
Monitor Petri Nets for Security Monitoring∗

Lars Patzina
CASED

Darmstadt, Germany
lars.patzina@cased.de

Sven Patzina
Real-Time Systems Lab
TU Darmstadt, Germany

sven.patzina@cased.de

Thorsten Piper
CASED

Darmstadt, Germany
thorsten.piper@cased.de

Andy Schürr
Real-Time Systems Lab
TU Darmstadt, Germany

andy.schuerr@cased.de

ABSTRACT
In our integrated model-based development process for se-
curity monitors, we use Live Sequence Charts (LSCs) as
expressive, formal specification. Generating target specific
monitors from these, requires a complex interpretation of
their syntax and semantics. In this paper, we propose a
Petri Net dialect as an intermediate language for monitor
generation—named Monitor Petri Nets (MPNs). It is based
on standard Petri Nets that are syntactically and semanti-
cally extended to suit the needs of monitoring. With our
MPNs, we are able to represent use and misuse cases de-
scribed by LSCs in a format that is easy to interpret. MPNs
provide the basis for the generation of SW/HW security
monitors or can alternatively be interpreted by a generic
monitor.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.2 [Software
Engineering]: Design Tools and Techniques

General Terms
Security, Languages

Keywords
Live sequence charts, monitor petri nets, signature modeling

1. INTRODUCTION
Driven by technical innovation, embedded systems be-

come increasingly interconnected. Prominent examples can
be found in the automotive domain, where, after the deploy-
ment of toll collection and active road sign technologies, Car-
to-Car (C2C) and Car-to-Infrastructure (C2I) communica-
tion—generally denoted as Car-to-X (C2X)—are emerging.

∗This work was supported by CASED (www.cased.de).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
S&D4RCES 2010 September 14, 2010, Vienna, Austria.
Copyright 2010 ACM 978-1-4503-0368-2 ...$10.00.

Since embedded systems were originally designed as closed
systems in many areas, often little attention has been paid
to implementing security measures, such as encryption and
safe component design, impeding attacks from the outside
world.

In order to retroactively secure such systems against ex-
ternal adversaries, new areas of research were established,
as the authors of [12] claim. These address issues such as
the design of secure vehicular communication and the de-
velopment of architectures providing enhanced privacy and
security. The necessity for additional security measures is
further emphasized by [7], who demonstrates that modern
intra-vehicular networks are highly vulnerable to passive and
active attacks. The main identified security problems are the
lack of authentication between components and the coupling
of different busses via gateways, enabling attackers to pas-
sively evesdrop on communication with manipulated elec-
tronic control units (ECUs).

Just as detecting all security flaws of a component dur-
ing design time is rarely possible, so is the consideration of
all possible attack scenarios. Furthermore, redesigning or
refactoring existing components towards enhanced security
awareness is often economically or technically infeasible, es-
pecially in large and heterogeneous systems. Therefore, our
system model inherently presumes the insecurity of system
components, either due to unknown vulnerabilities, or due
to the required integration of legacy components.

[10] has shown that system monitoring aids to detect in-
trusions, which utilize previously unknown attacks and
faults, by profiling system behavior at run-time. The two
most common approaches for monitoring are, on the one
hand, signature detection, featuring a low false-positive rate
and high effectiveness against attacks that are similar to
known attacks and attack classes, and, on the other hand,
anomaly detection. In contrast to signature-based detection
schemes, anomaly detection aims at detecting behavioral
anomalies. By employing statistical profiling techniques,
anomaly detection schemes are potentially able to reveal
unknown attacks by detecting their impact on the system
behavior. Unfortunately, this ability has the price of high
false-positive rates, therefore requiring either user interac-
tion to evaluate the threat or computationally cheap self-
healing techniques to automatically reset the system to a
known safe and secure state.

Our goal is a comprehensive, model-based security en-
gineering process based on the Model Driven Architecture



(MDA) concept to automatically generate monitors, depict-
ed in Figure 1. In this process, the intended system behav-
ior, as well as known attack patterns and attack classes, are
described and incorporated early in the development pro-
cess, during the requirements engineering phase. For speci-
fication, we employ use and misuse cases [14], described in
more detail with Live Sequence Charts (LSCs), a more ex-
pressive extension of Message Sequence Charts (MSCs). By
an automatic transformation and enrichment with system-
specific information, these specifications are translated to
security monitors. The combination of (mis-)use cases and
LSCs enables the developer to model the intended system
behavior as well as potential attack patterns in a compact
and comprehensible way. However, a direct generation of
monitors from LSCs requires a complex interpretation of
the LSC semantics.

A:=acceleate(param1,param2);
B:=forwAccel(...);
C:=backwAccel(...);
Integer:=<SystemTypeInteger>
String:=<SystemTypeString>

Code-
Generators

Monitors

Interpreter

Structure

Mapping

Hierarchy

A

param1:Integer
param2:String

BC

Use-/Misuse
Cases

A

Requirements

System-specific
Mapping

Translated
Requirements

s.A

r.A

Generic
Result

System-specific
Result

Event Hierarchy

Monitor Petri Nets (MPNs)

Live Sequence Charts (LSC)

e

Signatures

transformation

Figure 1: Model-based security engineering process.

In this paper, we propose Monitor Petri Nets (MPNs), a
novel extension to regular Petri nets, tailored towards a com-
pact representation of use case and misuse case models. By
employing MPNs, we are able to trace the behavior of large
heterogeneous systems, consisting of many concurrently and
asynchronously communicating subsystems. LSCs can now
be efficiently compiled into security monitors, by first trans-
lating them into MPNs—incorporating ideas from [3]—and
afterwards implementing the MPNs in software or reconfig-
urable hardware, using e.g. SystemC as the target language.
This paper is structured as follows. In Section 2, we in-

troduce a running example scenario where Live Sequence
Charts are used to describe a simple DoS attack scenario as
(mis-)use case. Section 3 covers related work and depicts
why a new class of Petri nets is needed to implement our
approach. In Section 4, we define MPNs and their execu-
tion semantics. Afterwards, we present the application of
the MPN language to the example in Section 5. Section 6
concludes the paper and gives an outlook on future work.

2. EXAMPLE SCENARIO
In this section, we present the running example used in

the paper to illustrate the Monitor Petri Net language, intro-
duced in Section 1. We assume a simplistic toll bridge sce-
nario as shown in Figure 2, where cars approach and connect
to a road side unit (RSU) as they enter its communication
range (depicted by a dotted circle).

communication
range

Figure 2: Example toll bridge scenario.

To establish a connection, the communication protocol
requires a simple connect and ack handshake. A car trans-
mits up to three payload packets, data x and the optional
data y and data z. After that, it terminates the connec-
tion by sending a disconnect packet. To track the number
of active connections, a global counter variable ac, which is
shared among all instances of corresponding sequence charts,
is incremented every time a connection is established and
decremented after its termination.

Figure 3a depicts a use case description of this protocol,
modeled as Live Sequence Chart (LSC). LSCs [4] are an ex-
tension of the common Message Sequence Charts (MSCs),
offering a distinction between hot and cold elements. The
hot message data x, depicted as a solid arrow, has to occur,
whereas cold messages like data y, depicted by a dashed ar-
row, can occur. The difference to an asynchronous message
located in an optional MSC fragment is that a message needs
not to be received before the next message from the same
sender can be sent. By matching the use case pattern against
communications occurring at run-time, deviations from the
use case and consequently a misconduct of the system can
be detected.

connect()

disconnect()

Car RSU

data_y()

data_z()

ack()

connect()

ac++
ac > 6

Car RSU

(a) (b)

ack()

ac--

data_x()

Figure 3: Example LSCs: (a) use, (b) misuse case.

Misuse case descriptions complement the use case descrip-
tions, as they can be used to model unintended behavior
or presumed attacks. Figure 3b shows such a misuse case,
which describes a simple pattern that is capable of detect-
ing a kind of a Denial of Service (DoS) attack against the



RSU. In this example, we assume a physical limitation of the
communication range of the toll bridge, implying that only a
certain amount of vehicles can concurrently be connected at
a given time. Therefore, we permit a hard limit of simultane-
ous connections (2∗#lanes = 6) and presume a DoS attempt
when this limit is exceeded. In order to check this condition,
the global variable ac is compared against the number of al-
lowed connections, each time the toll bridge acknowledges a
connection request. When the condition ac > 6 is met, the
modeled misuse case is detected, otherwise the misuse case
has not occurred. The specification of countermeasures is
out-of-scope of this paper.
The introduced examples will be used to demonstrate the

application of the Monitor Petri Net language that will be
motivated in the next section.

3. RELATED WORK
Our approach to an automatic and model-driven gener-

ation of monitors is based on the concept of use and mis-
use case modeling. Misuse cases [14] were introduced as a
description for security requirements, being more compre-
hensible than those used in existing standards for security
engineering – like the Common Criteria or the ECMA stan-
dards. Alexander describes misuse cases as “a use case from
the point of view of an actor hostile to the system under
design” [1]. In [2], he further states that misuse cases are an
effective tool for modeling potential attacks against a sys-
tem.
In order to model use and misuse cases, a variety of model-

based languages can be used, e.g. UML Sequence Diagrams
(SDs), Message Sequence Charts (MSCs), or Live Sequence
Charts (LSCs). All of them describe sequences of messages
over time, but differ in expressiveness and complexity. MSCs
and SDs are similar to each other, whereas LSCs extend
MSCs by the distinction between elements that may or that
must occur.
Solhaug et al. [15], Massacci and Naliuka [11] use UML

2.0 SDs to describe model-based policies. They show that
the usage of SDs is suitable for this purpose, but also identify
the lack of formal semantics as a major drawback, because
it restricts the models’ expressiveness. To resolve this short-
coming, Massacci and Naliuka suggest to enrich SDs with
Linear Temporal Logic (LTL) formulas, whereas Solhaug et
al. propose to use SDs in ways, which “do not conform
with the spirit of UML”. As an alternative to his approach,
Solhaug recommends taking a closer look at LSCs, which
can be utilized to capture deontic constraints in the model.
Following this idea, Kumar et al. [9] use LSCs for the speci-
fication and verification of protocols, because LSCs are more
expressive and semantically richer than MSCs or SDs.
For monitoring, analysis and verification, MSCs or LSCs

are usually translated to other formalisms, such as Finite
State Machines (FSMs) and Petri nets (PNs). In [16], Whit-
tle et al. were the first to describe an approach to model
security concerns as executable misuse cases, avoiding often
used informal notations. They extend Extended Interaction
Overview Diagrams (EIODs) by the concept of misuse cases.
To execute their models, Whittle et al. use a tool named
UCSIM [8] that generates an FSM for each participant of
every single sequence diagram. In order to synchronize all
FSMs, the translation requires the insertion of synchroniza-
tion events, which is the major disadvantage of this process.
These events produce a considerable overhead and reduce

No. Requirements [16] [3] [5] [9]

SD LSC SD PLSC

→ FSM → CPN → CPN → LTL

Exec. monitor/repres. -/+ -/+ -/+ -/+
1 Separate send/receive - - - -
2 Interleaving sequences o + + +
3 Cold/optional elements o + o +
4 Compact - o o -
5,6 Global/local variables - + + +
7 Timing constraints - + + +
8 Positive/negative ends - + - -
9 Deterministic firing - - - -
10 Eff. simult. monitoring - - - -

+ (good); o (average); - (bad/not addressed)

Table 1: Transformations to state-based languages.

readability, because the logic of the SDs is not explicitly
stated in the FSMs.

Transformations from models to Petri nets have mostly
been developed to be able to analyze and verify the correct-
ness of the source model. Amorim et al. [3] have proposed
such a transformation. They transform LSCs to the more
versatile and expressive Colored Petri Nets (CPNs) to ana-
lyze the system’s behavior by simulating it.

Fernandes et al. [5] consider a transformation from UML 2
use cases, described by SDs, to CPNs, with the goal to ob-
tain an executable model that is easier to understand than
SDs. To translate all concepts of the SDs, he makes ex-
tensive use of the ML language, a functional programming
language, and uses hierarchical structures to get a“readable”
result.

Kumar et al. transform protocols described as LSCs in
temporal logic [9]. As the transformation to temporal logic
leads to an explosion of the temporal logic formula, it is not
usable for our approach.

Not all the transformations from SCs to FSMs and PNs,
introduced in this section, are equally suited to model se-
curity-aware system monitors, as their feature sets are quite
different. Table 1 lists the presented approaches and eval-
uates how well each of them satisfies our demands on an
intermediate representation.

The comparison reveals that FSMs are an inappropriate
representation for monitoring systems described by LSCs,
as the expression of some of the key concepts, such as asyn-
chronous messages (1), interleaving concurrently executed
subcommunication threads (2) and optional/cold message
exchange sequences (3), is either difficult or complex in FSMs
and, therefore, not compact (4). Modeling all possibilities
that arise from optional constructs in SDs or even cold con-
structs in LSCs, leads to an exponentially growing number of
states and is therefore infeasible. Even statecharts with par-
allel sub-states are not well suited to capture the semantics
of LSCs, because of their limited parallel modeling concept.
Consequently, all variants of FSM-based approaches like the
transformation of SDs to FSMs [16] are inappropriate for
our purpose.

Therefore, we decided to model the specifications of secu-
rity-relevant system protocols as use and misuse cases with
LSCs and translate them into an appropriate variant of Petri
nets. These Petri nets must support manipulation of local
and global variables (5), definition of transition predicates
over their variables (6), and representation of timing prop-
erties (7). Furthermore, we have to distinguish between per-



mitted and forbidden end states (8) that signal recognition
of a communication pattern related to a use or misuse case.
Last but not least, an execution semantic is needed where
transitions fire whenever possible (9) and where many con-
currently running communication instances can be manip-
ulated efficiently (10). To the best of our knowledge, all
existing PN-based approaches that are used for the specifi-
cation of security monitors violate at least one or more of
the requirements mentioned above.
One of these approaches is published by Frankowiak et

al., who use Petri nets to specify a low-cost process monitor
on a microcontroller [6]. Therefore, they enhance regular
Petri nets by a token generator and end places (bins), and
introduce subnets linked by a control net. Their proposed
Petri net dialect e.g. meets requirements 6, 7, and 10, but
misses 5, 8 and 9.
Another approach is the Event Description Language

(EDL)[13], which is presented as a holistic signature lan-
guage for intrusion detection systems. It is based on place/
transition nets with its own semantics. Although this lan-
guage suites better for our concerns, a concept for global
variables (5) and timers (7) is missing. Furthermore, the
standard execution semantics of EDL is non-continuous (4),
i.e., there can be additional events between the specified
ones, and, therefore, does not fit well to the semantics of
LSCs. Hence, the modeling of continuous signatures results
in many escape places. Moreover, the authors do not provide
a formal definition of EDL.
As none of the existing approaches complies with all the

requirements, we adopted place/transition nets as a concep-
tual foundation and extended their definition to satisfy all
requirements. We present a simplified version of the defi-
nition of this novel Petri net dialect—named Monitor Petri
Nets—in the following section.

4. MONITOR PETRI NET DEFINITION
After defining the requirements of an appropriate lan-

guage in Section 3, we introduce a syntactically and semanti-
cally modified definition of Petri nets, named Monitor Petri
Nets (MPN). Due to space restrictions, we will exclude the
formal definition of the tokens that can carry values like in
CPNs. Furthermore, we omit a language for actions and
functions at the transitions.

4.1 Syntax definition
In comparison to standard Petri nets, the MPN language

defines special start and terminal places. Every start place
generates tokens with a generation tag. This enables us to
monitor more than one matching attempt of a communica-
tion pattern in a single instance of an MPN. When a token
reaches a terminal place, the execution for all tokens with
the same generation is stopped and the monitoring result is
evaluated. The syntax of the MPN is presented in Defini-
tion 1.

Definition 1. A net mpn ∈ MPN is an extended vari-
ant of a place/transition net with mpn = (S, Si, St, T, F, p,m)
where

S is a finite set of places S =
{

s1, s2, . . . , s|S|

}

6= ∅.
Si ⊂ S is the set of all initial places that contains tokens

in the initial state of the net.

St ⊂ S is the set of all terminal places that end the execu-
tion of the net when a token reaches one of them.

T is the finite set of transitions T =
{

t1, t2, . . . , t|T |

}

6= ∅.

Si 6= ∅; St 6= ∅; Si ∩ St = ∅; S ∩ T = ∅.

F ⊆ (S \ St × T ) ∪ (T × S \ Si) is the flow relation that
connects places and transitions.

p : T × C → {true; false} is a predicate that assigns a
logical value to every transition for a given external
context.

m : S × N → {1, 0} is the (initial) marking of the net
that defines network configurations. The function dis-
tinguishes different generations of tokens that can be
identified through natural numbers. A place s can hold
at most one token of each generation g.

preset: •t = {s ∈ S|(s, t) ∈ F}.

postset: t• = {s ∈ S|(t, s) ∈ F}.

4.2 Execution Semantics
For our monitoring purpose, the execution semantics of

deterministic Petri nets is not appropriate. It is necessary
to model descriptions as compact as possible and allow a
simple transformation between LSCs and MPNs. There-
fore, we define an execution semantics based on micro and
macro steps, similar to the formal definition of statecharts
presented by Harel. The resulting MPN execution seman-
tics fires all enabled transitions simultaneously. Different
enabled transitions with overlapping presets even share con-
sumed tokens when firing concurrently in one macro step.

Definition 2 (Initial Marking). In all initial places,
a token with generation g = 1 is created.

m0(s, g) =

{

1 for s ∈ Si ∧ g = 1

0 else.
(1)

Definition 3 (Activation Condition). A transition
is enabled if all places in its preset carry a token of genera-
tion g. Additionally, its predicate has to evaluate to true.

enabled(t, c, g) :⇔ p(t, c) ∧ ∀s ∈ •t : m(s, g) = 1. (2)

When all enabled transitions T for a context c of an MPN
are considered, the transition from a Petri net mpn to a new
Petri net mpn′ is named macro step.

In detail, a new marking m′ of the MPN is derived from
m in every macro step. Therefore, the current configuration
is frozen and used to derive the new configuration after the
macro step. Every step is evaluated on the first configuration
and the result is stored in the new one. With that rule, there
is no competition between two or more transitions that are
enabled in a macro step. Each place can only store one token
of a generation, while another token of the same generation
is merged with an already existing token.

Definition 4 (Macro Step Execution). For each
generation of tokens all enabled transitions fire.
macro : MPN × C is defined as follows:

macro(m, c) =
max g′ = max g //maximal g ene ra t i on
foreach s ∈ S, g ∈ N // copy net
m′(s, g) = m(s, g) ;

foreach t ∈ T , g ∈ N with enabled(t, c, g)
foreach s ∈ •t // p roc e s s p r e s e t
m′(s, g) = 0 ;
i f (s ∈ Si ∧ g = max g ) then
max g′ = max g + 1 ; // inc . max . gen . number



foreach t ∈ T , g ∈ N with enabled(t, c, g)
foreach s ∈ t• // p roc e s s p o s t s e t
m′(s, g) = 1 ;
i f (max g′ > max g ) then
foreach s ∈ Si // c r e a t e new gen . t o kens
m(s,max g′) = 1 ;

fired[] = 0 // i n i t array (0)
foreach t ∈ T , g ∈ N with enabled(t, c, g)
fired[g] = 1 ; // l o g performed s t e p s

postprocessing(m′, fired) ;
return m′ ;

When all transitions have fired, a post processing step is
done to treat tokens that have reached a terminal place and
generations whose configuration has not changed.

Definition 5 (Postprocessing). For all generations
with at least one token in a terminal place or the generations
for which no transition has fired, the configuration of m′

is evaluated. Afterwards, all tokens of this generation are
deleted in m′.

postprocessing(m′, fired) =
foreach st ∈ St , g ∈ N

i f m′(st, g) = 1
evaluateMonitoringResult(g) ; // check term . p l a c e s
foreach s ∈ S
m′(s, g) = 0 ;

foreach g ∈ N

i f fired[g] = 0 ∧ relevantEvent(g)
evaluateMonitoringResult(g) ; // check f i r i n g
foreach s ∈ S
m′(s, g) = 0 ;

return m′ ;

The evaluateMonitoringResult method checks the current
configuration of the MPN and determines, which action
should be performed to reestablish a stable state of the af-
fected components. These actions can be defined as a mit-
igation of the corresponding misuses case. When a genera-
tion of tokens has not been used by a firing transition for a
relevant event, e.g. sent by the instance associated with the
currently processed generation, the described pattern has
not been matched. For a use case, this implies that a failure
has occurred and for a misuse case that it has not been de-
tected. To reduce the amount of false-positives due to the
continuous matching semantics, i.e., every event is taken
into account, of the MPNs, we extend the LSCs by so called
ignored messages that are represented in the MPN as self-
transitions or a parallel MPN. The relavantEvent method
evaluates to true, when an event is sent from the instances
of the corresponding generation or when a transition with-
out an event is enabled.

5. APPLICATION OF MPN LANGUAGE
In this section, we show how the defined MPN language

can be used to describe the use and the misuse case intro-
duced in Section 2. We focus on the crucial concepts of the
transformation process from LSCs to the MPNs. In Fig-
ure 4, the corresponding MPNs for our example are shown.
The graphical MPN representation consists of four types

of places that are explained in Table 2, transitions that are
annotated by [guard]event/action, and arcs alternately con-
necting places and transitions. In the transformation pro-
cess, a start place is created for each lifeline in the LSC.

Type Symbol Description

StartPlace (·) Each StartPlace holds a token when a
new instance of the net is created.

Place ( ) A standard Petri net place that can hold
one token of each generation.

EndPlace (e) When an EndPlace is reached, a permit-
ted pattern is detected.

FailurePlace (f) When this place is reached, a modeled
attack (misuse) or a mismatch of the ex-
pected behaviour is detected.

Table 2: Types of places.

Places of (mis-)use case
# Inst.: Ev. 1a 1b 2 3a 3b 4 ... f ac

0 ... 5
1 Car6: s.con 6 6 5
2 Car7: s.con 6,7 6,7 5
3 Car6: r.con 7 6,7 6 5
4 Car7: r.con 6,7 6,7 5
5 Car6: s.ack 6,7 7 6 6 6
6 Car6: r.ack 7 7 6 6 6
7 Car7: s.ack 7 7 7 7
8 Car7: r.ack 7 7 7
9 ... 7 7

Table 3: Example monitor execution.

Each location, i.e., a point on a lifeline touched by an ele-
ment, is represented by a separate place in the MPN. Every
asynchronous message of the LSC is translated to one tran-
sition for the sender and one for the receiver side. These
transitions are interconnected by a place that succeeds the
sender transition. Hence, a message has to be sent before it
can be received. Cold messages result in by-pass transitions.

We demonstrate the execution semantics by stimulating
the MPNs with a sequence of events, presented in Table 3.
The first column represents the steps of execution, the sec-
ond the events that occur, the third shows which place holds
a token and the last represents the number of active connec-
tions. For a compact representation, the places 1a to 4 apply
to both, use and misuse MPN, f only to the misuse case.
Each token is depicted by its generation number. We assume
that in step 0, five cars are already connected (ac = 5) to
the toll bridge (RSU) but their tokens are neglected. In the
first four steps Car6 and Car7 try to connect to the RSU.
Afterwards, in step 5 and 6 the connection attempt of Car6
is acknowledged and ac is incremented to 6. With the next
message, the transition with the guard [ac > 6] of the mis-
use case does not fire for the tokens with generation 6—no
violation detected and the tokens are discarded. When the
RSU establishes the connection to Car7, ac increases to 7
and the following event or timeout generates a token in the
failure place f—the misuse case is detected.

Figure 4a shows the LSC and the resulting MPN of the
more complex use case presented in Section 2 side by side.
Every message, even the cold (optional) messages, can be
directly mapped from the LSC to the MPN representation.
The state of LSC during execution (active cut) is directly
represented by the state of the MPN. A violation of a use
case is detected when an event associated with involved par-
ticipants does not fire a transition in the MPN.

For monitoring a single instance, the generated MPNs can
be split into two regions. The left shows the behavior of



connect()

disconnect()

Car RSU

data_y()

data_z()

ack()

ac++

ac--

data_x()

Car RSU

s.con

r.con

1a1b

2

r.d_y

s.d_y

7a7b

s.d_zs.d_z

9a

s.diss.diss.dis
r.d_z r.d_z

r.dis
/ac--

r.dis 
/ac--

r.dis 
/ac--

e

8
9b

10
11

s.ack /ac++

r.ack

6

5

3a

4

s.d_x

r.d_x

5a

3b

Car RSU

(a)

(b)

s.con

r.con

[ac > 6]

f

1a1b

2

s.ack

r.ack

3b3a

4

Figure 4: Example MPN: (a) use, (b) misuse case.

instance Car and the right shows instance RSU that are
coupled by synchronization places, depicted by an a in their
name. By removing these places and their adjacent arcs, we
receive MPNs for the individual lifelines.

6. CONCLUSION AND FUTURE WORK
In this paper, we have introduced a formal definition of a

novel Petri net dialect, called Monitor Petri Nets (MPNs),
that constitutes a simple, compact, and easy to process rep-
resentation of use and misuse cases described by Live Se-
quence Charts (LSCs). In comparison to the immediate op-
eration on LSCs, the interpretation of MPNs by a security
monitor, or the generation of executable monitoring code
from MPNs, is considerably simplified. The transformation
from LSCs to MPNs can be performed automatically by ap-
plying a small set of rules.
MPNs are used as an intermediate format in a holistic

development process for security monitors, as introduced in
Section 1, which is not restricted to the security domain or
C2X scenarios in particular. Due to the expressiveness of
LSCs and the preserved semantics in MPNs, our approach
can be adopted to other monitoring tasks like safety or pro-
cess monitoring. Furthermore, it can be utilized as the basis
for generating an oracle used for testing and verification.
In future work, we will use, in contrast to our DoS attack

example, outlined in Section 2, the full concept of LSCs to
model the allowed and prohibited behavior of the system
in a more precise and formal way. As the transformation
from LSCs to MPNs has to be formally defined and imple-
mented, we target a model-based approach employing the
meta-modeling tool MOFLON1. Based on the intermediate
MPN format, an automatic generation of software or hard-
ware components, comprising system specific information,

1MOFLON homepage: http://www.moflon.org

will be performed. Additionally, a monitor realized as an
interpreter for the XML exchange format as proposed by
the ISO/IEC 15909-2 standard is conceivable. To ensure
the correctness of the behavioral description, it is necessary
to investigate how standard metrics of Petri nets like lifeness
can be adopted for the verification of MPNs.

7. REFERENCES
[1] I. Alexander. Misuse cases: Use Cases with Hostile

Intent. IEEE Software, 20(1):58–66, 2003.

[2] I. F. Alexander. Initial Industrial Experience of
Misuse Cases in Trade-Off Analysis. Proc. of IEEE
RE’02, pages 61–68, 2002.

[3] L. Amorim, P. Maciel, et al. Mapping Live Sequence
Chart to Coloured Petri Nets for Analysis and
Verification of Embedded Systems. SIGSOFT Softw.
Eng. Notes, 31(3):1–25, 2006.

[4] W. Damm and D. Harel. LSCs: Breathing Life into
Message Sequence Charts. Formal Methods in System
Design, 19(1):45–80, 2001.

[5] J. M. Fernandes, S. Tjell, et al. Designing Tool
Support for Translating Use Cases and UML 2.0
Sequence Diagrams into a Coloured Petri Net. In
Proc. of IEEE SCESM ’07, page 2, 2007.

[6] M. R. Frankowiak, R. I. Grosvenor, et al.
Microcontroller-Based Process Monitoring Using
Petri-Nets. EURASIP J. Embed. Syst., pages 1–12,
2009.

[7] A. Groll and C. Ruland. Secure and Authentic
Communication on Existing In-Vehicle Networks. In
Proc. of IEEE IV’09, pages 1093–1097, 2009.

[8] P. Jayaraman and J. Whittle. UCSIM: A Tool for
Simulating Use Case Scenarios. In ICSE
COMPANION ’07, pages 43–44, 2007.

[9] R. Kumar, E. Mercer, et al. Improving Translation of
Live Sequence Charts to Temporal Logic. ENTCS’09,
250(1):137–152, 2009.

[10] S. Kumar. Classification and Detection of Computer
Intrusions. PhD thesis, Purdue University, 1995.

[11] F. Massacci and K. Naliuka. Towards Practical
Security Monitors of UML Policies for Mobile
Applications. In Proc of IEEE POLICY ’07, pages
278–278, 2007.

[12] P. Papadimitratos, L. Buttyan, et al. Secure Vehicular
Communication Systems: Design and Architecture.
IEEE Commun. Mag., 46(11):100–109, 2008.

[13] S. Schmerl, U. Flegel, et al. Vereinfachung der
Signaturentwicklung durch Wiederverwendung. In
Proc. of SICHERHEIT 2006, pages 201–212, 2006.

[14] G. Sindre and A. L. Opdahl. Capturing Security
Requirments through Misuse Cases. In NIK 2001,
2001.

[15] B. Solhaug, D. Elgesem, et al. Specifying Policies
Using UML Sequence Diagrams–An Evaluation Based
on a Case Study. In Proc. of IEEE POLICY ’07,
pages 19–28, 2007.

[16] J. Whittle, D. Wijesekera, et al. Executable Misuse
Cases for Modeling Security Concerns. In Proc. of
ICSE ’08, pages 121–130. ACM, 2008.


