Aiding Modular Design and Verification of Safety-Critical Time-Triggered
Systems by Use of Executable Formal Specifications”

Kohei Sakurai
Hitachi Europe GmbH, Germany
kohei.sakurai @hase.hitachi-eu.com

Abstract

Designing safety-critical systems is a complex process,
and especially when the design is carried out at different
levels of abstraction where the correctness of the design
at one level is not automatically sustained over the next
level. In this work we focus on time-triggered (TT) systems
where the resources of communication and computation are
shared among different applications to reduce the overall
cost of the system. This entails serializing both communica-
tion and computation which does not necessarily meet the
assumptions made by the application. Hence, we present
the concept of executable formal specification of general
TT systems to establish a faithful model of the TT char-
acteristics. Our focus is on general applications running
in a synchronous environment. The proposed model can
be easily customized by the user and it is able to support
simulation and verification of the system. It also aids the
effective deployment of applications, and the validation of
the real system with model-based test generation. Our case
study shows how the general model can be implemented in
the SAL language and how SAL’s tool suite can be used to
guide the design of general TT systems.

1. Introduction

The design of safety-critical systems entails ensuring
predictability of the system’s behavior and the assurance of
its overall correctness. The time-triggered (TT) paradigm
has emerged as a viable concept to implement safety-critical
systems, with implementations such as TTA [14], FlexRay
[24] or SAFEbus [10] actually deployed in the avionic and
automotive fields. The use of formal methods is increas-
ingly being advocated for the verification of general safety-
critical systems (e.g., [20]). However, it has been shown in

*Research supported in part by Hitachi, EC ReSIST and Genesys
T Also with FTSR Group, Budapest University of Technology and Eco-
nomics, Hungary

Péter Bokor' and Neeraj Suri

Technische Universitdt Darmstadt, Germany

{pbokor,suri } @cs.tu-darmstadt.de

Safety-critical
applications

Non-safety-critical
applications

Core safety-critical services

Node 1 Node 2 Node n

Consistency-abstraction layer

Time-triggered communication

Unspecified behavior (faults)

Shared communication medium

Figure 1. Scheme of TT architectures

previous work [4, 21] that for TT systems the correctness
of a high-level application does not directly imply the cor-
rectness of its implementation. Consequently, formal tech-
niques dedicated to time-triggered systems are needed es-
pecially given their increasing deployment. Results about
successful formal analysis of TT systems do exist; however,
they present specific solutions (e.g., [25, 21, 4]) where mod-
eling patterns can only partially be re-used in new projects.
Therefore, we propose a generalized customizable model
of TT applications which is not restricted to any dedicated
implementation and can be used by practitioners in the
field. Our model is an executable specification of the sys-
tem which (a) not only enables verification but, (b) through
simulation of the system, can also guide the deployment of
applications, and (c) the effective generation of test suites.

To establish the context and contributions of this paper,
we provide a brief overview on TT, discuss the motivations
and highlight the proposed solution.

The System

Our model (Figure 1) follows the general view of TT sys-
tems [22] and augments it by a consistency abstraction
layer [23, 4]. User applications and core services are im-

plemented by jobs, each of them running on one or more
nodes. The actions of the system are triggered by the pas-
sage of time. The execution of jobs in the host nodes is
scheduled at design time to guarantee predictability. Nodes
communicate with each other using a shared bus such that a
communication controller grants write access to the nodes
in a round-robin manner and that receiver nodes can read
the bus in the time period of message sending. However,
this communication pattern can entail inconsistency among
replicated jobs running on different nodes. For example,
if jobs A and B run respectively before and after job C is
scheduled to send a message, job A and B will have a dif-
ferent local views. This mismatch between parallel and se-
quential sending and processing of messages can be tackled
by buffering the messages to delay these operations [23, 4].
In general, it is the designer’s decision whether to use this
abstraction or not. As the system also hosts safety-critical
applications, our view must also incorporate faults at differ-
ent levels of the architecture.

The Motivation

We seek a unified and formal treatment of general TT sys-
tems to guide key system design tasks such as rask schedul-
ing, test case generation and verification over user-guided
application and system configuration scenarios. Conse-
quently, the user should be able to customize the general
model to describe specific applications while ensuring the
desired system assurance levels.

A Solution

Deductive reasoning (e.g., theorem proving [20]) is a pow-
erful tool to verify complex properties of even infinite sys-
tems; however, it cannot directly be used to simulate the
system for finding certain execution paths (e.g., counterex-
amples, test cases). Therefore, we propose the use of an ex-
ecutable system specification to provide further features be-
sides verification. Since our approach uses the same model
to perform different tasks of design and verification, we
need not prove conformance between different represen-
tations. Our model is easy-to-understand as it maps each
component of the high-level model (see Figure 1) into a
syntactic module of the applied formal language. To cus-
tomize the general model, the user only needs to tailor the
corresponding modules.
Our overall contributions are:

e We present an executable formal model of general TT
systems. The model is intuitive and easily customiz-
able (for the TT operations and the desired classes of
faults) given its modular structure. We use the abstrac-
tion of discrete time scale which directly stems from
the assumption that the system is synchronous.

e We show a prototype implementation of the general
model by using the SAL language.

e We demonstrate the usability of our prototype by uti-
lizing the tools in the SAL suite to perform, based on
the same model, verification, effective deployment and
test generation for a case study.

The paper is structured as follows: Section 2 provides an
overview of TT systems. Section 3 proposes the executable,
modular model of general TT systems and Section 4 shows
a prototype implementation of the general model using the
SAL language. In Section 5, the example use cases are out-
lined in the SAL environment. Finally, we discuss related
work (Section 6) and conclusions (Section 7).

2. An Overview of TT Systems

This section gives an overview of TT systems [22, 14]
and defines a general class of faults.

2.1. Basic Concepts and Definitions

A system consists of N nodes with unique IDs {1, ...,
N}. Each node hosts one or more jobs that use the local re-
sources of the node when executed. Jobs communicate with
each other following a synchronous schedule called TDMA
(Time Division Multiple Access). The main idea is that
nodes share a communication bus in a round-robin manner!.
Each node is assigned a time window, called sending slot,
in each TDMA round. Node ¢ sends a message at sending
slot ¢ and other nodes can receive this message by identify-
ing the sender by its sending time. The communication is
time-triggered because the action of message sending and
receipt is launched by the time of local clocks. Collision
on the bus is avoided by assuming that clocks are synchro-
nized. Disallowed access to the bus is avoided by so called
bus guardians which physically prevent a faulty node from
accessing the bus.

Besides the TDMA communication schedule, each node
has its own internal schedule which determines when jobs
are executed. Both the TDMA and the internal node sched-
ules are statically defined at design time. Figure 2 shows an
example of both schedules.

2.2. Consistency-Abstraction Layer

Fault-tolerance is often achieved by replicating applica-
tion jobs on different nodes. A convenient abstraction layer
is provided by a mechanism called read/send alignment

1Other TT systems, like frame-based systems [13], use dedicated chan-
nels and can be treated as a special case of our general model.

> time

Round k Round k+1
Siot1 | Siot2 | Siot3 | Siot4 | Siot1 | Siot2 | Siot3 | Slot4
iob1 | job1 |
Node 1 Iml - — IWI
‘l job2 I msg. histarys {m; ‘l job2 I
Node2 [] 2 I T |

— |
- . hi .
Node 3 M msg. history, {my, m,, ms} J M
I ms(k) I Imz(k+1||
Node 4 job4 job4
my(k-1) my(k)

:l Node job execution

D Message broadcasted based on TDMA schedule

Figure 2. TDMA communication and internal
node schedule

[4, 23] which enables nodes to exchange and compute mes-
sages as if there were dedicated links between every pair of
nodes and the replicated jobs were executed parallel in time.
This facilitates the development of applications where repli-
cated jobs are assumed to maintain a common consistent
state (e.g., diagnosis [23]). The solution is flexible since it
is able to provide the same abstraction independent of how
a replicated job is scheduled within the host node. Con-
sequently, even core (transparent) services that should not
assume constrained scheduling can be implemented by this
technique. For example, a low-level diagnostic service can
be designed without posing any assumption about when the
code of the service is executed within a particular node.

Example Inconsistency We demonstrate the need of ab-
straction through a simple example of a replicated service.
Assume that replication is achieved by jobs that execute the
same deterministic operation in every round using the same
inputs from other jobs sent via messages. Consistency is
defined by requiring that every replica job has the same lo-
cal state in every round after execution. The main problem
in TT systems is that the freshness of data sent or processed
by different replicas might be different. For example, repli-
cated job 4 reads messages mj, mo, and mg sent in the
current round by nodes 1, 2 and 3 respectively (see Figure
2). On the other hand, job 3 can read only one fresh mes-
sage, m1. In this way, inconsistency can arise at round k
since jobs 3 and 4 update their local states based on dif-
ferent message histories. Node scheduling also determines
when the message calculated by a job can actually be sent.
Freshness now means whether a message can be sent in the
TDMA round when it is calculated. For example, messages
my and my4 contain the results calculated in the previous
round as the job execution of the respective node is after or
during the assigned sending slot. On the other hand, node
2 and 3 can send fresh messages ms and mg in the current
round since both jobs complete before the sending slots of
the hosting nodes. As a result, messages that are sent in the
same TDMA round by different nodes might refer to dif-

ferent TDMA rounds. This can cause inconsistency, if, for
example, nodes want to agree on a view of the system re-
garding the time period of a round (e.g., diagnosis or mem-
bership [23]).

General Solution To rectify the previous inconsistencies,
we use read and send alignment [23, 4] and provide it as
a layer between jobs and the host nodes communicating via
TDMA. The read alignment layer buffers the messages read
from the shared bus and computes a consistent message his-
tory in the following way. Assume that a job can read the
messages sent by nodes 1, ..., ¢ in the current TDMA round.
A consistent message history now contains {m, ..., m;} as
read in the previous TDMA round, and {m;41, ..., my} as
read in the current round. The send alignment layer buffers
the message calculated by the job and sends the old mes-
sage if there is at least one other job which cannot send the
newly computed message. Note that the alignment mecha-
nisms are based on a priori known schedules.

2.3. Characterization of Faults

Faults can manifest in any component of the system.
The most obvious classification of faults in TT systems dis-
tinguishes between communication and application faults.
Application faults happen during the execution of the job
and are usually specific to the application logic. Faults in
communication mean that a message other than intended is
sent or received. We define communication faults indepen-
dent of the application. Note that, in general, the number of
faults tolerated by the application is based on their degree of
severity [28]. The different classes of communication faults
are defined with ascending severity:

- benign fault: fault is locally detectable by every re-
ceiver other than the sender, e.g., missing message,

- symmetric value fault: all receivers read the same se-
mantically incorrect but locally undetectable message,

- asymmetric value fault (or Byzantine [16]): the most
severe fault where no assumption is made about what
message is sent by a faulty sender. We categorize every
fault that is neither benign nor symmetric as Byzantine.

Application faults depend on the application itself. The ra-
tionale of modeling communication and application faults
simultaneously is the ability to analyze their interplay with
respect to the high-level specification of the system.

3. A Customizable Formal Model

The aforementioned description cannot directly be used
for formal analysis of TT systems. In this section, we pro-
pose a template for the formal modeling of general TT

Module: faults

- node faults, alignment faults, communication faults
- correlated/independent faults

app[]‘ ‘nodelaults[] ’alignfau/ts[] ‘comm faults
#of
nodes, #of
nodes
— —
P i Module: TDMA
Module: node node_job_ | Module: alignment write_iface_
hedule aligned
- job(s) schedule write_iface . — -TDMA schedule
- application execution <« | -read/send alignment read_iface[J[]
- local state read_iface_| O
- message generation aligned[] H
oA [
. read._iface[][] '
event ettt ettt ettt i
T T T e iface. ;
time time time B time

Module: controller

- time control
- auxiliary operations

Figure 3. General modular structure of the
proposed Customizable Formal Model

systems. The model consists of five types of high-level
elements (called modules): controller, node, alignment,
TDMA, and faults. The modules and their interconnections
are depicted in Figure 3. Next, we detail the module opera-
tions and describe their interfaces. A prototype implemen-
tation of the model will be shown in Section 4.

Controller Module The controller module implements
the notion of time and distributes it to the other modules to
orchestrate the synchronized execution of the system. The
controller adjusts the time and triggers operations in other
modules. Such a centralized treatment of time corresponds
to the assumption of synchronized clocks in TT systems.

Node Module The node module has multiple instances,
one for each node. This module is in charge of executing
the hosted jobs at the time when they are scheduled, updat-
ing the local state of each job and handling external events,
e.g., reading sensors. For simplicity of further discussion
we can assume the every node hosts a single job. The in-
put interface defines events (event), the current time and
the messages received from other nodes. The messages are
accessed by reading a buffer, called read interface, which
stores messages read from the bus. If a job uses the con-
sistency abstraction, it reads consistently aligned messages
(read_iface_aligned[]), otherwise it simply reads data from
the TDMA bus (read_iface[]). Jobs send messages by writ-
ing them into the write interface which are then copied and
sent on the bus by the communication controller. The out-
put interface of the node module contains the job sched-
ule (node_job_schedule) and the messages sent by a job
(write_iface). The former one is required by the alignment

layer, the latter is sent directly on the bus or via alignment.

Alignment Module The alignment module is a consis-
tency abstraction that implements read and send alignment
at every node. The input interface contains the current time,
the node’s internal schedule, the message to be sent and the
messages read on the TDMA bus. Based on this informa-
tion, the module returns the aligned message of the node
(write_iface_aligned) and, in the output interface, the con-
sistently aligned incoming messages.

TDMA Module The TDMA module simulates the
TDMA communication bus which nodes use to send and re-
ceive messages. The input interface consists of the current
time and the message to send by each node, and the output
interface returns the values of delivered messages at each
node (read_iface[][]). The returned variable is a matrix of
messages where the i*" message in the j* row is the mes-
sage that node ¢ receives from node j. Messages are passed
between the node and TDMA modules either directly or via
the abstraction layer.

Faults Module The fault module extends the input and
output interfaces of normal operation. Modeling of cor-
related faults needs coordination among different system
elements, therefore, we assume that faults are implemented
by a single module. The fault module takes the current
time as input and injects faults into nodes (node_faults[]),
the alignment layer (align_faults[]) and the communication
bus (comm_faults). Since the application logic is system
specific, the list of jobs (app/[]) is passed to the fault module
to derive application faults.

The proposed overall model supports reusability and
customization for varied TT functionalities and appli-
cations. The implementation of the modules can be
tailored to the characteristics of the actual TT system. For
example, when we verify fault-tolerance under different
fault conditions within the same TT application, only
the fault module needs to be modified. Note that more
simplistic models can be proposed by assuming services
like alignment or membership. For example, it was shown
that the frame-based model can be used to model general
TT systems if alignment is used [4]. In this paper, on
the contrary, we propose a realistic model which can also
be used for the design of new algorithms that exploit the
characteristics of the TT architecture.

4. An Implementation with the SAL Language

In this section, we make a detailed walkthrough of our
prototype implementation of the general formal model de-

scribed in Section 3. Although we concentrate on safety-
critical applications where jobs are replicated and each job
execute the same program, our implementation can be eas-
ily customized to describe any TT application. We use the
SAL language because of its expressiveness and high-level
constructs and also because a powerful execution environ-
ment is attached to the language [6] which enables direct
analysis as shown in Section 5. We describe the implemen-
tation of each module and the composition of the modules.
The SAL implementation is depicted in a tabular notation.
We use the convention that SAL code in the explanation text
is written in italics type.

Snippet 1: Type declarations, auxiliary functions

1 tt{;N: natural, A: natural}: CONTEXT =

2 BEGIN

3 node: TYPE =[1..N];

4 discr_time: TYPE =[0..N];

5 fault: TYPE = {nonfaulty, benign, symmetric, asymmetric};
6 fault_vector: TYPE = ARRAY node OF fault;
7
8

error: natural = 2;
message: TYPE = [0..error];
9 message_array: TYPE = ARRAY node OF message;
10 function: TYPE =[[message_array,message,message]—> message];

12 Sauxiliary definitions

13 _fault_counter(v: fault_vector,e: fault,sum: [0..N],i: node):[0..N]=
14 IF i = 0 THEN sum ELSE

15 _fault_counter(v,e,sum+IF v[i]J=e THEN 1 ELSE 0 ENDIF,i-1)
16 ENDIF;

SAL is a typed language and every SAL model begins
with the definitions of types and functions (Snippet 1). Our
general system model contains /N nodes (node at line 3),
the usual communication faults (fault at line 5) and a binary
message domain which is augmented with an error value
(message at line 8). Time is modeled on discrete scale such
that each clock tick corresponds to a slot (discr_time at line
4). The idea is that the same clock tick triggers, in every
module, all operations that are supposed to be performed
in the corresponding slot, i.e., scheduled jobs are executed
(in node), messages are written/read to/from the bus (in
TDMA), messages are buffered (in alignment) and faults
are generated (in faults). A virtual slot is defined (with time
value 0) to model jobs that can read every message from
the previous TDMA round and are ready to send in the cur-
rent one from slot 1 on. The correctness of our discrete-
time abstraction stems directly from the assumption that the
precision of the applied clock synchronization algorithm al-
lows agreement on the time slots. Otherwise, the discrete-
time model needs to be justified by the user (e.g., [25]). In
our model, jobs execute applications (function at line 10)
which are functions taking a message received from each
other node, the current local state and an external event as
inputs and returning the new value of the local state. For
simplicity, messages, states and events share the same type.
In addition, array types define a value for each node (e.g.,

message_array at line 9). These basic definitions can be
customized by the user. For example, a simple counter func-
tion is defined (lines 13-16) which returns the number of
faults in an array.

Snippet 2: Controller module
17 controller: MODULE =

18 BEGIN

19 INPUT

20 inp_ev_vec: ARRAY node OF message
21 OUTPUT

22 time: discr_time,

23 fun: function,

24 ev_vec: ARRAY node OF message
25 INITIALIZATION

26 time = 0;

27 DEFINITION

28 ev_vec = inp_ev_vec;

29 TRANSITION

30

31 time < N ——> time’ = time + 1;
2

33 time =N ——> time’ = 0;

4]

35 ELSE ——>

36]

37 END;

SAL is able to directly map the modules of the general
model into modules of the language. SAL modules de-
fine local variables, communicate with other modules via
input and output variables, initialize local and output vari-
ables, define invariants and guarded transitions. The con-
troller module (Snippet 2) adjusts the discrete time in a peri-
odic manner, thus, modeling an infinite sequence of TDMA
rounds. In the SAL implementation, the module also main-
tains auxiliary operations like the definition of the replicated
application logic and the distribution of node events. As-
suming that a job is a replicated instance of a safety-critical
application, the application logic (fun at line 23) can be de-
fined only once and passed on to each node. Since fun is
not initialized, SAL will arbitrarily assign a function to it.
Events are defined as external input variables (inp_ev_vec
at line 20) which are passed to the nodes (ev_vec at lines
24,28) for processing.

SAL allows parameterized definition of modules. The
parameters need to be defined when the module definitions
are used to compose the system. An alignment module
instance (Snippet 3) is defined for each node (id at line
38). We abstract the job schedule of a node by defin-
ing at which discrete time instant the job starts execut-
ing (job_sched at line 45) and whether the nodes of the
system are able to send the latest message in the cur-
rent TDMA round (send_curr_round_vec at line 48). Local
buffers are defined to store values that were sent by other
nodes (read_iface_buffered at line 41) and that were com-
puted by the corresponding node (write_iface_buffered at
line 42) in the previous TDMA round. The former one is

Snippet 3: Alignment module

Snippet 4: Node module

38 alignment[id: node]: MODULE =

39 BEGIN

40 LOCAL

41 read_iface_buffered: message_array,
42 write_iface_buffered: message

43 INPUT

44 time: discr_time,

45 job_sched: discr_time,

46 read_iface: message_array,

47 write_iface: message,

48 send_curr_round_vec: ARRAY node OF BOOLEAN
49 OUTPUT

50 read-iface_aligned: message_array,
51 write_iface_aligned: message

52 DEFINITION

53 write_iface_aligned = %send alignment

54 IF FORALL (n: node): send_curr_round_vec[n]

55 THEN write_iface ELSE

56 IF time > job_sched $%job exec. is modeled as atomic event
57 THEN write_iface_buffered ELSE write_iface

58 ENDIF

59 ENDIF;

60 read_iface_aligned = [[n:node] %read alignment

61 IF n < job_sched

62 THEN read_iface_buffered[n] ELSE read_iface[n]

63 ENDIF]

64 INITIALIZATION

65 read_iface_buffered = [[n:node] 0];
66 write_iface_buffered = 0;

67 TRANSITION

68 [

69 time > 0 ——>

70 read_iface_buffered’[time] = read_iface[time];
71 write_iface_buffered’ =

72 IF time = job_sched

73 THEN write_iface ELSE write_iface_buffered
74 ENDIF;

75l

76 ELSE ——>

77]

78 END;

updated every time a remote node sends a message on the
bus (line 70), the latter one only changes when the local
node updates its local state and generates a new message
(lines 71-74). Send (lines 53-59) and read alignment (lines
60-63) can be defined as invariants based on the current and
buffered values. Definitions in SAL (labeled by DEFINI-
TION) can be thought of as macros that use the values of
other state variables. Consequently, using SAL definitions
is not only a logical way of modeling send and read align-
ment but, as definitions do not affect the state transition re-
lation of the system, it can also save state space during the
analysis.

The node module (Snippet 4) is also parameterized by
the identifier of the node (id at line 79). The job schedule is
not initialized which corresponds to an arbitrary schedule.
This is in accordance with the premise that core (safety-
critical) services are not prioritized. Unrealistic cases are
ruled out such that a node is only able to send the fresh
message in the same TDMA round if it finishes execution

79 node[id: node]: MODULE =
80 BEGIN
81 INPUT
82 time: discr_time,
83 fun: function,
84 read_iface_aligned: message_array,
85 ev: message
86 OUTPUT
87 write_iface: message,
88 job_sched: discr_time,
89 send_curr_round: BOOLEAN,
90 local_state: message
91 INITIALIZATION
92 local_state = 0;
93 send_curr_round IN {v: BOOLEAN |
94 IF job_sched >=id THEN v = FALSE ELSE TRUE ENDIF};
95 DEFINITION
96 write_iface = local_state; $assumption: node sends local state
97 TRANSITION
98 [
99 time = job_sched ——>
100 local_state’ = fun(read_iface_aligned, local_state, ev);
101]
102 ELSE ——>
103]
104 END;

before its sending slot (lines 93-94)%. We abstract that the
application is executed instantaneously at the time when the
job is scheduled (99-100). For simplicity, it is assumed that
the local state is sent as the node’s message (line 96). How-
ever, in general, the message can be a function of the local
state. Note that the domain of discrete time instants [0..N]
cannot cover the full generality of job scheduling. It cannot
be modeled that a node reads everything up to time ¢ (in-
cluding the message sent in slot 7) and sends immediately
at time (¢ + 1). For that, the model needs to be extended
such that an intermediate time instant is defined between ¢
and (7 4+ 1) where the application computes the message to
send. Such extension can affect the complexity of the anal-
ysis; therefore, its use is only recommended if needed.

The TDMA module is responsible for modeling the com-
munication of messages on the bus (Snippet 5). In gen-
eral, faults are defined and propagated by the fault module.
However, our SAL implementation reduces the number of
transitions by directly injecting communication faults in the
TDMA module. The output of the module is a matrix which
indicates the value received by node ¢ from node j after each
tick. If node j is not the sender in the slot then the value is
unchanged (line 120). Otherwise, the non-faulty and faulty
cases are distinguished. If the sender is non-faulty, the cor-
rect value that is determined by the alignment layer is sent
(lines 121-122). In case of a benign sender, every recipient
receives error (lines 123-124)%, while symmetric senders

2We use SAL’s IN operator to non-deterministically assign a value
from a set of constrained candidates; the empty constraint is denoted by
the Boolean TRUE.

3The definition can be modified such that the faulty sender can read its

Snippet 5: TDMA module

105 TDMA: MODULE =

106 BEGIN

107 INPUT

108 time: discr_time,

109 write_iface_aligned_vec: message_array,
110 fv_comm: fault_vector

111 OUTPUT

112 read_iface_vec: ARRAY node OF message_array
113 INITIALIZATION

114 read_iface_vec = [[n:node] [[m:node] 0]];
115 TRANSITION

16 [

117 time > 0 ——>

118 read_iface_vec’ IN {v: ARRAY node OF message_array |
119 FORALL (i, j: node):

120 IF j /= time THEN vl[i][j]=read_iface_vec[i][j] ELSE (
121 IF fv_comm[j] = nonfaulty

122 THEN v[i][j] = write_iface_aligned_vec[j] ELSE (
123 IF fv_comm[j] = benign

124 THEN v[i][j] = error ELSE (

125 IF fv_comm[j] = symmetric

126 THEN FORALL(k: node):

127 v[i][j] = vIK][j] AND v[i][j] /= error ELSE

128 TRUE

129 ENDIF) ENDIF) ENDIF) ENDIF};

130 []

131 ELSE ——>

132]

133 END;

distribute arbitrary but consistent and valid data (lines 125-
127). Asymmetric senders can send any value to any node
(line 128).

Snippet 6: Comm _faults module
134 comm_faults: MODULE =

135 BEGIN

136 INPUT

137 time: discr_time
138 OUTPUT

139 fv_comm: fault_vector
140 INITTALIZATION

141 Sat most A asymmetric faults

142 fv_comm IN {v: fault_vector |

143 _fault_counter(v, asymmetric, 0, N) <= A};
144 TRANSITION

145 [

146 time =0 ——>

147 fv_comm’ IN {v: fault_vector |

148 _fault_counter(v, asymmetric, 0, N) <= A};
149]

150 ELSE ——>

151]

152 END;

Our prototype currently implements communication
faults (Snippet 6) and other desired system specific faults
can be added by the user. Usually, the number of faults that
the application is able to tolerate is limited. We show, on
the example of asymmetric value faults, how the number
of communication faults can be tuned in our model. Ini-

own message.

tially, the number of asymmetric faults is limited by A (lines
142-143) which is an input parameter of the model (line 1).
Transient faults can be modeled by the periodic re-definition
of the fault vector (lines 147-148).

The previous modules can be composed together eas-
ily by wiring the corresponding input and output variables
(see Snippet 7 in the Appendix). We use the synchronous
composition operator (||) since we want that modules exe-
cute transitions in parallel. This means, for example, that
the simulated execution of the application occurs parallel
with sending a message on the bus. Recall that, although
“hard-wired” in this prototype implementation, the use of
the alignment module is, in general, optional.

5. Example Use Cases of Executable Formal
Specification: Design and Verification

We show how the SAL model of TT systems can be used
to verify properties about the system (Section 5.1), to find
appropriate scheduling of jobs (Section 5.2) and to automat-
ically generate test cases for specific test goals (Section 5.3).
The different tools we use are all part of the SAL environ-
ment; thus, they can directly work on the model described
in the previous section. In every case, the execution engine
is a model checker which performs exhaustive simulation
of the system model [5]. Independent of the actual model
checking algorithm, we only assume that the model checker
is able to explore all executions of the system. Therefore,
we can safely state that a property is true in a system if the
model checker cannot show a counterexample. For simplic-
ity, we assume that the system contains four nodes (N = 4).
Note that setting N to a constant value is necessary in clas-
sical model checking as it is impossible to explore infinite
many states.

5.1. Verification

Task: Consistent Replica States Suppose we want to
prove that send and read alignment indeed implements the
abstraction of dedicated communication paths and parallel
job execution. We consider an abstract application which is
implemented by an arbitrary function taking N messages
and the local state as inputs and returning the new local
state. Similarly to the type of fun (see Snippet 1), all values
are ternary (0, 1 and error). The correctness of the abstrac-
tion can be shown by proving consistency, i.e., replica jobs
have the same state at the end of each round*:

consistency: THEOREM
system |- G(time=0 => FORALL (i, j:node) :
local_state_vec[i]l=local_state_vec[]j]);

“The auxiliary variables local_state_vec[1i] (and
local_state_prev.vec[i]) were introduced to denote the lo-
cal state of job ¢ at the current (and previous) round.

Result: Consistency in Symmetric Systems In fact, the
SAL model checker could prove the property unless asym-
metric faults are allowed in the system. Since fun was
never explicitly initialized in the model, SAL assumes that
it can be any function and tries all possibilities. This cor-
responds to checking that consistency is true for any
application expressed by fun. Note that this is a special case
of the general theorem which states that consistency holds
for any application with any number of replica nodes [4].
The model checker finds a counterexample if an asymmet-
ric sender distributes different messages to different nodes
which then compute inconsistent local states. This means
that consistency can be proven for A = 0 and a coun-
terexample is found if A > 0. In the second case, consis-
tency can only be obtained through the use of a Byzantine
agreement protocol [16].

Discussion: Complexity We observed that it is computa-
tionally very expensive to consider all possible evaluation
of fun. However, we could successfully prove the prop-
erty within a few tens of minutes with the BMC (Bounded
Model Checker) of SAL. The proof took approximately 20
minutes running on a single processor of a double-core In-
tel Xeon 5130 at 2 GHz with 4 GBytes memory. SAL was
installed on a Linux system with kernel version 2.6.17. We
remark that the BDD (Binary Decision Diagrams) model
checker turned out to be ineffective to prove the property
as computing the BDD-representation of the model took a
long time (> 1 hour).

The next applications of the model are based on finding
counterexamples which are in general computationally less
complex than complete verification. This is because only a
portion of the state space must be explored. In fact, proving
consistency took the most time in our set of experiments.

5.2. Scheduling of Jobs

Task: Schedule for Reduced Abstraction Delay We
now show a proof-of-concept example of how to use the
model checker to find effective scheduling of replicated jobs
within the hosting nodes. We saw that the delay induced
by the alignment abstraction can be mitigated if all nodes
are able to send a message in the same round when the
message is computed. In this case the delay is caused by
the read alignment and is one TDMA round. In fact, the
model checker can find a proper schedule which minimizes
these delays. We achieve this by stating that such a schedule
does not exist and the model checker finds a counterexam-
ple which is a correct solution. To track the delay between
sending a message and processing it at a remote node, we
extend the domain of messages and define that fun returns
a special value SPECV if all input messages are 1. The fol-
lowing property states that it is never true that the local state

in around is SPECV and the local state in the previous round
is 1 in all nodes.

exist_schedule:
THEOREM system |-
G (NOT (time=0 AND FORALL (i:node) :
local_state_prev_vec[i]=1 =>
EXISTS (j:node) :local_state_vec[]j]=SPECV));

Result: Early Scheduled Jobs The property cannot be
proven and a counterexample is provided where the four
jobs are executed “early”, at slots 0, 0, 1 and 1 respectively.
We can see that this schedule indeed allows every job to
send the fresh message (value 1), therefore, the overall de-
lay can be reduced in this proof-of-concept example. Note
that the same technique can be used to find a proper map-
ping to deploy jobs on nodes even if more complex con-
straints are specified.

5.3. Test Generation

The idea of automated test generation is to construct a
sequence of inputs (called fest case) that will cause the sys-
tem under test to exhibit some behavior of interest, called
test goal. Model checkers can be naturally used to gener-
ate test cases such that Boolean trap variables are defined
which are initially false and set to true by the program when
the corresponding test goal is reached. The model checker
is instructed to prove that the trap variables cannot become
true; therefore, every counterexample is a valid test case.
However, the straightforward way of doing that can be in-
effective. For example, the strategy of generating one test
case for each test goal might be redundant. More sophisti-
cated techniques leverage the model checker, for example,
by checking for paths which are extensions (i.e., continua-
tions) of already explored executions [9]. This technique is
also implemented by SAL’s ATG (Automated Test Genera-
tion) tool which wraps the BMC and BDD model checkers
of SAL by augmenting them with clever techniques needed
for effective test generation.

Task: Tests for Specific Message Patterns We used the
ATG tool of SAL to generate a sequence of events observed
by a node which drives the system to a certain state. We
re-define fun that it returns SPECV if a node observes the
external event 1. Let the test goal be reaching a state where
the value SPECYV is sent on the bus as the message of the 1°¢
node. Therefore, we place the following assignment of trap
variable atg_t rap (newly added) in the TDMA module:

atg_trap’=IF EXISTS(n:node):
read_iface_vec([n] [1]=SPECV THEN TRUE
ELSE FALSE ENDIF;

Result: Test Case Found By running SAL ATG, we get
that node 1 observes event 1 and generates SPECV but it
cannot send it immediately because of the node schedule.
Therefore, the trap variable only becomes true in the sec-
ond TDMA round of the execution path which constitutes
the test case. In the SAL example, a sequence of events,
containing one event for every node, is returned by the tool
for each slot until the trap variable becomes true.

We have shown how our executable formal specification
and trap variables can be used to support model-based test
generation. An important issue about testing is the coverage
of the obtained test suite, i.e., whether it is able to exercise
the system to the desired extent determined by the coverage
metrics. The discussion about test coverage in TT systems
is beyond the scope of this paper.

6. Related Work

Formal methods have been successfully used for the ver-
ification of various TT applications. For example, the mem-
bership protocol in the TTP/C time-triggered protocol suite
was shown to be correct by hand proofs in [3], or auto-
mated theorem proving was applied to analyze an agree-
ment protocol in another time-triggered environment [21].
Other work used executable formal specification to model
check the startup protocol in TTP/C [25]. It is also pos-
sible to specify the system in an intermediate, preferably
understandable and easy-to-read, notation and translate it
into the input language of the verification engine (e.g., [17]).
Our prototype implementation omits this intermediate step
and specifies the system directly in the input language of
the analysis. We argue that the modularity of the proposed
model of TT systems, and the resemblance of its structure
with the real system fulfills the role of a precise though in-
tuitive specification. Our approach mainly differs from pre-
vious work in that it proposes a skeleton model of the target
systems which can be used as a template for customized
solutions and the specification needs not be created from
scratch.

As part of the system integration process, deployment,
allocation and scheduling tasks can be uniformly thought
of as restrictions with respect to the unconstrained space of
solutions. Different techniques such as constraint propaga-
tion, branch and bound, backtracking or mixed integer pro-
gramming have been proposed (e.g., [15, 12, 2]), however,
they require either the development of new computation en-
gines (e.g., written in C [12] or Java [15]) or the use of exist-
ing dedicated engines (e.g., [2]) to solve (or even optimize)
the constraint problem. Although our method, when used
for scheduling, might be outperformed by other techniques,
it uses the same system representation that is used for other
tasks. Therefore, the overall cost of design and analysis can
be reduced. If the constraint problem entails infeasible com-

plexity with our executable formal model, the application of
other techniques is inevitable. However, it is possible that
the combination of our approach with other techniques en-
hances the quality and performance of finding the best solu-
tion. The investigation of using model checking for system
integration is part of our ongoing work.

Testing of distributed systems deals with what to test and
how to test. Our approach is related to the first one because
we generate test cases as opposed to actually testing the sys-
tem. In distributed system, the second question is nontrivial
due to issues such as interoperability, synchronization, tim-
ing, and concurrency. Model-based testing can feed existing
solutions for testing distributed systems like [1, 27].

We apply the method of model-based test generation us-
ing a model checker [7, 19] to generate tests for the vali-
dation of TT systems. The idea is to challenge the model
checker to find execution paths in the model of the sys-
tem that reach specific test goals. This is done by stating
that no such path exists and the counterexample returned
by the model checker can be directly used as a test case.
As an alternative or supplementary to the model-based ap-
proach, requirement-based test-case generation [29, 18] can
be used where tests are generated by analyzing the require-
ments only. This can be useful if tests are required to be
independent of the unit under test.

7. Conclusion

We have proposed a formal but intuitive method to sup-
port the development of safety-critical TT systems from de-
sign to verification and testing. The solution is general and
the core elements of the method (i.e., system characteris-
tics, application logic and fault modes) can be customized
by the application developer. In our case study, we have
implemented a prototype model of general safety-critical
TT applications. This model has been analyzed by model
checkers and simple verification, task scheduling and test
generation examples have been shown. We used the SAL
language in our implementation, but other executable spec-
ification languages such as NuSMV [26], SystemC [11] can
be equally applicable. However, additional transformation
steps might be needed to translate from the specification to
the language of the execution engine (e.g., model checking
of SystemC codes [8]). As compared to previous work, the
main strength of our method is that it provides an all-in-one
solution which can be used for tasks that usually require
multiple representations of the system.

In future work, we plan to analyze real time-triggered
protocols with our method. We also look at deriving cover-
age metrics for testing TT applications and we look for new
solutions of hardware/software integration in safety-critical
TT systems. In particular, we are interested in techniques
that have been proven to be applicable for standard model-

checking (e.g., SAT solvers) but have not yet been used for
system integration.

References

(1]

(2]

(3]
(4]

(5]
(6]
(7]

(8]

(9]

[10]

[11]
[12]

[13]

(14]

[15]

[16]
(17]

(18]

[19]

(20]

(21]

G. A. Alvarez and F. Cristian. Simulation-Based Testing of
Communication Protocols for Dependable Embedded Sys-
tems. J. Supercomput., 16(1-2):93-116, 2000.

A. Balogh, A. Pataricza, and J. Racz. Scheduling of Embed-
ded Time-Triggered Systems. In Proc. Workshop on Engi-
neering Fault Tolerant Systems, pp. 44—49, 2007.

G. Bauer et al. An Investigation of Membership and Clique
Avoidance in TTP/C. In Proc. SRDS, pp. 118-124, 2000.

P. Bokor et al. Sustaining Property Verification of Syn-
chronous Dependable Protocols over Implementation. In
Proc. HASE, pp. 169-178, 2007.

E. Clarke, O. Grumberg, and D. Peled. Model Checking.
MIT Press, 2000.

L. de Moura et al. SAL 2. In Proc. Computer Aided Verifi-
cation, pp. 496-500, 2004.

A. Gargantini and C. L. Heitmeyer. Using Model Check-
ing to Generate Tests from Requirements Specifications. In
Proc. European Software Eng. Conf., pp. 146-162, 1999.
A. Habibi and S. Tahar. An Approach for the Verification
of SystemC Designs using AsmL. In Proc. Automated Tech-
nology for Verification and Analysis, pp. 69-83, 2005.

G. Hamon, L. de Moura, and J. Rushby. Generating Effi-
cient Test Sets with a Model Checker. In Proc. SW Eng. and
Formal Methods, pp. 261-270, 2004.

K. Hoyme and K. Driscoll. SAFEbus. Aerospace and Elec-
tronic Systems Magazine, IEEE, 8(3):34-39, 1993.

Open SystemC Initiative. http://www.systemc.org.

S. Islam and N. Suri. A Multi Variable Optimization Ap-
proach for the Design of Integrated Dependable Real-Time
Embedded Systems. In Proc. Embedded and Ubiquitous
Computing, pp. 517-530, 2007.

R. M. Kieckhafer et al. The MAFT Architecture for Dis-
tributed Fault Tolerance. IEEE Trans. Comput., 37(4):398-
405, 1988.

H. Kopetz and G. Bauer. The Time-Triggered Architecture.
Proceedings of the IEEE, 91(1):112 — 126, Jan. 2003.

K. Kuchcinski. Constraints-Driven Scheduling and Re-
source Assignment. ACM Trans. Des. Autom. Electron.
Syst., 8(3):355-383, 2003.

L. Lamport, R. Shostak, and M. Pease. The Byzantine Gen-
erals Problem. ACM Trans. Prog. Lang. and Sys., 4(3), 1982.
S. P. Miller et all. Proving the Shalls. In Proc. Formal Meth-
ods Europe, pp. 75-93, 2003.

A. Rajan, M. W. Whalen, and M. P. Heimdahl. Model Vali-
dation using Automatically Generated Requirements-Based
Tests. In Proc. HASE, pp. 95-104, 2007.

S. Rayadurgam and M. Heimdahl. Coverage based Test-
Case Generation using Model Checkers. In Proc. Workshop
on Eng. of Comp. Based Systems, pp. 83-91, 2001.

J. Rushby. Formal Methods and their Role in the Certifica-
tion of Critical Systems. TR SRI-CSL-95-1, SRI Int., 1995.
J. Rushby. Systematic Formal Verification for Fault-Tolerant
Time-Triggered Algorithms. [EEE Trans. Softw. Eng.,
25(5):651-660, 1999.

(22]

(23]

(24]
[25]

[26]
[27]

(28]

(29]

J. Rushby. Bus Architectures for Safety-Critical Embedded
Systems. In Proc. Embedded Software, pp. 306-323, 2001.
M. Serafini et al. A Tunable Add-On Diagnostic Protocol
for Time Triggered Systems. In Proc. DSN, pp. 164-174,
2007.

FlexRay Specification. http://www.flexray.com.

W. Steiner et al. Model Checking a Fault-Tolerant Startup
Algorithm: From Design Exploration To Exhaustive Fault
Simulation. In Proc. DSN, pp. 189-198, 2004.

NuSMYV Toolset. http://nusmv.irst.itc.it/.

W. Tsai et al. Scenario-based Object-Oriented Test Frame-
works for Testing Distributed Systems. In Proc. Future
Trends of Distr. Computing Sys., pp. 288-294, 2003.

C. J. Walter, M. Hugue, and N. Suri. Continual On-Line Di-
agnosis of Hybrid Faults. In Proc. 4th Conf. on Dep. Com-
puting for Critical Applications, pp. 233-249, 1994.

M. W. Whalen, A. Rajan, M. P. Heimdahl, and S. P. Miller.
Coverage Metrics for Requirements-based Testing. In Proc.
Software Testing and Analysis, pp. 25-36, 2006.

Appendix

Snippet 7: Synchr. composition of N-node system

153 system: MODULE =

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

controller
| | (WITH INPUT read_iface_aligned_vec:
ARRAY node OF message_array
WITH INPUT ev_vec: ARRAY node OF message
WITH OUTPUT write_iface_vec: message_array
WITH OUTPUT job_sched_vec: ARRAY node OF discr_time
WITH OUTPUT send_curr_round_vec:
ARRAY node OF BOOLEAN
WITH OUTPUT local state_vec: ARRAY node OF message
(| | (n: node): RENAME
read_iface_aligned TO read_iface_aligned_vec[n],
ev TO ev_vec[n],
write_iface TO write_iface_vec[n],
job_sched TO job_sched_vec|[n],
send_curr_round TO send_curr_round_vec[n],
local_state TO local _state_vec[n]
IN node[n]))
| | (WITH INPUT job_sched-vec: ARRAY node OF discr_time
WITH INPUT read_iface_vec:
ARRAY node OF message_array
WITH INPUT write_iface_vec: message_array
WITH OUTPUT read_iface_aligned_vec:
ARRAY node OF message_array
WITH OUTPUT write_iface_aligned_vec: message_array
(| | (n: node): RENAME
job_sched TO job_sched_vec[n],
read_iface TO read_iface_vec[n],
write_iface TO write_iface_vec[n],
read_iface_aligned TO read_iface_aligned_vec[n],
write_iface_aligned TO write_iface_aligned_vec[n]
IN alignment[n]))
| | comm_faults
| | TDMA;

