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Abstract 

Composition of a system is driven by the (a) identification 
and specification of basic components, and (b) specifica-
tion of the interactions across the components, i.e., the 
communication linkages, that are needed to communicate 
value and temporal information across the components 
from which the aggregate system results. This paper ad-
dresses compositional design of distributed Real-Time 
(RT) systems focusing specifically on the role of specifica-
tion of linking interfaces (LIFs) across components. 

1. Introduction 

In many engineering disciplines, large systems are built 
from prefabricated components with known and validated 
properties. The composition of discrete components into a 
meaningful aggregate system is achieved via the interac-
tions defined across the components as realized by dis-
semination of messages or alternate underlying communi-
cation paradigms. Ideally, such component linking inter-
faces are stable and standardized entities. Desired proper-
ties of components are functional cohesion and autonomy, 
to provide structure and limit the complexity at the system 
level. The inner mechanisms of components should be 
encapsulated, such that a system designer can use the 
components based on their interface specifications. In dis-
tributed computer systems, the components interact by 
exchanging messages across service interfaces. This real-
izes the emergent services, i.e., those properties of the 
system of components that are not explicitly part of the 
components themselves, but come into existence by the 
interactions among the components. We call a service in-
terface, that link components together, a linking interface 
(LIF) and the precise specification of these is also a pre-
requisite for the reuse of components.  

Composability, i.e., the formulation of a whole system 
from parts (components), has developed into an actively 
researched area. Varied efforts exist, addressing compos-
ability from an abstract perspective dealing with theory of 
aspects and formal composition viewpoints. Other efforts 
have considered architectural description languages and 

SW processes [1] including OO design. A substantial ef-
fort in composability has considered, among other alterna-
tives, the protocol viewpoint [2], the compositional verifi-
cation and validation viewpoints [3,4], to system level 
(both dependability and RT oriented) compositions [5,6], 
including many other variations of the theme. In spite of a 
growing body of work in this area, there is still a lack of 
conformal definitions of (a) the elemental components – 
SW, system level etc, (b) the interfaces linking the com-
ponents, and (c) the domain-specific guidelines establish-
ing the emergence of relevant system properties from the 
compositional process. 

Thus, the focus of this paper is on the conceptual basis 
of composability, establishing the component definitions, 
operational and meta-level specifications, and especially 
the specification of linking interfaces in distributed real-
time (RT) systems. We emphasize that the thrust is devel-
opment of the conceptual basis and guidelines to facilitate 
compositional LIF based RT system design. 

In Section 2, we introduce basic concepts on the notion 
of time and components underlying our work. Sec. 3 ex-
plores the notion of composability relevant to RT services 
and introduces the concepts of operational and meta-level 
LIF specification. Sec 4 details operational LIF specifica-
tions focusing on temporal properties of LIF’s. Sec 5 de-
velops meta-level specifications and details LIF state and 
the related service models. We summarize the ramifica-
tions of the developed concepts in Section 6. 

2. Basic Concepts 

In order to develop our system context, we reiterate ba-
sic concepts essential for understanding the paper.  

2.1. The Notion of Sparse Time 

In the Newtonian model, commonly used for RT appli-
cations, time progresses along a dense timeline consisting 
of an infinite set of instants. A duration (or interval) is a 
section of the timeline, delimited by two instants. A hap-
pening that occurs at an instant (i.e., a cut of the timeline) 
is an event.  An observation of the state of the world at an 



instant is an event. The time-stamp of an event is estab-
lished by assigning the observer’s local clock time to the 
event immediately after the event occurrence.  Given the 
impossibility of perfect synchronization of clocks and the 
denseness property of real time, there is always the possi-
bility that a single event e is time-stamped by  two clocks j 
and k with a difference of one tick. The finite precision of 
the global time-base (dense time) and the discretization of 
time makes it impossible to order events consistently 
based on their global time-stamps. This is solved by the 
introduction of a sparse time base [7], where time is parti-
tioned into an infinite sequence of alternating durations of 
activity and silence. The activity intervals form a synchro-
nized system-wide action lattice. 

Regarding temporal ordering, all events that occur 
within a specified duration of activity of the action lattice 
are considered to happen at the same time. Events that 
happen in the distributed system in different components 
at the same global clock-tick are thus considered simulta-
neous.  Events that happen during different durations of 
activity (at different points of the action lattice) and are 
separated by the required interval of silence (the duration 
of this silence interval depends among others, on the pre-
cision of the clock synchronization [8]) can be temporally 
ordered on the basis of their global timestamps.  The ar-
chitecture needs to ensure that significant events, such as 
the sending of a message, or the observation of the envi-
ronment, occur only during an interval of activity of the 
action lattice. The time-stamps of events based on sparse 
time can be mapped on to the set of positive integers. It is 
then possible to establish the temporal order of events by 
integer arithmetic. The timestamps of events that are out-
side the control of the distributed computer system (and 
therefore happen on a dense timeline) must be assigned to 
an agreed lattice point of the action lattice by an agree-
ment protocol.  Agreement protocols are also needed to 
achieve a system-wide consistent view of analog values 
that are digitized by more than one A/D converter. 

The proposed compositional approach, will utilize the 
premise that a sparse time base exists across the system. 

2.2. Defining Components and Interfaces 

Conventionally, a component is a self-contained sub-
system that can be used as a building block in the design 
of a larger system. A component provides a desired ser-
vice to its environment across a well-specified interface. 
An example of a component is a processor in a computer. 
A component can have a complex internal structure that is 
neither visible nor accessible to the user. The services 
provided by the component, as specified by interfaces, 
define its usefulness in an aggregate system. 

An ideal component should maintain its encapsulation 
(value and temporal) when used in a larger context. The 
larger system is constructed from components that can be 
integrated without violating the principle of composabil-
ity, i.e., properties that have been established at the com-

ponent level will also hold at the system level (see Section 
3.1). In the context of a distributed real-time system, we 
consider each discrete computing node as a component 
[9], with the component-behavior specified in the domains 
of time and value, (this is in contrast to a discrete software 
component, which, on its own, does not have a temporal 
dimension). Thus, we consider a component as a self-
contained time-aware computational element with its own 
hardware (processor, memory, communication interface, 
and interface to the controlled object) and software (appli-
cation programs, operating system), which interacts with 
its environment by exchanging messages across linking 
interfaces (LIFs). 
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Figure 1: A composition of three components, A, B, C 
and LIF’s 

Figure 1 depicts a system, of three components, that re-
alizes emergent services via timely exchange of messages 
across the LIFs. In order to achieve a complexity reduc-
tion, a user should be able to reason about these emergent 
services by examining only the LIF specifications. The 
internals of the components, including the related local 
interfaces, should remain encapsulated; the composition is 
driven strictly by LIF level interactions. 

It should be noted that the term “interface” represents a 
common boundary between two or more components (or 
subsystems). Thus, a LIF is characterized by: 
(a) Its data properties, i.e., the structure and semantics of 
the data items crossing the interface. 
(b) Its temporal properties, i.e., the temporal conditions 
that have to be satisfied by the interface for both control 
and data delivery validity. 

The following table further outlines this aspect with an 
example set of rules and also illustrates the role of the in-
terface as a conformal check of the messages across it. 
Please note that this represents a local level information 
check that is valid across a given set of components. 

Attribute Interface Feature Check 

Valid 
A message is valid if it meets CRC, range and 
logical checks 

Checked 
A message is checked if it passes the output as-
sertion 

Permitted 
A message is permitted with respect to a receiver 
if it passes the input assertion of that receiver 

Timely 
A message is timely if it is in agreement with its 
temporal specifications 

Correct 
A message is correct if its value and temporal 
specifications are met 

Insidious 
A message is insidious if it is permitted but in-
correct (requires a global judgment) 



An implication of this interface characterizing is the 
consequent simplification of component interactions. In 
general, the interface across components can often be a 
complex one where the stimuli behind component interac-
tions could be time or event triggered. Similarly, the trans-
fer of data can be absolute state or relative. However, by 
our delimiting the validity of information exchange to be 
governed with both value and temporal specifications, this 
simplifies the component interactions to be direct and 
simple interactions across components. It is worth keeping 
in perspective, that our driver is real-time system design 
where such value and temporal information validity speci-
fications are especially relevant. 

When analyzing the interactions between a component 
and its environment, we found it useful to distinguish be-
tween four different types of component interfaces. As our 
focus is on communication level interfaces, we demarcate 
the interfaces and component interactions into the follow-
ing discrete categories, namely: 

 

(i) The Service Providing Linking Interface (SPLIF): 
Fundamentally, a component must be a unit of ser-
vice provision. The service is offered to the compo-
nent environment across a SPLIF. It is the primary 
interface of a component and is discussed in detail in 
Section 3. 

(ii) The Service Requesting Linking Interface (SRLIF): 
In order to meet its specification, a component may 
request services from other components. The corre-
sponding interface is the SRLIF. A user of the SPLIF 
may not be aware that a component requests the ser-
vices of other components via SRLIF’s to achieve its 
objectives.  

(iii) The Configuration Planning (CP) Interface: This is 
analogous to a global resource manager used to con-
figure - initial and subsequent – components to pro-
vide the stipulated services in a specified environ-
ment. The access can be sporadic in nature and may 
not be time-sensitive. 

(iv) The Diagnostic and Management (DM) Interface: 
The DM interface provides selective access to the 
(operational) internals of the component for monitor-
ing and diagnostic purposes. Since the DM interface 
is not exposed during normal component operation, 
the DM view is not relevant for the user of a compo-
nent. The DM interface can be used to parameterize a 
component in order to optimize it for the given task. 

 

The concepts of an SRLIF and an SPLIF are closely re-
lated to the concepts of a client interface and a server in-
terface in a client-server architecture or the concepts of a 
required interface and a provided interface in [10]. It will 
be shown later that the interactions between an SRLIF and 
an SPLIF are more differentiated than the interactions in 
the client-server model. This is the reason why we intro-
duced these new terms. Subsequently, we will use the term 
LIF to refer to both interfaces. 

It is also important to clearly distinguish between the 
state of a LIF and the state of the component that supports 
the LIF. Consider a simple example of an e-commerce 
server. From the point of view of a particular shopper’s 
LIF the articles that are contained in his/her shopping cart 
at the chosen instant determine the state of this particular 
LIF.  Since the server may support many concurrent shop-
ping sessions at any particular instant, the state of the 
server component is formed by the articles in all active 
shopping carts. 

Based on the relations between a component and its 
environment we distinguish between two primary compo-
nent types, namely: 

Closed Component: Consider a component that inter-
acts with its environment only via a single SPLIF, i.e., the 
output messages that are produced at this SPLIF are only a 
function of the SPLIF-input messages and the SPLIF state. 
We call such a component a closed component. If, the 
output messages are a deterministic function (in value and 
time) of the input messages and the SPLIF state, we call 
such a closed component a deterministic closed compo-
nent.  A typical example of a closed component is a com-
ponent that implements a stack providing the well-known 
functions of push and pop. 
A special case of a closed component is a semi-closed 
component. A semi-closed component has, in addition to 
the LIF input messages, only one other type of (hidden) 
input message, a clock message that is generated by a syn-
chronized clock denoting the instant of the beginning of a 
sparse time-granule [12]. While a closed component is not 
time-aware, a semi-closed component is time-aware. A 
semi-closed component can generate an output message 
when the time reaches a certain value without having re-
ceived an input message at its LIF. An example of the 
simplest semi-closed component is a clock that generates 
periodic output messages after every n time-units, where a 
time-unit represents the granularity of the clock. 

Open Component: an open component has one or 
more SRLIF’s that accept inputs from the natural envi-
ronment. The natural environment refers to reality as it 
exists in nature, as opposed to a digital model of reality 
[11]. Since the natural environment possesses a boundless 
number of properties it is difficult to provide for its com-
plete or rigorous specification. 

A special case of an open component is a semi-open 
component. This is a component that can exchange data 
with the natural environment without delegating control to 
the natural environment. A sampling system that periodi-
cally looks at the natural environment under the control of 
the component’s internal timer is an example of a semi-
open component. An interrupt-driven component that ac-
cepts interrupts from the natural environment is an exam-
ple of an open component. The class of semi-open com-
ponents is of particular interest for the rest of this analysis. 

Connecting closed components to all SRLIF’s of an 
open component can transitively close it. An example of 



such a transitive closure is the replacement of a controlled 
object (the natural environment) by a real-time simulation 
model of the controlled object. Conversely, the replace-
ment of a real-time simulation model by a real controlled 
object (e.g., hardware-in-the-loop) can transform a closed 
component to an open component. 

2.3. The RT Context: RT Entities and Images 

A distributed RT system is depicted as a set of compo-
nents connected via a RT communication channel. As 
mentioned in Sec 2.1, the components are assumed to 
have access to a global time base of known precision. 

It is important to clearly delineate the representation of 
RT state information. Here we have found the notions of 
RT entity and RT image introduced in [13, 7] to be highly 
useful: 

RT Entity: A real-time application is modeled by a set 
of relevant state variables, the real-time entities that 
change their state as time progresses. Example RT entities 
are the set-point of a control loop or the intended position 
of a control valve. An RT entity has static attributes that 
do not change during the lifetime of the RT entity, and has 
dynamic attributes that change with time. Examples of 
static attributes include the name, the type, the value do-
main, and the maximum rate of change. The value set at a 
particular instant is the most important dynamic attribute. 
Another example of a dynamic attribute is the rate of 
change at a chosen instant. 

The information about the state of an RT entity at a 
particular instant is captured by the notion of an observa-
tion. An observation is an atomic data structure 

Observation = <Name, Value, tobs> 

consisting of the name of the RT entity, the observed 
value of the RT entity, and the instant when the observa-
tion was made (tobs). A continuous RT entity can be ob-
served at any instant while a discrete RT entity can only 
be observed when the state of this RT is not changing. 

RT Image: A real-time image is a temporally accurate 
picture of an RT entity at instant t, if the duration between 
the time-of-observation and the instant t is less than the 
accuracy interval dacc, which is an application specific 
parameter associated with the dynamics of the given RT 
entity. An RT image is thus valid at a given instant if it is 
an accurate representation of the corresponding RT entity, 
both in the value and the time domains [13].  While an 
observation records a fact that remains valid forever (a 
statement about an RT entity that has been observed at an 
instant), the validity of an RT image is time-dependent 
and is invalidated by the progression of real-time. 

2.4. State-Information versus Event-Information 

The information exchanged across an interface is either 
state information or event information, as explained in the 
following paragraphs. Any property of a RT entity that is 
observed by a component of the distributed real-time sys-

tem at a particular instant, e.g., the temperature of a ves-
sel, is called a state attribute and the corresponding in-
formation state information. A state observation records 
the state of a state variable at a particular instant, the point 
of observation. A state observation can be expressed by 
the same atomic triple as seen in Sec. 2.3. 

For example, the following is a state observation: “The 
position of control valve A was at 75 degrees at 10:42 
a.m.” State information is idempotent and requires an at-
least once semantics when transmitted to a client. At the 
sender, state information is not consumed on sending and 
at the receiver, state information requires an update-in-
place and a non-consumable read. State information is 
transmitted in state messages. 

A change of state of a RT entity that occurs at an in-
stant is an event. Information that describes an event is 
called event information. Event information contains the 
difference between the state before the event and the state 
after the event. An event observation can be expressed by 
the atomic triple <Name, Value difference, Time of 
event>. For example, the following is an event observa-
tion: “The position of control valve A changed by 5 de-
grees at 10:42 a.m.” Event observations require exactly-
once semantics when transmitted to a consumer. Events 
must be queued on sending and consumed on reading. 
Event information is transmitted in event messages. 

Periodic state observations or sporadic event observa-
tions are two alternative approaches for the observation of 
a dynamic environment in order to reconstruct the states 
and events of the environment at the observer [14]. Peri-
odic state observations produce a sequence of equidistant 
“snapshots” of the environment that can be used by the 
observer to reconstruct those events that occur within a 
minimum temporal distance that is longer than the dura-
tion of the sampling period. Starting from an initial state, a 
complete sequence of (sporadic) event observations can 
be used by the observer to reconstruct the complete se-
quence of states of the RT entity that occurred in the envi-
ronment. However, if there is no minimum duration be-
tween events assumed, the observer and the communica-
tion system must be infinitely fast. 

3. Specifying LIFs for RT Services 

3.1. The Composability Viewpoint 

In a distributed system, a given set of components 
compositionally realize emergent services by exchanging 
messages across LIFs [15]. For example, an n-node sys-
tem defines new (emergent) services such as group mem-
bership, synchronization or agreement. 

As a definition, a composition is the act of combining 
parts or elements to form a whole [16]. Thus, composabil-
ity is defined as the ease of forming a whole by combining 
parts. In our context, the whole is the system and the parts 
are the components. The key to composition is identifying 



and specifying the interactions across the identified com-
ponents from which the system is desired to be composed. 
These interactions represent value and time domain in-
formation, and are required to be semantically and syntac-
tically compatible. Composability is driven by the stipu-
lated property that the composition is supposed to achieve, 
e.g., safety or timeliness.  

For an architecture to support composability with re-
spect to LIF and RT, it must adhere to the following prin-
ciples: 
 

(1) Independence: A composable architecture should 
clearly distinguish between architecture design and com-
ponent design. Principle one of a composable architecture 
is concerned with design at the architecture level. Compo-
nents, based on principles of autonomy, need to be de-
signed independently of each other. However, their utility 
is obtained if the architecture supports the interface speci-
fication of the LIF’s during LIF design. The interface data 
structures must be precisely specified in the value domain 
and in the temporal domain and a proper LIF service 
model of the component service, as viewed by a user of 
the component, must be available (See also Section 3.2). 
Only then is the component designer in a position to know 
exactly what to expect when from the environment, and 
what must be delivered when to the environment by the 
component across its LIF. This knowledge is a prerequi-
site for the independent development of the component 
software, for reusing a component in a new application 
context, and for reasoning about the composition of com-
ponents into a system or system-of-systems. 
(2) Invariance: Principle two of a composable architec-
ture concerns  the design at the component level. The sta-
bility-of-prior-service principle ensures that the validated 
service of a component, both in the value and time do-
mains, is not refuted by the integration of the component 
into an encompassing system-of-systems, i.e., ensuring the 
invariance of existing properties of components. 
(3) Growth: Principle three of a composable architecture 
is concerned with the performance of the communication 
system. The integration of the components into a system 
usually follows a step-by-step composition process. The 
performability of the communication system principle en-
sures that if n components are already integrated, the inte-
gration of the n+1st component will not disturb the correct 
operation of the n already integrated components. This has 
stringent implications for the management of the network 
resources. If the network resources are managed dynami-
cally, then it must be ascertained that even at the critical 
instant, i.e., when all components request the network re-
sources at the same instant, the specified timeliness of all 
communication requests can be satisfied. Otherwise ser-
vice degradation, such as response time, could occur spo-
radically with a rate corresponding to an increase in the 
number of integrated components. 

Example: If a real-time service requires that the net-
work delay must always remain below a critical upper 
limit (else a local time-out within the component may sig-
nal a communication failure) then the dynamic extension 
of the network delay by adding new components may be a 
cause of concern. In a dynamic network the message delay 
at the critical instant (when all components request service 
at the same instant) increases with the number of compo-
nents. 
(3.1) Resilience: This is a sub-principle if fault-tolerance 
is implemented by the replication of components, then the 
architecture and the components should support replica 
determinism. A set of replicated components is replica 
determinate [17] if all the members of this set have the 
same encapsulated state, and produce the same output 
messages at points in time that are at most an interval of d 
time units apart (as seen by an omniscient external ob-
server). In a fault-tolerant system, the time interval d de-
termines the time it takes to replace a missing message or 
an erroneous message from a component by a correct 
message from redundant replicas. 

3.2. Operational versus Meta-level Service Speci-
fication of LIF’s 

The LIF service specification is the mediator between a 
service supplier and the service user. The first principle of 
composability states that the LIF service specification 
must be precise in the value domain and in the temporal 
domain. On the one hand, the LIF service specification 
should be complete in the sense that it contains all infor-
mation required to understand and use the services of the 
component that are  offered at the particular LIF. On the 
other hand, the LIF service specification should be mini-
mal in the sense that it contains only information that is 
essentially required by the user of the services. The chal-
lenge for a LIF designer is to meet both of these somehow 
conflicting requirements. 

In a distributed real-time system based on message ex-
changes among components, the LIF specification com-
prises the following parts: 
(i) The syntactic specification of the messages, i.e., the 
specification of the data elements that cross the interface. 
The syntactic specification forms out of the sequence of 
bits in a message, larger (information) chunks (such as a 
number, a string, a method call, a structure consisting of a 
combination thereof, or a complex data object such as a 
picture [10]) and assigns a name to each chunk. Although 
from the view of mechanical processing any name would 
suffice, a descriptive name that establishes a link between 
the chunk and its meaning helps human understanding. 
The syntactic specification bridges the gap between the 
logical level and the informational level [18]. 
(ii) The temporal specification of the message send and 
receive instants, e.g., at what instants the messages are 
sent and arrive, how the messages are ordered, and the 
rate of message arrival. This information can be formal-



ized if an appropriate model of real-time is available. In 
non safety-critical applications the temporal specification 
can be expressed in probabilistic terms. 
(iii) The operational input assertion specifies an execu-
table predicate on the incoming message (and the interface 
state) of a component to determine whether the message is 
permitted at a given time instant. 
(iv) The LIF service model specification. In many cases 
the concept associated with the name of a chunk (the re-
sult of the syntactic specification) is not sufficiently pre-
cise to cover all aspects of the semantics of the interface 
data. In these cases it is necessary to specify a conceptual 
interface model that relates the names of the chunks to the 
user’s conceptual world and thus assigns a deeper mean-
ing to the chunks. It follows that the LIF service model 
must be expressed in concepts that are familiar to the user 
of the interface services. The conceptual model bridges 
the gap between the informational level and the user’s 
level [18]. 

There are obvious interdependencies across these dif-
ferent parts of the specification, e.g., the concept of an 
observation, contains an element of each one of the parts. 
The proposed partitioning aids in structuring the LIF 
specification into syntactic, temporal and service compo-
nents to ensure compatibility across these dimensions over 
the aggregate process of system composition. 

We subsume under the term operational specification 
of an interface the syntactic specification, the temporal 
specification and the operational input assertion. The 
operational specification is not concerned with an inter-
pretation of the data that crosses the LIF. Consistency of 
the operational specification of interacting components is 
a necessary (but not sufficient) prerequisite for the proper 
operation of the system of components. It can be achieved 
by forcing all components to adhere to a given architec-
tural style. Consistency of the specifications of the LIF 
service models of the communicating partners, called the 
meta-level specifications, assures that the meaning of the 
information chunks in all involved components is in 
agreement with the user’s intent. 

Whereas the operational specification must be rigorous, 
it is often difficult to develop a formal model for the meta-
level specification if the information chunks exchanged 
across an interface relate to concepts of the natural envi-
ronment (as they normally do). For example, how can we 
formalize the concept of temperature or the concept of 
drive at a safe speed? These are highly subjective terms 
and explicitly need a defined context for them to be inter-
preted meaningfully. This qualitative difference in the 
nature of the operational specification and meta-level 
specification justifies the clear distinction between these 
two kinds of specifications. 

The demand for minimal cognitive complexity of a LIF 
has the following consequences: 
(i) An interface should only serve a single purpose. If 
there is a need to interact with a component for different 

purposes, different interfaces should be provided. For ex-
ample, a component may support, in addition to a LIF, a 
diagnostic interface for diagnosis and a configuration 
interface for configuring the component into a new envi-
ronment (see Sec. 2.2). As these three interfaces target 
different user groups and different views of a component, 
interfacing would become unnecessarily complicated if all 
three interfaces were integrated into one [19]. 
(ii) If multiple users of a sequential LIF can access a com-
ponent concurrently, then it is desirable to hide this con-
currency from the LIF user, since concurrency increases 
the cognitive complexity of an interface significantly. 
(iii) The LIF conceptual model should be structured along 
a means-end hierarchy [20] in order to limit the amount of 
information that must be dealt with at a selected level of 
abstraction. This requirement is derived from the charac-
teristic of human cognitive information processing [21]. 
The proper structure and representation of the LIF service 
model is crucial for controlling the effort needed to under-
stand the component and for reusing the component in a 
new context. 

As mentioned before, communication across an inter-
face is only successful if the operational specification and 
the meta-level specification of the interfaces of all com-
munication partners are consistent. If there are syntactic 
mismatches among the interface specifications of the 
communicating partners, it is possible to resolve these by 
connection systems inserted between the component inter-
faces [15]. These connection systems are not needed, if all 
components are designed according to the same architec-
tural style. Mismatches that have their cause in conflicts of 
the LIF service models cannot be resolved by connection 
systems but require human intervention. 

4. Operational LIF Specification 

The operational LIF specification covers the syntactic 
specification of the data items contained in the input and 
output messages, and the temporal specification of the 
message send and receive instants. Since the operational 
LIF specifications govern the exchange of information 
between computers, they must be precise and formal. Any 
ambiguity or incompleteness of the operational specifica-
tion can be the cause of later system failures. 

The syntactic specification of data items is a well-
understood topic. Standardized interface definition lan-
guages, such as the IDL of the OMG, are in wide use for 
the syntactic specification of data items exchanged across 
LIFs. In this section we will focus on the temporal specifi-
cation of LIFs, which in many systems is missing or in-
complete. We discuss two alternatives, state-message in-
terfaces and event-message interfaces. 

4.1. State Message Interfaces 

A state message has the following characteristics: 



A) Content: A state message contains state information 
(see Section 2.4). 
B) Flow control: A state message is sent and received 
periodically at a priori known instants that are common 
knowledge to the sender and the receiver. Flow control is 
implicit and unidirectional. 
C) Delivery method: Every state message must be deliv-
ered at-least once. 
C.1) Error detection:  Error detection is performed by 
the receiver based on the a priori knowledge of the instant 
of message arrival. 
 

State messages are well suited for control applications. 
Sensors observe periodically the state of the controlled 
object, control algorithms are calculated, and the setpoints 
are delivered to the actuators.  In order to support these 
applications effectively, a special interface, the temporal 
firewall, has been designed.  A temporal firewall is an 
operationally fully specified digital interface for the unidi-
rectional exchange of periodic state messages between a 
sender/receiver over a time-triggered communication sys-
tem. The basic data and control transfer of a temporal fire-
wall interface is depicted in Figure 2. 

 

Figure 2: Information/Data flow (solid line) and control 
flow (dashed line) across a temporal firewall interface. 

The Communication Network Interface (CNI) memory 
at the sender forms the output firewall of the sender and 
the CNI memory of the receiver forms the input firewall of 
the receiver. The sender deposits its output information 
into its temporal firewall (update in place) according to 
the information push paradigm, while the receiver must 
pull the input information out of its CNI (non-consumable 
read). The transport of the information is realized by a 
time-triggered communication system that derives its con-
trol signals autonomously from the progression of time. It 
is common knowledge to the sender and the receiver at 
what instants (on a sparse time base) the typed data struc-
ture is fetched from the sending CNI and at what instants 
this data structure is delivered at the receiving CNI by the 
communication system. On input, these precise opera-
tional interface specifications (in the temporal and value 
domain) are the pre-conditions for the correct operation of 
the application software. On output, the precise interface 
specifications are the post-conditions that must be satis-
fied by the application software, provided the precondi-
tions have been satisfied by the environment.  

Since no control signals cross such a temporal firewall 
interface, control-error propagation across this interface is 
eliminated by design. Components that interact via tempo-
ral firewalls with the natural environment are thus semi-

open (see Section 2.2). A semi-open component still 
maintains a high degree of autonomy. A temporal firewall 
also eliminates (low-level) concurrency from the interface. 
The sparseness of the global time establishes a system 
wide action lattice, the lattice points of which are pre-
cisely synchronized with the global time. The behavior of 
a system can be explained by the sequential stepwise pro-
gression through this action lattice. This elimination of 
concurrency from the interface simplifies the understand-
ing and consequent specification of the interface. [21].  

4.2. Event Message Interfaces: Perspectives and 
Limitations of the Client-Server Approach 

An event message has the following characteristics: 
a) Content:  An event message contains event information 
(see Section 2.4). 
b) Flow control: An event message is sent as a conse-
quence of the occurrence of a significant event. The re-
ceiver has no a priori knowledge at what instant an event 
message will arrive.  Flow control is thus explicit and re-
quires a bi-directional protocol. 
c) Delivery method: Every event message must be de-
livered exactly once 
c.1) Error detection: Error detection is performed by the 
sender based on a timeout for an acknowledgment mes-
sage from the receiver. 
 

Event messages are needed for the communication of 
sporadic processes that have an a priori unknown tempo-
ral control pattern. An example of such a process is a spo-
radic client-server interaction, e.g., a diagnostic investiga-
tion of a component after a malfunction has been ob-
served. From the point of view of temporal predictability, 
communication by event messages in a hard real-time sys-
tem poses a number of problems: 
(a) Restriction of component autonomy: A component 
that interacts with the natural environment by event mes-
sages is an open component (see Section 2.2). There are 
two mechanisms that restrict the component autonomy of 
open components. First the temporal control of an open 
component is delegated to the component environment, 
i.e., is outside the sphere of control of the component 
proper. Control error propagation from the environment 
into the interfacing component and further throughout the 
system is thus possible (in contrast to a semi-open compo-
nent). The second mechanism that leads to a restriction of 
component autonomy is the need for a bi-directional pro-
tocol between a sender and a receiver for the purpose of 
error detection. Even in a scenario, where there is a unidi-
rectional data transfer, a sender becomes dependent on the 
receiver because of the bi-directional control transfer [22]. 
a) Server overload: Since there is no coordination among 
different clients, it may happen that all clients request a 
particular service at the same critical instant. Whatever 
scheduling techniques are selected, some clients may have 
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to wait until all other clients have been serviced, causing a 
significant jitter in the service provision. 
b) Communication system overload: In addition to the 
uncoordinated server requests (see b), the bi-directional 
control flow in a multicast scenario can lead to a commu-
nication system overload caused by the correlated re-
sponse messages. 
 

Event message communication requires the provision 
and careful management of message queues in order to 
faithfully implement the exactly-once semantics of event 
messages. If no assumptions about the request rate with 
respect to the service rate are made, there is always the 
possibility that the queues will grow beyond limit and that 
messages are delayed past their deadline or will be dis-
carded. Unrestricted event-message communication can 
thus provide only a best-effort level of service which does 
not meet the requirements of hard real-time systems. 

In this section we have only considered simple client-
server interactions among components. In some applica-
tion, more complicated interactions formed by a sequence 
of event messages are governed by complex protocols 
(e.g., transactions). From a temporal predictability view-
point, currently there are limitations in analyzing these 
complicated interactions, as even the analysis of simple 
client-server interactions poses a number of problems. 

4.3. An Example 

The recently approved OMG Smart Transducer Inter-
face [23] is an example of an interface standard that speci-
fies the operational properties of the SPLIF in the value 
domain and in the temporal domain and thus establishes 
the prerequisites for composability (see Section 3.1). A 
smart transducer (ST) is a hardware/software device that 
comprises in a compact small unit a sensor or actuator 
element (possibly both), a micro-controller, a communica-
tion controller and the associated software for signal con-
ditioning, calibration, diagnostics, and communication. 
The ST provides the intended services across interfaces to 
its clients: the temporally predictable service providing 
linking interface (SPLIF), the diagnostic and management 
interface (DM), and the configuration and planning inter-
face (CP). The internal structure and operation of STs 
remain encapsulated within the ST and are not exposed at 
the interfaces accessible from the client. Interfaces con-
forming to this OMG standard have the same form and 
behavior for the wide array of sensor and actuator nodes 
in the various engineering disciplines. A user of smart 
transducers have to cope only with one single generic 
smart transducer interface specification for the multitude 
of existing and new sensor and actuator types. 

It is assumed that every ST contains a synchronized 
physical clock for measuring time. The synchronization of 
the clocks is performed as a background service by the 
communication system. It is possible to relate the clocks 
in the ST nodes to an external time standard, such as GPS 

time. The standard also contains a section that deals with 
the uniform representation of time. 

The information transfer between an ST and its client is 
achieved by sharing information that is contained in an 
encapsulated ST internal interface-file system (IFS), as 
depicted in Figure 3. This IFS is at the core of the concep-
tual model, and has been optimized to fit into 8-bit micro-
controllers commonly used in smart transducers. 
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Figure. 3: Interface File System in a Smart Trans-
ducer.bylle 

The IFS provides the structured un-interpreted name 
space required for the operational exchange of informa-
tion between a ST and its clients. A ST node contains in 
dedicated IFS files [23] the information for all three inter-
faces: the temporally predictable service providing linking 
interface (SPLIF), diagnostic and management interface 
(DM), and configuration and planning interface (CP).  

The structure and the meaning of the data items in the 
IFS files are only intelligible if some meta-level specifica-
tion about the particular IFS is known. Since an ST has 
only a very limited storage capacity, this metadata de-
scribing the semantics of the ST files resides outside the 
ST at a web site associated with each transducer type. The 
meta-data information is essential for the development of 
applications by a “human design process” or by an “auto-
mated design process”. At the moment, this meta-data is 
described by an ad-hoc combination of “structured Eng-
lish” and XML meta-data tags. 

In a smart transducer system we distinguish between 
three kinds of communication services, called a multi-
partner round, a master-slave (MS) round, and a broad-
cast round. The periodic multi-partner rounds are used to 
implement the temporal firewall of the SPLIF. The spo-
radic MS rounds are used to implement with best-effort 
temporal quality the two client-server interfaces, the diag-
nostic interface and the configuration and planning inter-
face.  They operate concurrently with the periodic multi-
partner rounds. It is thus possible to look at the diagnostic 
information in an IFS file or to plan for the on-line recon-
figuration of a sensor without interfering with the predict-
able real-time service provided at the SPLIF. Broadcast 
rounds are used to implement operations that must be exe-
cuted by all nodes of a cluster.  



5. Meta-level LIF Specification 

The meta-level LIF specification assigns meaning to 
the information chunks exchanged between two communi-
cating LIFs at the operational level. It thus bridges the gap 
between the information chunks formed at the syntactic 
level and the user’s mental model of the service provided 
at the interface. Central to this meta-level specification is 
the LIF service model. 

5.1. LIF Service Model 

The LIF service model interprets the information 
chunks that are formed by the syntactic specification. This 
interpretation will be qualitatively different for closed 
components and open components (see Section 2.2). 

The LIF service model for a closed (or semi-closed) 
component can be formalized. The relationship between 
the LIF inputs and LIF outputs depends on the discrete 
algorithms implemented within the component. There is 
no input from the natural environment that can bring un-
predictability into the component behavior. The sparse 
time-base is discrete and supports a consistent temporal 
order of all events. 

The LIF service model for an open (or semi-open) 
component is fundamentally different since it must deal 
with the inputs from the natural environment. Since the 
natural environment is not rigorously defined, the interpre-
tation of these inputs depends on human understanding of 
the natural environment. The concepts used in the descrip-
tion of the LIF service model must thus fit well with the 
accustomed concepts within a user’s internal conceptual 
world; otherwise the description will not be understood. 
The following discussion will focus on LIFs of open com-
ponents, since the systems we are interested in must inter-
act with the natural environment. 

The LIF service model of an open component must 
meet the following requirements: 
User orientation: Concepts that are familiar to a proto-
typical user must be the basic elements of the LIF service 
model. For example, if a user is expected to have an engi-
neering background, terms and notations that are common 
knowledge in the chosen engineering discipline should be 
utilized in presenting the model. 
Goal orientation: A user of a component employs the 
component with the intent to achieve a goal, i.e. to con-
tribute to the solution of her/his problem. The relationship 
between user intent and the services provided at the LIF 
must be exposed in the LIF service model. 
System view: A LIF service user (the system designer) 
needs consider system-wide effects of an interaction with 
a component. The LIF service specification must address 
all direct and indirect effects interactions across the LIF 
and beyond the boundary of the interfacing component. 

 

The LIF service model of a component is different 
from the model describing the algorithms implemented 
within a component. The LIF service model is goal ori-
ented, while the algorithmic model is process oriented. A 
goal-oriented model specifies the intended state, while a 
algorithmic model specifies the actions that must be taken 
in order to reach this intended state [24] p.223. 

5.2. Perspectives on LIF State behavior 

The LIF service specification is required to be self-
contained and must provide a complete description of the 
component behavior as seen from the viewpoint of a LIF 
user. From the user’s point of view, it is helpful to distin-
guish between the following two types of LIFs: 
 
(i). Stateless LIF: This is a LIF where a response to a 

service request depends only on the parameters of the 
request and is independent of the time of the request. 

(ii). Stateful LIF: This is a LIF where a response to the 
service request depends not only on the parameters of 
the request but also on the instant when the request is 
delivered, i.e., the same request may lead to different 
results, depending on the history of the component or 
the state of the environment at the instant of the re-
quest. Examples are the sampling of a sensor or a 
query to a database. 

 
Since a LIF with state is the more general concept (a 

stateless LIF can be viewed as a special case of a stateful 
LIF), the subsequent discussion focuses on stateful LIFs. 
Taking this view it follows that the notions of state and 
time are inseparable. If an event that updates the state 
cannot be assigned to a well-defined tick of a global clock, 
then the notion of a system-wide state becomes diffuse. It 
is not known whether the state assigned to a clock tick 
includes this event or not. The sparse time-base intro-
duced in Sec 2.1 makes it possible to define a system-wide 
notion of time, which is a prerequisite for an indisputable 
border between the past and the future, and thus the defi-
nition of a system-wide state. If there is no global sparse 
time-base available, one often recourses to a model of an 
abstract time that is based on the order of messages sent 
and received across LIFs. If the relationship between the 
physical time and the abstract time remains unspecified, 
then this model is imprecise whenever this relationship is 
relevant. It may be difficult to determine in such a model 
the precise state of a system at an instant of physical time. 

For the designer and user of a LIF it is consequential to 
know what actions of the past have relevance for the fu-
ture. Since there may be some past actions which are more 
relevant than other past actions, it can be advantageous to 
partition and classify the state according to the criticality 
of the state for the future behavior of the component. In 
case of a component restart in an emergency, the critical 
state can then be recovered swiftly in order to provide the 
services required for the safe operation of a system with-



out a long delay. In some applications, it may be possible 
to restart from a safe initial state. For example, in a traffic 
control system such a safe initial state may be “traffic 
lights red in all directions”. 

The concept of initial state merits further considera-
tion, particularly for open components. After the startup of 
a component, what should be its initial LIF state? The ini-
tial state of a LIF must be consistent with the state of the 
environment at the instant of startup [7], p.102. Since the 
state of the environment is observed by sensors, the in-
strumentation must be designed to observe directly or in-
directly all state variables of the environment that are 
relevant for the future operation of the system, as seen 
from the viewpoint of the LIF. In discrete processes where 
it is not possible to observe the state of all relevant state 
variables at all instants, it might be necessary to introduce 
designated start-up intervals, where the environment is in 
a state of intermediate stability and can be observed by the 
available sensors. The precise definition and capture of 
the state of a LIF after startup requires careful planning 
during system design. 

A final remark relates to the concept of state in the 
widely used notion of a software component. As outlined 
above, the definition of state requires a model of time, 
since state and time are intertwined. Since a software com-
ponent per se does not support any notion of time it is 
only consequent that Szyperski [25, p.30] requires that a 
software component has no persistent state. The state must 
be viewed as external to the software component. This 
notion of a software component is thus fundamentally dif-
ferent from the component notion introduced in Section 
2.2 of this paper. 

6. Conclusions 

In this paper we have proposed separating the opera-
tional and meta-level specifications of a linking interface. 
Such a separation leads to the development of a clearer 
understanding of each category. In a real-time distributed 
system, the operational specification must be precise in 
both the value and temporal domains. It has been shown 
that the temporal firewall concept provides the capability 
to provide a precise temporal specification of a LIF. It is 
difficult to provide such a precise temporal specification if 
the client-server model is used. The meta-level specifica-
tion assigns meaning to the information chunks formed at 
the operational level by providing a LIF service model. 
This LIF service model should be presented in a form that 
considers the cognitive constraints of the system engineer. 
The LIF service model will be informal if the component 
interacts with the natural environment. 
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