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Abstract Computer-level faults leading to data errors in
computations are predicted to occur increasingly frequent in
future microprocessors. This work discusses the impact of
such errors on closed-loop performance in implementations
of digital control systems. A method to render a control
system more robust to data errors by introducing artificial
signal limits and then combine them with an anti-windup
scheme is presented and exemplified.

1. Introduction

As computers, rather than electro-mechanical systems, are in-
creasingly used for implementing control algorithms, control
systems become more vulnerable to computer level failures
due to faults in semiconductor devices. Such faults are clas-
sified as: (i) transient faults which are short-duration faults
that are induced by neutron and alpha particles, power sup-
ply and interconnect noise, and electrostatic discharge, (ii)
intermittent faults which are re-occurring short-term faults
that occur due to marginal hardware or aging effects, and (iii)
permanent faults which have the same causes as the inter-
mittent faults, but reflect irreversible physical changes. The
trend with decreasing transistor and interconnect dimensions,
lower power supply, and higher operating frequencies con-
tributes to increasing the occurrence rates of transient and
intermittent faults, while improvements in design and manu-
facturing have led to decreasing permanent failure rates, less
than 15 FIT (Failures In Time, or failures in 109 hours of
operation) for microprocessors in 2001 [4]. This paper will
therefore focus on transient faults.

A microprocessor is built from SRAM memory cells, latches,
and combinational logic. Faults in the microprocessor may
either result in control-flow errors, in which case the in-
struction execution order is erroneous, or in data errors, in
which case the executing program delivers erroneous re-
sults. Many control-flow errors may be detected with watch-
dog timers. Modern microprocessors have built-in protection
against transients faults in memory cells (cache) using e.g.
error-correcting codes and parity checks, while the remaining
parts are essentially unprotected. Methods to implement pro-

tection against transient faults in other locations than mem-
ory cells often involve redundant micro-controller subsys-
tems (ALU etc.) as in [15], but they result in more complex
and more expensive devices. Hence, remaining failures are
data errors due to transient faults in the combinational logic
or latches. In [14] it is predicted that the transient fault rate
per chip of combinational logic circuits will increase nine or-
ders of magnitude from 1992 (∼ 10−7 FIT) to 2011 (∼ 102

FIT), when the failure rate will be comparable to that of un-
protected memory elements. The corresponding fault rate for
the present generation of microprocessors is ∼ 1 FIT. The
trend of increasing fault rates is also reported in [8], where it
is predicted that a 32 Mbit static memory implemented in a
0.1 µm process will fail on the average each 5.7 years at sea
level. A result that is expected to hold also for other logic cir-
cuits, such as flip-flops, latches, registers, and combinational
circuits.

In safety-critical applications it is imperative to have error de-
tection and recovery functionality to meet the high demands
on dependability. In some areas, such as the aircraft industry,
fault-tolerance is achieved by redundant hardware and high-
end devices. In more cost-sensitive areas, such as the auto-
motive industry, expensive solutions may not be feasible. As-
suming a microprocessor with a (constant) transient failure
rate of 10 FIT that hosts e.g. a braking functionality in a car,
the mean time to computer failure (possibly leading to catas-
trophic failure for the vehicle) is more than 11,415 years for
a single vehicle. For a series of 100,000 cars, the mean time
to failure in one of the cars is 42 days. If a microprocessor
executes a control algorithm that is likely to tolerate a tran-
sient data error, this device may not necessarily have to be as
fault-tolerant, and can thus be less expensive. Therefore it is
of interest to investigate the impact of transient data errors on
hardware hosting implementations of safety-critical control
algorithms.

Understanding the effect of data errors on general computer
functionality is an intensively researched area, e.g., [12].
Methods for analyzing the effects of timing errors on control
systems were presented in, e.g., [9, 19]. Analysis of effects on
system stability of data errors caused by EMI bursts was in-



vestigated in [10]. However, catastrophic failures in a safety-
critical system may occur before the system reaches instabil-
ity, e.g. if some constraint on the control error is exceeded.
Recent results [5, 18] show that many data errors will have
a limited effect on control performance, i.e., control systems
often have an inherent resilience or inertia to data errors. This
path is pursued further in this paper. It is discussed how the
implementation of the control algorithms influences the tol-
erance to data errors resulting from computer node failures.
Related work is published in [2], where classical frequency-
domain methods are used to investigate the effects of com-
puter failures on linear feedback control systems.

The paper is organized as follows: In Section 2 a general
model for the effect of data errors on a control algorithm
is stated. Thereafter, controller realization and scaling is
discussed in Section 3. Sections 4 and 5 show how computed
signal bounds together with an anti-windup scheme may
improve the recovery from data errors. This is illustrated
with an example in Section 6. The results are discussed in
Section 7, and summarized in Section 8.

2. Modeling Data Errors Caused by Computer
Node Faults

Let

z(k + 1) = Φcz(k) + Γuc
c uc(k) + Γy

cy(k)

u(k) = Ccz(k) + Duc
c uc(k) + Dy

cy(k)
(1)

be a state-space realization of a general linear two-degrees-
of-freedom dicrete-time controller with internal state z, com-
mand signal uc, process output y, and control signal u. The
controlled process is assumed to be a linear time-invariant
system

Y (s) = G(s)U(s) (2)

with zero-order-hold sampling. A pseudo-code implementa-
tion of (1) would be

repeat:

uc := read_from_interface();

y := read_from_sensors();

u := compute_control_signal(z,uc,y);

write_to_actuator(u);

z := update_controller_state(z,uc,y);

wait_for_next_sample;

This algorithm would be implemented and executed in a com-
puter node like in Figure 1. Erroneous computation results
due to transient data errors would eventually be stored in u or
z, and would propagate to the controlled process, and through
the feedback loop. As illustrated in the figure, the internal
components of a computer node are: communication con-
trollers, memories, microprocessors, and internal communi-
cation buses. All these components may be affected by faults.
As the communication controller handles the information ex-
change with other nodes, quantities measured by sensors may
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Figure 1 A General architecture of a computer node.

become erroneous due to faults in the communication con-
troller. The data path of a microprocessor consists of caches,
registers, buses, and functional units (i.e., ALU, multiplier,
etc.). If a fault occurs in any of these parts, it will affect the
ongoing calculation if the faulty part is activated, rendering
the result of that calculation to be incorrect. The communica-
tion inside the computer node is, generally, performed using
buses. If a fault occurs on such a bus, the data currently being
transferred will be affected and the result may be a data error
in any of the calculated data.

Data errors may be regarded as bit-flips in the digital repre-
sentation of the affected variable or signal. Single-bit errors
tend to be more common than multiple-bit errors [1]. In a N-
bit fixed-point representation with M fractional bits the num-
ber range is R = [−2N−M−1,2N−M−1− 2−M], with a resolu-
tion of Q = 2−M. With this representation, the magnitudes of
the errors will be in the same range as the control signals (as-
suming that the data have been properly scaled). In the IEEE
floating-point standard with f fraction bits, and e exponent
bits the range is R = [−(2−2− f ) ·22e−1−1,(2−2− f ) ·22e−1−1],
and bit flips in the most significant exponent bits may lead to
very large errors. A reasonable model of data errors is addi-
tive impulse disturbances with magnitude of rectangular dis-
tribution within the number representation range. The data
error disturbances may then be included in (1) as

z(k + 1) = Φcz(k) + Γuc
c uc(k) + Γy

cy(k) + ηz(k)

u(k) = Ccz(k) + Duc
c uc(k) + Dy

cy(k) + ηu(k)
(3)

where ηz(k) and ηu(k) are impulse disturbances due to data
errors affecting the computation of the controller state and
control signal, respectively. Since transient data errors occur
sporadically, it may be assumed that an error manifests in
either ηz(k) or ηu(k).

3. Controller Realizations

With a change of state variables z̄(k) = T z(k) in (3) the
controller realization becomes

z̄(k + 1) =Φ̄c z̄(k) +Γ̄uc
c uc(k) + Γ̄y

cy(k) + ηz(k)

u(k) = C̄c z̄(k) + Duc
c uc(k) + Dy

cy(k) + ηu(k)
(4)

with Φ̄c = TΦcT−1, Γ̄uc
c = TΓuc

c , Γ̄y
c = T Γy

c and C̄c = CcT−1.
Note that ηz is not transformed in (4), since it appears



internally in the controller implementation. Combining the
controller realization (4) with a state space realization of the
sampled controlled process (2)

x(k + 1) = Φx(k) + Γu(k)

y(k) = Cx(k)
(5)

results in the closed-loop dynamics

ξ (k + 1) = Φclξ (k) + Γuc
cl uc(k) + Γηz

cl
ηz(k) + Γηu

cl
ηu(k)

y(k) = Cy
cl

ξ (k)

u(k) = Cuc
cl ξ (k) + Duc

c uc(k) + ηu(k)

(6)

with ξ = (x, z̄) and

Φcl =

(
Φ + ΓDy

cC ΓCcT−1

T Γy
cC T ΦcT−1

)

Γuc
cl =

(
ΓDuc

c

T Γuc
c

)
Γηz

cl
=

(
0

I

)
Γηu

cl
=

(
Γ
0

)

Cy
cl

= (C 0) Cu
cl = (Dy

cC CcT−1 )

The impulse-responses from ηz(k) and ηu(k) to y(k) are
hηz (k) = Cy

cl
Φk−1

cl Γηz
cl

, k> 0, and hηu(k) = Cy
cl

Φk−1
cl Γηu

cl
, k> 0.

Inspection of Φcl reveals that the structure

Φk−1
cl =

( ∗ ∗T−1

T∗ T ∗T−1

)
(7)

is preserved for all k > 1. Hence, the impulse-responses will
have the structures hηz(k) = C ∗T−1 and hηu(k) = C ∗Γ for
k> 1. Obviously hηu(k) is invariant under the change of state
variables, while hηz(k) is not. With a large diagonal state
scaling T = Λ, the output response to impulse errors on the
states can be made arbitrary small. However, the state scaling
is constrained by the available numeric precision.

The problem to find the controller realization, i.e. find the
T , such that the output response y(k) to the disturbance
ηz(k) is minimized with respect to some measure, under the
constraint that the state scaling is kept appropriate for the
available numeric representation is treated in e.g. [11, 13].
The results are optimal realizations in the context of round-
off errors, which have the same problem structure, but where
the disturbances are close to stationary white noise processes.
With y(k) = Hηz (q)ηz(k), z̄(k) = Hz(q)uc(k), solutions to the
minimization of ‖Hηz‖p with respect to T , subject to the state
scaling constraint ‖Hz‖q ≤ γ are presented for p,q ∈ {2,∞}
in [13]. For data errors it may be more natural to regard
p = q = 1, i.e. peak-to-peak gain. Even more natural would it
be to minimize ‖hηz‖∞, since the disturbances are assumed to
be impulses. However, in practice it is likely more feasible to
optimize the realization with respect to the all-time present
round-off noise than rare and sporadic data errors. In the
following it will thus be assumed that the transformation T
is given, and we concentrate on the analysis of the influence
of ηz and ηu on the closed-loop performance. Hence, we can
consider the representations (3) and (5) of the controller and
the process.

4. Signal Bounds

If a bound on the command signal uc is known, then l∞
bounds on controller states and the control signal may be
computed using l1 norms on impulse responses [7]. The
controller state and control signal are given by

zi(k) =
k

∑
j=0

hi(k− j)uc( j) (8a)

u(k) =
k

∑
j=0

hu(k− j)uc( j) (8b)

where {hi(k)} and {hu(k)} are the impulse-response se-
quences of the closed-loop system from the command sig-
nal uc(k) to the state variable zi(k) and control signal u(k).
Bounds on zi may be computed by applying the Hölder in-
equality on (8a):

|zi(k)| ≤
k

∑
j=0

|hi(k− j)uc( j)|

≤
[ k

∑
j=0

|hi( j)|p
]1/p[ k

∑
j=0

|uc( j)|q
]1/q

(9)

where 1
p + 1

q = 1. If the maximum absolute value of the
command signal is known |uc(k)| ≤ M, then Equation (9),
with p = 1 and q = ∞, gives

|zi(k)| ≤M
k

∑
j=0
|hi( j)| (10a)

Correspondingly a bound on u(k) may be expressed as

|u(k)| ≤M
k

∑
j=0
|hu( j)| (10b)

It is straightforward to include the effects of other bounded
inputs to the closed-loop system, e.g. load disturbances, in
the bounds of Equations (10). The bound (10a) may also be
used for l1 state scaling, as described in [7]. If the closed-loop
system is well designed with proper damping, the bounds are
not expected to be very conservative, which is also confirmed
in [7]. If the signal bounds are exceeded it can be concluded
that an error has occurred in the system. Hence, the signal
bounds may be used on-line to actively detect deviations
from normal operation, similarly to the approach in e.g. [16].
Note, however, that in the cited work the bounds appear to
be computed on the controller in open-loop, which result
in over-estimation of the bounds by factors of magnitudes
in comparison with the closed-loop bounds. The approach
taken in the present work is to introduce explicit bounds
in the controller, that correspond to those of (10), and then
use well-known anti-windup methods to handle these signal
limitations in a graceful manner. This will give the system
an inherent robustness to data errors that exceed the signal
bounds.



5. Anti-windup

In the presence of control signal limitations, the control sig-
nal actually delivered to the controlled process will be u(k) =
sat(v(k)), where v(k) is the linear control signal. When the
output signal is saturated the feedback path is broken and the
controller states are driven in open-loop, leading to deterio-
rated performance or even instability. If the controller has in-
tegral action this phenomenon is denoted integrator windup.
To inhibit this behavior various anti-windup schemes may be
applied [6]. Anti-windup should always be implemented in a
controller with actuator saturation. In this work an explicit ar-
tificial limitation according to (10b) is introduced to make the
system robust to data errors. In practice an actuator limitation
will also be present. If the actuator saturation limit is smaller
than the artificial limit (10b), then the smallest limit should
be used. The observer-based anti-windup of [3] is a general
method where the control signal error is fed back to the con-
troller. With observer-based anti-windup the controller (3) is
modified as

z(k + 1) = Φcz(k) + Γy
cy(k) + Γuc

c uc(k)

+ K (u(k)− v(k))+ ηz(k)

= Φ̂cz(k) + Γ̂y
cy(k) + Γ̂uc

c uc(k)

+ Ku(k) + ηz(k)

v(k) = Ccz(k) + Dy
cy(k) + Duc

c uc(k) + ηu(k)

u(k) = sat(v(k))

(11)

with Φ̂c = Φc−KCc, Γ̂y
c = Γy

c−KDy
c, and Γ̂uc

c = Γuc
c −KDuc

c .
The gain K is chosen as to obtain the desired observer
dynamics given by Φ̂c. The anti-windup scheme will now
reduce the effect of data errors that are causing the controller
output to exceed the estimated limits. Note that the observer
based anti-windup operates on all controller states, while
certain other schemes only operates on the integrator state.
Hence, errors in any of the controller states are eliminated due
to the anti-windup. Also note that the observer-based method
does not require any additional states to be introduced. In
the context of data errors this is important, since data errors
affecting explicit anti-windup states would not be handled
gracefully by the system. The closed-loop system resulting
from combining (11) with (2) is shown in Figure 2.

6. Example

As an illustration of the inherent tolerance to transient faults
that may be achieved with the combination of signal bounds
and anti-windup, we study the control of the simple servo
process

G(s) =
100

s(s + 10)
(12)

A discrete-time two-degrees-of-freedom tracking controller
is synthesized using the polynomial pole-placement design
method of [3]. The controller is designed for a closed-loop
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Figure 2 Blockdiagram of closed-loop system with artificial
control-signal bound and anti-windup.

bandwidth of ωcl = 15 rad/s, observer dynamics of 2ωcl , and
integral action. The sampling time is set to 0.01 s. A minimal
second-order modal-form state-space realization of the con-
troller is used for implementation, with z = (z1,z2). In this
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Figure 3 Closed-loop system response to a command signal step.
Computed bounds on u and z are shown. (Left: uc (dotted), y (solid);
Middle: u (solid), bounds (dashed); Right: z1 (solid), z2 (dashed),
bounds (dashed))

realization z1 is an integrator state, and z2 may be interpreted
as an observer state. The command signal uc is assumed to be
bounded by |uc(k)| ≤ 1. The l1 state-scaling of (10a) is ap-
plied such that |xi(k)| ≤ 1. The control signal bound accord-
ing to (10b) is |u(k)| ≤ 1.88. (The corresponding open-loop
bound according to [16] is |u(k)| ≤ 341.) The anti-windup
scheme of (11) is implemented, with K chosen as to ob-
tain dead-beat dynamics, to obtain the closed-loop system
of Figure 2. In Figure 3 the closed-loop step-response to a
command-signal unit step is shown. Note that the computed
state-bounds are very tight, while the control signal bound
seems to be a little more conservative. In Figure 4 the closed-
loop response to a data error ηz1

(k) = 5δ (k), affecting the
computation of the integrator state z1, is shown in the case
when the artificial signal-limit and anti-windup are not ap-
plied. It can be seen how the integrator state slowly recovers,
while the control error grows large. In presence of actuator
limitation large data-error amplitudes even result in instabil-
ity. Figure 5 shows the corresponding response with applica-
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Figure 4 Closed-loop system response to a data error ηz1
(k) =

5δ (k), on controller state z1, without signal limitation and anti-
windup. Computed bounds on u and z are shown. (Left: uc (dotted),
y (solid); Middle: u (solid), bounds (dashed); Right: z1 (solid), z2
(dashed), bounds (dashed))

tion of the artificial signal limit |u(k)| ≤ 1.88, in combination
with dead-beat anti-windup. In this case the controller state
recovers within a few samples, and the control error is mod-
erate. Figure 6 shows the largest absolute control-error that
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Figure 5 Closed-loop system response to a data error ηz1
(k) =

5δ (k), on controller state z1, with signal limitation and dead-beat
anti-windup. Computed bounds on u and z are shown. (Left: uc

(dotted), y (solid); Middle: u (solid), v (dashed), limits (dashed);
Right: z1 (solid), z2 (dashed), bounds (dashed))

results from various magnitudes on the data errors ηu, ηz1
,

and ηz2
. Four different system settings are shown for com-

parison: (i) No control-signal limits or anti-windup. Here the
graph is a straight line with a slope equal to the l1-norm of
the impulse response. (ii) Dead-beat anti-windup. Note that
the response to data errors affecting the control signal (ηu)
leads to larger control errors in this case. This is because the
data error is interpreted as a saturation by the anti-windup,
which is fast enough to react immediately. Important to note
is also that the control error magnitude does not increase with
the data error magnitude for large data errors. (iii) Dead-beat
anti-windup only on the integrator state (this is common in
e.g. PI-controllers). This is normally sufficient for handling
actuator limitations, but in the case of data-errors the per-
formance is inferior compared with full-state anti-windup.
(iv) Dynamic anti-windup with a bandwidth of 2ωcl . Here
the response to data errors entering the control signal is bet-
ter, since the anti-windup is too slow to react immediately
on the error impulse. The response to data errors on the state
is, however, worse than for the dead-beat design, as is clear
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Figure 6 Closed-loop system response to impulse data errors.
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Middle: ηz1

; Lower: ηz2
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from the figure. The recovery time is also significantly slower
compared to the dead-beat design, which may be seen from
time-domain response plots.

7. Discussion

In general it can be noted that the integrator state z1 is most
sensitive to data errors, which seems very intuitive since it
depends on feedback of the control error to decay, while
the controller state z2 is stable with a short time constant,
and decays by itself when the loop is broken by saturation.
Another general observation is that the control-signal bound
is computed from bounds on the command signal, and in
consequence is related to the expected magnitude of control
errors during normal operation. Hence, the artificial limits
and the anti-windup scheme will capture data errors resulting
in control errors larger than those expected during normal
operation. The proposed method may also be combined with
the dynamic bounds of [17], to increase the coverage for data
errors.

Since the controller state z is bounded by (10a), it may
seem natural to introduce explicit limits also for this variable.



However, simulations with saturations on the controller state
indicate that the performance improvement is minor. The
increased complexity resulting from additional saturations in
the loop also makes the system difficult to analyze, even if it
seems to perform well in presence of data errors.

In presence of stochastic signals such as measurement noise
there will be a probability of false error detections. This may
be handled by computing the resulting variance of the control
signal. The deterministic control-signal bound (10b) is then
adjusted with some measure depending on the variance.
The size of the adjustment will determine the probability of
false detections. Sporadic false detections will affect control
performance as the anti-windup intervenes. By using slower
anti-windup dynamics the noise sensitivity is decreased.

If a rate bound on the command signal is known |∆uc(k)| =
|uc(k)− uc(k− 1)| ≤ M∆, then state and control-signal rate
bounds may be computed in analogy with (10). An artificial
rate bound on the control signal may then also be introduced
in the controller, and used together with the anti-windup
scheme. Note that the noise sensitivity will be worse than for
the case with magnitude bounds, since the rate of the control
signal will depend on the noise variance.

8. Summary

Data errors resulting from transient faults in the computer
hardware may be modeled as impulse errors entering the con-
trol algorithm internally. The effect on closed-loop perfor-
mance therefore depends on the controller realization. Previ-
ous methods to optimize controller realizations with respect
to round-off errors in finite-precision numerics are applicable
also in the context of transient data errors. Given a controller
realization, robustness to data errors may be achieved by in-
troducing artificial signal limitations based on l∞-bounds, in
combination with an anti-windup scheme. As one may ex-
pect, the integrator state of the controller is most sensitive to
data errors.
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