) Growth: Principle three of a composable architecture
is concerned with the performance of the communication
system. The integration of the components into a system
usually follows a step-by-step composition process. The
performability of the communication system principle en-
sures that if n components are already integrated, the inte-
gration of the n+1st component will not disturb the correct
operation of the n already integrated components. This has
stringent implications for the management of the network
resources. If the network resources are managed dynami-
cally, then it must be ascertained that even at the critical
instant, i.e., when all components request the network re-
sources at the same instant, the specified timeliness of all
communication requests can be satisfied. Otherwise ser-
vice degradation, such as response time, could occur spo-
radically with a rate corresponding to an increase in the
number of integrated components.

Example: If a real-time service requires that the net-
work delay must always remain below a critical upper
limit (else a local time-out within the component may sig-
nal a communication failure) then the dynamic extension
of the network delay by adding new components may be a
cause of concern. In a dynamic network the message delay
at the critical instant (when all components request service
at the same instant) increases with the number of compo-
nents.
(3.1) Resilience: This is a sub-principle if fault-tolerance
is implemented by the replication of components, then the
architecture and the components should support replica
determinism. A set of replicated components is replica
determinate [17] if all the members of this set have the
same encapsulated state, and produce the same output
messages at points in time that are at most an interval of d
time units apart (as seen by an omniscient external ob-
server). In a fault-tolerant system, the time interval d de-
termines the time it takes to replace a missing message or
an erroneous message from a component by a correct
message from redundant replicas.

3.2. Operational versus Meta-level Service Speci-
fication of LIF’s

The LIF service specification is the mediator between a
service supplier and the service user. The first principle of
composability states that the LIF service specification
must be precise in the value domain and in the temporal
domain. On the one hand, the LIF service specification
should be complete in the sense that it contains all infor-
mation required to understand and use the services of the
component that are offered at the particular LIF. On the
other hand, the LIF service specification should be mini-
mal in the sense that it contains only information that is
essentially required by the user of the services. The chal-
lenge for a LIF designer is to meet both of these somehow
conflicting requirements.

In a distributed real-time system based on message ex-
changes among components, the LIF specification com-
prises the following parts:
(i) The syntactic specification of the messages, i.e., the
specification of the data elements that cross the interface.
The syntactic specification forms out of the sequence of
bits in a message, larger (information) chunks (such as a
number, a string, a method call, a structure consisting of a
combination thereof, or a complex data object such as a
picture [10]) and assigns a name to each chunk. Although
from the view of mechanical processing any name would
suffice, a descriptive name that establishes a link between
the chunk and its meaning helps human understanding.
The syntactic specification bridges the gap between the
logical level and the informational level [18].
(ii) The temporal specification of the message send and
receive instants, e.g., at what instants the messages are
sent and arrive, how the messages are ordered, and the
rate of message arrival. This information can be formal-

ized if an appropriate model of real-time is available. In
non safety-critical applications the temporal specification
can be expressed in probabilistic terms.
(iii) The operational input assertion specifies an execu-
table predicate on the incoming message (and the interface
state) of a component to determine whether the message is
permitted at a given time instant.
(iv) The LIF service model specification. In many cases
the concept associated with the name of a chunk (the re-
sult of the syntactic specification) is not sufficiently pre-
cise to cover all aspects of the semantics of the interface
data. In these cases it is necessary to specify a conceptual
interface model that relates the names of the chunks to the
user’s conceptual world and thus assigns a deeper mean-
ing to the chunks. It follows that the LIF service model
must be expressed in concepts that are familiar to the user
of the interface services. The conceptual model bridges
the gap between the informational level and the user’s
level [18].

There are obvious interdependencies across these dif-
ferent parts of the specification, e.g., the concept of an
observation, contains an element of each one of the parts.
The proposed partitioning aids in structuring the LIF
specification into syntactic, temporal and service compo-
nents to ensure compatibility across these dimensions over
the aggregate process of system composition.

We subsume under the term operational specification
of an interface the syntactic specification, the temporal
specification and the operational input assertion. The
operational specification is not concerned with an inter-
pretation of the data that crosses the LIF. Consistency of
the operational specification of interacting components is
a necessary (but not sufficient) prerequisite for the proper
operation of the system of components. It can be achieved
by forcing all components to adhere to a given architec-
tural style. Consistency of the specifications of the LIF
service models of the communicating partners, called the
meta-level specifications, assures that the meaning of the
information chunks in all involved components is in
agreement with the user’s intent.

Whereas the operational specification must be rigorous,
it is often difficult to develop a formal model for the meta-
level specification if the information chunks exchanged
across an interface relate to concepts of the natural envi-
ronment (as they normally do). For example, how can we
formalize the concept of temperature or the concept of
drive at a safe speed? These are highly subjective terms
and explicitly need a defined context for them to be inter-
preted meaningfully. This qualitative difference in the
nature of the operational specification and meta-level
specification justifies the clear distinction between these
two kinds of specifications.

The demand for minimal cognitive complexity of a LIF
has the following consequences:
(i) An interface should only serve a single purpose. If
there is a need to interact with a component for different

purposes, different interfaces should be provided. For ex-
ample, a component may support, in addition to a LIF, a
diagnostic interface for diagnosis and a configuration
interface for configuring the component into a new envi-
ronment (see Sec. 2.2). As these three interfaces target
different user groups and different views of a component,
interfacing would become unnecessarily complicated if all
three interfaces were integrated into one [19].
(ii) If multiple users of a sequential LIF can access a com-
ponent concurrently, then it is desirable to hide this con-
currency from the LIF user, since concurrency increases
the cognitive complexity of an interface significantly.
(iii) The LIF conceptual model should be structured along
a means-end hierarchy [20] in order to limit the amount of
information that must be dealt with at a selected level of
abstraction. This requirement is derived from the charac-
teristic of human cognitive information processing [21].
The proper structure and representation of the LIF service
model is crucial for controlling the effort needed to under-
stand the component and for reusing the component in a
new context.

As mentioned before, communication across an inter-
face is only successful if the operational specification and
the meta-level specification of the interfaces of all com-
munication partners are consistent. If there are syntactic
mismatches among the interface specifications of the
communicating partners, it is possible to resolve these by
connection systems inserted between the component inter-
faces [15]. These connection systems are not needed, if all
components are designed according to the same architec-
tural style. Mismatches that have their cause in conflicts of
the LIF service models cannot be resolved by connection
systems but require human intervention.

4. Operational LIF Specification

The operational LIF specification covers the syntactic
specification of the data items contained in the input and
output messages, and the temporal specification of the
message send and receive instants. Since the operational
LIF specifications govern the exchange of information
between computers, they must be precise and formal. Any
ambiguity or incompleteness of the operational specifica-
tion can be the cause of later system failures.

The syntactic specification of data items is a well-
understood topic. Standardized interface definition lan-
guages, such as the IDL of the OMG, are in wide use for
the syntactic specification of data items exchanged across
LIFs. In this section we will focus on the temporal specifi-
cation of LIFs, which in many systems is missing or in-
complete. We discuss two alternatives, state-message in-
terfaces and event-message interfaces.

4.1. State Message Interfaces

A state message has the following characteristics:

A) Content: A state message contains state information
(see Section 2.4).
B) Flow control: A state message is sent and received
periodically at a priori known instants that are common
knowledge to the sender and the receiver. Flow control is
implicit and unidirectional.
C) Delivery method: Every state message must be deliv-
ered at-least once.
C.1) Error detection: Error detection is performed by
the receiver based on the a priori knowledge of the instant
of message arrival.

State messages are well suited for control applications.
Sensors observe periodically the state of the controlled
object, control algorithms are calculated, and the setpoints
are delivered to the actuators. In order to support these
applications effectively, a special interface, the temporal
firewall, has been designed. A temporal firewall is an
operationally fully specified digital interface for the unidi-
rectional exchange of periodic state messages between a
sender/receiver over a time-triggered communication sys-
tem. The basic data and control transfer of a temporal fire-
wall interface is depicted in Figure 2.

Figure 2: Information/Data flow (solid line) and control
flow (dashed line) across a temporal firewall interface.

The Communication Network Interface (CNI) memory
at the sender forms the output firewall of the sender and
the CNI memory of the receiver forms the input firewall of
the receiver. The sender deposits its output information
into its temporal firewall (update in place) according to
the information push paradigm, while the receiver must
pull the input information out of its CNI (non-consumable
read). The transport of the information is realized by a
time-triggered communication system that derives its con-
trol signals autonomously from the progression of time. It
is common knowledge to the sender and the receiver at
what instants (on a sparse time base) the typed data struc-
ture is fetched from the sending CNI and at what instants
this data structure is delivered at the receiving CNI by the
communication system. On input, these precise opera-
tional interface specifications (in the temporal and value
domain) are the pre-conditions for the correct operation of
the application software. On output, the precise interface
specifications are the post-conditions that must be satis-
fied by the application software, provided the precondi-
tions have been satisfied by the environment.

Since no control signals cross such a temporal firewall
interface, control-error propagation across this interface is
eliminated by design. Components that interact via tempo-
ral firewalls with the natural environment are thus semi-

open (see Section 2.2). A semi-open component still
maintains a high degree of autonomy. A temporal firewall
also eliminates (low-level) concurrency from the interface.
The sparseness of the global time establishes a system
wide action lattice, the lattice points of which are pre-
cisely synchronized with the global time. The behavior of
a system can be explained by the sequential stepwise pro-
gression through this action lattice. This elimination of
concurrency from the interface simplifies the understand-
ing and consequent specification of the interface. [21].

4.2. Event Message Interfaces: Perspectives and
Limitations of the Client-Server Approach

An event message has the following characteristics:
a) Content: An event message contains event information
(see Section 2.4).
b) Flow control: An event message is sent as a conse-
quence of the occurrence of a significant event. The re-
ceiver has no a priori knowledge at what instant an event
message will arrive. Flow control is thus explicit and re-
quires a bi-directional protocol.
c) Delivery method: Every event message must be de-
livered exactly once
c.1) Error detection: Error detection is performed by the
sender based on a timeout for an acknowledgment mes-
sage from the receiver.

Event messages are needed for the communication of
sporadic processes that have an a priori unknown tempo-
ral control pattern. An example of such a process is a spo-
radic client-server interaction, e.g., a diagnostic investiga-
tion of a component after a malfunction has been ob-
served. From the point of view of temporal predictability,
communication by event messages in a hard real-time sys-
tem poses a number of problems:
(a) Restriction of component autonomy: A component
that interacts with the natural environment by event mes-
sages is an open component (see Section 2.2). There are
two mechanisms that restrict the component autonomy of
open components. First the temporal control of an open
component is delegated to the component environment,
i.e., is outside the sphere of control of the component
proper. Control error propagation from the environment
into the interfacing component and further throughout the
system is thus possible (in contrast to a semi-open compo-
nent). The second mechanism that leads to a restriction of
component autonomy is the need for a bi-directional pro-
tocol between a sender and a receiver for the purpose of
error detection. Even in a scenario, where there is a unidi-
rectional data transfer, a sender becomes dependent on the
receiver because of the bi-directional control transfer [22].
a) Server overload: Since there is no coordination among
different clients, it may happen that all clients request a
particular service at the same critical instant. Whatever
scheduling techniques are selected, some clients may have

CNI
Memory

CNI

Information Push
Ideal for Sender

Information Pull Time-Triggered
Communication System

Memory ReceiverSender

Clock

Ideal for Receiver

to wait until all other clients have been serviced, causing a
significant jitter in the service provision.
b) Communication system overload: In addition to the
uncoordinated server requests (see b), the bi-directional
control flow in a multicast scenario can lead to a commu-
nication system overload caused by the correlated re-
sponse messages.

Event message communication requires the provision
and careful management of message queues in order to
faithfully implement the exactly-once semantics of event
messages. If no assumptions about the request rate with
respect to the service rate are made, there is always the
possibility that the queues will grow beyond limit and that
messages are delayed past their deadline or will be dis-
carded. Unrestricted event-message communication can
thus provide only a best-effort level of service which does
not meet the requirements of hard real-time systems.

In this section we have only considered simple client-
server interactions among components. In some applica-
tion, more complicated interactions formed by a sequence
of event messages are governed by complex protocols
(e.g., transactions). From a temporal predictability view-
point, currently there are limitations in analyzing these
complicated interactions, as even the analysis of simple
client-server interactions poses a number of problems.

4.3. An Example

The recently approved OMG Smart Transducer Inter-
face [23] is an example of an interface standard that speci-
fies the operational properties of the SPLIF in the value
domain and in the temporal domain and thus establishes
the prerequisites for composability (see Section 3.1). A
smart transducer (ST) is a hardware/software device that
comprises in a compact small unit a sensor or actuator
element (possibly both), a micro-controller, a communica-
tion controller and the associated software for signal con-
ditioning, calibration, diagnostics, and communication.
The ST provides the intended services across interfaces to
its clients: the temporally predictable service providing
linking interface (SPLIF), the diagnostic and management
interface (DM), and the configuration and planning inter-
face (CP). The internal structure and operation of STs
remain encapsulated within the ST and are not exposed at
the interfaces accessible from the client. Interfaces con-
forming to this OMG standard have the same form and
behavior for the wide array of sensor and actuator nodes
in the various engineering disciplines. A user of smart
transducers have to cope only with one single generic
smart transducer interface specification for the multitude
of existing and new sensor and actuator types.

It is assumed that every ST contains a synchronized
physical clock for measuring time. The synchronization of
the clocks is performed as a background service by the
communication system. It is possible to relate the clocks
in the ST nodes to an external time standard, such as GPS

time. The standard also contains a section that deals with
the uniform representation of time.

The information transfer between an ST and its client is
achieved by sharing information that is contained in an
encapsulated ST internal interface-file system (IFS), as
depicted in Figure 3. This IFS is at the core of the concep-
tual model, and has been optimized to fit into 8-bit micro-
controllers commonly used in smart transducers.

Interface
File

System

Write

Read

by ClientInternal Logic of
Sensor is

EncapsulatedSensor
Element

Figure. 3: Interface File System in a Smart Trans-
ducer.bylle

The IFS provides the structured un-interpreted name
space required for the operational exchange of informa-
tion between a ST and its clients. A ST node contains in
dedicated IFS files [23] the information for all three inter-
faces: the temporally predictable service providing linking
interface (SPLIF), diagnostic and management interface
(DM), and configuration and planning interface (CP).

The structure and the meaning of the data items in the
IFS files are only intelligible if some meta-level specifica-
tion about the particular IFS is known. Since an ST has
only a very limited storage capacity, this metadata de-
scribing the semantics of the ST files resides outside the
ST at a web site associated with each transducer type. The
meta-data information is essential for the development of
applications by a “human design process” or by an “auto-
mated design process”. At the moment, this meta-data is
described by an ad-hoc combination of “structured Eng-
lish” and XML meta-data tags.

In a smart transducer system we distinguish between
three kinds of communication services, called a multi-
partner round, a master-slave (MS) round, and a broad-
cast round. The periodic multi-partner rounds are used to
implement the temporal firewall of the SPLIF. The spo-
radic MS rounds are used to implement with best-effort
temporal quality the two client-server interfaces, the diag-
nostic interface and the configuration and planning inter-
face. They operate concurrently with the periodic multi-
partner rounds. It is thus possible to look at the diagnostic
information in an IFS file or to plan for the on-line recon-
figuration of a sensor without interfering with the predict-
able real-time service provided at the SPLIF. Broadcast
rounds are used to implement operations that must be exe-
cuted by all nodes of a cluster.

5. Meta-level LIF Specification

The meta-level LIF specification assigns meaning to
the information chunks exchanged between two communi-
cating LIFs at the operational level. It thus bridges the gap
between the information chunks formed at the syntactic
level and the user’s mental model of the service provided
at the interface. Central to this meta-level specification is
the LIF service model.

5.1. LIF Service Model

The LIF service model interprets the information
chunks that are formed by the syntactic specification. This
interpretation will be qualitatively different for closed
components and open components (see Section 2.2).

The LIF service model for a closed (or semi-closed)
component can be formalized. The relationship between
the LIF inputs and LIF outputs depends on the discrete
algorithms implemented within the component. There is
no input from the natural environment that can bring un-
predictability into the component behavior. The sparse
time-base is discrete and supports a consistent temporal
order of all events.

The LIF service model for an open (or semi-open)
component is fundamentally different since it must deal
with the inputs from the natural environment. Since the
natural environment is not rigorously defined, the interpre-
tation of these inputs depends on human understanding of
the natural environment. The concepts used in the descrip-
tion of the LIF service model must thus fit well with the
accustomed concepts within a user’s internal conceptual
world; otherwise the description will not be understood.
The following discussion will focus on LIFs of open com-
ponents, since the systems we are interested in must inter-
act with the natural environment.

The LIF service model of an open component must
meet the following requirements:
User orientation: Concepts that are familiar to a proto-
typical user must be the basic elements of the LIF service
model. For example, if a user is expected to have an engi-
neering background, terms and notations that are common
knowledge in the chosen engineering discipline should be
utilized in presenting the model.
Goal orientation: A user of a component employs the
component with the intent to achieve a goal, i.e. to con-
tribute to the solution of her/his problem. The relationship
between user intent and the services provided at the LIF
must be exposed in the LIF service model.
System view: A LIF service user (the system designer)
needs consider system-wide effects of an interaction with
a component. The LIF service specification must address
all direct and indirect effects interactions across the LIF
and beyond the boundary of the interfacing component.

The LIF service model of a component is different
from the model describing the algorithms implemented
within a component. The LIF service model is goal ori-
ented, while the algorithmic model is process oriented. A
goal-oriented model specifies the intended state, while a
algorithmic model specifies the actions that must be taken
in order to reach this intended state [24] p.223.

5.2. Perspectives on LIF State behavior

The LIF service specification is required to be self-
contained and must provide a complete description of the
component behavior as seen from the viewpoint of a LIF
user. From the user’s point of view, it is helpful to distin-
guish between the following two types of LIFs:

(i). Stateless LIF: This is a LIF where a response to a

service request depends only on the parameters of the
request and is independent of the time of the request.

(ii). Stateful LIF: This is a LIF where a response to the
service request depends not only on the parameters of
the request but also on the instant when the request is
delivered, i.e., the same request may lead to different
results, depending on the history of the component or
the state of the environment at the instant of the re-
quest. Examples are the sampling of a sensor or a
query to a database.

Since a LIF with state is the more general concept (a

stateless LIF can be viewed as a special case of a stateful
LIF), the subsequent discussion focuses on stateful LIFs.
Taking this view it follows that the notions of state and
time are inseparable. If an event that updates the state
cannot be assigned to a well-defined tick of a global clock,
then the notion of a system-wide state becomes diffuse. It
is not known whether the state assigned to a clock tick
includes this event or not. The sparse time-base intro-
duced in Sec 2.1 makes it possible to define a system-wide
notion of time, which is a prerequisite for an indisputable
border between the past and the future, and thus the defi-
nition of a system-wide state. If there is no global sparse
time-base available, one often recourses to a model of an
abstract time that is based on the order of messages sent
and received across LIFs. If the relationship between the
physical time and the abstract time remains unspecified,
then this model is imprecise whenever this relationship is
relevant. It may be difficult to determine in such a model
the precise state of a system at an instant of physical time.

For the designer and user of a LIF it is consequential to
know what actions of the past have relevance for the fu-
ture. Since there may be some past actions which are more
relevant than other past actions, it can be advantageous to
partition and classify the state according to the criticality
of the state for the future behavior of the component. In
case of a component restart in an emergency, the critical
state can then be recovered swiftly in order to provide the
services required for the safe operation of a system with-

out a long delay. In some applications, it may be possible
to restart from a safe initial state. For example, in a traffic
control system such a safe initial state may be “traffic
lights red in all directions”.

The concept of initial state merits further considera-
tion, particularly for open components. After the startup of
a component, what should be its initial LIF state? The ini-
tial state of a LIF must be consistent with the state of the
environment at the instant of startup [7], p.102. Since the
state of the environment is observed by sensors, the in-
strumentation must be designed to observe directly or in-
directly all state variables of the environment that are
relevant for the future operation of the system, as seen
from the viewpoint of the LIF. In discrete processes where
it is not possible to observe the state of all relevant state
variables at all instants, it might be necessary to introduce
designated start-up intervals, where the environment is in
a state of intermediate stability and can be observed by the
available sensors. The precise definition and capture of
the state of a LIF after startup requires careful planning
during system design.

A final remark relates to the concept of state in the
widely used notion of a software component. As outlined
above, the definition of state requires a model of time,
since state and time are intertwined. Since a software com-
ponent per se does not support any notion of time it is
only consequent that Szyperski [25, p.30] requires that a
software component has no persistent state. The state must
be viewed as external to the software component. This
notion of a software component is thus fundamentally dif-
ferent from the component notion introduced in Section
2.2 of this paper.

6. Conclusions

In this paper we have proposed separating the opera-
tional and meta-level specifications of a linking interface.
Such a separation leads to the development of a clearer
understanding of each category. In a real-time distributed
system, the operational specification must be precise in
both the value and temporal domains. It has been shown
that the temporal firewall concept provides the capability
to provide a precise temporal specification of a LIF. It is
difficult to provide such a precise temporal specification if
the client-server model is used. The meta-level specifica-
tion assigns meaning to the information chunks formed at
the operational level by providing a LIF service model.
This LIF service model should be presented in a form that
considers the cognitive constraints of the system engineer.
The LIF service model will be informal if the component
interacts with the natural environment.

7. Acknowledgements

We acknowledge support by the IST projects DSOS
and Next TTA. We are grateful for the interesting interac-
tions with Cliff Jones and Nick Moffat from DSOS.

8. References
[1] A. Jhumka, M. Hiller, and N. Suri, “Component Based Syn-

thesis of Dependable Embedded SW”. FTRTFT 2002.
[2] M. Hiltuen, and R. Schlicting, “An Approach to Construct-

ing Modular FT Protocols”. Proc. of SRDS, 105-114, 1993.
[3] E. Juan, and T. Tsai, “Compositional Verification of High

Assurance Systems”, Kluwer Press, 2000.
[4] P. Sinha, and N. Suri, “On Simplifying Modular Specifica-

tion and Verification of Distributed Protocols”, Proc. of
HASE 2001.

[5] Ptolemy Project: ptoloemy.eecs.berkeley.edu, 2002.
[6] J. Sifakis, “Scheduler Modeling Based Controller Synthesis

Paradigm”. FTRTFT Invited Talk. 2002.
[7] H. Kopetz, “Real-Time Systems, Design Principles for Dis-

tributed Embedded Applications” ISBN: 0-7923-9894-7,
Third printing 1999. Kluwer Academic Publishers. 1997

[8] H. Kopetz, “Sparse Time versus Dense Time in Distributed
Real-Time Systems”. Proc. ICDCS, 1992.

[9] H. Kopetz, “Component-Based Design of Large Distributed
Real-Time Systems.” Control Engineering Practice–A
Journal of IFAC, Pergamon Press 6: 53-60, 1998.

[10] J. G. Wijnstra, “Components, Interfaces and Information
Models within a Platform Architecture”. Lecture Notes on
Computer Science 2186, Springer Verlag: 25-35, 2001.

[11] G. Rosen, Discrete Systems, 1985.
[12] K. H. Kim and H. Kopetz, “A Real-Time Object Model

RTO.k and an Experimental Investigation of its Potential”,
Proc. COMPSAC, 1994.

[13] H. Kopetz and K. H. Kim, “Temporal Uncertainties in In-
teractions among Real-Time Objects”, Proc. SRDS, 1990.

[14] F. Tisato and F. DePaoli, “On the Duality between Event-
Driven and Time Driven Models”. Proc. of 13th. IFAC
DCCS, 1995.

[15] C. H. Jones, H. Kopetz, et al., “Revised Conceptual Model
of DSOS”, University of Newcastle upon Tyne, Computer
Science Department, 2001.

[16] Webster “Encyclopedic Dictionary”, 1989.
[17] S. Poledna, “Replica Determinism in Fault-Tolerant Real-

Time Systems”, Technical University of Vienna, 1994.
[18] A. Avizienis, “The Four-Universe Information System

Model for the Study of Fault Tolerance”, Proc. FTCS-12,
1982.

[19] A. Ran and J. Xu, “Architecting Software with Interface
Objects”, Proc. of the Eight Israeli Conference on Com-
puter Systems and Software Engineering, 1997.

[20] K. J. Vicente and J. Rasmussen, “Ecological Interface De-
sign: Theoretical Foundations.” IEEE Transactions on Sys-
tems, Man, and Cybernetics, 22(4): 589-606, 1992.

[21] J. Reason, “Human Error”, Cambridge Univ. Press, 1990.
[22] H. Kopetz, “Elementary versus Composite Interfaces in

Distributed Real-Time Systems”, Proc. of ISADS, 1999.
[23] OMG 2002: Object Management Group Standards, 2002
[24] H. A. Simon, “Science of the Artificial”, MIT Press, 1981.
[25] C. Szyperski, “Component SW”, Addison Wesley, 1998.

