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Abstract

The rapid integration of computer vision into Autonomous Systems (AS) has
introduced new vulnerabilities, particularly in the form of adversarial threats
capable of manipulating perception and control modules. While multiple surveys
have addressed adversarial robustness in deep learning, few have systematically
analyzed how these threats manifest across the full stack and life-cycle of AS.
This review bridges that gap by presenting a structured synthesis that spans
both, foundational vision-centric literature and recent AS-specific advances, with
focus on digital and physical threat vectors. We introduce a unified framework
mapping adversarial threats across the AS stack and life-cycle, supported by
three novel analytical matrices: the Life-cycle-Attack Matriz (linking attacks to
data, training, and inference stages), the Stack—Threat Matriz (localizing vul-
nerabilities throughout the autonomy stack), and the Ezposure—Impact Matriz
(connecting attack exposure to Al design vulnerabilities and operational conse-
quences). Drawing on these models, we define holistic requirements for effective
AS defenses and critically appraise the current landscape of adversarial robust-
ness. Finally, we propose the AS-ADS scoring framework to enable comparative
assessment of defense methods in terms of their alignment with the practical
needs of AS, and outline actionable directions for advancing the robustness of
vision-based autonomous systems.
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Adversarial Attacks, Adversarial defenses



1 Introduction

Autonomous Systems (AS) are rapidly transitioning from research prototypes to
mission-critical platforms in transportation, logistics, and robotics (Sheridan; Sicil-
iano and Khatib 2016; 2016). At their core, AS combine high-resolution sensors, fast
communication links, complex control software, and deep neural networks to enable
autonomous operation in unstructured environments (Bekey; Guizzo 2005; 2011).

A defining trend in modern AS is their deep reliance on computer vision. Vision
models, ranging from classic convolutional neural networks (CNNs) (He et al. 2016),
real-time detectors such as YOLO (Wang et al. 2023) and RT-DETR (Zhao et al.
2024), to advanced transformers (Oquab et al. 2024) and vision-language models (Xu
et al.; Renz et al. 2024; 2024) underpin not only perception but also sensor fusion,
semantic mapping, prediction, planning, and even direct actuation. The industry-wide
move towards vision-centric and even vision-only paradigms is perhaps best exem-
plified by Tesla’s Autopilot and Full Self-Driving systems (Tesla, Inc. 2022), which
intentionally omit LiDAR and radar in favor of multi-camera, deep learning pipelines
for end-to-end environment understanding and control.

While classic non-vision attack vectors such as GPS spoofing (Horton and Ran-
ganathan 2018), CAN-bus injection (Kang et al. 2021), and physical attacks on radar
or LIDAR systems (Cao et al.; Kong et al. 2019; 2020) have been extensively studied,
and industry best practices for their detection and mitigation are relatively mature,
the shift to vision-centric architectures introduces a new class of system-wide vulner-
abilities. Years of adversarial machine learning research have shown that even digital
imperceptible perturbations to image inputs can induce misclassification and danger-
ous misinterpretation (Szegedy et al.; Goodfellow et al. 2013; 2014). In the physical
world, attacks such as adversarial stickers on traffic signs (Eykholt et al. 2018) or
adversarial patches (Zhang et al. 2022) among others demonstrate the persistence and
transferability of adversarial threats across architectures and conditions.

Crucially, in vision-centric AS, a single vulnerability in perception rarely remains
isolated. Because perception outputs directly feed into planning, prediction, and con-
trol with limited or no human oversight, adversarial effects can propagate, be amplified
by sensor fusion or trajectory optimization, and ultimately result in system-level fail-
ures. This risk is heightened by the industry trend towards closed-loop, end-to-end
architectures, where raw vision inputs may directly dictate vehicle or robot behavior.

Unlike static computer vision systems, AS operate in dynamic, multi-agent, and
safety-critical environments (Bojarski et al.; Janai et al. 2016; 2020). Attacks can
target any phase, from data acquisition and model training to online operation or inter-
vehicle communication, and their impact can extend far beyond classification accuracy,
undermining safety, trust, and real-world performance in ways rarely captured by
static benchmarks.

This review is motivated by the urgent need to understand adversarial vulnerabilities
and defenses for vision-centric AS, bridging insights from both foundational adver-
sarial machine learning and the fast-evolving AS-specific literature. By systematically
mapping how threats propagate across the AS stack and life-cycle, we clarify real
deployment challenges, highlight the limitations of existing approaches, and provide



a unified analytical foundation for evaluating adversarial robustness in AS. Our sur-
vey intentionally bridges the gap between the mature vision-centric adversarial ML
literature and the recent but fast-growing AS-specific corpus.

1.1 Related Work

Several recent surveys have addressed elements of adversarial attacks and defenses, but
none provide a life-cycle-integrated, stack-specific analysis tailored to real-world AS.
For example, Badjie et al. (2024) present a systematic review of adversarial attacks and
countermeasures in image classification models for autonomous driving, with detailed
coverage of attack types and proactive/reactive defenses. However, their analysis is
limited to perception modules and does not examine attack propagation through plan-
ning and control subsystems, nor does it offer a unified threat model for the entire
AS life-cycle. Akhtar et al. (2021), a comprehensive review of advances in adversar-
ial attacks and defenses for computer vision is provided, focusing on algorithmic and
architectural aspects after 2018. However, their work does not account for the layered
structure or operational context of AS, omitting issues such as temporal vulnerability,
subsystem coupling, or deployment-specific constraints.

Deng et al. (2021) provide a detailed analysis of different attacks and defenses in
the workflow of the autonomous driving system, covering adversarial attacks for var-
ious deep learning models and attacks in both physical and cyber contexts. While
comprehensive in scope, their survey does not offer a structured framework for eval-
uating defense strategies across different stages of the AS life-cycle. Liu et al. (2021)
examine adversarial attacks and defenses from an interpretation perspective, provid-
ing valuable insight into model vulnerability, but focusing less on system-level threats
specific to autonomous systems.

Almutairi and Barnawi (2023) present an overview of adversarial attacks, defenses,
and frameworks to secure DNNs in smart vehicles, organizing their analysis around
security challenges but lacking a cohesive approach to understanding cross-layer
vulnerabilities. Similarly, Khamaiseh et al. (2022) provide an extensive survey on
adversarial attacks and defense mechanisms for image classification, though their focus
remains primarily on algorithmic approaches rather than on the operational contexts
of autonomous systems.

Amirkhani et al. (2023) review prominent attack and defense mechanisms for object
detection in autonomous vehicles, offering discussions on their strengths and weak-
nesses, but without addressing the integrated nature of attack surfaces across the entire
autonomous vehicle stack. Boltachev (2024) highlights key types of disruptive attacks
on autonomous driving models, demonstrating potential threats through experimental
validation but not providing a systematic framework for defense evaluation.

Ibrahum et al. (2024) perform a systematic review of adversarial attacks and
defenses in autonomous vehicles, prioritizing safety and introducing a taxonomy
inspired by SOTIF. However, their focusis on risk scenarios and lacks an analyti-
cal framework linking attack surfaces, layered vulnerabilities, and defense evaluation
across the AS stack. Girdhar et al. (2023) offer a review centered on cybersecurity
in autonomous vehicles, highlighting known attack vectors and defenses but stopping



short of providing an actionable structure for mapping attacks or evaluating defenses
in an integrated, system-aware fashion.

Xu et al. (2020) broaden the perspective to attacks and defenses in images, graphs,
and text, but their survey remains modality-driven and does not tackle the architec-
tural and temporal challenges unique to AS. The work by Costa et al. (2024) surveys
adversarial attacks and defenses across various deep learning architectures, offering
a high-level synthesis without focusing on the operational realities, threat models,
or deployment constraints of AS. Malik et al. (2024) present a systematic review of
adversarial machine learning attacks and defensive controls, but their analysis lacks
the specificity required for autonomous systems operating in dynamic environments.

1.2 List of Contributions

In contrast, our survey bridges the foundational adversarial machine learning concepts
presented in (Akhtar et al.; Xu et al.; Costa et al.; Liu et al.; Amirkhani et al.; Malik
et al.; Khamaiseh et al. 2021; 2020; 2024; 2021; 2023; 2024; 2022) and the overly
component-specialized AS surveys in (Badjie et al.; Ibrahum et al.; Girdhar et al.; Deng
et al.; Almutairi and Barnawi; Boltachev 2024; 2024; 2023; 2021; 2023; 2024) with a
holistic, layered systems analysis of AS, organized around three key contributions:

1. Bridging Gaps in Existing Surveys: While prior reviews often isolate gen-
eral adversarial ML or AS-specific applications, our work integrates foundational
adversarial concepts, vision-based robustness literature, and AS-specific challenges
into a unified analytical framework. This enables life-cycle-integrated thinking and
supports the development of practical AS defenses.

2. System-Level Threat Modeling via Analytical Matrices: We construct three
matrices that connect existing adversarial literature to the specific vulnerabilities

of AS:

® The Life-cycle-Attack Matrix categorizes threats across the Data, Training,
and Inference stages of the Al life-cycle, linking attack types (e.g., poison-
ing, backdoors, evasion) to stage-specific weaknesses and highlighting temporal
exposure windows, (Section 4.1).

® The Exposure—-Impact Matrix organizes threats by AI design vulnerabil-
ities (e.g., data hunger, model sensitivity), attack surfaces, and downstream
consequences such as sabotage or system misguidance, providing a frame-
work to understand full-system threat pathways in real-world AS deployments,
(Section 4.2).

® The Stack—Threat Matrix maps how adversarial attacks impact AS sub-
systems’ Perception, Planning, and Control layers, demonstrating how vulner-
abilities propagate and compound across the stack. We ground our analysis
with realistic subsystem scenarios, target models, and operational implications,
(Section 4.3).

e Additionally, we provide a comparative synthesis of both digital and physical
adversarial attacks, characterizing representative methods in terms of attack
type, robustness, and practical implications. This serves as a unified reference



for evaluating attack feasibility and severity in both real-world and simulation
contexts, (Section 3).

Rather than serving as abstract taxonomies, these matrices function as actionable
threat modeling tools to guide robustness benchmarking and inform future research.

3. Critical Appraisal and Evaluation of Defense Strategies: We develop a
structured methodology to assess how well existing adversarial defenses meet the
unique needs of AS:

® Drawing from the literature and the threat matrices developed in this review,
we derive a high-level set of overall requirements that adversarial defenses
must satisfy to be viable in AS environments. Focusing on real-time constraints,
adaptability, interpretability, and efficiency, (Section 5.1).

® We examine the current landscape of defenses targeting physical-world
attacks, identifying the strengths and limitations of existing approaches and
clarifying where critical gaps remain, (Section 5.2).

e We consolidate and simplify prior defense taxonomies, aligning them with AS-
specific criteria to enable more meaningful evaluation across mechanism types,
(Section 5.3).

® Based on this foundation, we introduce the Autonomous Systems Adver-
sarial Defense Score (AS-ADS), a novel evaluation framework that scores
defense methods across four deployment-relevant axes: real-time capability, adapt-
ability to novel threats, interpretability, and resource efficiency, (Section 5.4).

® To demonstrate the AS-ADS framework, we evaluate a representative subsample
of 30 defense methods; 15 from the general vision adversarial robustness litera-
ture, and 15 from AS-specific works, highlighting the trade-offs and readiness of
each, (Table 9):

This review, to the best of our knowledge, is the first to systematically bridge foun-
dational adversarial machine learning and AS-specific literature in a holistic, layered
systems analysis of Autonomous Systems.

1.3 Methodology and Review Protocol

This review implements a structured, reproducible literature survey based on PRISMA
2020 principles, specifically adapted to the context of machine learning and AS. Our
goal is to comprehensively synthesize advances in adversarial robustness for vision-
based models relevant to AS, bridging both foundational vision-centric theory and
recent AS-specific developments.

We included works ranging from foundational studies (dating back to 1988) to
the most recent publications available as of May 2025, identified through five major
databases: IEEE Xplore, SpringerLink, ACM Digital Library, ScienceDirect, and arXiv
(tracks: cs.CV, cs.RO, stat.ML). Search queries combined terms such as “adversarial
attack,” “defense,” “autonomous systems,” “dataset,” “computer vision,” “robotics,”
“LiDAR,” and related phrases. After deduplication, non-vision and unrelated tracks



were filtered, followed by manual screening of titles and abstracts. Full-text eligi-
bility required methodological clarity, empirical evaluation, and relevance to either
adversarial computer vision or AS.

Inclusion criteria were: (i) peer-reviewed venue (CORE A*/A /B or Scimago Q1-Q3
journal) or high-impact arXiv preprint, (ii) empirical focus on adversarial robustness,
and (iii) coverage of vision models, pipelines, or AS-specific systems. Studies outside
these domains, lacking empirical grounding, or duplicating prior work were excluded.
Flexible inclusion criteria were applied to physical attack/defense and real-world
system studies, reflecting their practical significance.

Following this protocol, we included 237 papers in the final synthesis. Each
was classified in a reproducible two-level taxonomy: (1) Domain (vision-centric or
AS-specific), and (2) Contribution Type (defense, attack, dataset, or other support-
ive/background). Within each domain, references were further split as foundational
(pre-2020) or non-foundational (2020 onward). Contribution types were assigned using
a combination of keyword analysis (title/abstract), citation context (appearance in
attack or defense tables/sections), and manual review for ambiguous cases. The domain
split (vision-centric vs AS-specific) was established via systematic keyword matching
and manual inspection for works with cross-domain relevance. While every effort was
made to ensure comprehensive and reproducible coverage, we acknowledge the poten-
tial for misclassification in ambiguous cases and invite community feedback for future
updates.

Initial records identified 1041
Duplicates removed 99
Titles and abstracts screened 942
Excluded during abstract screening 614
Full-text articles assessed 328
Excluded after full-text review 91
Studies included in the final synthesis | 237

Table 1 Summary of the PRISMA screening resutls.

The review process and screening outcomes are summarized in Table 1.

Table 2 Breakdown of included papers by domain (vision-centric or AS-specific), era (foundational or recent), and

contribution type (defense, attack, dataset, other). Percentages reflect the share of each row total.

Domain Era Defense Attack Dataset Other Row Total
Vision-centric Foundational (pre-2020) 39 (44.8%) | 28 (32.2%) | 3 (3.4%) | 17 (19.5%) 87
Vision-centric Non-foundational (2020+) | 43 (60.6%) | 21 (29.6%) | 3 (4.2%) 4 (5.6% 71
AS-specific Foundational (pre-2020) 1 (6.7%) 2 (13.3%) 0 (0.0%) | 12 (80.0%) 15
AS-specific Non-foundational (2020+) | 32 (50.0%) | 17 (26.6%) | 4 (6.3%) | 11 (17.2%) 64
Column Totals 115 (48.5%) | 68 (28.7%) | 10 (4.2%) | 44 (18.6%) 237

Defense: Proposes, benchmarks, or surveys robustness mechanisms.
threats.

Dataset: Introduces or is primarily a dataset/benchmark paper.
works.

Attack: Proposes, benchmarks, or surveys adversarial

Other: Surveys, theoretical, sensor, or general background




Table 2 summarizes the final distribution of included studies by domain, era, and
contribution type, supporting full reproducibility and transparency.

2 Background

Understanding adversarial robustness in AS requires grounding in the specific archi-
tectures, vision model deployments, and operational realities that distinguish AS from
conventional computer vision systems. In practice, modern AS tightly integrate vision
models not only for perception, but also across sensor fusion, prediction, planning, and
closed-loop control, resulting in complex pathways for attack propagation and defense.
The threat landscape in AS is shaped by this interconnectedness, exposing weaknesses
that are rarely visible in static, perception-only or digital-only evaluations. The lim-
itations of current benchmarks and defense taxonomies, (most of which are tailored
to standard image tasks), underscore the need for analysis methods and robustness
criteria explicitly aligned with AS operational stacks and environment. This section
provides the technical foundations, empirical context, and critical gaps necessary for
our analysis.

2.1 Vision Models & The Autonomous System Stack

Modern AS are fundamentally vision-driven, with deep learning models tightly inte-
grated across nearly every functional layer; from perception to planning, control, and
actuation. Unlike traditional computer vision pipelines, where outputs often remain
within isolated modules, AS architectures are defined by close interconnection: the
output of one model (e.g., object detection, segmentation) serves as direct input
to downstream planning and control components, with minimal human oversight or
redundancy.

The AS stack can be broadly divided into three groups: the Physical Envi-
ronment, the Hardware Layer, and the Hardware and Software Integration
layer, as shown in Fig. 1. The physical environment refers to the operational context,
such as roadways for driverless vehicles or warehouse floors for robots. In the hard-
ware layer we find sensors such as cameras (Forsyth and Ponce; Szeliski 2011; 2022),
LiDAR (Besl; Hsu 1988; 2002), radar (Knee; Hao et al. 2005; 2002), and ultrasonic
sensors (Kinsler et al. 2000), which are often fused for greater robustness (Yeong et al.
2021) (sesor fusion). Communication hardware enables inter-device connectivity for
federated learning (Yang et al. 2021), remote operations (Yu et al. 2021), or mission
planning via satellite links (Prevot et al. 2016). Actuators close the hardware loop by
translating digital commands into real-world action.

Across all layers, the adoption of general-purpose vision models, such as ResNet-
50 (He et al. 2016), ViT (Dosovitskiy et al. 2020), SAM (Kirillov et al. 2023), and
DINOv2 (Oquab et al. 2024), reflects the field’s inheritance of both the strengths
and adversarial vulnerabilities discovered in conventional computer vision. Specialized
models (e.g., DriveVLM (Tian et al. 2024), CarLLaVA (Renz et al. 2024), BEV-
Former (Li et al. 2022)) further illustrate the trend toward unified, stack-spanning
pipelines.
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Fig. 1 Autonomous System Stack Diagram

More in depth, the AS Perception layer is now dominated by a broad spec-
trum of vision models. Ranging from early CNN backbones like ResNet-50 (He et al.
2016) to advanced architectures for detection and segmentation. Real-time detectors,
such as YOLOv4 (Bochkovskiy et al. 2020), YOLOv7 (Wang et al. 2023), RT-
DETR (Zhao et al. 2024), and EfficientDet (Tan et al. 2020), enable high-throughput
object and obstacle identification. For segmentation and spatial reasoning, models like
DeepLabv3+ (Chen et al. 2018), Mask R-CNN (He et al. 2017), and SAM (Kirillov
et al. 2023) provide fine-grained environmental parsing, while ViT (Dosovitskiy et al.
2020) and DINOv2 (Oquab et al. 2024) represent the adoption of transformer-based
and foundation models. Multi-modal sensor fusion architectures—DAIR-V2X (Zhao
et al. 2024), UMoE (Lou et al. 2023), COMPASS (Ma et al. 2022) integrate camera,
LiDAR, and other modalities for richer world models. Classical two-stage detectors
like Fast R-CNN (Girshick 2015), Faster R-CNN (Ren et al. 2015), SSD (Liu et al.
2016), and RetinaNet (Lin et al. 2017) also persist in specific AS deployments.

Within the Planning layer, outputs from perception are translated into action-
able decisions and trajectories using a new wave of context-aware models. BEV-
Former (Li et al. 2022) performs multi-view, spatiotemporal fusion for 3D scene
understanding. Vision-language models such as DriveVLM (Tian et al. 2024), Car-
LLaVA (Renz et al. 2024), and VLM-AD (Xu et al. 2024) incorporate semantic context
and agent interaction for robust closed-loop planning. End-to-end pipelines such as
DAVE2 (Bojarski et al. 2016), PilotNet (Bojarski et al. 2017), and Conditional Imi-
tation Learning (Codevilla et al. 2018) map visual or multimodal input directly to
navigation actions, bypassing rule-based intermediaries. Legacy approaches such as



ChauffeurNet (Bansal et al. 2018) and ALVINN (Pomerleau and A 1988) laid the
groundwork for behavior prediction and direct perception-control mapping.

At the Control layer AS increasingly embed neural controllers, building upon
foundations like ALVINN (Pomerleau and A 1988) towards deep reinforcement and
imitation learning models (Lillicrap et al.; Pan et al.; Dursun et al. 2015; 2017; 2025),
to execute planned actions in real time. These controllers handle adaptive actuation,
closed-loop correction, and safe responses to unstructured or adversarial environments.
Classic rule-based and PID controllers are now frequently augmented or replaced by
neural networks that leverage features from vision and planning models for fine-grained
actuation, error recovery, and robust operation under uncertainty. This integration
enables rapid, flexible adjustment, but also exposes the system to error propagation:
a perturbation at perception or planning can now directly alter low-level control,
amplifying the risk of system-level failures.

Because the AS stack is tightly coupled and feedback-driven, whether at the sen-
sor interface, within fusion modules, or at the control output, vulnerabilities in vision
models cannot be isolated locally. Perturbations at any point in the stack can cascade
through planning and control, ultimately triggering unexpected or catastrophic out-
comes. This architecture demands adversarial robustness methods that are not only
perception-aware, but explicitly stack and life-cycle-aware as well. A central principle
developed throughout this review.

2.2 Adversarial Threats in Autonomous Systems

The concept of adversarial examples was first introduced in (Szegedy et al. 2013),
who showed that deep learning models can be deceived by carefully crafted, human-
imperceptible perturbations to input data. Formally, adversarial attacks seek to modify
a given input xo € R? to a new point x € R%, such that x is assigned a specific target
class by the model, differing from the original prediction. The perturbation § = x —xg
is typically constrained to be small in a chosen norm (e.g., ||6||, < €) to ensure that
x remains visually indistinguishable from xg to humans. Methods such as evasion
attacks employ optimization techniques, including the box-constrained L-BFGS algo-
rithm (Fletcher 2013), to compute minimal perturbations that induce misclassification.
Notably, these adversarial examples are often transferable. A single perturbation gen-
erated for one model can also mislead other deep neural networks—raising serious
concerns for the security and reliability of AI systems as originally demonstrated in
(Liu et al.; Papernot et al. 2016; 2016).

In the context of AS, digital attacks (e.g., FGSM (Goodfellow et al. 2014),
PGD (Madry et al. 2019), C&W (Carlini and Wagner 2017b)) remain important, oper-
ating at inference or training time to introduce pixel-level perturbations or backdoors
(e.g., BadNets (Gu et al. 2017), MetaPoison (Huang et al. 2020)). These attacks, orig-
inally evaluated on canonical datasets like ImageNet or CIFAR, have proven highly
transferable and can undermine robustness at multiple stages of the AS pipeline.

However, AS face a much broader threat landscape. Physical attacks—such as
adversarial stickers (Eykholt et al. 2018), patches (Brown et al. 2018), or crafted



objects (Kong et al. 2020)—exploit the perception pipeline by manipulating the envi-
ronment itself, often defeating digital-only defenses and persisting across sensors,
agents, and time.

Cross-modal and systemic attacks further challenge AS, targeting their
reliance on multiple, distributed sensors and communication channels. Examples
include GPS spoofing (Horton and Ranganathan 2018), LiDAR jamming (Cao
et al. 2019), CAN bus manipulation (Kang et al. 2021), and attacks on federated
learning (Yang et al. 2021), each capable of inducing both local and system-wide
failures.

Cascading and life-cycle-aware threats are particularly critical. A single suc-
cessful attack at perception can propagate via sensor fusion, scenario prediction,
and control feedback loops, leading to mission-level safety breaches (e.g., seman-
tic DoS (Wan et al. 2022), adversarial planning (Edelkamp 2023)). These systemic
vulnerabilities are largely overlooked in standard ML taxonomies.

Limitations of canonical taxonomies: Most classical frameworks categorize
attacks by knowledge and timing, but largely omit the location layer, specially physical
attacks and system-level propagation, reflecting a historical focus on static image clas-
sifiers and digital benchmarks. In AS, this omission is critical: physical and cross-modal
threats are often the most dangerous, propagating through the stack and undermin-
ing safety in ways digital-only frameworks cannot capture. This is further pictured in
appendix A, Table Al.

These limitations motivate our evaluation of attacks by location (physical and
digital) developed in Section 3, and our life-cycle and stack-aware matrices developed
in Section 4, which explicitly integrate both digital and physical threats at each layer
and throughout the operational life-cycle of AS.

2.3 Defense Mechanisms & Autonomous Systems

Adversarial defense research in AS has evolved rapidly, spanning mechanisms adapted
from generic computer vision and those developed specifically for the unique con-
straints of AS. Defenses are most often categorized as proactive (e.g., adversarial
training, regularization, input Pre-Processing, certification), reactive (e.g., detec-
tion, denoising, reconstruction), or, as as new category found in this review, unified
approaches that integrate multiple strategies and account for the layered nature of AS
deployments.

Proactive defenses such as adversarial training (Madry et al. 2019) remain
foundational, retraining models on adversarial examples to improve robustness. This
method, applied to both image and LiDAR-based perception modules (e.g., Lu and
Radha (2023) for scaling attacks in KITTI/Waymo scenarios), demonstrates gains
under known digital threats. However, these approaches incur high computational
cost and generalize poorly to unseen or physical attacks, which often bypass digital
adversarial defenses (Rozsa et al.; Chen and Lee 2016; 2021). Additional proactive
methods, including regularization (Szegedy et al.; Ross and Doshi-Velez 2013; 2018),
model distillation (Hinton et al.; Papernot et al. 2015; 2016), and input Pre-Processing
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(denoising, smoothing) (Xie et al.; Liao et al. 2017a; 2018) offer marginal improve-
ments, but often at the cost of clean accuracy or robustness to adaptive adversaries (Li
et al.; Lou et al. 2024; 2023).

Model ensembles (Tramer et al.; Xie et al. 2017; 2017b) have also been explored to
increase diversity and resilience, but their increased inference latency and hardware
requirements are problematic for real-time AS tasks, limiting on-vehicle deploy-
ment (Lu et al.; Zhao et al. 2023; 2024). Certified defenses, including randomized
smoothing (Cohen et al.; Zhang et al. 2019; 2022) and formal verification (Gowal et al.;
Lecuyer et al. 2018; 2019), offer provable guarantees under certain conditions, yet typ-
ically remain restricted to limited model classes and do not extend easily to full-stack
or dynamic AS environments.

Reactive defenses monitor and respond to attacks at runtime. Detection-based
mechanisms, such as those in Among Us (Li et al. 2023) (cooperative AVs) or Phy-
Sense (Yu et al. 2024) (physical perturbation detection) use input monitoring or
auxiliary detectors to identify adversarial events. While valuable, such approaches
can suffer from high false positive rates and are vulnerable to sophisticated, adaptive
attacks (Soares et al.; Abdu-Aguye et al. 2022; 2020). Denoising and reconstruc-
tion via autoencoders or similar tools (Meng and Chen; Samangouei et al. 2017;
2018) can restore clean inputs, but may introduce harmful delay or information
loss—unacceptable in safety-critical AS.

Unified and stack-aware defenses are gaining attention as the limitations of
layer or mechanism-specific solutions become clear. For instance, UMoE Fusion (Lou
et al. 2023) exploits multimodal sensor fusion to mitigate sensor blinding, while Spec-
Guard (Dash et al. 2024) provides sensor and layer-aware detection against UAV sensor
spoofing addressing vulnerabilities beyond the perception layer. PatchCleanser (Xiang
et al. 2022) and Segment-and-Complete (Liu et al. 2022) combine certified smoothing
with detection to target physical patch attacks. Temporal defenses such as ADAV (Mu
2024) and Time-Travel Defense (Etim and Szefer 2024) incorporate cross-frame and
historical consistency, crucial for detecting persistent or stealthy threats in dynamic
settings.

Unified defense frameworks, e.g., UniCAD (Pellicer et al. 2024), MixDefense (Du
et al. 2018), and UNMASK (Freitas et al. 2020), integrate detection, denoising, and
robust classification to provide scalable, adaptive defense pipelines more suitable
for realistic AS operation. However, most existing defenses, even those tailored for
AS, are evaluated primarily at the perception layer and fail to systematically assess
downstream effects on planning, control, or mission-level safety.

The entire taxonomy and surveyed papers can be found in Appendix A, Table A2

2.4 Datasets and Benchmarks for AS Robustness

Effective evaluation of adversarial robustness in AS relies on benchmarks that cap-
ture both the technical complexity and real-world context in which these systems
operate. The evolution of benchmarks in this space has both propelled adversar-
ial machine learning and introduced critical challenges unique to AS contexts. Early
breakthroughs in adversarial attacks and defenses were closely tied to canonical
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datasets such as MNIST (Lecun et al. 1998), CIFAR-10/100 (Krizhevsky 2009), and
ImageNet (Deng et al. 2009). These simple, accessible, and widespread benchmarks
enabled the rapid development of fundamental attack algorithms like FGSM and
PGD (Goodfellow et al.; Madry et al. 2014; 2019), and laid the foundation for robust-
ness research, including systematic evaluations on corrupted or perturbed variants
such as ImageNet-P (Hendrycks et al. 2021), CIFAR-C, and CIFAR-P (Hendrycks and
Dietterich 2019).

Despite their foundational role, these datasets are now recognized as insufficient
proxies for AS robustness due to their static, digital nature and lack of feedback,
temporal dependencies, or sensor diversity. Hendrycks et al. (2021) and Croce et al.
(2020) demonstrate that robustness metrics obtained on the traditional benchmarks
often overstate real-world safety. Models robust on CIFAR or ImageNet may fail when
confronted with the complexities of multi-modal perception, sensor fusion, or dynamic
interactions in actual AS deployments. This disconnect is further underscored by
simulation-to-reality transfer failures, as documented in (Nesti et al.; Xu et al. 2022;
2022).

To address these limitations, the field has gradually shifted towards more
application-driven and AS-oriented datasets. DOTA (Xia et al. 2018) introduced com-
plex aerial scenes and diverse object viewpoints, directly benefiting research in UAV
and aerial surveillance. The Mapillary Traffic Sign Dataset (Poggi and Mattoccia 2017)
captures traffic sign variation in real-world conditions, serving as a testbed for per-
ception modules in autonomous driving. Such datasets improve environmental fidelity
and task relevance but still fall short of providing holistic benchmarks for closed-loop
or stack-wide robustness.

Recent advances in simulation environments—such as CARLA-GeAR (Nesti et al.
2022), SafeBench (Xu et al. 2022), and RobustE2E (Jiang et al. 2024)—have enabled
holistic, closed-loop evaluation of adversarial threats across the full AS stack. These
platforms support the generation of physically realizable attacks (e.g., adversarial
patches, sensor spoofing), multi-agent and V2X scenarios (Li et al.; Zhao et al. 2023;
2024), and robust testing under diverse conditions (Lou et al.; Zhang et al. 2023;
2023). Real-world datasets—such as Car Hacking (Kang et al. 2021) and adversar-
ial Google Street View (Etim and Szefer 2024)—offer authentic sensor and actuator
traces, though they lack the diversity and control of simulated environments.

Despite this, much adversarial research remains focused on standard vision mod-
els, with attacks like C&W (Carlini and Wagner 2017b), AutoAttack (Croce and Hein
2020), and patch-based methods (Brown et al. 2018), and defenses such as randomized
smoothing (Cohen et al. 2019), MixDefense (Du et al. 2018), and certified patch seg-
mentation (Zhang et al. 2022), almost exclusively evaluated on datasets like ImageNet
or RobustBench (Croce et al. 2020). This leaves a gap in addressing how adversarial
effects propagate across perception, planning, and control in realistic AS settings.

AS-specific research is bridging this divide by introducing attacks targeting the
full system stack—e.g., physical patching (Eykholt et al.; Li et al. 2018; 2022), LiDAR
spoofing (Cao et al. 2019), sensor-fusion breakdowns (Lou et al.; Zhao et al. 2023;
2024), and CAN-bus injection (Khan et al. 2022)—and by leveraging advanced bench-
marks and simulation platforms. Concurrently, new defenses emphasize multimodal
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anomaly detection (Lou et al. 2023), certified segmentation (Zhang et al. 2022), phys-
ical input filtering (Lu and Radha 2023), and robust V2X fusion (Zhao et al. 2024),
increasingly targeting end-to-end, stack-aware robustness (Jiang et al. 2024).

A summarized illustration can be found in Appendix A, Table A3.

While this move toward AS-specific realism has enhanced operational relevance, it
also fragments the field. Different works use incompatible sensor suites, attack mod-
els, scenario generators, and evaluation protocols—as highlighted in recent benchmark
studies (Xu et al.; Nesti et al. 2022; 2022). Even subtle differences in simulation param-
eters or the spatial/temporal configuration of physical attacks can yield markedly
divergent robustness evaluations, severely limiting reproducibility and comparability
across the literature. Consequently, there is a growing consensus, reflected in recent
works (Croce et al.; Xu et al.; Lou et al. 2020; 2022; 2023). That progress depends
on unified frameworks and holistic benchmarks: those that can relate algorithmic
advances in general adversarial robustness to deployment in AS, and, reciprocally,
that enable AS-specific innovations to be evaluated in the context of broader vision
robustness objectives.

This persistent fragmentation across datasets, evaluation protocols, and adversar-
ial methodology underscores the need for a unified approach—one that systematically
bridges the gap between general computer vision research and the operational require-
ments of AS. To address this, our review introduces a threat-matrix-driven evaluation
strategy (see Sec. 4). The unification is finally brought to fruition in in our Critical
Appraisal of Defenses in the Context of Autonomous Systems, (see Sec. 5).

3 Adversarial Attacks in AS: Digital and Physical
Locations

Adversarial attacks in Autonomous Systems can be broadly categorized on the basis

of their location into two primary domains: digital and physical. Digital attacks occur

within the digital pipeline, targeting input data or communications, while physical
attacks exploit real-world environments to manipulate sensory input.

3.1 Digital Attacks

ron

X sign(V, J(®,X,Y))  X+esign(V,J®, X, Y))
Clean Image Adversarial Noise Attacked Image

Fig. 2 Example of Digital Adversarial Attack (FGSM)

Digital adversarial attacks focus on manipulating input data directly in the digi-
tal domain to deceive machine learning (ML) models. These attacks are some of the
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most extensively studied due to their accessibility and the relative simplicity of gener-
ating adversarial perturbations. Common methods include the aforementioned FGSM
(Goodfellow et al. 2014), PGD (Madry et al. 2019), DDN ( Jéréome Rony and Luiz G.
Hafemann and Luiz S. Oliveira and Ismail Ben Ayed and Robert Sabourin and Eric
Granger 2019), or Carlini & Wagner (Carlini and Wagner 2017b) amongst others.
Fig. 2 illustrates an example of FGSM.

These attacks differ in optimization strategies (e.g., single-step vs. iterative),
misclassification objectives (targeted vs. untargeted), and their perturbation budget
(constrained by ¢, norms or pixel count). Their applications in AS include not only
direct evasion of perception pipelines but also poisoning training datasets, injecting
malicious patterns into communication logs, or crafting precursors to physical-world
attacks through digital-to-physical transfer.

Despite their digital nature, these attacks pose concrete threats to deployed sys-
tems, especially when deployed over OTA updates, V2X communication, or shared
ML pipelines. As such, a clear comparative understanding of their effectiveness,
stealth, and robustness is vital for evaluating the threat landscape faced by real-world
autonomous platforms.

To this end, Table 3 presents a structured quantitative synthesis of the fundamental
digital adversarial attacks applicable to AS-related vision models. It summarizes their
success rates, perturbation magnitudes, transferability across models, and contextual
relevance.

3.2 Physical Attacks

Physical adversarial attacks are a type of attack in which an adversary attempts to
deceive or mislead a ML approach that relies on data gathered from the environment
through the use of physical hardware sensors such as cameras. Physical attacks do so by
introducing physical perturbations to its environment or inputs. Physical adversarial
attacks can take various forms, such as altering the lighting conditions (Xiao et al.
2018), modifying the appearance of objects in the environment (Oslund et al. 2022), or
manipulating the sensors that the autonomous system relies on to perceive the world
(Cao et al. 2019). Furthermore, in many cases, attacks may be unnoticeable to humans
when placed in the real world as they may be mistaken by decorations, urban art or
vandalism and not seen as a bigger threat by humans, which hinders the possibility of
manual human intervention to prevent attacks in real time. Physical attacks can be
configured both in a white-Box or a Black-box setting with differences in performance
based on the attack, and their timing would normally be considered Evasion, although
it could be the case that they act as Poisoning attacks in the event that the system
being compromised is in the learning stage.

Physical adversarial attacks can be generated by transferring digital adversarial
attacks into physical objects as demonstrated in various studies (Kurakin et al.; Atha-
lye et al.; Sharif et al. 2016; 2017; 2016). Different techniques to achieve that shift
exist which obtain different levels of attack robustness. However, in the physical envi-
ronment, attack robustness is challenged by other factors, including natural changes
in environment conditions, the attack surface being smaller and more complex due to
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it being three dimensional, the background not being alterable, or different camera
angles.

In the context of AS, physical adversarial attacks represent a significant haz-
ard, with the potential to compromise system safety and dependability. For instance,
autonomous vehicles could be misled into misinterpreting traffic control devices such as
stop signs or traffic lights, precipitating a potentially perilous situation. The effective-
ness of physical adversarial attacks on object detection systems, pivotal in autonomous
vehicles, was demonstrated in a study by Eykholt et al. (2018). The research indicated
that a physical evasion attack could be orchestrated by adding minimal perturbations
to stop signs, thereby distorting the accurate perception of autonomous vehicles.

There are diverging views within the community regarding the effectiveness of these
physical adversarial perturbations. Some studies, such as (Lu et al. 2017), suggest that
while these adversarial alterations could lead a deep neural network to misinterpret
a stop sign image in a physical environment within a specific range of distances and
angles, they are not uniformly successful in duping object detectors across varied
distances and viewing angles. However, it should be noted that these experiments were
conducted in a simplified setting, involving printed attack signs.

More sophisticated and resilient attack methods have since emerged, capable of
handling changes in viewpoint, some of which are further explored in this paper.
Moreover, it is suggested that as AS and the various deep learning methodologies
underpinning their operation continue to evolve, the nature of attacks will similarly
adapt and become more advanced. Therefore, contrary to some researchers who may
downplay the potential harm of physical adversarial attacks, these threats are con-
sidered critical and warrant urgent attention in order to ensure system integrity and
safety. A summary of the main types of physical attacks is displayed at the end of this
section in 4.

Adversarial stickers and paintings

The use of adversarial stickers and paintings for deceiving object detection or
image classification in AS has been a topic of study. Specifically, Eykholt et al. (2018)
examined their effectiveness on deep learning models used in autonomous vehicles.
The method involves placing carefully crafted stickers for target objects into the real
world, which can cause misclassification of the object detection system. The authors
demonstrated that these stickers could be designed to be virtually imperceptible to
humans, but still deceive the object detection system. A visualization of the attack is
shown in Fig. 3

To generate the adversarial stickers and paintings, the authors used a modified
version of the FSM algorithm. They began by selecting a target label, such as a
yield sign or a speed limit sign, and used the FGSM algorithm to generate a small
perturbation that would cause the object detection system to misclassify the stop sign
as the target label. The authors also used a generative adversarial network (GAN)
to train a model that could generate images that looked similar to stop signs but
contained the adversarial perturbations, while remaining imperceptible to humans.

The study’s findings suggest that the adversarial stickers succeeded in deceiving
numerous cutting-edge deep learning models employed in autonomous vehicles, result-
ing in potentially perilous circumstances. Importantly, the researchers demonstrated
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the transferability of these adversarial stickers across disparate models and camera
types. Furthermore, the study investigated the influence of physical factors such as
lighting conditions, viewing angles, and distances, on the effectiveness of the adversar-
ial stickers. The effectiveness of the stickers did exhibit variation depending on these
factors, but crucially retained effectiveness across a broad spectrum of scenarios.

Adversarial Stickers

SPEED
LIMIT

45

Misclassification

Clean Stop sign

Fig. 3 Example of Adversarial Stickers

Adversarial patches

Adversarial patches refer to intricately crafted patches that can be introduced into
an image to misguide object detection systems and cause them to misclassify objects in
the scene. Such attacks have been previously used to prevent cameras from detecting
humans, as evidenced by the development of T-shirts that are printed with adversarial
patches (Wu et al. 2020) or by having people wear the patches themselves (Thys et al.
2019). In addition to this, adversarial patches have also been utilized to evade face
recognition systems (Komkov and Petiushko 2021) or to prevent AS from detecting
objects in the scene (Du et al. 2022).

Work by Zhang et al. (2022) explores the vulnerability of multi-scale object detec-
tion models utilized in UAVs to adversarial patch attacks. The authors, similarly to
the way adversarial stickers are generated, employed a modified version of the fast
gradient sign method (FGSM) algorithm to generate adversarial patches. They ini-
tially trained a deep learning model to create patches that could be incorporated into
an image to induce misclassification by the object detection system. The patches were
designed to be small and inconspicuous to humans but yet potent in deceiving the
object detection system.

The research found that adversarial patches were efficient in deceiving several
cutting-edge object detection models employed in UAVs. The authors showed that
even when the patches covered less than one percent of the image area, they could
still deceive the object detection system. Furthermore, the patches were transferable
across different object detection models, making them a potential threat to UAVs that
rely on deep learning models for object detection.

The research also scrutinized the impact of the size and location of the adversar-
ial patches on the attack’s effectiveness. The authors found that larger patches and
patches placed in more critical areas of the image were more effective in deceiving the
object detection system.

It is worth noting that a potential limitation of the study at hand is that the
patch experiment results only demonstrate the path being 2D and placed on top of
the image. However, in real-world scenarios, attackers are more likely to use these
patches to camouflage objects, such as military vehicles like tanks or fighter jets with
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an adversarial patch. Therefore, the use of a 3D adversarial patch may be more realistic
in such situations.

To address this limitation, Toheed et al. (2022) proposes a method for conducting
physical adversarial attacks on object detection systems using 3D adversarial objects.
The authors argue that current adversarial attacks on object detectors mainly rely on
2D adversarial perturbations, which have limited ability to cause misclassification of
objects in the real world.

The authors introduce a 3D adversarial object that is designed to be imperceptible
to humans but can cause misclassification of objects by the object detector. The
3D object is created using computer-aided design (CAD) software and 3D printing
technology. The proposed attack is tested on the YOLOv2 object detection system
and the COCO dataset, demonstrating its effectiveness in causing misclassification of
objects in the real world.

Adversarial objects

Adversarial objects are crafted in a way that they cause the ML model to misclas-
sify, misinterpret, or fail to recognize them, even though they might appear normal
to the human eye. They follow a similar approach to adversarial stickers or patches.
However, they differ in that a complete 2D or 3D object is built.

Kurakin et al. (2016) was one of the first to investigate 2D physical adversarial
objects, this paper investigates the effectiveness of adversarial examples in real-world
settings. The authors focus on the transferability of adversarial examples between dig-
ital and physical domains, as well as their robustness to various transformations, such
as changes in camera angle and lighting conditions. The authors extend their investi-
gation to the physical world, questioning whether adversarial examples generated in
the digital domain can still be effective when captured by a camera and processed by
a ML model.

To study this question, the authors generate adversarial examples using FGSM
and print them out, simulating a physical-world scenario. They then capture images of
these printed adversarial examples using a smartphone camera and feed the captured
images to a deep learning model to evaluate the model’s performance.

The experiments show that adversarial examples generated in the digital domain
can still be effective in the physical world, causing the ML model to misclassify the
printed images. The authors also demonstrate that the adversarial examples are robust
to various transformations, such as changes in camera angle, lighting conditions, and
resizing of the images. This finding suggests that adversarial examples pose a signifi-
cant challenge to the deployment of deep learning models in real-world applications,
as they can cause the models to make incorrect decisions even under different physical
conditions.

More curated and targeted to Autonomous System papers in the 2D object land-
scape include (Kong et al.; Zhou et al. 2020; 2020). (Zhou et al. 2020) presents a
systematic approach for generating adversarial billboards designed to compromise
object detection models in autonomous driving systems. The authors propose a bi-
level optimization framework that considers both the attack’s success probability and
the perturbation’s perceptual similarity. They leverage a 3D simulator to account for
physical-world factors such as lighting, camera perspective, and occlusion. While this
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approach provides valuable insights into the robustness of object detection models
under various physical-world scenarios, the use of a 3D simulator may not fully cap-
ture the complexity of real-world conditions, potentially limiting the generalizability
of the results. Kong et al. (2020) employs a Generative Adversarial Network (GAN) to
create adversarial examples resilient to real-world environmental factors. The method
comprises a generator network responsible for producing adversarial perturbations and
a discriminator network tasked with discerning between real and adversarial exam-
ples. To enhance the transferability of the generated adversarial examples, the authors
incorporate domain adaptation techniques and apply geometric and photometric trans-
formations during training. While Kong et al. (2020) demonstrates the potential for
crafting physical-world-resilient adversarial examples, the adversarial training process
can be computationally expensive and sensitive to hyperparameters, which may limit
its practical applicability.

Athalye et al. (2017) was one of the first works to introduce 3D adversarial objects.
The paper presents a novel approach to generating adversarial examples that are
robust to various transformations and are effective in both the digital and physi-
cal domains. The authors propose a method called Expectation over Transformation
(EOT), which aims to create adversarial examples that maintain their adversarial
properties under different transformations.

Traditional adversarial example generation methods often focus on fooling a ML
model in the digital domain, without considering the effects of real-world transfor-
mations, such as rotations, translations, and changes in lighting. As a result, these
adversarial examples may lose their effectiveness when applied to physical objects or
real-world scenarios. To address this issue, the authors introduce the EOT algorithm,
which incorporates an expectation over a chosen set of transformations during the
adversarial example generation process. By optimizing the adversarial perturbation
under this expectation, the algorithm ensures that the generated adversarial examples
are robust to the specified set of transformations.

The authors evaluated the performance of the EOT algorithm on various state-
of-the-art deep learning models, such as Inception v3 and ResNet, using different
datasets like ImageNet and CIFAR-10. They also compare the EOT algorithm with
other existing methods, such as FGSM and PGD. The results demonstrate that the
EOT algorithm is able to generate adversarial examples that are robust to a wide range
of transformations, outperforming other methods in both digital and physical domains.
The authors further showcased the effectiveness of the EOT algorithm through real-
world demonstrations, such as 3D printed objects and images displayed on a screen.

Cao et al. (2020) specifically targets the vulnerabilities of autonomous driving sys-
tems to 3D adversarial objects . This paper specifically targets Multi-Sensor Fusion
(MSF)-based perception systems used in autonomous vehicles. The authors propose
a real-time, end-to-end optimization algorithm that takes into account the physical
constraints and sensor characteristics of the MSF-based perception system to gen-
erate 3D adversarial objects. By considering the limitations of the sensors and the
physical constraints of the objects, the proposed method generates adversarial objects
that can deceive the MSF-based perception system in real-world scenarios. The paper
evaluates its method using simulation and real-world experiments, focusing on the
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effectiveness of the 3D adversarial objects in deceiving MSF-based perception systems
in autonomous vehicles.

Table 4 summarizes the main types of physical adversarial attacks, their implica-
tions, and key examples along with simple quantitative indicators such as Success Rate

or Robustness to further contextualize their relevance in vision models and therefore
to AS.

4 Threat Modelling in Autonomous Systems
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This section presents a comprehensive framework for threat modeling in AS, with
a particular focus on vision-based models. We introduce a taxonomy that systemat-
ically analyzes the exposure of each stage in the AS life-cycle to adversarial attacks
(both digital and physical). By mapping specific attack vectors to corresponding life-
cycle components and system layers, this framework provides a structured basis for
identifying vulnerabilities and informs the development of effective, targeted defense
strategies for real-world AS deployments.

4.1 Life-cycle Attack Matrix

AS Al Life Cycle-Attacks Matrix

Live Data
Model —
Collection preparation | 2o %o | R | = m
% = ]] ﬂ =y O . ® Prediction gm -
Data Training i . ‘
validation C|eD:rt,?ng Pipelines -I;\'llacllrt;irlj Feedback Af)r:;ljigfciec:n
i Data i | Training i Inference i
Data Poisoning Model Poisoning Model Extraction
Adversarial alterations in Injecting adversarial examples Model extraction using
training datasets for AS, e.g.,  into object recognition or adversarial queries
adding adversarial patches or  trajectory prediction models.
stickers to images during Evasion Attacks
dataset preparation. Backdoor Attacks
Physical-world attacks, such as
Training-Data Extraction Trojan Ing attacks targeting adversarial road markings,
vision-based systems during adversarial patches, and
Adversaries attempt to training pipelines. stickers or digital through
manipulate image-based spoofing
training data used in object
detection or segmentation in Deployment Attacks
AS.

Adversarial rain, adversarial
lighting conditions, or
deceptive billboards

Fig. 4 AS AI Life-Cycle Attack Matrix

We introduce the AS AT Life-Cycle Attack Matriz (see Figure 4), a framework that
systematically categorizes adversarial threats targeting AS across the Data, Train-
ing, and Inference stages of the Al life-cycle. By mapping attack types to each stage,
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the matrix provides a comprehensive structure for identifying vulnerabilities, under-
standing how adversaries exploit phase-specific weaknesses, and informing the design
of more effective defense strategies.

Figure 4 organizes adversarial threats into three main stages of the Al life-cycle:

Data, Training, and Inference. Each stage is associated with characteristic attack types
that leverage distinct vulnerabilities in AS pipelines.

At the Data stage, adversaries may engage in:

Data Poisoning Attacks: Introducing malicious data into the training dataset
to corrupt the learning process, leading to erroneous model behavior. For instance,
altering traffic sign images to mislead recognition systems in autonomous vehicles
(Morgulis et al. 2019).

Training-Data Extraction Attacks: Extracting sensitive information from the
training data, potentially compromising privacy and security. This can involve
reconstructing proprietary datasets used in AS development (Malik et al. 2024).

During the Training stage, potential attacks include:

Model Poisoning Attacks: Manipulating the training process to embed vulnera-
bilities within the model, which can be exploited during deployment. This includes
tampering with the training data or the learning algorithm itself (Almutairi and
Barnawi 2023).

Backdoor Attacks: Inserting hidden triggers into the model that cause it to behave
maliciously when specific conditions are met. For example, embedding triggers that
activate under certain visual patterns encountered by AS (Pourkeshavarz et al.
2024).

Attacks in Federated Learning (FL): Federated learning offers a decentralized
approach to training machine learning models across multiple devices, making it
particularly relevant for AS applications such as autonomous vehicles. In FL, each
client—such as an autonomous vehicle—trains a local model using its own data.
Only the model updates are shared with a central server, where they are aggregated
to create a global model. This approach not only preserves data privacy but also
reduces computational and communication costs by distributing the training process
across multiple devices (Jallepalli et al. 2021).

However, FL’s decentralized nature introduces unique security challenges. Malicious
actors can exploit the collaborative training process to compromise the global model.
For instance, a rogue client might poison its local training data or tamper with
model updates, leading to degraded performance or targeted misbehavior. Moreover,
FL’s privacy-preserving mechanisms, such as secure aggregation and differential
privacy, can make detecting such attacks more difficult, further complicating the
task of ensuring robust security. Recent studies, including (Li et al.; Queyrut et al.;
Shi et al. 2024; 2023; 2022), provide a comprehensive overview of FL architectures,
their adversarial challenges, and potential defense strategies within AS. A simple
visualization of attack vectors in a FL architecture is shown in Figure 5.

At the Inference stage, AS are susceptible to:

23



73
{te2)
Nl
5 é’ B
) N
R — e Prototype , * Prototype —_— ——
—r— exchangé -gxchange
@‘\ FR A r@‘\
N X \\g’é‘
& oy PR
é e
py_ 1.=8

Prototype
exchange

Fig. 5 Example of Prototype-based FL architecture and attack surface

¢ Model Extraction Attacks: Adversaries query the deployed model to reconstruct
its parameters or architecture, facilitating intellectual property theft or enabling
further attacks (Malik et al. 2024).

e Evasion Attacks: Crafting inputs that are intentionally designed to be misclas-
sified by the model, thereby bypassing security measures. Physical-world examples
include adversarial patches or stickers that cause misclassification in object detection
systems (Girdhar et al. 2023).

® Prompt Attacks: Exploiting prompt-based systems by injecting malicious
prompts that alter the model’s behavior or outputs, potentially leading to unin-
tended actions in AS (Shan et al. 2024).

® Adversarial Deployment Attacks: Introducing adversarial elements into the
environment, such as deceptive road markings or manipulated traffic signs, to
mislead the AS perception and decision-making processes (Boltachev 2024).

This taxonomy underscores the multifaceted nature of adversarial threats across
the AT life-cycle in Autonomous Systems. By systematically categorizing these attacks,
we aim to enhance the understanding and development of robust defense mechanisms
tailored to each stage of the AI deployment pipeline.

4.2 Exposure-Impact Matrix

The AS Adversarial Exposure-Impact Matriz, illustrated in Figure 6, offers a detailed
taxonomy of adversarial attack vectors that specifically exploit vulnerabilities in AS.
The matrix organizes these vulnerabilities according to fundamental Al challenges,
such as the need for large datasets, sensitivity to model updates, similarities across
models, and input fragility, linking each to concrete attack surfaces, including data
pipelines, model APIs, and environmental inputs.

These vulnerabilities enable a wide spectrum of attacks, ranging from data poison-
ing and backdoors during training to model extraction and evasion at inference. The
matrix clarifies both where and how AS can be compromised and traces the down-
stream consequences from data collection and model preparation through deployment
to operational harms such as misguidance, sabotage, or intellectual property (IP) theft.
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Fig. 6 AS Exposure-Impact Matrix

AT Inherent Vulnerabilities and Attack Surfaces: AS inherit several criti-
cal vulnerabilities from the underlying AI models and datasets on which they rely,
exposing multiple attack surfaces:

® Data Hunger: The requirement for large and diverse datasets makes AS vulnerable
to data poisoning attacks, where adversarial modifications—such as altered traffic
sign images—are injected into the training data (Eykholt et al. 2018).

® Model Update Sensitivity: The adoption of federated learning and access to
model update pipelines introduce the risk of model poisoning attacks, allowing
adversaries to manipulate updates and embed backdoors (Cheng et al. 2021).

® Input Sensitivity: The inherent fragility of AI models to subtle input changes
makes them susceptible to adversarial examples, including both digital perturba-
tions and physical attacks (such as stickers or patches on objects) (Brown et al.
2018).

e Similarity Across Models: The resemblance between different models allows for
transfer attacks, where adversarial examples crafted for one model can successfully
mislead another (Tramer et al. 2017).

Real-World Impacts: The AS Adversarial Exposure Matrix reveals how the
convergence of Al vulnerabilities, attack surfaces, and adversarial tactics results in tan-
gible real-world consequences. By mapping these threats from data collection through
training, inference, and deployment, the matrix highlights clear pathways through
which Autonomous Systems can be undermined:
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Study

Attack Type

Real-World Impact

Dynamic Adversarial Attacks
on Autonomous Driving Sys-
tems (Chahe et al. 2023)

Physical adversarial patches on
moving objects

Misclassification of traffic signs, leading to mis-
guidance and deception

Adversary ML Resilience in
Autonomous Driving Through
Human-Centered  Perception
Mechanisms (Shah 2023)

Physical attacks on road signs
(e.g., tape, graffiti)

Misclassification, causing safety hazards

Embodied Adversarial Attack:
A Dynamic Robust Physical
Attack in Autonomous Driv-
ing (Wang et al. 2023)

Laser-based dynamic physical
attacks

Misinterpretation of the environment, result-
ing in potential crashes

Beyond Boundaries: A Com-
prehensive Survey of Trans-
ferable Attacks on AI Sys-
tems (Wang et al. 2023)

Transfer attacks
model similarities

leveraging

Scaled exploitation
autonomous systems

across multiple

Towards Robust and Secure

Adversarial manipulation of

Safety-critical failures, including crashes and

Embodied Al: A Sur- | Al-controlled robots casualties

vey on Vulnerabilities and

Attacks (Xing et al. 2025)

Discovering Adversarial | Adversarial driving maneuvers | System misguidance, crashes, and operational
Driving Maneuvers Against compromise

Autonomous Vehicles (Song

et al. 2023)

Efficient Adversarial Attack | 3D object detection manipula- | Misclassification of objects, leading to poten-

Strategy Against 3D Object
Detection in  Autonomous
Driving (Chen et al. 2024)

tion

tial crashes

Adversarial Backdoor Attack
on Trajectory Predic-
tion (Pourkeshavarz et al.
2024)

Clean-label data poisoning

Causes systematic errors in path prediction,
increasing collision risks

Table 5 Representative set of attacks and their real-world impacts in Autonomous Systems

® Data Hunger — Data Poisoning: The demand for extensive, diverse datasets
exposes AS to data poisoning, where physical or digital manipulation of training
data causes misguidance and deception at the perception layer.

® Model Update Sensitivity — Model Poisoning and Backdoor Attacks:
Continuous model refinement in AS creates opportunities for adversaries to intro-
duce model poisoning or embed backdoors via tainted updates. This results in
manipulation and sabotage, eroding model integrity and reliability.

® Reverse Engineering Prone — Model Extraction: When attackers gain
access to model outputs through open APIs or similar interfaces, they can perform
model extraction, leading to IP theft and exposure of proprietary algorithms. This
undermines competitive advantage and may facilitate further adversarial actions.

® Input Sensitivity — Evasion Attacks and Training-Data Extraction: Sys-
tems that rely on accurate sensor interpretation or user input are vulnerable to
evasion attacks and adversarial queries. Such elusion and environmental manip-
ulation can cause crashes, casualties, and information leakage, as the AS fails to
interpret its environment correctly.
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e Similarity Across Models — Transfer Attacks: Exploiting similarities among
models, adversaries can launch transfer attacks that scale across multiple AS plat-
forms, resulting in widespread ezploitation and a further erosion of public trust in
these technologies.

By mapping each vulnerability and attack type to its downstream impact, the
matrix underscores that even subtle technical manipulations can cascade into severe,
real-world consequences. Understanding these relationships is crucial for design-
ing robust defense strategies that ensure the reliability, safety, and integrity of
Autonomous Systems.

Table 5 consolidates recent research that exemplifies the real-world impacts identi-
fied in the AS Adversarial Exposure Matrix. These studies provide concrete evidence of
adversarial attacks, their methodologies, and their consequences for AS, emphasizing
the need for comprehensive defense mechanisms.

4.3 Stack—Threat Matrix

Because AS operate in uncontrolled, open environments, they are especially vulnerable
to attacks that target the physical world. Physical adversarial attacks are particularly
critical, as they directly compromise the perception capabilities of sensors and cameras,
thereby undermining all subsequent layers. Nonetheless, vulnerabilities are not limited
to physical inputs. Table 6 provides our matrix mapping relevant examples with their
scenarios and implications per stack layer. Some more in depth conceptual examples
are presented bellow to further understand the relevance per layer:

At the the Perception Layer, attacks can manipulate the sensory input of an
AS, causing the system to perceive incorrect or misleading information. Adversarial
attacks in computer vision can cause an AS to misclassify objects in the environment,
leading to incorrect or unsafe actions (Ai et al.; Wang et al. 2021; 2021).

Tampering with the perception layer often involves that further layers (planning
and control) will also be compromised as data flows from one layer to the other, an
incorrect view of the environment can lead to, for instance an incorrect route being
planned and wrong commands sent to the actuators in the control layer. The scenarios
for attacks that target the perception layer involve the exploitation of the area in which
camera sensors actuate, in this case the physical environment, thus the threat to be
considered are physical adversarial attacks. These include adversarial patches, objects
and stickers which have been outlined previously and summarized in Section3.2.

Attacks in to the perception layer and to other layers can be distinguished based
on the attacker objectives, this means that although every successful physical attack
involves alterations to the perception of the environment produced at the perception
layer, not every physical attack shall be considered a perception layer attack.

Perception layer attacks aim to remove or add elements to the system’s perception
of the world, altering its fundamental behavior. If the example of driverless cars is
considered, attacks involving adversarial traffic signs (Morgulis et al. 2019) might be
more appropriately classified as planning layer attacks rather than perception layer
attacks. This is because even if a stop sign is misclassified as a 45 mph speed limit
sign, the car will still be able to navigate the road and recognize that a traffic sign
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is present. However, its planned route or correct trajectory will be altered due to
an unintended decision made at the planning layer. In contrast, an attack involving
a pedestrian wearing an adversarial T-shirt (Xu et al. 2020) should be considered a
perception layer attack, as it renders an element invisible, preventing the car from
accounting for all elements on the road. Therefore, attackers’ aiming purely at the
perception layer will normally leverage physical attacks targeting object detectors.

At the Planning Layer adversarial attacks can be crafted leveraging vulnerabil-
ities in Deep learning classifiers including physical attack such as adversarial traffic
signs as demonstarted by Morgulis et al. (2019). The security implications can include
incorrect routes, traffic violations, or accidents. In (Fu et al. 2022), an adaptive
adversarial attack on real-time Unmanned Aerial Vehicle (UAV) tracking systems is
introduced. The authors devise the Ad2Attack method, a mechanism that produces
adversarial examples aimed at deceiving deep learning-powered UAV tracking systems.
A successful compromise of the tracking system’s performance can lead to the UAV
losing track of its intended target. This loss of tracking can, in turn, result in inaccurate
or suboptimal route planning, thus posing significant operational challenges.

Other significant vulnerabilities can be found in planning systems which involve
gathering information from external sources to make planning decisions, such as GPS
spoofing, an example of such attack can be found in (Horton and Ranganathan 2018),
attacks such as this can manipulate the drone’s perceived location and potentially
take control of its movements. Although this example is not in the image domain, it is
believed that systems may use other information in the planning layer such as saved
streetview images downloaded from an external server to aid navigation. Thus, attacks
similar to GPS spoofing, where malicious images are injected into the planning layer
leveraging wireless technology vulnerabilities, may exist in the future.

For the Comntrol Layer,Tian et al. (2022) presents an architecture for an
unmanned aerial vehicle (UAV) is described, in which the drone’s camera acts as a
sensor and sends real time images to the controller for processing and display through
a Wi-Fi network. The controller, which is based on Dronet, processes the image to gain
situational awareness of the environment and generates control instructions. These
instructions are transmitted to the actuator through the Wi-Fi network to control the
drone. Given the vulnerabilities in Wi-Fi networks, there may exist an active attacker
who controls the Wi-Fi link and generates imperceptible perturbations (adversarial
examples) to images sent by the camera to remain undetected. This attack may result
on the drone receiving wrong velocity commands which could make it intentionally
crash to an object or even a human, or at least alter its normal course. A illustration

of this attack is shown in Fig. 7.
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Fig. 7 Digital attack through spoofing malicious images into the control system
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Xie et al. (2017b) explores adversarial attacks on deep learning-based semantic
segmentation and object detection systems, both of which play a critical role in the
control layer of autonomous vehicles. Through the generation of adversarial exam-
ples, these systems can be manipulated, leading to erroneous control decisions with
potentially hazardous outcomes such as accidents or system malfunctions.

The researchers present a method for creating adversarial examples that effectively
deceive both semantic segmentation and object detection algorithms. The technical
backbone of this paper involves the resolution of an optimization problem, the goal
of which is to create adversarial perturbations that maximize the target model’s loss
function while remaining visually undetectable to human observers. To achieve this,
the authors utilize a variant of the PGD algorithm called Dense Adversary Generation
(DAG). The DAG method implements an iterative optimization process to identify
the optimal adversarial perturbations.

Overall, the Stack—Threat Matrix reveals that vulnerabilities span every layer of
the AS architecture. Successful attacks at one layer often propagate and amplify
through the stack, highlighting the need for defense strategies that address the full
system and not just isolated components.

5 Critical Appraisal of Defenses in the Context of
Autonomous Systems
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Attack Description Scenario Target [Implications [Reference
Perception Layer
Adversarial Patch Patch embedded on road|Object detector/classi- | Misclassification, system |(Brown et al.
sign or object fier malfunction, hazardous |2018)
incidents
Adversarial Sticker Adversarial  sticker on|Object detection/seg-|Scene misperception, | (Chen et al.
object/surface mentation incorrect decisions 2019)
Adversarial Apparel Person wearing adversar-| Human/object classifi- | Pedestrian missed, secu-|(Xu et al;
ial clothes or accessories |cation rity breach Sharif et al.
2020; 2019)
Adversarial Object Placing adversarially- | Object recognition False identification, safety | (Kong et al.
engineered 2D/3D object risks 2020)

Lighting Attack

Adversarial Rain

Adversarial Clothing

Remote Perception

Attack

LiDAR Spoofing

in environment

Manipulate scene light-
ing/shadows

Raindrop patterns on
lens/image

Clothing designed to fool
detector
Malicious
tion via
comms
Fake laser
LiDAR sensor

pattern injec-
compromised

signals  to

Vision-based percep-
tion

Vision-based  percep-
tion

Person detec-
tion/recognition

Camera-based detec-
tion

LiDAR perception

Misclassification,  detec-
tion failure
Degraded
environmental
pretation
Security risk, evasion of
detection

False negatives for critical
objects

perception,
misinter-

False obstacle detection,
collision risk

(Hsiao et al.
2024)
(Guesmi et al.
2023)

(Hu et al
2023)
(Man et al.
2023)
(Cao et al
2019)

Planning Layer

Traffic Sign Attack

Subverted or altered traf-
fic sign

Traffic sign recognition

Misnavigation, rule viola-
tion, accident risk

(Eykholt et al.
2018)

GPS Spoofing Falsified GPS signals Navigation system Route deviation, loss of|(Horton and
control, accidents Ranganathan
2018)
UAV Tracking Attack Compromised tracking | UAV route/target |Loss of target, mission|(Fu et al
data or communication tracker failure 2022)
Adversarial Billboard Adversarial billboard/sign | Object detection/clas-|Scene confusion, misbe-|(Zhou et al.
in environment sification havior, planning error 2020)
Adversarial Planning Crafted planner | Planning algorithm Unsafe/inefficient routing, | (Edelkamp
input/feedback increased risk 2023)
Trajectory Attack Adversarial input to pre-|Trajectory prediction |Wrong agent movement|(Cao et al.
diction model forecast, collision 2022)
Semantic DoS Attack Benign object induces|Behavioral  planning|Unnecessary stops or|(Wan et al.
overly conservative behav-| module detours, degraded perfor-|2022)
ior mance
Control Layer
UAV OD Spoofing Spoofed images for UAV|UAV  object detec-|Erroneous control action,|(Tian et al.
detection tion/control unsafe maneuvers 2022)
Semantic Exploit Malicious image for seg-|Control subsystem Poor control decisions, | (Xie et al.
mentation/detection potential accidents 2017b)
Trojaning Attack Injecting backdoor during| Control algorithm Unauthorized actuation, | (Cheng et al.

Model Extraction
Flying Patch
GhostImage Attack

CAN Injection

model training
Query-based model steal-
ing

Drone delivers adversarial
patch into field of view
Remote  projection
adversarial pattern
Malicious CAN bus mes-
sage injection

of

Control  algorithm/-
model

Vision-based control
Camera-based control
Vehicle control sys-
tems

hijack risk
IP theft, enables further
attack planning

Remote error injection,
loss of control
Misclassification, control
errors

Unauthorized control,
theft

2021)
(Li et al. 2021)

(Hanfeld et al.
2023)
(Man et al.
2020)
(Khan et al.
2022)

Table 6

Stack-Threat Matrix

30




In this section, we critically examine state-of-the-art adversarial defense mecha-
nisms for AS. We begin by outlining the unique operational and security requirements
that robust AS defense systems must satisfy (Section 5.1). Next, we focus on the
challenges posed by physical adversarial attacks and review recent approaches for
defending against them (Section 5.2). Drawing on the analyses above, we refine our
taxonomy of defense mechanisms and narrow our evaluation to those methods most
relevant and effective for AS, discussed in Section 5.3 and summarized by Table 7.
Finally, in Section 5.4, we systematically assess a set of thirty representative defense
mechanisms, introducing our novel AS-ADS scoring framework to quantify their
alignment with the practical needs of AS.

5.1 Defining Requirements for AS Defense Systems

Building on our analysis of AS vulnerabilities and the characteristics of the AS
stack and vision model life-cycle, we identify the specific defense needs that must be
addressed to ensure robust and trustworthy AS deployments. We then evaluate how
current state-of-the-art defense mechanisms align with these needs and discuss the
remaining key challenges.

To contextualize these requirements, consider a representative mission scenario: let
d denote an autonomous unmanned aerial vehicle (UAV) tasked with navigating and
conducting reconnaissance in diverse, potentially hostile environments. The UAV’s
objectives include detecting both known and unknown armed vehicles, including those
deliberately camouflaged using adversarial techniques.

Suppose further that d € D, where D is a fleet of UAVs operating in different areas
and leveraging federated learning (FL) to collaboratively update their models. While
this distributed approach increases mission resilience, it also introduces additional
attack surfaces, particularly via the communication and update mechanisms of FL.

Throughout its mission, UAV d may face a variety of adversarial threats. For
example, adversarial patches, as described in (Zhang et al. 2022), may be used by
adversaries to camouflage vehicles and evade detection targeting the perception layer.
Adversarial training might be deployed to defend against known patch types, but
novel attack variants can still bypass these defenses. Visually distracting adversarial
billboards (Zhou et al. 2020) might divert the UAV from its intended path, while
attacks on FL communication channels can inject poisoned data into the learning
process.

Mechanisms to address these risks include adversarial training and detection-based
approaches to filter potentially malicious images. However, a recurring limitation is
their lack of adaptability to novel attacks and inability to learn from previously unseen
patterns without extensive retraining.

This scenario exemplifies the broader landscape of AS security and highlights the
need for defense mechanisms that can evolve in response to new threats, while also
operating securely within collaborative, distributed learning frameworks. Addition-
ally, for operational trustworthiness, defense mechanisms should provide interpretable
outputs that enable human experts to visualize, categorize, and respond to detected
attacks.
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For instance, the detection approach proposed by Soares et al. (2022) employs a
similarity-based deep neural network (Sim-DNN) to detect imperceptible adversarial
attacks by comparing new data samples to learned prototypes. This prototype-based
method is interpretable and does not require adversarial training, but still lacks robust
response capabilities (e.g., automated flagging or recovery), and may sometimes mis-
classify novel legitimate samples as adversarial. Advancing research toward more
adaptive, interpretable, and actionable frameworks thus remains an open challenge.

Developing robust AS defenses often requires a combination of mechanisms such as
adversarial training, detection, and unified frameworks. From this analysis, we derive
four critical requirements for AS defense mechanisms:

® Real-Time Detection and Response: Defenses must promptly identify and
mitigate adversarial inputs to prevent compromise of safety-critical decisions.

e Adaptability to Novel Attacks: Mechanisms should respond effectively to new
and evolving adversarial strategies without requiring complete retraining.

® Interpretability and Transparency: Outputs should be explainable and acces-
sible to human operators, enabling informed oversight and intervention.

® Resource Efficiency: Methods must be computationally and energetically efficient
for practical deployment on resource-constrained AS platforms.

These criteria serve as the foundation for our evaluation of state-of-the-art defense
mechanisms in the remainder of this section and throughout the paper.

5.2 Defenses Against Physical Adversarial Attacks

Physical adversarial attacks represent a uniquely severe threat to AS due to their real-
world feasibility, persistence, and capacity to compromise safety-critical operations
throughout the perception—planning—control pipeline. Unlike digital perturbations,
these attacks often manifest as tangible modifications in the environment, such as
adversarial patches on road signs, manipulated sensor readings, or spoofed trajectories,
and are intentionally crafted to survive environmental changes. However, robust and
generalizable defenses against physical attacks remain limited, fragmented, and often
unvalidated beyond narrowly defined scenarios, largely due to the lack of standardized,
physically grounded evaluation benchmarks.

To enhance adversarial robustness in the physical domain, recent research has
focused on three broad categories of defense: proactive, reactive, and unified frame-
works. Yet, few existing methods are designed to accommodate the full spectrum of
real-world variability encountered by AS.

Within Proactive strategies, Adversarial training with physically realizable
attacks (e.g., LIDAR perturbations or real-world patch examples) has shown promise
in controlled settings (Kurakin et al.; Lu and Radha 2016; 2023), but generalization to
unseen conditions such as new weather, sensor occlusion, or novel object types is often
poor. Input Pre-Processing methods, including semantic-aware masking and inpaint-
ing (Jing et al. 2024), as well as multi-step diffusion-based purification (Nie et al. 2022),
offer complementary robustness, but their efficacy varies significantly across sensor
modalities and attack types. Other proactive defenses include spatial attention hard-
ening to guard against localized road sign attacks (Shibly et al. 2023) and multi-sensor
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aerial fusion to strengthen detection pipelines (Chen and Chu 2023). Despite their
value, such approaches are often brittle when facing adaptive or context-aware adver-
saries, and typically introduce trade-offs between robustness and perceptual fidelity.
Similarly, trajectory prediction models trained under uncertainty provide resilience
at the planning level, but remain underexplored for targeted physical threats (Zhang
et al. 2022).

Reactive detection-based defenses focus on flagging anomalies during system
operation. Techniques in this category include entropy-based localization of patch
regions (Tarchoun et al. 2023), kinematic consistency checks for identifying violations
of physical constraints (Yu et al. 2024), and hybrid pipelines that combine detection
and input recovery (Liu et al. 2022). While these approaches offer interpretability and
low-latency adaptation, they often struggle against subtle or context-aware attacks
that closely mimic plausible environmental features.

Unified and hybrid frameworks integrate multiple defense mechanisms across
the AS stack. For example, control-aware frameworks such as SpecGuard (Dash et al.
2024) maintain mission compliance even under partial perception failure, while sen-
sor fusion approaches like VisionGuard (Han et al. 2024) validate consistency between
sensory modalities. Adaptive neural modeling strategies, such as RCDN (Wang et al.
2024a), aim to dynamically harden internal representations against adversarial per-
turbations. However, these promising approaches often face scalability limitations
and have not yet been comprehensively evaluated across the diverse operational
environments typical of real-world AS deployments.

Certified defenses represent a recent advancement, targeting physical attacks
with formal robustness guarantees. PatchCleanser (Xiang et al. 2022) provides certi-
fied robustness via double masking, while works such as (Yang et al. 2023) and (Zhang
et al. 2022) extend certification to control systems and semantic segmentation. These
approaches are grounded in strong theoretical guarantees, but frequently present
challenges regarding runtime feasibility and limited coverage of the full spectrum of
physical attack surfaces.

Despite these advances, several key challenges remain. Most defenses are evalu-
ated under narrow physical conditions, lacking robustness to environmental variation
or domain shift. High-performing methods—particularly those involving certification
or fusion—often introduce significant computational overhead, raising concerns for
real-time AS deployment. Moreover, defenses rarely propagate protection beyond per-
ception to downstream modules such as planning or control, leaving the broader
autonomy stack exposed. Existing detection methods frequently fail to generalize
across attack types or modalities, underscoring the need for attack-agnostic, adap-
tive detection pipelines. Some of these are beginning to emerge in adversarial attack
research (Li et al. 2024) and deepfake detection (Pellcier et al. 2024), and could poten-
tially be translated to the physical domain due to their prototype-based characteristics,
though this remains to be explored.

Given these limitations, certified defenses and targeted detection mechanisms cur-
rently stand out as the most promising approaches against physical adversarial attacks
in AS. Recent contributions, (some of which are evaluated in detail in Section 5.4)
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demonstrate notable progress, but comprehensive integration and rigorous validation
across the full AS pipeline remain critical open challenges for future work.

5.3 Defense Taxonomy Simplification

To address the real-time, adaptive, interpretable, and resource-conscious requirements
of AS, we categorize SOTA defenses according to their core methodology, rather than
along legacy proactive/reactive lines. We exclude Model Regularization, Model Distil-
lation, and Provable defenses from our main analysis. Regularization and distillation
are either now subsumed within other defense categories or lack standalone relevance in
recent AS-specific literature. Provable (i.e., formal verification) defenses are excluded
due to their high computational cost and inflexibility for real-world AS deployment.
Similarly, denoising and reconstruction are no longer considered standalone mecha-
nisms, as they are now integrated into Pre-Processing or unified frameworks in recent
works. Accordingly, we focus on five categories: Adversarial Training, Input Data
Pre-Processing, Model Ensembles, Detection Mechanisms, and Unified Defense Frame-
works. Each is evaluated across four criteria: real-time response, adaptability to novel
attacks, interpretability, and resource efficiency. Table 7 summarizes their alignment
with AS needs and shows the relevant literature selected within our paper.

5.3.1 Adversarial Training

Adversarial training remains a foundational technique, where adversarial examples
are incorporated into the model’s training process (Madry et al. 2019). In AS con-
texts, adversarial training in autoencoder filters has led to improvements in adversarial
robustness for both white-box and black-box attacks. Such methods show improved
resistance to certain perturbations, but face key limitations:

® Real-Time Response: High. Inference performance is real-time, but the training
process is computationally intensive.

® Adaptability: Low. Generalization to unseen attacks is limited.

e Interpretability: Low. The mechanisms by which robustness is achieved are often
opaque.

e Efficiency: Low. High cost in both training and memory.

5.3.2 Input Data Pre-Processing

Pre-Processing techniques such as resizing, cropping, and denoising mitigate adver-
sarial perturbations before they reach the model. Studies such as (Xie et al. 2017b)
demonstrate their effectiveness, and recent advances include noise suppression, recon-
struction, and purification layers. DiffPure (Nie et al. 2022) leverages diffusion
models for adaptive purification, while UMoE (Lou et al. 2023) employs uncertainty-
aware fusion to counter sensor-blinding attacks. Pre-Processing is widely adopted for
real-time viability:

® Real-Time Response: High. Lightweight implementations can operate on edge
devices.
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® Adaptability: Low. These methods are often bypassed by adaptive or physical
attacks.

e Interpretability: Moderate. Effects are visible in the processed input, but causality
for prediction changes may be indirect.

e Efficiency: High. Minimal runtime cost.

Notably, this category is evolving: standard techniques (e.g., resizing, cropping, denois-
ing) (Xie et al. 2017b) are now being combined with advanced approaches such as
diffusion models (Nie et al. 2022). Pre-Processing is increasingly integrated into more
complex pipelines, leading to Unified Models such as (Han et al. 2024), which combine
sensory fusion, filtering, time-series (ARIMA, LSTM), and anomaly detection layers.

5.3.3 Model Ensembles

Model ensembles leverage diversity by combining multiple models, making it more
difficult for adversaries to simultaneously deceive all models (Bui et al. 2021). Key
characteristics are:

¢ Real-Time Response: Moderate. Inference latency increases with the number of
models.

e Adaptability: Moderate. Greater diversity can improve resistance to transfer
attacks.

® Interpretability: Low. Internal logic is often obscured by the ensemble fusion
process.

e Efficiency: Low. Requires substantial hardware for parallel model execution.

Although ensembles are effective, few recent AS-specific implementations exist due
to resource constraints. For example, the MADE framework (Zhao et al. 2024) employs
ensemble-like anomaly scoring over multi-vehicle inputs to detect collaborative attacks
in V2X scenarios. However, this method is not a traditional ensemble but rather a
soft classification, reflecting a broader trend: literature is shifting from full ensembles
to more flexible unified implementations.

5.3.4 Detection Mechanisms

AS increasingly rely on detection mechanisms for their interpretability, real-time per-
formance, and applicability throughout the AS stack and life-cycle. Alongside Unified
Frameworks, detection is now one of the fastest growing fields in adversarial defense,
with Detection and Unified papers constituting over 50% of recent (2023 onward)
publications.

Examples include Among Us (Li et al. 2023), which detects 3D adversarial inputs in
V2X-Sim via consensus-breaking heuristics; Segment-and-Complete (Liu et al. 2022),
which identifies adversarial patches through segmentation masks; and PhySense (Yu
et al. 2024), which generalizes detection to real-world perturbations. Prototype-based,
highly interpretable systems such as (Angelov and Soares 2021) further demonstrate
this category’s strengths:

® Real-Time Response: High. Detection is typically performed pre-inference.
e Adaptability: Moderate. Detection patterns can generalize to some unseen attacks.
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e Interpretability: High. Outputs are often visual or score-based, supporting
operator trust.

e Efficiency: Moderate. Auxiliary models or priors may increase computational
demands.

5.3.5 Certified Defenses

Certified defenses offer provable robustness guarantees under specific perturbation
budgets. In AS-relevant domains:

e PatchCleanser (Xiang et al. 2022) certifies robustness against small visible patches
(up to 2% area) using random masking and smoothing, evaluated on CIFAR and
ImageNet.

e Demasked Smoothing (Zhang et al. 2022) certifies patch-level segmentation robust-
ness via randomized ablation masking, showing strong resistance on ADE20K under
shadow and patch attacks.

e Certified Robust Control (Yang et al. 2023) formulates controller robustness
for AS via Lyapunov-based certified adaptation, effective against bounded input
perturbations.

Strengths and trade-offs are:

® Real-Time Response: Moderate. Certification layers may introduce runtime
sampling.

e Adaptability: Low. Guarantees hold only for bounded attacks and require
redefinition for new scenarios.

e Interpretability: High. Theoretical guarantees are transparent and explainable.

e Efficiency: Moderate—Low. Additional overhead from sampling, smoothing, or
invariant computations.

5.3.6 Unified Defense Frameworks

Unified frameworks, as defined in this review, represent a new taxonomy. They inte-
grate heterogeneous defense techniques (e.g., detection + recovery) using shared
feature pipelines or modular layers, whereas ensembles aggregate predictions from
independently trained full models. For example, Pellicer et al. (2024) present a
lightweight framework combining prototype-based detection and classification for
attacks and unseen classes, along with attack recovery via denoising methods,
achieving over 90% accuracy on CIFAR-10.

Other notable unified defenses include Du et al. (2018), which detects abnormal
samples for any pre-trained softmax classifier, and UNMASK (Freitas et al. 2020),
which both identifies adversarial attacks and mitigates their effects through robust
reclassification. UNMASK can detect up to 96.75% of attacks and restore correct
classification in up to 93% of cases.

More AS-specific frameworks, such as SpecGuard (Dash et al. 2024), integrate
detection, filtering, and signal processing to detect UAV sensor spoofing with a
92% recovery success rate and only 15% performance overhead. Time-Travel (Etim
and Szefer 2024) compares live input with historical image matches to detect false
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patches, achieving 100% effectiveness against recent adversarial examples in traffic
sign classification.
Overall, unified methods best align with AS priorities and full life-cycle needs:

® Real-Time Response: High. Historical matching and statistical filtering are
efficient on-device.

e Adaptability: High. Frameworks leverage both priors and learned models.

® Interpretability: High. Alerts are easily visualized and validated by operators.

e Efficiency: Moderate. Moderate computational and storage requirements.

5.4 Autonomous Systems Adversarial Defense Score
(AS-ADS) framework

To systematically assess the suitability of defense methods for AS, we build on the
updated taxonomy provided in Table 7

We introduce the Autonomous Systems Adversarial Defense Score (AS-
ADS), a scoring framework designed to quantify each method’s alignment with
operational AS constraints. AS-ADS evaluates across our 4 dimensions (Real-Time
Detection and Response, Adaptability to Novel Attacks, Interpretability
and Transparency and Resource Efficiency ):

Each criterion is rated on a 0 to 1 scale in 0.25 increments. The final AS-ADS score
is calculated as the average of these four values, scaled to a 1-5 range and rounded to
the nearest half:

: (1)

where R, A, I,E € [0,1] represent the real-time, adaptability, interpretability, and
efficiency scores, respectively.
R, A, I, E are obtained for each paper after marking using rubrics in Table 8.

AS-ADS(P) = <R+A+I+E) %5

Criterion 0 pts 0.25 pts 0.5 pts 1.0 pts
Real-Time Response Batch inference | High latency Optimized Real-time at
only inference only edge-level
Adaptability to Novel | Static model Minor general- | Modular, par- | Robust to unseen
Attacks ization tially adaptable | attacks
Interpretability Black-box Minimal logs Score-based or | Prototype/semanti¢
visual explanation
Resource Efficiency High overhead GPU- Deployable with | Lightweight for
dependent tuning AS hardware

Table 8 AS-ADS scoring rubric by criterion

This scoring framework facilitates standardized, comparative evaluation of SOTA
defense methods in AS settings. By grounding the scores in real-world operational
needs and deployment constraints, AS-ADS enables both a fine-grained critique of
existing methods and an actionable guide for future design.
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Method Description [ Score [ Reference [ AS
Detection Mechanisms
Detects adversarial inputs using evolved image processing sequences 2 (Gupta et al. 2020) -
via genetic algorithms
Detects adversaries via SSL-based consistency checks in feature and 4.5 (Sabokrou et al. 2024) -
label space
Combines LSTM temporal consistency checks with majority voting 2 (Abdu-Aguye et al. 2020) -
for time-series attack detection
Reveals adversarial artifacts through autoencoder reconstruction error 2.5 (Hussain and Hong 2023) -
analysis
Detects outliers through learned similarity metrics in contrastive fea- 2.5 (Soares et al. 2022) -
ture space
Learns attack-agnostic features via self-supervised contrastive proto- 3 (Li et al. 2024) -
type alignment
Identifies anomalies through statistical hypothesis testing in feature 1 (Grosse et al. 2017) -
space
Detects patches through entropy analysis and visual localization 4 (Tarchoun et al. 2023) v
Identifies physics violations through kinematic consistency checks 4.5 (Yu et al. 2024) v
Detects/recovers patches via joint detection-completion pipeline 4 (Liu et al. 2022) v
Pre-Processing Defenses
Embeds frequency-aware watermarks in RAW files using multi- 4 (Hu et al. 2023) -
spectral fusion
Optimizes augmentation parameters via gradient-based adversarial 1 (Shu et al. 2021) -
search
Enhances robustness through transfer of adversarial patterns across 1 (Reyes-Amezcua et al. 2024) -
vision tasks
Neutralizes patches through semantic context-aware masking/inpaint- 5.0 (Jing et al. 2024) v
ing
Scales LiDAR robustness via density-aware point cloud processing 4.5 (Lu and Radha 2023) v
Hardens aerial detection through multi-sensor fusion 2.5 (Chen and Chu 2023) v
Protects road sign recognition through spatial attention hardening 2.5 (Shibly et al. 2023) v
Purifies inputs through multi-step diffusion denoising 2 (Nie et al. 2022) v
Improves trajectory prediction via uncertainty-aware training 2.5 (Zhang et al. 2022) v
Unified Defenses
Integrates detection-denoiser architecture with noise-adaptive thresh- 3.5 (Pellicer et al. 2024) -
olds
Detects OOD samples through temperature-scaled confidence calibra- 2.5 (Du et al. 2018) -
tion
Verifies predictions through robust part-based feature alignment 4 (Freitas et al. 2020) —
Links adversarial and backdoor attack patterns for joint cross-attack 3 (Yin et al. 2025) -
detection
Detects face spoofing through dual-space (spatial/frequency) recon- 4 (Cao et al. 2024) -
struction analysis
Ensures mission-compliant recovery through specification-aware con- 4.5 (Dash et al. 2024) v
trol
Guarantees cross-sensor consistency through multi-modal fusion 4.5 (Han et al. 2024) v
checks
Enables robust perception via dynamic neural feature modeling 4.5 (Wang et al. 2024a) v
Certified Defenses
Provides certified patch robustness through double-masking with for- 4.5 (Xiang et al. 2022) v
mal guarantees
Certifies control stability under perturbations via Lyapunov analysis 4 (Yang et al. 2023) v
Ensures segmentation robustness via masked smoothing certification 4 (Zhang et al. 2022) v

Table 9 AS-ADS evaluation of adversarial defenses. “AS” marks those developed for Autonomous Systems.
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For the evaluation, we selected a representative subset of 30 defenses from the
literature discussed in this paper, focusing on Pre-Processing, Detection, Certified,
and Unified defenses, as identified in Sec. 5.3. Our evaluation subset includes: (a)
foundational works that paved the way for newer defense mechanisms in each category,
alongside relevant recent approaches—(Hu et al.; Shu et al.; Gupta et al.; Sabokrou
et al.; Reyes-Amezcua et al.; Abdu-Aguye et al.; Hussain and Hong; Soares et al.;
Li et al.; Grosse et al.; Pellicer et al.; Du et al.; Freitas et al.; Yin et al.; Cao et al.
2023; 2021; 2020; 2024; 2024; 2020; 2023; 2022; 2024; 2017; 2024; 2018; 2020; 2025;
2024)—and (b) work from 2022 onward tailored specifically to the AS domain—(Dash
et al.; Tarchoun et al.; Jing et al.; Han et al.; Yu et al.; Xiang et al.; Yang et al.; Zhang
et al.; Liu et al.; Chen and Chu; Lu and Radha; Shibly et al.; Nie et al.; Zhang et al.;
Wang et al. 2024; 2023; 2024; 2024; 2024; 2022; 2023; 2022; 2022; 2023; 2023; 2023;
2022; 2022; 2024a).

We derived final scores by combining each paper’s reported findings and expert
knowledge of the architectures, using the established rubric. For reproducibility indi-
vual scores per paper can be found in Appendix B, the overall scores per paper have
been presented in Table 9

It is important to note that the selection of scored papers reflects expert judgment
and is not intended to exhaustively cover all available methods, but rather to provide
a representative overview of current options and their effectiveness. This gives readers
and researchers practical guidance for deploying or developing defense systems across
the attack surfaces identified in this report.

A score of 5 does not imply perfection, but rather the closest alignment with the
requirements defined herein. The diversity of threats, datasets, and evaluation pro-
tocols across the literature makes it challenging to determine a universally optimal
method. Nonetheless, we believe this evaluation brings the field closer to that goal. To
improve accuracy and utility in future work, we recommend detailed reporting of run-
time overhead, FPS degradation, GPU memory usage, interpretability, and accuracy
for each defense using standardized datasets and attacks, although this is beyond the
scope of this review.

6 Conclusion and Future Directions

This review provides a holistic, system-level analysis of adversarial threats and defenses
for AS, integrating insights from both foundational vision-centric research and recent
AS-specific advances. By bridging these two strands of the literature, we offer a uni-
fied framework that captures the cascading impact of digital and physical adversarial
vulnerabilities across the autonomy stack. Our taxonomy, scenario-driven matrices,
and comparative synthesis enable both researchers and practitioners to assess current
gaps and prioritize future work in making vision-driven AS secure and resilient.

A cornerstone of our approach is the development and use of actionable analytical
matrices, including the Life-cycle—Attack, Stack—Threat, and Exposure—Impact
matrices. These matrices concretely map how adversarial vulnerabilities propagate
throughout the AT life-cycle and across layered AS architectures. For example, our Life-
cycle-Attack Matrix reveals both the temporal exposure of AS to poisoning, backdoor,
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and evasion attacks, and the unique risk windows at each stage of system opera-
tion. The Stack—Threat Matrix grounds these vulnerabilities in real-world scenarios,
demonstrating how a compromised perception module (such as a camera subjected to
adversarial patches or sensor spoofing) can trigger failures in planning that propagate
to mission-critical control. By further linking these technical threats to operational
consequences in the Exposure—-Impact Matrix, our review enables researchers and prac-
titioners to move beyond abstract taxonomies toward practical, system-level threat
modeling and benchmarking.

Our comparative synthesis of adversarial attacks, spanning both digital and phys-
ical domains, highlights a crucial reality: vulnerabilities in AS are rarely confined to
a single module. Instead, our analysis of real attack case studies and scenario-based
evaluations demonstrates that adversarial examples often trigger failures that cascade
across subsystems, resulting in safety or mission-critical consequences far beyond mere
performance degradation on academic benchmarks. This insight exposes the inade-
quacy of traditional, static, perception-only evaluation metrics and establishes the
need for operationally meaningful, stack-wide robustness assessment.

In critically appraising defense strategies, we show that the conventional tax-
onomy, dividing defenses into proactive and reactive categories, does not sufficiently
capture the practical demands of AS. By shifting the focus to underlying mechanisms,
and by introducing unified, context-aware defenses as a distinct class, we reveal that
most state-of-the-art methods, even when successful in vision research, fail to meet
the simultaneous requirements of real-time performance, adaptability to new threat
vectors, interpretability, and resource efficiency essential for deployment in AS. The
AS-ADS scoring framework introduced in this review directly evaluates these
axes, and our comprehensive analysis across more than thirty contemporary defenses
finds that only a minority approach a balanced, deployment-ready profile. In partic-
ular, robust and interpretable defenses against physical and multi-modal threats are
still lacking, and few methods have demonstrated stack-wide or life-cycle-spanning
effectiveness in realistic scenarios.

Despite these advances, significant challenges and research gaps remain.
Most available benchmarks remain narrowly focused on perception or digital attacks,
with little provision for evaluating cascading effects, cross-modal dependencies, or
mission-level outcomes. Few studies rigorously validate either attacks or defenses under
closed-loop, multi-agent, or sim-to-real conditions that reflect the operational reality
of modern AS. While the threat matrices presented in this review provide a critical
foundation for system-level risk assessment, their full potential will only be realized
when supported by open, community-driven benchmarking platforms and evaluation
protocols that span the entire stack.

Looking ahead, meaningful progress in adversarial robustness for AS will depend
on several intertwined advances. The field must prioritize the creation of stack-
integrated datasets and simulation environments capable of capturing cascading
failures, temporal persistence, and the interplay of digital and physical threats. Defense
research should increasingly focus on mechanisms that are interpretable, for some
cases also certifiable, and that are validated in resource-constrained, real-time settings.
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There is a particular need to design and rigorously test unified, adaptive defense frame-
works that can operate coherently across perception, planning, and control layers, and
that can dynamically respond to evolving threat landscapes in real deployments. The
integration of human-in-the-loop monitoring and decision-making, as well as robust
protocols for sim-to-real transfer, will be critical for bridging the gap between academic
innovation and practical deployment.

In summary, by clarifying the layered structure of AS vulnerabilities, mapping concrete
threat pathways, and critically evaluating the mechanisms and readiness of current
defenses, this review sets a new agenda for adversarial research in Autonomous Sys-
tems. We hope that the analytical frameworks, results, and open challenges identified
here will help guide the community toward robust, certifiable, and operationally viable
solutions for the next generation of trustworthy autonomous technologies.
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Attacker Knowledge | Attack Timing | Attack Location | Examples

White-Box Evasion Digital L-BFGS  (Fletcher  2013),
FGSM (Goodfellow et al
2014), I-FGSM (Kurakin et al.
2016), PGD (Madry et al.
2019), DeepFool (Moosavi-
Dezfooli et al. 2016), C&W
(Carlini and Wagner 2017b),
JSMA (Papernot et al. 2016),
UAP (Moosavi-Dezfooli et al.
2017), DDN ( Jéréme Rony
and Luiz G. Hafemann and
Luiz S. Oliveira and Ismail Ben
Ayed and Robert Sabourin
and Eric Granger 2019), Elas-
tic Net (Chen et al. 2018)
White-Box Poisoning Digital Data Injection (Biggio et al.
2012), Label Flipping (Koenig
et al. 2015), Backdoor (Gu
et al. 2017), MetaPoison
(Huang et al. 2020)
Black-Box Evasion Digital Boundary (Brendel et al.
2017), ZOO (Chen et al. 2017),
SimBA (Guo et al. 2019), One
Pixel (Su et al. 2019), Square
Attack (Andriushchenko et al.
2020), HSJA (Chen et al. 2020)
Black-Box Poisoning Digital BadNets (Gu et al. 2019),
Clean-label Backdoor (Zhao
et al. 2019), GAN-based Poi-
soning (noz Gonzélez et al.
2019)
Table A1l Foundational Taxonomic classification of image-domain adversarial attacks. Attack
location is included to show the digital-focused in literature. However in many cases, surveys do not
include this dimension.

Appendix B AS-ADS method evaluations

This includes the scores and small reasoning behind each scored for the defense
methods evaluated in SECTION:

DRAW: Defending Camera-shooted RAW against Image Manipulation
(Hu et al. 2023)

e Real-Time: 0.5 (Lightweight network optimized for camera integration)
e Adaptability: 0.5 (Cross-ISP pipeline protection)
® Interpretability: 1.0 (Pixel-level manipulation maps)
e Efficiency: 1.0 (0.95% params vs U-Net)

Method: Embeds frequency-aware watermarks in RAW files using multi-spectral
fusion, preserving detection capability through arbitrary ISP processing chains.
AS-ADS Score: 3.75
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Adversarial Differentiable Augmentation (Shu et al. 2021)

® Real-Time: 0.25 (Offline augmentation optimization)
e Adaptability: 0.5 (Partial corruption resistance)
e Interpretability: 0.0 (No diagnostic features)
e Efficiency: 0.25 (2.3 GPU hours/search)

Method: Automates augmentation parameter selection via gradient-based adversarial
search for robust training. AS-ADS Score: 1.25

Evolutionary IPTS Detection (Gupta et al. 2020)

® Real-Time: 0.25 (Multi-stage processing)
e Adaptability: 0.5 (Attack-specific sequences)
® Interpretability: 0.5 (Difference maps)
e Efficiency: 0.25 (Genetic algorithm overhead)

Method: Evolves optimal image processing pipelines using genetic algorithms to
reveal adversarial artifacts. AS-ADS Score: 1.875

BEYOND: Detecting Adversarial Examples via SSL Neighborhood
Relations (Sabokrou et al. 2024)

® Real-Time: 1.0 (Optimized for edge deployment with 50 neighbors
processed at 23ms/image)

e Adaptability: 1.0 (Attack-agnostic design validated against 12+ attack
types)

® Interpretability: 0.5 (Score-based consistency metrics with
visualization support)

e Efficiency: 1.0 (Lightweight SSL backbone with 0.9M parameters)

AS-ADS Score: 4.375

Delta Data Augmentation (Reyes-Amezcua et al. 2024)

® Real-Time: 0.25 (Transfer learning focus)
e Adaptability: 0.5 (Cross-dataset transfer)
® Interpretability: 0.0 (Opaque perturbation transfer)
e Efficiency: 0.25 (GPU-intensive)

Method: Transfers adversarial patterns from high-level vision tasks to enhance low-
level task robustness. AS-ADS Score: 1.25

Temporal Consistency Defense (Abdu-Aguye et al. 2020)

e Real-Time: 0.5 (143ms LSTM inference)
e Adaptability: 0.25 (Fixed thresholds)
e Interpretability: 0.25 (Entropy logs)
e Efficiency: 0.5 (Embedded compatibility)

Method: Combines frame-wise consistency checks with temporal majority voting for
video attack detection. AS-ADS Score: 1.875
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Autoencoder Reconstruction (Hussain and Hong 2023)

® Real-Time: 0.5 (47ms inference)
e Adaptability: 0.5 (73% unseen attacks)
¢ Interpretability: 0.5 (Reconstruction errors)
e Efficiency: 0.5 (580MB model)

Method: Detects adversaries through reconstruction error analysis using compact
autoencoders. AS-ADS Score: 2.5

Similarity Metric Analysis (Soares et al. 2022)

¢ Real-Time: 0.5 (89ms Jetson TX2)
e Adaptability: 0.5 (12 attack types)
¢ Interpretability: 1 (Confidence scores and prototypes)
e Efficiency: 0.5 (15W consumption)

Method: Identifies outliers through learned similarity metrics in feature space. AS-
ADS Score: 3.125

Contrastive Prototype Learning (Li et al. 2024)

® Real-Time: 0.5 (33ms inference)
e Adaptability: 1.0 (94.7% cross-attack)
¢ Interpretability: 1.0 (Prototype matching)
e Efficiency: 0.5 (2.1GB VRAM)

Method: Learns attack-agnostic features through self-supervised contrastive proto-
type alignment. AS-ADS Score: 3.75

Statistical Anomaly Detection (Grosse et al. 2017)

¢ Real-Time: 0.25 (Batch processing)
e Adaptability: 0.25 (Static models)
o Interpretability: 0.25 (Basic scores)
e Efficiency: 0.25 (CPU-intensive)

Method: Detects outliers through likelihood ratio testing in feature statistics. AS-
ADS Score: 1.25

UNICAD Framework (Pellicer et al. 202})
® Real-Time: 0.5 (24 FPS pipeline)
e Adaptability: 0.75 (Wide range of untrained in digital attacks and
+85% Unseen class identification)
Interpretability: 1 (Prototype based)
e Efficiency: 0.5 (8GB VRAM)

Method: Unified approach for attack detection, noise reduction, and novel class
identification. AS-ADS Score: 3.437

Confidence-Calibrated OOD (Du et al. 2018)
¢ Real-Time: 0.5 (45ms detection)
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e Adaptability: 0.5 (82% cross-domain)
® Interpretability: 0.5 (Thresholding)
e Efficiency: 0.5 (16W edge)

Method: Detects out-of-distribution samples through temperature-scaled confidence
calibration. AS-ADS Score: 2.5

Robust Feature Verification (Freitas et al. 2020)

® Real-Time: 0.5 (28ms alignment)
e Adaptability: 1.0 (97.3% detection)
e Interpretability: 1.0 (Semantic maps)
e Efficiency: 0.5 (4.3GB model)

Method: Verifies predictions through robust part-based feature alignment. AS-ADS
Score: 3.75

Cross-Attack Bridge Defense (Yin et al. 2025)

® Real-Time: 0.5 (33ms analysis)
e Adaptability: 1.0 (89% cross-backdoor)
® Interpretability: 0.5 (Similarity scores)
e Efficiency: 0.5 (12% overhead)

Method: Links adversarial and backdoor attack patterns for joint defense. AS-ADS
Score: 3.125

Dual-Space Face Defense (Cao et al. 2024)

® Real-Time: 0.5 (41ms processing)
e Adaptability: 1.0 (95.6% spoof detection)
o Interpretability: 1.0 (Error maps)
e Efficiency: 0.5 (6.7GB VRAM)

Method: Reconstructs face images in spatial/frequency domains for unified spoof
detection. AS-ADS Score: 3.75

SpecGuard Recovery (Dash et al. 202/)

e Real-Time: 1.0 (15ms ARM recovery)
e Adaptability: 1.0 (92% multi-sensor)
® Interpretability: 0.5 (Compliance scores)
e Efficiency: 1.0 (15% overhead)

Method: Recovers attacked inputs through safety specification-aware filtering. AS-
ADS Score: 4.375

Entropy-Based Patch Defense (Tarchoun et al. 2023)

® Real-Time: 0.5 (54ms analysis)
e Adaptability: 1.0 (90% patches)
® Interpretability: 1.0 (Entropy maps)
e Efficiency: 0.5 (2.77% loss)
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Method: Detects adversarial patches through localized entropy analysis. AS-ADS
Score: 3.75

Context-Aware Patching (Jing et al. 2024)

¢ Real-Time: 1.0 (11ms edge)
e Adaptability: 1.0 (96.4% mAP)
® Interpretability: 1.0 (Semantic highlighting)
e Efficiency: 1.0 (0.9W power)

Method: Neutralizes patches through semantic context-aware masking and inpaint-
ing. AS-ADS Score: 5.0

Multi-Sensor Guard (Han et al. 2024)

e Real-Time: 1.0 (8ms fusion)
e Adaptability: 1.0 (97.3% cross-modal)
® Interpretability: 0.5 (Consistency reports)
e Efficiency: 1.0 (4.2W SoC)

Method: Ensures cross-sensor consistency for robust automotive perception. AS-
ADS Score: 4.375

Physics-Consistency Check (Yu et al. 2024)

® Real-Time: 1.0 (9ms checks)
o Adaptability: 1.0 (94% cross-domain)
¢ Interpretability: 0.5 (Violation scores)
e Efficiency: 1.0 (3% CPU boost)

Method: Verifies physical plausibility of sensor inputs through kinematic checks.
AS-ADS Score: 4.375

Certified Patch Defense (Xiang et al. 2022)

® Real-Time: 1.0 (18ms masking)
e Adaptability: 1.0 (83.9% certified)
e Interpretability: 1.0 (Mask proofs)
e Efficiency: 0.5 (45.1 mAP)

Method: Provides certified robustness through double-masking with formal guaran-
tees. AS-ADS Score: 4.375

Formal Control Certification (Yang et al. 2023)

¢ Real-Time: 1.0 (22ms certification)
e Adaptability: 1.0 (Unseen perturbations)
e Interpretability: 0.5 (Stability margins)
e Efficiency: 0.5 (35% overhead)

Method: Certifies control stability under adversarial perturbations via Lyapunov
analysis. AS-ADS Score: 3.75
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Demasked Segmentation (Zhang et al. 2022)

® Real-Time: 1.0 (27ms inference)
¢ Adaptability: 1.0 (89% cross-task)
e Interpretability: 0.5 (Confidence maps)
e Efficiency: 0.5 (8.2GB VRAM)

Method: Certifiably robust semantic segmentation through masked smoothing. AS-
ADS Score: 3.75

Patch Detection-Completion (Liu et al. 2022)

® Real-Time: 0.5 (143ms pipeline)
e Adaptability: 1.0 (91% patches)
e Interpretability: 1.0 (Completion vis)
e Efficiency: 0.5 (6.3W edge)

Method: Jointly detects and completes adversarial patches in object detection. AS-
ADS Score: 3.75

Aerial Object Defense (Chen and Chu 2023)

® Real-Time: 0.5 (77ms processing)
e Adaptability: 0.5 (68% robustness)
e Interpretability: 0.5 (Region highlighting)
e Efficiency: 0.5 (4.8GB VRAM)

Method: Hardens aerial detection against adversarial object injections. AS-ADS
Score: 2.5

LiDAR Robustness Scaling (Lu and Radha 2023)

® Real-Time: 1.0 (14ms processing)
e Adaptability: 1.0 (97% cross-sensor)
e Interpretability: 0.5 (Saliency maps)
e Efficiency: 1.0 (2.1W LiDAR)

Method: Scales adversarial robustness for LiDAR detection through density-aware
processing. AS-ADS Score: 4.375

Road Sign Defense (Shibly et al. 2023)

® Real-Time: 0.5 (89ms ADAS)
e Adaptability: 0.5 (73% robustness)
e Interpretability: 0.5 (Attention maps)
e Efficiency: 0.5 (11W power)

Method: Protects road sign recognition through spatial attention hardening. AS-
ADS Score: 2.5

Diffusion Purification (Nie et al. 2022)
® Real-Time: 0.25 (2.3s/image)
e Adaptability: 0.5 (68% purification)
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¢ Interpretability: 0.5 (Process vis)
e Efficiency: 0.25 (24GB VRAM)

Method: Purifies inputs through multi-step diffusion denoising. AS-ADS Score:
1.875

Trajectory Prediction Hardening (Zhang et al. 2022)

® Real-Time: 0.5 (33ms prediction)
¢ Adaptability: 0.5 (65% robustness)
e Interpretability: 0.5 (Uncertainty bounds)
e Efficiency: 0.5 (8.7GB model)

Method: Improves trajectory prediction robustness through uncertainty-aware train-
ing. AS-ADS Score: 2.5

Dynamic 83D Modeling (Wang et al. 2024a)

® Real-Time: 1.0 (12ms modeling)
e Adaptability: 1.0 (96% cross-modal)
® Interpretability: 0.5 (Consistency reports)
e Efficiency: 1.0 (3.2W edge)

Method: Enables robust perception through dynamic neural feature modeling. AS-
ADS Score: 4.375
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