
IEEE TRANSACTION ON CLOUD COMPUTING, FEB 2014 1

Run Time Application Repartitioning in Dynamic
Mobile Cloud Environments

Lei Yang, Jiannong Cao, Di Han, Shaojie Tang, and Neeraj Suri

Abstract—As mobile computing increasingly interacts with the cloud, a number of approaches, e.g., MAUI and CloneCloud, have

been proposed, aiming to offload parts of the mobile application execution to the cloud. To achieve a good performance by using

these approaches, they particularly focus on the application partitioning problem, i.e., to decide which parts of an application should

be offloaded to the cloud and which parts should be executed on mobile devices such that the execution cost is minimized. Most

works on this problem assume that the offloading cost of each part of the application remains the same as the application is running.

Unfortunately, this assumption does not hold in dynamic mobile cloud environments, where the device and network connection status

may fluctuate, and thus affects the offloading cost. With the varying offloading cost, the one time partitioning of the application may yield

significant performance degradations. In this paper, we study application repartitioning problem which considers updating the partition

periodically during the course of application execution. We first propose a framework for run time application repartitioning in dynamic

mobile cloud environments. Based on this framework, we take the dynamic network connection to clouds as a case study, and design

an online solution, Foreseer, to solve the mobile cloud application repartitioning problem. We evaluate our solution based on real world

data traces that are collected in a campus WiFi hotspot testbed. The result shows that our method can achieve significantly shorter

completion time over previous approaches.

Index Terms—mobile cloud computing; application partitioning; repartitioning; trajectory matching

✦

1 INTRODUCTION

In recent years, the proliferation of sensors on mo-
bile devices enable a couple of new advanced mobile
applications such as augmented reality, collaborative
learning, multimedia recognition and retrieval, mobile
social gaming and so on. The applications often require
intensive and continuous processing of the sensory data.
Although the hardware’s computing capability increases
a lot, running the applications on mobile devices still
face problems arising from the constraint on computing
capability and/or battery of the device.

On the other hand, the ubiquity and increasing band-
width of wireless access available to mobile users, and
the richness of cloud infrastructures, provide opportu-
nities to develop mobile applications using cloud com-
puting technologies. The most efficient technique used
to solve the computing constraints on mobile devices
is to offload computations from the device side to the
cloud side [1] [2] [3] [4]. By using computation offloading

• Lei Yang is with School of Remote Sensing and Information Engineering,
Wuhan University, China. E-mail: yanglei2914@gmail.com

• Jiannong Cao is with Department of Computing, Hong Kong Polytechnic
University, Hong Kong. E-mail: csjcao@comp.polyu.edu.hk

• Di Han is with Department of Information Technology, Macau University
of Science and Technology, Macau. E-mail: andyham.g@gmail.com

• Shaojie Tang is with Department of Computer Science, University of
Texas at Dallas, USA. E-mail: tangshaojie@gmail.com

• Neeraj Suri is with Department of Computer Science, Technical University
Darmstadt, Germany. E-mail: suri@cs.tu-darmstadt.de

technique, we need to solve the computation partitioning
problem, which is to partition the application execution
between the device side and the cloud side, such that
the execution cost such as the latency is minimized. The
partition of the application usually depends on the ex-
ecution environment including the network connection
status and the device status.

The computation partitioning problem has been ex-
tensively studied in previous research [5] [6] [7] [8] [9]
[10] [11] [12] [13]. These works assume the stable/static
execution environments during the life cycle of the appli-
cation, and thus perform one time partitioning according
to the execution environment when the application is
initiated. The life cycle is defined as the execution time
of the application that lasts from the start to termination.
However, this assumption does not hold in reality. For
instance, the network connectivity can fail when there is
no wireless signal or the signal is too weak to maintain
a connection. Even when the network is connected,
the bandwidth can fluctuate because of user’s mobility.
Besides the network status, the device status such as the
CPU load may vary during the course of the applica-
tion execution. With the varying network and device
status, one time computation partitioning may yield
performance degradation. To motivate this work, in the
following, we present one scenario that people run expensive
applications while they move, and show the environment, e.g.,
the network bandwidth, indeed changes a lot during the mobile
application’s execution.

An application scenario. One application that is ex-
pensive to run on mobile devices while the users move
is Augmented Reality (AR), which aims to recognize
the scene in reality from the video streams captured

IEEE TRANSACTION ON CLOUD COMPUTING, FEB 2014 2

Fig. 1. An Augmented Reality (AR) application scenario in

the campus environment

by cameras, and then add relevant information into
the streams. Fig. 1 shows an AR application scenario
in a campus environment. In the application, the users
place the cameras of their smart phones to the buildings
when they walk around the campus. The application
can recognize the building in the campus, and display
interesting things in real time on the video streams, e.g.,
the activities happening in the building. The application
can help visitors who are not familiar with the cam-
pus to easily find their interested places and activities.
The core function in AR is object recognition from the
video frames. The device usually executes the function
periodically while the user moves, aiming to recognize
the varying scene of the surrounding environment in
time. We measure the execution time of the recognition
function on the main-streaming hardware with 1.7 G Hz
4 Core CPU and 2G RAM. It takes at least 60 seconds to
process one 1000*800 frame in the video. If the resolution
increases, it can take longer time.

To accelerate the expensive recognition function on
mobile devices, existing works like CloneCloud propose
to partition the computation between the device and
clouds. These works pertain to static partitioning which
suffers from low performance in dynamic environments.
They made an optimal partitioning every time the appli-
cation starts to process one frame. During the processing
of one frame, the application sticks to the partitioning
until that frame is finished. In reality, the mobile de-
vice is likely to encounter disconnection, or experience
bandwidth fluctuation even when it is connected. For
example, if the mobile device gets disconnected or the
bandwidth goes down a lot after offloading the compu-
tations, the user has to wait for a long time to reconnect
to the cloud, in which case a better solution would be
executing the application locally. Another example is
when current network bandwidth is very low or it is
disconnected, CloneCloud would decide to run the ap-
plication completely on the mobile device. It is possible
that the network bandwidth becomes very good shortly
after the decision. Therefore, we need to update the par-
titioning from time to time during the processing of one
frame adaptively, based on the changing environment
like network bandwidth.

Network bandwidth fluctuation. To learn how the
network status fluctuates with time, we have conducted

10 20 30 40 50 60 70 80
0

1000

2000

3000

No. of measurement

B
a
n
d
w

id
th

 (
k
b
/s

)

Uplink

Downlink

(a) Stationary Scenario

10 20 30 40 50 60 70 80
0

1000

2000

3000

No. of measurement

B
a
n
d
w

id
th

 (
k
b
/s

)

downlink

uplink

(b) Mobile Scenario

Fig. 2. Network bandwidth fluctuation in temporal and

spatial domain

0 1000 2000 3000
0

5

10

15

20

Bandwidth (kb/s)

C
o

u
n

t

(a) Uplink (stationary)

0 1000 2000 3000
0

5

10

Bandwidth (kb/s)

C
o

u
n

t

(b) Uplink (mobile)

0 500 1000 1500 2000
0

5

10

15

20

Bandwidth (kb/s)

C
o

u
n

t

(c) Downlink (stationary)

0 500 1000 1500 2000
0

5

10

15

20

Bandwidth (kb/s)

C
o

u
n

t

(d) Downlink (mobile)

Fig. 3. Histogram of network bandwidth distribution re-

spectively in stationary and mobile scenarios

a series of measurements in a campus WiFi testbed with
23 APs deployed. We compare the network fluctuation
between the stationary scenario and mobile scenario.
Both scenarios have 86 times of measurements. The
measurements are recorded every 20 seconds. Note that
in mobile scenario we intentionally avoid the network
’holes’ where there exists no wireless signals. Fig.2 shows
that in stationary scenario the network status is relative-
ly stable with time, while in spatial domain networks
becomes more fluctuant as the user’s location changes.
The distribution histograms of the measurements shown
in Fig.3 as well illustrates the difference. It is shown
that the variance of spatial fluctuation is much larger
than that of temporal fluctuation. From the measurement
above, we conclude that the network bandwidth changes
frequently during the application’s life cycle, e.g., tens of
seconds for the AR application, when the user is moving.

In this paper, we propose the technique of computation
repartitioning in the dynamic mobile cloud environment,
where the network connection to the cloud and device
status can vary with time. Computation repartition-

IEEE TRANSACTION ON CLOUD COMPUTING, FEB 2014 3

ing updates the partition of application from time to
time during its life cycle, according to the estimation
and/or the prediction of parameters of the execution
environment including the network connection status
and device status. More specifically, we first design a
framework for run time computation repartitioning in
dynamic mobile cloud environments. The framework
provides models and mechanisms to conduct the repar-
titioning of application at the run time.

Based on this framework, we conduct a case study for
the computation repartitioning, where the network con-
nection to the cloud fluctuate frequently while the device
status is relatively stable. In the case study, we develop
an online computation repartitioning method, named as
Foreseer. It exploits the knowledge of user’s mobility
pattern to predict the network status, and then updates
the partitioning based on the prediction. We evaluate
Foreseer using the data traces that are collected from our
campus WiFi testbed. We compare Foreseer against the
approach in CloneCloud [6]. It is shown that Foreseer has
35% better performance in term of the completion time.
In the case of more frequent network fluctuations, e.g.
walking faster in the campus WiFi environment, Foreseer
can perform more better than CloneCloud. In summary,
our contributions in this paper are three folds.

First, to the best of our knowledge, we are the first
to design a framework for run time computation repar-
titioning in dynamic mobile cloud environments. The
framework provides models and mechanisms to solve
the performance degradation issue arising from dynamic
network and device status. Second, as a case study,
we develop an online method, Foreseer, to solve the
computation repartitioning problem under the network
status fluctuation. We evaluate our method based on real
world data traces from our campus WiFi testbed. The
result shows that our method can reduce the applica-
tion completion time by 35% compared with previous
approaches.

2 RELATED WORKS

The most related works are computation partitioning in
mobile cloud computing. We present these works in term
of the issues of computation partitioning such as applica-
tion modeling, environment parameters estimation, and
implementation.

There exist three application models: procedure call
model, service invocation model, and dataflow model.
The works [5][6][10] pertain to the procedure call mode.
A procedure call tree or graph is used to model the
structure of the application. The partitioning problem
is to decide for each procedure whether it should be
offloaded or not. The works [7][8] pertain to the service
invocation model. A service invocation graph is used to
represent the application. [7] decomposes the application
with of a set of ’weblets’ that can be executed at either
the mobile side or the cloud side. The work [8] builds
the partitioning system based on a distributed service

computing platform, named as AlfredO [14], which have
been traditionally used to decompose and couple Java
application into software modules. [11][13] models the
applications as dataflow graphs in which each node is
the stage, and each edge indicates the data dependence
between the two connecting stages.

Environment parameters estimation includes the esti-
mation of network status and device status. MAUI [5]
conducts an online estimation of the network parame-
ters such as bandwidth and latency through the recent
offloading opportunities. It updates the estimation by
transferring one 10K file to the server. Frequency trans-
mission of test files incurs a lot of energy overhead on the
device. CloneCloud [6] calculates optimal partitions of
application under various execution conditions (includ-
ing the device and network status) in offline phase. The
partitions and corresponding execution conditions are
stored at the database on the device. In online phase, the
system estimates the execution condition, and search the
matching partition from the database. It does not discuss
how to estimate the execution condition in online phase.
[7][10][11] directly estimate the running time of each
stage and data transmission time between the stages.
This approach avoids the overhead of estimation for the
network and device status.

In terms of implementation of mobile-cloud compu-
tation partitioning, there exists three approaches, client-
server communication, VMs migration, and mobile agen-
t. [3][12] use the client-server communication method
to implement the partitioned execution. The method
requires the pre-installation of the program codes on
the cloud servers. Scavenger [15] uses mobile agent to
implement the remote execution. Dynamic deployment
of application is realized in this approach. However,
it needs agent management that causes overhead on
the mobile devices. [5][6][16][10][17] implement the par-
titioned execution by Virtual Machine migration. The
method does not require pre-installation of application
on the cloud side.

All the related works [5][6][7][8][9][10][11][12][13] on
computation partitioning assumes stable mobile cloud
environments, where the device status and network sta-
tus remains stable during the life cycle of the application.
This assumption is reasonable only for the applications
that have short life cycle. However, for most applications
that have relatively long life cycle, we need to study the
repartitioning of application based on the varying device
and network status.

3 TERMINOLOGIES AND APPLICATION

REPARTITIONING FRAMEWORK

In this section, we describe the terminologies and our
proposed framework for run time computation reparti-
tioning in dynamic mobile cloud environments.

3.1 Terminologies

• Partition, Optimal Partition and Compuation Partitioning.
Fig.4 shows the architectural model for the mobile cloud

IEEE TRANSACTION ON CLOUD COMPUTING, FEB 2014 4

Fig. 4. Architectural model of mobile cloud systems

system. It contains three parts, mobile devices, wireless
access network and clouds. The mobile devices can of-
fload some computations of the application to the cloud.
Obviously, offloading can reduce the computational cost
(e.g., execution time or energy consumption) on the
mobile device. Meanwhile, offloading causes additional
overhead in data transmissions that are required by the
remote execution on clouds. Therefore, in order to min-
imize the execution cost such as the overall executions
latency, it is critical to solve the offloading problem, i.e.,
to decide whether the application should be offloaded
to the cloud or not. For some complex applications
which can be divided into a set of dependable parts,
we need to make offloading decisions for every part of
the application. Note that the decisions for each part
are dependent with each other. We name the offloading
decisions for all the parts as a partition of application.
The partition that leads to the minimum execution cost
is named as optimal partition. The optimization of compu-
ation partitioning according to the network and device
status is named as compuation partitioning. Computation
partitioning changes the execution model of mobile ap-
plications, from single machine execution on the mobile
device to distributed execution over the device and the
cloud.

• Application Life Cycle and Run Time Computation
Repartitioning. Application life cycle is defined as the pe-
riod that the execution of application spans. We also
name the period as run time. In previous works on
compuation partitioning, when the application starts,
an optimal partition of the application is determined
based on the network and device status at the start time.
The partition remains the same during the whole life
cycle. Run time computation repartitioning is defined as
periodically updating of partition of application during
its life cycle, based on the changing network and device
status, with the aim to reduce the execution cost. Fig.5 il-
lustrates the difference between compuation partitioning
and computation repartitioning. The strip with various
color represents different partitions. The length of strip
indicates the execution time. In compuation partitioning,
the application execution sticks to one partition during
its life cycle, while in computation repartitioning, the
application runs with different partitions.

App. life cycle

App. life cycle
(a)

(b)

Fig. 5. Illustration: a) computation partitioning; b) compu-

tation repartitioning

Application

Parameters

(Static)Device Workload

Network Bandwidth

Estimation/

Prediction
Repartitioning

Exec. Enviro. Parameters

(Dynamic)

TerminationStart

App. Modeling

Fig. 6. Functional components for computation reparti-

tioning

3.2 Computation Repartitioning Framework

We now describe the computation repartitioning frame-
work as shown in Fig.6. When the the application is initi-
ated, the prediction component is activated to predict the
execution environment parameters, including the device
workload and network bandwidth. The repartitioning
component outputs a partition based on the predicted
environment parameters, and its current execution s-
tate. The prediction and repartitioning is alternatively
performed during the application life cycle, until the
application terminates. The objective of periodical repar-
titioning is to minimize the total execution cost during
the application’s life cycle. In practical implementations,
the repartitioning is usually done at the cloud side to
avoid the additional overhead on the mobile devices.
The estimation of parameters can be done by calling
third-party services. For instance, as shown in Section
4.2, we predict the network bandwidth on the network
server deployed in the mobile networks. Our framework
provides methodologies for application modeling, dy-
namic mobile cloud environment abstraction, and for-
mulation of the repartitioning procedure. We describe
the details in the following.

3.2.1 Application Modeling

In our framework, we focus on the method level
partitioning of an application. We apply the virtual
machine migration to realize the remote execution of
application[6] [17]. Each method can be migrated to the
cloud. During the migration procedure, the system first
captures the runtime state at the mobile device, and then
transfers the state to the cloud, and finally reintegrates
it back after the execution is finished at the cloud. For
simplicity, migration points and reintegration points are
restricted to the entry and exit of a method.

We use the method call tree to model the application.
In this paper, we interchangeably use the two names,

IEEE TRANSACTION ON CLOUD COMPUTING, FEB 2014 5

m

a b

c d e f g

(1) a
R
->e->f

R
->g->b->m

m

a b

c d e f g

(2) c
R
->d

R
->a->e->f

R
->g->b->m

m

a b

c d e f g

(3) a
R
->b

R
->m

m

a b

c d e f g

(4) unallowable parition

void m()
{

a() {
c();
d();

};
b() {

e();
f();
g();

};
}

Fig. 7. Program tree, legal partitions and the correspond-

ing execution order.

method call tree and program tree. Fig.7 illustrates an ex-
ample of the program tree. The tree node represents the
method and the edge represents the method invocation.
For instance, the edge (i, j) indicates that the method i
calls the method j. Suppose the methods are executed
sequentially between the device and the cloud. Without
loss of generality, we require that the program tree is
constructed in a way such that the nodes are executed
according to the post-order traversal. Note that nested mi-
gration is forbidden. It means that if one node is migrated
onto cloud, all its child nodes should be executed at the
cloud. Fig.7(1)(2)(3) shows the legal partitions and the
corresponding execution order of the methods, where
Fig.7(4) shows an unallowable partition, because when
the method ’a’ is migrated to the cloud, all the children
nodes of ’a’ should be executed remotely since they are
forbidden to migrate back to the mobile side. Note that
the colored node means remote execution in cloud, while
the others are executed locally. In the execution order, aR

means method a is executed remotely.
We define the following variables for a program tree.
• Cm(i) - The execution cost of method i on the device.
• Cc(i) - The execution cost of method i on the cloud.
• C ′

m(i) - The residual cost of method i. Normally the
cost of the parent node i is larger than the summation of
the costs of all its child nodes, because node i contains
the cost of running the body of code excluding the
costs of the methods called by it. We define residual
cost for each non-leaf node i by C ′

m(i) = Cm(i) −
∑

j∈ChildOf(i) Cm(j).
• Su(i) - The size of VM state that needs to be

transmitted to the cloud when the method i is migrated
onto the cloud.
• Sd(i) - The size of VM state that needs to be

transmitted back to the device when the method i is re-
integrated from the cloud to the device.
• Cs(i) - The migration cost of method i. Fig.8 shows

that the whole migration procedure contains five phases:
suspension, state transfer (uplink), remote computation,
state transfer (downlink) and resuming. We assume that
the suspension cost Csusp and resuming cost Cresm are
constants for all the methods.

Given the variables above, we can easily obtain the
optimal partition, i.e., to decide which methods are

Suspension

State transfer

(Uplink)

Computation

State transfer

(Downlink)

Resume

time

Mobile

Cloud
()cC i

suspC resmC

Fig. 8. Execution cost in migration

executed on the device, and which methods are migrated
to the cloud, such that the total execution cost is min-
imized. The snapshot partitioning problem has been well
formulated and solved in [5] [6]. In practical systems, the
execution cost Cm(i) and migration cost Cs(i) can change
during the life cycle of the application in dynamic mobile
cloud environments. We need to update the partition
accordingly during the application life cycle such that
the total execution cost over the life cycle is minimized.

3.2.2 Dynamic Environment Modeling

We present a simple model of the dynamic mobile
cloud environment which includes the device status and
network status. The device status affects the execution
cost on devices Cm(i). In specific, Cm(i) depends on the
computing capability and workload of the device. It is
formulated by

Cm(i) ∝ P × (1− η), 0 ≤ η < 1, (1)

where P denotes the computing capability, i.e., the speed
that the device processes the program. η denotes the
normalized workloads on the device. It represents the
percentages of CPU that have been occupied, where η =
0 indicates that the CPU is totally idle. The computing
capability P is static while the workload η is dynamic.

The network status affects the migration cost Cs(i).
In specific, Cs(i) depends on the bandwidth of the
network connection to the cloud. If we denote the uplink
bandwidth by Bul, and the downlink bandwidth by Bdl,
Cs(i) is calculated by

Cs(i) = Su(i)/Bul+Sd(i)/Bdl+Cc(i)+Csusp+Cresm (2)

In summary, the dynamic parameters of mobile cloud
environment that we consider in this paper are device
workload η, and network bandwidth (Bul, Bdl). In our
framework, to guarantee the accuracy, we need to peri-
odically update the estimation and/or prediction of the
parameters.

3.2.3 Formulation of Computation Repartitioning

We formulate the repartitioning as a stochastic dynamic
decision process. The decision is made every time the
execution environment parameters are predicted. We use
n = {0, 1, 2, ..., N} to denote the decision epoch. The
whole life cycle of the application is divided into N
decision epoches. We use Tn to represent the length of
epoch n. n = 0 represents the initial time when the
application is launched. The decisions are made at the
beginning of every epoch.

IEEE TRANSACTION ON CLOUD COMPUTING, FEB 2014 6

System state: The system state is characterized by
the joint knowledge of the program execution status xn

and the execution environment status yn, i.e., the device
workload η and the network bandwidth (Bul, Bdl). At
each decision epoch n, execution status xn reflects the
snapshot information of the program. It contains three
parameters xn = (mn, pn, qn): 1) the method mn that the
program is running at, 2) a binary variable pn indicating
whether it is migrated or not, pn = 1 if the method
is being in migration, otherwise pn = 0, and 3) qn
indicating how much computation has been done for this
method. If the method runs locally, qn is assigned with
the time that the method has been executed; otherwise
if the method is in migration, qn is assigned with: i)
the phase that the migration is in, as shown in Fig.8;
ii) and the corresponding data size that has been sent
to or received from the cloud if the migration is in the
phase of state transfer.

We treat zn = (xn, yn, Tn) as the system state at the
decision epoch n. We add another state zn = T to denote
the application has been finished. The decision process
is terminated when the system enters into state T .

Decision: At each epoch n, after observing the system
state zn, a decision µn(zn) has to be made. The decision
at each epoch n contains: 1) whether or not to terminate
the migration procedure if the application is in state
of migration; 2)updating the migration points for the
methods to be started.

Cost Functions and Optimal Partitioning Policy: The
objective of the problem is to minimize the execution
time of the application. We define the cost function at
each epoch g(zn) = Tn if the program is not completed
zn 6= T ; otherwise g(zn) = 0. The objective function is
given by ρ =

∑N

n=0 g(zn). The sequence of decisions φ =
{µ0(z0), µ1(z1), ..., µN (zN)} is considered as the policy
for the dynamic decision process. Let ρφ be the execution
time of the application under the partitioning policy φ.
The optimal partitioning policy φ∗ is obtained by φ∗ =
argmin

φ
ρφ.

4 CASE STUDY: COMPUATION REPARTITION-
ING UNDER NETWORK BANDWIDTH FLUCTUA-
TIONS

In this section, as a case study, we consider the compu-
ation repartitioning problem under the scenario where
the network status encounters connectivity losses and
bandwidth fluctuation while the device status is rela-
tively stable.

4.1 Network Fluctuation Model

The network parameter we are concerned about is the
user’s bandwidth, because it affects the migration cost
of the program. Throughout the paper, we exchangeably
use the terminologies bandwidth, throughput, data transfer
rate and network status. We consider a wireless network
where users access the network through Base Stations

(BSs)/Access Points (APs), and roam from one BS/AP
to another to remain connected while they move. There
exist some places where the wireless signal is too weak
to maintain a connection with the AP, or where there
is no signal, because this place is not covered by the
BSs/APs or the signal is blocked by surrounding obsta-
cles. We define these places as ’holes’. Inside holes the
user encounters connectivity loss. Outside the holes, the
bandwidth can vary as the user moves.

To learn how the network status fluctuates in temporal
and spatial domain, we compare the network fluctuation
between the stationary scenario and mobile scenario.
Fig.2 shows that in stationary scenario the network sta-
tus is relatively stable with time, while in spatial domain
networks become more fluctuant as the user’s location
changes. The distribution histograms of the measure-
ments shown in Fig.3 as well illustrates the difference.
It is shown that the variance of spatial fluctuation is
much larger than that of temporal fluctuation. From
above measurements, we make an abstraction that the
dominating factor that affects the user’s bandwidth is
the user’s geographical location. The reason is that the
life cycle of an application usually lasts a few seconds to
several minutes at most. If we look at this short period,
the bandwidth fluctuation for one user is dominated by
the user’s mobility.

4.2 Overview of Solution

In Foreseer, we exploit the historical knowledge about
the user’s mobility to predict the network status. The
partitioning of application is then updated based on
the predicted network status. In particular, we solve the
following problems in the design of Foreseer.

At first, we find that it is extremely hard to accurately
measure the network bandwidth in real time through
single mobile device. One common approach to measure
the bandwidth is by uploading or downloading a large
file to or from the server. The uplink or downlink
bandwidth will be the size of the file divided by the time
used for the uploading or downloading. This measure-
ment itself takes several seconds at least, which is not
acceptable for our case. In addition, the high overhead
that is incurred during the measurement, e.g., addition-
al data transmission and battery consumption, makes
it infeasible to conduct such bandwidth measurement
via single mobile device. In Foreseer, we leverage the
crowdsourcing to collect the users’ bandwidth together
with their locations, and learn the probabilistic model
of network bandwidth conditioned on the location. The
user can query the network bandwidth with its location.

Second, we need to accurately predict the future net-
work bandwidth from the user’s mobility. In Foreseer,
we deploy a centralized server on the mobile network,
named as network server throughout the paper, for: (1)
providing the service that allows the mobile users to
share location-bandwidth pairs; (2) collecting the user-
s’ historical trajectories; (3) performing online trajectory

IEEE TRANSACTION ON CLOUD COMPUTING, FEB 2014 7

Historical

Trajectory

Database

Location-

Throughput

Database

Network

Status Query Mapping

Mobile device Trajectory

Matching

Predictability

Checking

Clustering

Partition

Updating

Program

Finished ?

Start

End

Yes

No

Network Server

Fig. 9. Flow chart of Foreseer

matching and network status prediction. To improve the
prediction accuracy, we only predict the network status
up to certain point in the future, which we name as pre-
dictable duration. The uncertainty of the network status is
relatively low in the predictable duration, while beyond
the predictable duration the network status becomes
highly uncertain. The network status for one particular
user can be predicted based on either the historical
trajectories by individuals, or the historical trajectories
by all the users. We realize that a centralized server may
become the bottleneck of the system when the users scale
up. The challenge of designing scalable architectures is
inherent to all distributed systems and beyond the scope
of this paper.

With the predicted network status, the core of our
problem is to develop an online decision policy for the
dynamic repartitioning process. We design an online
algorithm that can work efficiently in real systems. Our
solution is to make the decision that maximizes the
execution progress in the predictable duration. Execution
progress is defined as the position of the program
counter while the application is in execution. In the
following, we present a high level description of the pro-
tocol which shows how the components work together
in our system. Fig.9 shows the detailed flow chart of
Foreseer.

1. Network Status Query. When the mobile user enters
the network, it receives the beacons from the surround-
ing APs periodically. It measures the signal strength of
the beacons, and labels its location with a sequence of
AP IDs, which are sorted in a descending order of their
signal strength. The location label is null when the user is
in ’holes’. When the application is launched, the mobile
user sends a series of recorded locations to the network
server, and queries for its network status.

2. Network Status Prediction. With the series of lo-
cations, the network server searches the historical tra-
jectories from the database whose prefixes match with
the query. All the matched trajectories are mapped into
sequences of network bandwidth values, based on the
location-bandwidth fingerprint database. Usually, the
longer future we attempt to predict, the more uncertain
the network bandwidth will be. The network bandwidth
sequences are cut off at some time in future, called as

predictable duration, such that the uncertainty about the
network status is low enough. The most likely sequence
is returned as the result.

3. Partition Initializing/Updating. Upon receiving the
network status, the user determines/updates the par-
titioning decision such that the execution progress is
maximized in this predictable duration. Towards the end
of the predictable duration, the mobile user will send
the network status query again for the next partition
updating.

The three steps are performed iteratively until the
program is finished. If the user happens to be in ’holes’
when it sends the network status query, the query will
be postponed until the user moves out of the ’holes’. The
application sticks on the previous partition.

4.3 Network Status Prediction

4.3.1 Trajectory Representation

We represent the user location with a set of AP IDs
from which the mobile user is able to detect the beacon
signal. The APs are sorted by a descending order of the
signal strength. For example, a legal representation of
location is ’abc’, in which case the signal from AP ’a’ is
the strongest, ’b’ is less strong and ’c’ is the weakest. If
the user is located at the holes, the location is labeled as
’N’. There are two cases that the hole ’N’ is labeled. The
first case is that no AP signal is detected by the user.
Second, the signal from the detected AP is too weak to
maintain the connection. We have done experiments to
learn the threshold of the signal strength, below which
the network connection is not possible. We found a
threshold of 90 db as an empirical value. The trajectory
is represented as a time series of locations. One example
of a trajectory is: ”ab ab abc bc c c d d N N N f”. In the
string, we use the space to isolate two locations.

4.3.2 Trajectory Matching

We do not have any requirement on the length of the
recorded trajectory. For convenience of description, we
can abstract all the trajectories at the database as one
virtual string, by joining them together with special
isolated symbols. We name the virtual string as historical
string or history, and the string that the user sends
for querying the network status as contextual string or
context. The trajectory matching is to find the positions
at which the context occurs in the historical string. The
substrings of the history, which occur immediately after
the context, will be returned as the possible trajectories
that the user will pass by.

In a practical solution, we need to determine a proper
length of the context in the string matching. If the context
is too long, we may not have enough samples to estimate
the probabilistic distribution of the future trajectory. Op-
positely, short contexts can not fully capture the feature
of the user’s input trajectory. In our system, we use the
approach in Sampled Pattern Matching (SPM) algorithm
[18] to determine the length of the context. In contrast

IEEE TRANSACTION ON CLOUD COMPUTING, FEB 2014 8

to k-order Markov predictor, which uses a fixed length
of the context, the length of context in SPM is decided
by a fixed fraction α of the longest context that occurs in
the history, where 0 < α < 1. The method is appropriate
to be used in the prediction based on large diverse data
sources (in our case, the trajectory traces are from various
users at different times).

4.3.3 Mapping

In our system, we build a location-throughput database
on the network server. There exists many efficient ways
to construct the fingerprint database[19]. In our system,
we use the most intuitive yet efficient method. The
database is directly indexed using the location (of string
type). For each indexed location, we determine the cor-
responding throughput simply by a weighted averaging
of the samples at that location. The latest samples are
given higher weights. The throughput for each indexed
location is updated as new samples are added. The Based
on the database, we can map all the possible trajectories
into sequences of network throughput values. Note that
the location labels ’N’ for the network holes are directly
mapped into zeros.

4.3.4 Clustering

Suppose that we have M sequences and the length of
each sequence is N . Let bi = (bi,1, bi,2, ..., bi,N), 1 ≤ i ≤M
denote the sequence i. We perform the clustering for
the M sequences. The sequences that are similar to each
other will be grouped into one cluster. We measure the
similarity between two sequences by their Euclidean
distance

d(bi, bj) =
1

N

√

√

√

√

N
∑

k=1

(bi,k − bj,k)2. (3)

If the distance of two sequences is lower than a given
threshold, we say that the two sequences are similar
to each other. In the clustering, we construct a graph
for all the M sequences, in which the nodes represent
individual sequences, the edge represents that the two
connected nodes are similar to each other. The clustering
is to iteratively find the maximum clique from the graph.
A lot of heuristics have been proposed for the Maximum
Clique Problem (MCP) [20]. We will not describe the
details in our paper. The cluster that has the largest size
is selected to represent the predictable result. In our so-
lution, since the sequences within the cluster are highly
similar to each other, we randomly choose one from the
cluster as the future network throughput sequence.

4.3.5 Predictability Checking

We define predictability by the entropy of the network
throughput distribution in future time. Suppose we get
K clusters after the clustering for the M throughput
sequences. Let Ck denotes the cluster, where 1 ≤ k ≤
K, and S(Ck) denote the size of the cluster, where

∑K

k=1 S(Ck) = M . The probability that the actual re-

sult is from the cluster Ck is p(Ck) = S(Ck)
M

. With the
probabilistic distribution of the clusters, the predictabil-
ity is defined by the entropy H = −p(Ck) log2 p(Ck).
Entropy reflects the uncertainty of the future network
status. Greater entropy indicates the lower predicability.
Generally, the longer the network status to be predicted
is, the lower the predictability is.

In our solution, we start from a small prediction
duration and check the entropy. If the entropy is lower
than a threshold Hth, we continue to extend the pre-
diction duration in future. The prediction procedure is
terminated until the entropy of the network throughput
distribution exceeds Hth. We name the length of the
period as predictable duration. In the computation reparti-
tioning problem, the length of the decision epoch is the
predictable duration. Note that we distinguish the uplink
and downlink in our system, since our real measure-
ments show the two are quite different. In our solution,
we treat them as two independent variables. After we
obtain the possible trajectories, we predict the uplink
throughput and downlink throughput independently.
It is possible that the two have different predictable
durations. In this case, we choose the smaller value as the
predictable duration, without affecting the predictability
of the other one.

4.4 Computation Repartitioning

We first describe the solution for the offline partitioning
problem, where the future network status is perfectly
known. By using our offline solution, we further design
an online algorithm for the compuation repartitioning
problem.

4.4.1 Offline Algorithm

The offline problem is to determine an optimal partition
of the application, assuming that the network status in
the future is known, such that the completion time of
the application is minimized. The offline partitioning
problem is different with snapshot partitioning problem.
In snapshot partitioning problem, the migration cost
Cs(i) of each method is constant, while in offline parti-
tioning problem the migration cost depends on when the
migration happens. Existing works [5] [6] aim to solve
the snapshot partitioning problem, but can not solve the
offline partitioning problem.

We develop a recursive algorithm for the offline par-
titioning problem as shown in Algorithm 1. The input
variables includes the local execution cost of each node
Cm(i), and the migration cost related variables such
as Csusp, Cresm, Cc(i), Su(i), Sd(i), and the dynamic
network uplink and downlink bandwidth, denoted as
Bul(t) and Bdl(t). Note that the network bandwidth
during the time period (0,∞) is known. The application
is launched at some time point t. The algorithm outputs
the optimal partition. Let Y (i) represent the partition.
Y (i) = 1 if node i is migrated onto the cloud, otherwise

IEEE TRANSACTION ON CLOUD COMPUTING, FEB 2014 9

Algorithm 1: The offline algorithm

Offline Algorithm: FindOptimalPartion(i, t)
1 tc ← t;
2 if i ∈ LeafNodes then
3 tnmgr(i)← Cm(i);
4 else
5 tnmgr(i)← C′

m(i);

6 while j ∈ ChildrenOf(i) do
7 tnmgr(i)← tnmgr(i) + FindOptimalPartion(j, tc);
8 tc ← tc + FindOptimalPartion(j, tc);

9 if tnmgr(i) > Cs(i, t0) then
10 Y (i)← 1; // Method i is migrated into cloud;
11 topt(i)← Cs(i, t0);
12 else
13 Y (i)← 0; //Method i is executed locally;
14 topt(i)← tnmgr(i);

15 return topt(i);

0t suspC
resmC()cC i

upd

downd
()d

ny t

()u

ny t

t

t0

0

Fig. 10. How to calculate migration cost

Y (i) = 0. Algorithm 1 can optimize the partition for
any program subtree i that is going to start at time t,
and return the corresponding completion time. Since the
network bandwidth is changing over time, the migration
cost of node i depends on the time it is started. In
the algorithm, Cs(i, t0) represents the migration cost
of node i if the migration procedure starts at time t0.
Fig.10 shows the migration cost as given by Cs(i, t0) =
Csusp+dup+Cc(i)+ddown+Cresm, where dup and ddown

are the state transfer time that satisfy:

∫ t0+Csusp+dup

t0+Csusp

yu(t)dt = Su(i), (4)

∫ t0+Csusp+dup+Cc(i)+ddown

t0+Csusp+dup+Cc(i)

yd(t)dt = Sd(i). (5)

4.4.2 Online Algorithm

We first define application execution progress and then
describe the online algorithm. Execution progress is de-
fined as the position of the program counter while the
application is in execution. In particular, if the program is
being in migration, execution progress is defined as the
position of the migration point, although it is possible
that the actual program counter at the cloud side is
in advance of the migration point. Note that execution
progress is different with the execution status defined in
Section 3. Fig.11 illustrate execution progress given the
application execution status. Suppose that the application
is totally completed at mobile device, we can construct
a progress bar that shows the start time and end time of

8

3 7

1 2 4 5 6

1 2 3 4 5 6 7 8

7

4 5 6

8

3 7

1 2 4 5 6

1 2 3 4 5 6 7 8

8

3 7

1 2 4 5 6

1 2 3 4 5 6 7 8

5

Execute LocallyIn Migration

Progess Progess Progess

Fig. 11. Execution progress

each method. In this example, the progress bar is in the
order of {1, 2, ..., 8}. Note that the length of execution
time of the non-leaf node is its residual cost C ′

m(i), which
represents the cost of running the body of code excluding
the costs of the methods called by it. In our solution, we
simplify that the body of code of the non-leaf node is
executed after all its children nodes. After the progress
bar is constructed, for any feasible application execution
status, we can shows its progress on the bar. The left
tree shows that method ’7’ is being in migration. The
execution progress is the migration point of ’7’, which is
right after the completion time of method ’3’. The tree
in the middle shows that method ’7’ is being executed
on the mobile device. The progress is located at some
position of ’7’ on the bar. In the right tree, method ’5’ is
being in migration, thus the execution progress is at the
end of ’4’ on the bar.

In the online solution, we maximize the application
execution progress at each decision epoch. According to
the definition of execution progress above, if and only if
the method in migration can be returned before the end
of the current epoch, it will contribute to the execution
progress. Oppositely if the method is migrated but not
re-integrated in this epoch, the time that is spent on the
method migration has no contribution to the execution
progress. This is because of our pessimistic estimation
about the network status beyond the predictable du-
ration. The worst case that the communication is fully
disconnected would happen beyond the epoch. Thus,
we have a conservative migration policy in our online
solution: if the method is able to re-integrate back to
the device in the epoch, the migration of the method
is allowed; otherwise the migration is not allowed, be-
cause in this case we can always obtain more progress
by executing the method locally. We conclude that the
problem of finding the partition that maximizes exe-
cution progress at current decision epoch is equivalent
to the problem of finding the partition, that minimizes
the completion time of the application, given that the
network throughput beyond the predictable duration is
zero.

Algorithm 2 shows the online algorithm of the compu-
ation repartitioning problem. The algorithm first checks
the execution state xn = (mn, pn, qn). If the method mn

is being in migration procedure, the algorithm makes
the decision Xn of whether to terminate the migration
or not, by comparing the time tcont that the subtree mn

needs to be finished if the migration continues, and the

IEEE TRANSACTION ON CLOUD COMPUTING, FEB 2014 10

Algorithm 2: The online algorithm

Online Algorithm: µn(zn)
1 if The program is being in migration pn = 1 then
2 tcont ← EstimateF inishT imeOf(mn);
3 tterm ← Cresm + FindOptimalPartition(mn, Cresm);
4 if tcont < tterm then
5 Xn ← 0; t← tcont;
6 else
7 Xn ← 1; t← tterm;

8 else
9 t = EstimateF inishT imeOf(mn);

10 i← mn;
11 while j ← NextNodeOf(i) do
12 if j = ParentOf(i) then
13 t = t+ C′

m(j);
14 else
15 FindOptimalPartition(j, t);

16 i← j;

8

3 7

1 2 4 5 6 2

7

4 5 63 8

Nodes sequence after Node 1

Fig. 12. Nodes sequence for NextNodeOf()

time tterm if mn terminates the migration and seeks a
different partition. Note that the overhead of switching
to different partition is Cresm. tcont can be estimated
based on the application execution status and network
status. As the network throughput beyond the this epoch
is assigned with zero, if the migration is still not finished
in this epoch, we have tcont = ∞. Line 13 to 20 is to
update the partition for the nodes not started. When we
search the next node to be started, we always search
the subtree that includes as more children that are not
started as possible. Fig.12, for example, shows the next
node after 1 is nodes 2, 3, 7, 8 rather than 2, 3, 4, 5, 6, 7,
8.

The predicted network status is not ideally the same
with the reality, so the program is likely to end up at each
epoch with a method being in progress of migration. In
this case, the decision on whether or not to terminate
the migration procedure is necessary. At each epoch, we
make the partition for all the nodes to be started rather
than the nodes that are likely to be started in current
epoch. It causes more overhead but it is reliable to handle
the case in which the network throughput happens to be
much better than what we predicted, and some nodes
that were not considered to start in the epoch start
eventually.

5 EVALUATION

5.1 Evaluation Setup

We collect the network bandwidth traces from our cam-
pus WiFi network testbed. We deploy 23 WiFi access
points in the test area. Note that in the Fig.13 only the
nodes labeled with figures are deployed with APs. The
23 APs are densely deployed at the four buildings. Some

1

2

3

4

5

6
7

8 9

10

11

13

12

14

15 16

19
17

18

20

21

22
23

Fig. 13. APs deployment and Mobility Graph.

buildings with APs deployed start from the first floor,
so people can freely pass through them on the ground.
The maximum length and width of the erea are approx-
imately 500 meters and 700 meters. The APs are mainly
deployed at four buildings. Since APs are not intention-
ally deployed to cover the whole test area, there exists a
few network holes both in the buildings and in the open
space of the campus. Our prediction method needs the
database of historical trajectories. Before collecting the
trajectories, we have built a mobility graph that constrains
the user’s mobility due to the environment restrictions.
The users’ trajectories correspond to pathes in the graph.
Fig.13 shows the AP deployment and mobility graph in
our test area. We have collected data for 30 trajectories
for six users. The trajectories are not totally different, but
have a few overlaps between each other. The locations
are recorded every two seconds along the trajectory,
but each trajectory has different speed that ranges from
approximately 1.0 m/s to 2.5 m/s. The time length of
each trajectory is about 10 minutes.

In order to build a snapshot map of location-
throughput, we have selected 200 positions to measure
the network bandwidth which covers the whole test
area. At each position we have ten measurements of
both the downlink and uplink bandwidth. The average
on the 10 measurements is recorded as network status
at that position. The measurements are collected from
10:00 am to 12:00 am on Mar 2nd, 2013. Note that the
positions we selected do not include network holes,
because the network bandwidth in holes can be directly
mapped into zero. In real systems, the snapshot map of
location/throughput varies depending on workloads on
APs, traffic on the backbone and so on. It needs to be
updated periodically, e.g., one update per hour. In our
evaluation, we simply collect the snapshot map once and
use it all the time.

We evaluate our repartitioning algorithm using two
applications: face recognition and QR-code recognition.
These two applications are also used in most related
works [5] [6] [13]. Fig.14 shows the method level graph
of the two applications. The details about the application
parameters are shown in Table 1, where the data of
face recognition are from [5] and the data of QR-code

IEEE TRANSACTION ON CLOUD COMPUTING, FEB 2014 11

Main Function

Pre-Processing

QR-Code

Decoding

Thresholding

QR-Code

Positioning

ImageRotating

&Correcting

ActivityData

Generation

CharacterSet

Generation

DecodeFormat

Generation

1

2

3

4

5

6
8

7

9

D
etectA

n
d

E
x

tractF
aces

In
itializeF

aceR
eco

g
n

izer

F
in

d
M

atch

1 2

3

(a) Face Recognition (b) QR-code Recognition

Fig. 14. Program trees used in evaluation

TABLE 1

Application parameters

App. Meth. Cm(i) C′

m(i) Cc(i) Su(i) Sd(i)

Face 1© 7.1 s 7.1 s 0.71 s 2.3MB 2.3MB
Recog. 2© 19.6 s 19.6 s 1.96 s 6.9MB 6.9MB

3© 28.1 s 1.4 s 0.14 s 91kB 91kB

QR- 1© 800ms 800ms 80ms 350KB 87.5KB
Code 2© 1300ms 1300ms 130ms 87.5KB 62.5KB

Recog. 3© 110ms 110ms 11ms 62.5KB 87.5KB
4© 2210ms 0 ms 221ms 350KB 87.5KB
5© 500ms 500ms 50 ms 62.5KB 50.3KB
6© 400ms 400ms 300 ms 62.5KB 50.1KB
7© 300ms 300ms 30 ms 62.5KB 50.1KB
8© 1480ms 280ms 148ms 87.5KB 63KB
9© 3690ms 0 ms 369ms 350KB 52KB

recognition are from [13]. Note that the computation in
cloud is 10 times faster than on mobile devices. The
suspension cost Csusp and resuming cost Cresm are set
as 1 second. These are typical values used in [6].

5.2 Network Status Prediction

We first evaluate our approach for network status predic-
tion. We concern on two metrics: accuracy and predictable
duration. The accuracy is measured by the number of
successful prediction over the total number of predic-
tions. Successful prediction means that the predicted result
is similar to the ground truth according to Equation 3.
The predicted result is obtained through mapping the
predicted trajectory into network bandwidth sequence
by using the location-bandwidth map. However, to ob-
tain the ground truth, we first map the real trajectory
into network status sequence. Considering the stochastic
property of bandwidth in temporal domain (shown in
Fig.2a), the ground truth are then added with a sim-
ulated Gaussian noise. The mean and variance of the
noise added for uplink and downlink bandwidth are
respectively set as (0, 400kbps) and (0, 100kbps).

We evaluate the overall performance of the prediction
method. We choose one of the 30 trajectories as test
trajectory, and the left as the historical trajectories. We
simulate the online predictions with the test trajectory.

1 1.5 2 2.5
0

5

10

15

20

Speed (m/s)

P
re

d
ic

ta
b
le

 D
u
ra

ti
o
n

(a) Prediction accuracy

1 1.5 2 2.5
0

20

40

60

80

100

Speed (m/s)

P
re

d
ic

ti
o

n
 a

c
c
u

ra
c
y
(%

)

(b) Predictable duration

Fig. 15. Performance of network status prediction varies

depending on the walking speed of user

1 1.2 1.4 1.6 1.8 2
0

20

40

60

80

100

P
re

d
ic

ti
o

n
 a

c
c
u

ra
c
y
 (

%
)

Entropy threshold

(a) Prediction accuracy

1 1.2 1.4 1.6 1.8 2
0

10

20

30

P
re

d
ic

ta
b
le

 d
u
ra

ti
o
n

Entropy threshold

(b) Predictable duration

Fig. 16. Performance of network status prediction varies

depending on Hth

We repeat this evaluation on all 30 trajectories. Finally,
we have 1123 times of prediction, where each trajectory
has 1123/30 = 37 times of predictions on average.
Among those predictions, 912 predictions are successful,
thus the overall accuracy of our method is 81.2%. The
average predictable duration is 15.7 seconds. The result
shows we can accurately predict the network status in
future 15.7 seconds with our prediction method.

Next, we evaluate how the walking speed affects
the prediction performance. We classify the trajectories
into four categories according to the speed: slow (about
1m/s), medium (about 1.5m/s), fast (about 2.0m/s), and
very fast (about 2.5 m/s). For the test trajectories which
belong to the same speed category, we count the the total
number of online predictions, the number of successful
predictions, and the average predictable duration. Fig.15
shows predictable duration decreases as the speed in-
creases, while the accuracy almost remains the same.
The reason that the predictable duration changes is, that
the length of future spatial trajectory that we are able to
predict is constrained. If the users move fast, the time
that user passes by the predictable area will be short.
The speed does not affect the accuracy because of the
threshold Hth that is applied to stop prediction if the
network status becomes high uncertain in further future.

We further evaluate the effect of parameter Hth on
the prediction accuracy. Increasing Hth means allow-
ing prediction in uncertain network status distribution.
In this case, although the predictable duration could
be increased, the prediction is more likely to deviate
from the ground truth. Fig.16 shows prediction accuracy
decreases as we increase the threshold Hth. We will
report how Hth influences the performance of program
partitioning in next subsection.

Finally, we explore the impact of the trajectory data

IEEE TRANSACTION ON CLOUD COMPUTING, FEB 2014 12

20 40 60 80 100 120
0

20

40

60

80

100

P
re

d
ic

ti
o
n
 a

c
c
u
ra

c
y
 (

%
)

Size of dataset

(a) Prediction accuracy

20 40 60 80 100 120
0

10

20

30

P
re

d
ic

ti
o
n
 D

u
ra

ti
o
n

Size of dataset

(b) Predictable duration

Fig. 17. Performance of network status prediction varies

depending on the data size

size on the prediction performance. First, we discard
some of the 30 trajectories data set. As shown in Fig.17,
we find both the accuracy and predictable duration de-
crease significantly. The reason is that the test trajectory
may have some spatial intervals that never appear in the
historical trajectory database. In this case, it is difficult
to find the matched trajectory from the database, or
even when matched trajectories are searched from the
database, but the successive part of the test trajectory
appears to be different from all the matched trajectories.
Second, we increase the data size by simulating more tra-
jectories. The new trajectories are generated by randomly
picking up the intervals from the 30 real trajectories and
joining them together. Fig.17 shows that both prediction
accuracy and predictable duration increases as the data
size increases. In particular, the increase of predictable
duration is very obvious. Overall, this evaluation implies
that the performance of our prediction method highly
relies on the data size. If we want to be able to predict
more time in future or more accurately, we should have
more samples in the historical database.

5.3 Computation repartitioning

Metric: Completion Time. We compare the online com-
puation repartitioning method (Algorithm 2) respective-
ly with CloneCloud, which runs the application with one
time partitioning based on the current network status
when the application is launched, the offline partitioning
method (Algorithm 1) and the baseline case that the
application is totally executed on the mobile device.
The main performance metric is completion time of the
program. The performance of the offline partitioning
algorithm actually reflects the upbound that the online
algorithm can achieve. The algorithms are evaluated
using the network traces we have collected.

First, we evaluate the overall performance of the par-
titioning methods. We have collected 30 network traces.
For each network trace, we repeatedly run the appli-
cation 50 times by randomly selecting the application
launching time along the trajectory. Thus, the application
runs 50×30 = 1500 times for each method. We obtain
the average completion time for the online algorithm,
CloneCloud, offline algorithm and the baseline method.
Fig.20a and Fig.20b respectively show the program com-
pletion time under the four methods for the two ap-
plications. For face recognition, Foreseer can reduce the

1 1.5 2 2.5
10

15

20

25

30

Walking speed (m/s)

C
o

m
p

le
ti
o

n
 t

im
e

 (
s
e

c
o

n
d

s
)

Local Exec.

CloneCloud

Online

Offline

(a) walking speed

20 40 60 80 100 120
0

20

40

60

80

100

120

Workload of application (seconds)

C
o

m
p

le
ti
o

n
 t

im
e

 (
s
e

c
o

n
d

s
)

Local Exec.

CloneCloud

Online

Offline

(b) application workload

Fig. 19. The completion time varies depending on: a)the

walking speed; b) application workload

completion time by 41% over CloneCloud. For QR-code
recognition, Foreseer can reduce the completion time by
35% over CloneCloud.

We analyze how predictable duration affects the online
predictive method. Note that we run the program for
1500 times to obtain the overall performance of the
predictive method. Each running of the program requires
multiple times of prediction on the network status. We
record the average predictable duration as well the
program completion time during each running of the
program. We analyze the 1500 samples of the predictable
duration and program completion time, and find that
program completion time decreases as the predictable
duration increase, which is shown in Fig.18a. This result
implies that if we can predict more time in future about the
network status, we will achieve better performance.

To evaluate how the performance of predictive parti-
tioning algorithm changes depending on the prediction
parameter Hth, we assign Hth with different values, and
repeat 1500 runs of the algorithm. Fig.18b shows that the
performance is not good either when Hth is too low or
Hth is too high. The reason is that when Hth is too low,
although the network status can be predicted accurately
(shown in Fig.16a), the predictable duration is quite short
which degrades the performance. Oppositely when Hth

is too large, the network prediction is not accurate, which
leads to bad performance of the predictive method. In
addition, we record the network bandwidth prediction
accuracy under each Hth in this evaluation. Fig.18c plots
the sensitivity of the online partitioning approach to the
prediction accuracy of the network bandwidth.

We then evaluate how the walking speed affects the
performance of the three partitioning methods. We con-
duct the test under four speeds 0.5 m/s, 1.0 m/s, 1.5
m/s, and 2.0 m/s. For each speed, we select one trajecto-
ry, and also repeat the application 50 times by randomly
choosing the application launching time. Fig.19a shows
the three methods’ performance under different walking
speeds. The performance of both the online method and
CloneCloud degrades as the walking speed increases.
The faster the user walks, the more unstable the net-
works status is, in which case CloneCloud that assumes
the stable network has lower performance. The reason
that our online algorithm has lower performance as the
speed increases is that the predictable duration becomes
short when user moves faster. This evaluation shows that

IEEE TRANSACTION ON CLOUD COMPUTING, FEB 2014 13

6 8 10 12 14 16 18
0

5

10

15

20

Predictable duration (s)

P
ro

g
ra

m
 c

o
m

p
le

ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

Online

Offline

(a)

1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

P
ro

g
ra

m
 C

o
m

p
le

ti
o
n
 T

im
e
 (

S
e
c
o
n
d
s
)

Entropy threshold

(b)

40 50 60 70 80 90
0

5

10

15

20

25

P
ro

g
ra

m
 C

o
m

p
le

ti
o
n
 T

im
e

(S
ec

o
n
d
s)

Prediction Accuracy (%)

(c)

Fig. 18. The completion time varies depending on: a)the predictable duration; b) Hth; c) the prediction accuracy

Local Exec. CloneCloud Online Offline
0

5

10

15

20

25

30

C
o

m
p

le
ti
o

n
 T

im
e

 (
s
)

(a) FR - Completion Time

Local Exec. CloneCloud Online Offline
0

0.5

1

1.5

2

2.5

3

3.5

4

C
o

m
p

le
ti
o

n
 T

im
e

 (
s
)

(b) QR - Program Completion
Time

Local Exec. CloneCloud Online Offline
0

5

10

15

20

25

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

J
)

(c) FR - Energy Consumption

Local Exec. CloneCloud Online Offline
0

2

4

6

8

10

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

J
)

(d) QR - Energy Consumption

Local Exec. CloneCloud Online Offline
0

50

100

150

200

B
a

n
d

w
id

th
 U

s
a

g
e

 (
k
B

)

(e) FR - Bandwidth Usage

Local Exec. CloneCloud Online Offline
0

50

100

150

200

250

300

B
a

n
d

w
id

th
 U

s
a

g
e

 (
k
B

)

(f) QR - Bandwidth Usage

Fig. 20. Performance comparison between four method-

s: CloneCloud, Foreseer (Online Algorithm), Foreseer

(Offline Algorithm) and Local Execution without parti-

tioning.

Foreseer always outperforms Clone Cloud, specially when the
user moves relatively fast in the network.

We evaluate the effect of application workload on
performance of the partitioning methods. The workload is
defined as the completion time if the program is totally
executed on the mobile device. In this evaluation, we still
use the face application, but we simulate large workload
by assuming that the same application is executed on a
very slow device. Fig.19b shows the completion time of
the three methods vary depending on the program work-
load. We can see that the more the program workload is,
the better performance our predictive online algorithm
has over CloneCloud. This evaluation implies that Foreseer
is suitable to be used in compute-intensive applications, while
for small application, it is enough to use current bandwidth
to partition the program.

Other Metrics: Energy Consumption and Bandwidth
Usage. Although Foreseer is designed with the objec-

tive of minimizing program completion time, we also
measure other metrics of Foreseer such as energy con-
sumption and bandwidth usage. The energy consumption
of Foreseer contains the application execution itself and
overhead of network status prediction. To measure the
energy consumption of application itself, we use the
same energy model with [6] in our evaluation. For the
overhead of Foreseer, we mainly consider the energy
consumed on the periodic location sensing. Therefore,
we have the following equation to model the energy
consumption of Foreseer: EC = Pcputcomp +Pnetttrans +
Esense. Pcpu and Pnet are constants. Esense is calculated
by the total energy consumed in location sensing among
the whole trajectory divided by the run times of the
program on this trajectory. The bandwidth usage indicates
the data amount that are transferred over the wireless
networks. This metric is usually concerned by the users
who have limited data traffic budget.

Fig.20 shows the energy consumption and bandwidth
usage for the two applications. All measurements are
the average of 1500 runs of the application. We can
see that Foreseer outperforms CloneCloud in term of
energy consumption for the application of face recogni-
tion, while for QR-code recognition, Foreseer consumes
the same amount of energy with CloneCloud. This is
because face recognition has much larger workload then
QR-code recognition. Usually Foreseer can save energy
through reducing the completion time. relatively large
workload programs can benefit from the Foreseer in term of en-
ergy consumption. The bandwidth usage for CloneCloud
and Foreseer(offline) are almost the same for the two
applications. However, Foreseer (online) causes a litter bit
higher bandwidth usage than the other two schemes. This is
because the online algorithm of Foreseer can terminate
the method migration if it predicts that future network
bandwidth is not good. In this sense, the bandwidth
used to transmitting data in the terminated migration
procedure is a waster.

6 CONCLUSION

In this paper, we proposed a framework for run time
compuation repartitioning in dynamic mobile environ-
ments. Based on the framework, we take the dynamic
network connection to the cloud as a case study, and
design an online solution for compuation repartition-
ing under network fluctuations. Our solution exploits

IEEE TRANSACTION ON CLOUD COMPUTING, FEB 2014 14

the knowledge of user’s mobility to predict the future
network status. According to the network prediction,
we designed the online repartitioning algorithm that
aims to maximize the execution progress during current
the predictable duration. To evaluate our solution, we
collected data set from our campus Wifi testbed that
contains the user’s walking trajectories and measure-
ments of spatial distribution of network throughput. The
evaluation results show that our solution can reduce the
completion time of program by at least 35%.

ACKNOWLEDGMENTS

The research is partially supported by Hong Kong RGC
under GRF Grant 510412, Microsoft under Grant H-
ZD92, and the National High-Technology Research and
Development Program (863 Program) of China under
Grant 2013AA01A212.

REFERENCES

[1] K. Kumar and Y. Lu, “Cloud computing for mobile users: Can
offloading computation save energy,” Computer, vol. 43, no. 4, pp.
51–56, 2008.

[2] R. Wolski, S. Gurun, C. Krintz, and D. Nurmi, “Using bandwidth
data to make computation offloading decisions,” in Proc. of IPDPS,
2008, pp. 1–8.

[3] J. Flinn, S. Park, and M. Satyanarayanan, “Balancing performance,
energy, and quality in pervasive computing,” in Proc. of ICDCS,
2002, pp. 1–10.

[4] M. Barbera, S. Kosta, A. Mei, and J. Stefa, “To offload or not
to offload? the bandwidth and energy costs of mobile cloud
computing,” in Proc. of INFOCOM, 2013, pp. 1285–1293.

[5] E. Cuervoy, A. Balasubramanianz, and D. Cho, “Maui: Making
smartphones last longer with code offload,” in Proc. of MobiSys.
ACM Press, 2010, pp. 277–289.

[6] B. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
Elastic execution between mobile device and cloud,” in Proc. of
EuroSys, 2011, pp. 301–314.

[7] X. Zhang, A. Kunjithapatham, S. Jeong, and S. Gibbs, “Towards
an elastic application model for augmenting the computing capa-
bilities of mobile devices with cloud computing,” Mobile Networks
and Applications, vol. 16, no. 3, pp. 379–394, 2009.

[8] I. Giurgiu, O. Riva, D. Juric, I. Krivulev, and G. Alonso, “Calling
the cloud: Enabling mobile phones as interfaces to cloud applica-
tions,” in Proc. of Middleware. ACM Press, 2009, pp. 1–20.

[9] Z. Li, C. Wang, and R. Xu, “Computation offloading to save
energy on handheld devices: a partition scheme,” IEEE Pervasive
Computing, vol. 8, no. 4, pp. 14–23, 2009.

[10] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:
Dynamic resource allocation and parallel execution in cloud for
mobile code offloading,” in Proc. of INFOCOM, 2012, pp. 945–953.

[11] M. Ra, A. Sheth, L. Mummert, P. Pillai, and D. Wetherall, “Odessa:
enabling interactive perception applications on mobile devices,”
in Proc. of MobiSys. ACM Press, 2011, pp. 43–56.

[12] R. Balan, M. Satyanarayanan, S. Park, and T. Okoshi, “Tactics
based remote execution for mobile computing,” in Proc. of Mo-
biSys. ACM Press, 2003, pp. 945–953.

[13] L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, and A. Chan, “A framework
for partitioning and execution of data stream applications in
mobile cloud computing,” ACM SigMetrics Performance Evaluation
Review, vol. 40, no. 4, pp. 23–32, 2013.

[14] J. Rellermeyer, O. Riva, and G. Alonso, “Alfredo: An architecture
for flexible interaction with electronic devices,” in Proc. of Middle-
ware. ACM Press, 2008, pp. 22–41.

[15] M. Kristensen, “Scavenger: Transparent development of efficient
cyber foraging applications,” in Proc. of PerCom, 2009, pp. 217–226.

[16] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The
case for vm-based cloudlets in mobile computing,” IEEE Pervasive
Computing, vol. 6, no. 4, pp. 12–23, 2009.

[17] M. Gordon, D. Jamshidi, S. Mahlke, Z. Mao, and X. Chen, “Comet-
code offload by migrating execution transparently,” in Proc. of
OSDI, 2012, pp. 93–106.

[18] P. Jacquet, W. Szpankowski, and I. Apostol, “An universal predic-
tor based on pattern matching, preliminary results,” Mathematics
and Computer Science: Algorithms, Trees, Combinatorics and Probabil-
ities, pp. 75–85, 2000.

[19] V. Hoonkavirta, T. Perala, S. Ali-Loytty, and R. Piche, “A compar-
ative survey of wlan location fingerprinting methods,” in Proc. of
WPNC, 2009, pp. 243–251.

[20] M. Bomze and M. Budinich, Handbook of Combinatorial Optimiza-
tion. Springer, 1999.

Lei Yang received his Ph.D degree from De-
partment of Computing, Hong Kong Polytechnic
University, in 2014, the MSc degree from Insti-
tute of Computing Technology, Chinese Acade-
my of Science, in 2010, and the BSc degree
from Wuhan University, in 2007. He is currently
an assistant professor from School of Remote
Sensing and Information Engineering in Wuhan
University. His research interest includes mo-
bile cloud computing, RFID systems, and social
computing.

Jiannong Cao is currently a chair professor and
the head of the Department of Computing at
Hong Kong Polytechnic University. He received
the BSc degree from Nanjing University, China,
in 1982, and the MSc and PhD degrees from
Washington State University, USA, in 1986 and
1990, all in computer science. His research inter-
ests include parallel and distributed computing,
computer networks, mobile and pervasive com-
puting, fault tolerance, and middle-ware.

Shaojie Tang received his Ph.D degree from
Department of Computer Science at Illinois In-
stitute of Technology in 2012. He received B.S.
in Radio Engineering from Southeast University,
P.R. China in 2006. He is a member of IEEE.
His main research interests focus on wireless
networks (including sensor networks and cogni-
tive radio networks), social networks, pervasive
computing, mobile cloud computing and algorith-
m analysis and design.

Di Han is currently a Ph.D student from Depart-
ment of Information Technology in Macau Uni-
versity of Science and Technology. He worked
as a research assistant of the Department of
Computing at Hong Kong Polytechnic University
in 2012. His research interest includes pervasive
computing, and mobile system and applications.

Neeraj Suri received his Ph.D. from the Univer-
sity of Massachusetts at Amherst. He currently
holds the TUD Chair Professorship at TU Darm-
stadt, Germany and is also affiliated with the U-
niv. of Texas-Austin and Microsoft Research. His
earlier appointments include the Saab Endowed
Chair Professorship, and Professor at Boston
University. His research spans distributed sys-
tems, mobile computing and OS’s tackling the
design, analysis and assessment of trustworthy
web scale services.

