
A Tunable Add-On Diagnostic Protocol for Time-Triggered Systems ∗

Marco Serafini and Neeraj Suri
TU Darmstadt, Germany

{marco, suri}@informatik.tu-darmstadt.de

Jonny Vinter
SP, Sweden

jonny.vinter@sp.se

Astrit Ademaj
TU Vienna, Austria

ademaj@vmars.tuwien.ac.at

Wolfgang Brandstätter
Audi, Germany

wolfgang.brandstaetter@audi.de

Fulvio Tagliabò
Fiat, Italy

fulvio.tagliabo@crf.it

Jens Koch
Airbus Deutschland, Germany

jens.koch@airbus.com

Abstract

We present a tunable diagnostic protocol for

generic time-triggered (TT) systems to detect crash

and send/receive omission faults. Compared to existing

diagnostic and membership protocols for TT systems, it

does not rely on the single-fault assumption and tolerates

malicious faults. It runs at the application level and can be

added on top of any TT system (possibly as a middleware

component) without requiring modifications at the system

level. The information on detected faults is accumulated

using a penalty/reward algorithm to handle transient faults.

After a fault is detected, the likelihood of node isolation can

be adapted to different system configurations, including

those where functions with different criticality levels

are integrated. Using actual automotive and aerospace

parameters, we experimentally demonstrate the transient

fault handling capabilities of the protocol.

1. Introduction and contributions

In both automotive and aerospace X-by-wire appli-

cations, TT platforms such as Flexray [1], TTP/C [2],

SAFEbus [3] and TT-Ethernet are increasingly being

adopted. Most TT platforms develop their static, built-in

diagnostic and membership approach. Instead, we define

an on-line diagnostic/membership protocol that is a tunable

and portable add-on application level module. It can be

integrated as a plug-in middleware module (as an applica-

tion) onto any TT system, without interference with other

functionalities. It only uses information that is available

at the application level, does not impose constraints on the

scheduling of the system, and has low bandwidth require-

ments. For TT platforms, such as FlexRay, SAFEbus and

TT-Ethernet, that do not have a standardized diagnostic or

membership protocol, our add-on protocol represents a vi-

able solution for such functionalities.

∗Research supported in part by EC DECOS, ReSIST and DFG TUD-

GK MM

Our diagnostic protocol exploits specific features of TT

systems where multiple nodes access a shared broadcast

bus using TDMA communication. The ability of a node

to send correct messages in the designated time window

(called sending slot) is used as a periodic diagnostic test.

The protocol is able to detect bursts of multiple concurrent

faults and to tolerate malicious faults. Its resiliency also

scales with the number of available nodes.

The key purpose of a diagnostic protocol is to trigger

correct and timely recovery/maintenance actions, particu-

larly for safety critical subsystems. However, a diagnostic

protocol needs also consider availability and avoid unnec-

essary substitutions of correct components in case of exter-

nal transient faults, which are becoming more frequent [4].

An “ideal” diagnostic protocol would exclude only nodes

with internal faults. In practice, however, internal faults do

not always manifest as permanent faults at the interface of

the node (e.g. crashes). They can also manifest as mul-

tiple, subsequent intermittent faults which, to external ob-

servers, appear similar to external transient faults. We con-

sider an extended fault model to characterize healthy and

unhealthy nodes based on the presence of internal faults. In

order to recognize unhealthy nodes, a penalty/reward (p/r)

algorithm delays the isolation of faulty nodes to accumulate

on-line diagnostic information. This is a novel extension of

the basis developed in [5, 6] and represents an application

of our alternative p/r model [7].

A problem similar to diagnosis is membership, which

consists of identifying the set of nodes (called membership

view) that have received the same set of messages. We will

show that a variant of our protocol can act as a member-

ship service and detect the formation of multiple cliques of

receivers with inconsistent information.

We have implemented the protocol in a prototype, re-

producing practical automotive and aerospace settings. Us-

ing physical fault injection, we experimentally validate the

properties of the protocol and show how to tune the param-

eters of the p/r algorithm in a realistic environment.

The paper is organized as follows. Following the related

work in Sec. 2, we introduce the system and fault models in

Sec. 3 and 4. The tunable add-on diagnostic protocol and its

properties are presented in Sec. 5 and 6. The protocol is ex-

tended to a membership protocol in Sec. 7. Sec. 8 describes

the experimental validation of both protocols. We detail pa-

rameter tuning in Sec. 9. Sec. 10 discusses the portability

of the middleware to different TT platforms.

2. Related work

The general diagnosis problem was formulated in the

PMC model [8], where a set of active entities test each other

until sufficient information exists to locate the faulty nodes.

In on-line, real time settings the comparison approach is

recommended [9], where the same functionality is executed

on different nodes and the results are compared.

Multiple research efforts have targeted diagnosis for spe-

cific error models, and for improving specific attributes such

as latency reduction, coverage and bandwidth. The fam-

ily of diagnostic protocols for generic synchronous systems

proposed by Walter et al. [11] considers a frame-based com-

munication scheme where nodes exchange messages in syn-

chronous parallel rounds using a fully connected topology

and unidirectional links. Similar to consensus [18, 10], all

nodes exchange their local view on the correctness of the

messages received by the other nodes and combine them

using hybrid voting to achieve consistent diagnosis.

We adapt the on-line diagnosis approach of [11] as a

middleware service for TT systems, where multiple nodes

access a shared broadcast bus using a TDMA communica-

tion scheme. Our add-on protocol explicitly takes into ac-

count the internal scheduling of each node and the overall

global communication scheduling of the system. We extend

the protocol to consider the cases of communication black-

out, which can arise if particularly long transient bursts cor-

rupt all sending slots in the TDMA round. We also show

how to modify the protocol to provide membership infor-

mation. Finally, we define a new p/r algorithm to handle

transient faults based on the criticality of the applications

executing on different nodes.

A count-and-threshold fault detection function (called α-

count) is introduced in [5, 6] to discriminate between tran-

sient and intermittent faults. The fundamental tradeoffs in

its tuning are explored using stochastic evaluation. Our al-

ternate p/r model, which develops an overall FDIR (Fault

Detection, Isolation and Reconfiguration) strategy, is intro-

duced and analyzed in [7]. In this work we present how to

experimentally tune the p/r algorithm in realistic settings.

The problem of group membership is often defined sim-

ilar to diagnosis [12]. Cristian [13] proposed a membership

protocol for synchronous crash-only systems that is based

on an expensive fault-tolerant atomic broadcast primitive to

achieve consistency. Such an approach is impractical in TT

systems due to its high latency and bandwidth requirement.

A membership protocol specifically designed for TTP/C

systems was proposed by Kopetz et al. [2, 14]. It relies

on the ”single fault assumption”, i.e., it does not tolerate

simultaneous faults, and assumes non-malicious node fail-

ures. The protocol allows identification of one fault in the

communication of a message. Besides faulty senders, the

protocol also detects if asymmetric receiver faults cause the

formation of different cliques of nodes. The latency is two

communication slots in the case of sender faults and two

TDMA rounds in case of receiver faults. The bandwidth re-

quired is O(N) bits per message and O(N2) bits per round,

where N is the number of system nodes. If a (possibly tran-

sient) faulty node is detected it is generally restarted, gener-

ating a window of vulnerability to subsequent failures. An

extension of this protocol was proposed by Ezichelvan and

Lemos [15] to tolerate up to half of senders being simultane-

ously faulty with a latency of three TDMA rounds. Our pro-

tocol tolerates multiple coincident non-malicious and mali-

cious faults with the same bandwidth requirement. Due to

its add-on and generic nature, it has a higher latency. How-

ever, in Sec. 10 we show that a system-level variant of our

protocol features a latency of two TDMA rounds.

3. System model

We assume a synchronous system model and a net-

work topology where all nodes access a shared (and pos-

sibly replicated) communication bus using a TDMA ac-

cess scheme, i.e., a periodic schedule where each node

is assigned a time window, called sending slot, in each

TDMA round (or round). The periodic global communica-

tion schedule, including when each slot begins and termi-

nates, is defined at design time and executed by a communi-

cation controller. The communication controller features a

local collision detection mechanism, which checks if mes-

sages sent by the node can actually be read from the bus.

The systems consists of N nodes with unique IDs

{1, ..., N} assigned following the order of the sending slots

in the round. Correct nodes can identify a sender by its

sending time and there is no message forging. Faulty nodes

cannot corrupt messages sent by correct nodes.

Communication among jobs, including those running on

different nodes, is abstracted by a vector of shared variables

〈v1, . . . , vN 〉 called interface variables. Communication

controllers automatically update their value by sending and

receiving messages according to the global communication

schedule. Copies of the interface variables are updated at

the receivers after every sending slot is completed. Updates

follow the sending order of the corresponding messages. In-

terface variables can be updated at most once per round.

Each interface variable has a corresponding validity bit.

This is set to 0 by the communication controller when the

value of the variable can no longer be considered correct. If

an interface variable vi has node i as its unique sender and

is updated at each round, we can assume that the communi-

cation controller uses its local error detection mechanisms

to set the validity bit of vi at the receiver node j to 0 iff node

j was not able to receive the last message sent by i that was

supposed to update vi, and 1 otherwise. Validity bits are

updated together with the corresponding messages.

Besides the global communication schedule, each node

has its own internal node schedule that determines when

jobs are executed. In a TDMA access scheme, the send-

ing slot of a node overlaps with the computational phase of

other nodes. The node schedule can thus have an effect on

the “freshness” of the read interface state, i.e., the round

where the values of the interface variables were sent. For

example, if a job is executed at the beginning of a round it

will only read values sent in the previous rounds. The node

schedule also determines the round when the data written in

the interface state is actually sent on the bus. A job might

be able to send its output data in the same round as it is

executed only if it is scheduled before the sending slot of

the hosting node. To increase the portability of our add-on

protocol, we do not constrain the scheduling of nodes.

4. Fault model

We use a Customizable Fault-Effect Model [16] which

refers to the communication errors in the broadcast of

a message. A received faulty message is locally de-

tectable if it is syntactically incorrect in the value domain or

early/late/missing in the time domain; it is malicious faulty

if it is not locally detectable but is semantically incorrect in

the value domain.

Correspondingly, we partition faults into three classes:

- symmetric benign: (or benign) message is locally de-

tectable by all the receivers;

- symmetric malicious: all the receivers receive the same

malicious message;

- asymmetric: message is locally detectable by at least

one but not all the receivers.

We assume broadcast channels, where different locally un-

detectable messages cannot be asymmetrically received by

different nodes. Asymmetries in the local detection of

messages can be an effect, for example, of Slightly-Off-

Specification faults (SOS) [17], when the clock of a node

is close to the allowed offset and thus the messages it sends

are seen as timely only by a subset of the receivers. Another

example is when EMI disturbs only part of the bus.

We classify nodes based on the communication errors

they display in their outgoing messages, e.g., benign faulty

sender, malicious faulty sender etc. We assume that each

node can display only one type of communication error

throughout one execution of the protocol. Correct nodes

send messages without faults. Obedient nodes follow the

program instructions and execute only correct internal state

transitions. They can either be correct or suffer omission

failures while sending or receiving messages.

For diagnosis, we do not assume permanent faults but

consider an extended fault model instead, where all nodes

alternate periods of faulty behavior, when they are not able

to correctly send messages, and periods of correct behavior.

We consider a node:

- healthy, if it suffers only sporadic and external tran-

sient faults;

- unhealthy, if it suffers internal faults which manifest

as intermittent or permanent communication faults.

We implicitly assume that internal faults will manifest at

the interface of the node either (a) as permanent sender

faults (a long faulty burst) or (b) as intermittent faults with

a shorter time to reappearance than external transient faults.

A crashed node, for example, is an unhealthy node that per-

manently displays benign faults.

5. The on-line diagnostic protocol

The purpose of the on-line diagnostic protocol is to de-

tect and isolate unhealthy nodes from the system at run-

time. It is composed of two algorithms. The first algorithm

forms a consistent health vector to consistently locate be-

nign faulty senders, the second accumulates the diagnostic

information using the p/r algorithm to distinguish (in a prob-

abilistic manner) between healthy and unhealthy nodes.

Each node i runs, at each round, the diagnostic job diagi,

which sends a non-replicated diagnostic message dmi and

receives all the other interface variables 〈dm1, . . . , dmN 〉.
The communication controller provides a validity bit for

each interface variable dmj sent from diagj to diagi using

its local error detection mechanisms. By checking the valid-

ity bits of the diagnostic messages, the protocol diagnoses

communication errors. The local syndrome of node i is the

binary N -tuple containing its local view on the messages

sent by other nodes (faulty/not faulty). The diagnostic mes-

sage dmi contains the local syndrome broadcast by node i
and its size is O(N).

The diagnostic protocol consists of five phases:

1) Local detection: Communication errors are locally de-

tected by observing the local validity bits of the diag-

nostic messages. A new local syndrome is formed as a

binary N -tuple.

2) Dissemination: The local syndrome is broadcast using

the diagnostic message dmi.

3) Aggregation: Receive all local syndromes dmj corre-

sponding to the same previous diagnosed round. Form

a diagnostic matrix for that round where row i is the lo-

cal syndrome sent from node i and column j is a vector

representing the opinion on node j of all other nodes.

4) Analysis: A binary N -tuple called consistent health

vector, which contains the consistent distributed view

on the health of all system nodes in the diagnosed

round, is calculated. To combine the local syndromes

sent by different nodes, a hybrid voting [11, 18] over

the columns of the diagnostic matrix is performed. If

enough nodes observed a benign fault, the sending

node is considered faulty.

5) Update counters: Based on the consistent health vec-

tor, update the penalty and reward counters associated

to a node, and possibly isolate faulty nodes.

round k

(diagnosed round)

round k+1 round k+2 round k+3

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

If a FAULT OCCURS in

a slot of round k...

sending

slot
Global comm. scheduling

Internal scheduling of diagnostic jobs

within nodes (unconstrained)

Phase 1

... each diagnostic job has the chance

to observe it before the end of round k+1 ...

Phase 2

... to send its local syndrome

before the end of round k+2 ...

Phases 3, 4 and 5

... and to receive and analyze all local syndromes on round k before

 the end of round k+3. Penalty/reward counters can be now updated

Diagnostic jobs

Node 1
Node 2
Node 3
Node 4

Figure 1: High level overview of the diagnostic protocol in a system with four nodes

The phases of the protocol are executed in consecutive

TDMA rounds, and phases of multiple instances of the pro-

tocol are interleaved at each execution of diagi (Fig. 1). The

pseudo code of the diagnostic job diagi, running on each

node i, is presented in Alg. 1.

Consistent location of faulty senders. Local detection

and aggregation entail reading the interface variables and

their validity bits. We do not constrain the scheduling of

the diagnostic jobs in a round. Thus, we need to consider

that, in a TDMA communication scheme, diagnostic jobs

running on different nodes can see different views of the in-

terface variables, as the freshness of the read data can vary.

Consider a diagnostic job diagi which, at round k, reads

from the interface variables the values of the diagnostic

messages dm1, . . . , dmN and their validity bits. As di-

agnostic messages are sent at every round, the read values

were sent (following the sending order) either on round k or

k−1. Hence there is a locally known integer li ∈ [0, N−1],
determined by the internal schedule of diagi within node i,
such that values of dm1, . . . , dmli were sent in round k,

while values dmli+1, . . . , dmN were sent in round k − 1
(the same holds for their validity bits)1. For all diagnostic

jobs executed in round k to consistently use aligned diag-

nostic messages (resp. validity bits) from round k − 1, the

protocol executes a read alignment operation (Fig. 2; Alg. 1,

Lines 3-6). Read alignment combines in variables al dmj

(al lsj) values prev dm[1, i] (prev ls[1, i]) from the previ-

ous round and of curr dm[i+1, N] (curr ls[i+1, N]) from

the current. This requires buffering of messages and va-

lidity bits (lines 16-17), and introduces additional delays in

the communication.

For local detection, the validity bits are read (Alg. 1,

line 2) and combined using read alignment (lines 3-6). The

vector al ls contains in round k the local syndromes corre-

sponding to the messages sent in round k − 1.

During the dissemination phase a send alignment is also

needed to ensure that, despite unconstrained node schedul-

ing, all local syndromes sent in round k refer to a same

1If a diagnostic job diagi is executed after the last sending slot of a

round and can read data from round k from each node, we treat it as it was

executed in round k + 1 and set li = 0 accordingly.

previous diagnosed round, as required by the aggregation

phase executed in the following round. We define the pred-

icate send curr roundj to be true if, according to the in-

ternal schedule of node i, the diagnostic messages formed

by the diagnostic job diagj at round k can be sent in round

k (i.e., diagj is completed before the sending slot of the

node). If the predicate holds for all nodes, all current local

syndromes can be immediately written in the interface state

(line 7) and the latency of the protocol is reduced. However

this global condition may not hold, or it may be impossible

to locally evaluate it (e.g. if the node scheduling is dynamic,

see Sec. 10). In these cases, send alignment is used to deter-

mine the data to be written in the interface variables, which

will be later sent. If a job completes its execution before

the sending slot of its node, it writes the local syndromes

obtained in the previous round; otherwise the current local

syndromes are written (lines 8-10).

The aggregation phase first reads the values of the local

syndromes sent by all diagnostic jobs through the diagnos-

tic messages (line 1). A special error value ε is assigned to

local syndromes whose validity bit is 0. Read alignment is

used to guarantee that all jobs executed in round k form a

diagnostic matrix using local syndromes sent in round k−1,

which refer to the same diagnosed round (lines 3-6); vector

al dmj represents the jth row of the matrix. The jth ele-

ment of the local syndrome sent by node i to node k can

assume three possible values: 0, if i was not able to receive

the message from node j in the slot of interest; 1, if i was

able to receive the message from j; ε, if k was not able to

receive the local syndrome from i correctly. For example,

Table 1 shows the diagnostic matrix formed in case node 3

prev_dm
1

prev_dm
2

prev_dm
4

Diagnostic messages (interface variables):

values read in round k-1

values read in round k

k-1 k-1 k-2 k-2

l
i
 = 2

Round of msg update

Update order

Aligned values

(al_dm
j
)prev_dm

3

curr_dm
1

curr_dm
2

curr_dm
4

k k k-1 k-1

curr_dm
3

Figure 2: Example of read alignment (round k, li = 2)

Table 1: Example diagnostic matrix (3-4 benign faulty)

Accused node

Accuser node Local syndr. 1 2 3 4

Node 1 al dm1 - 1 0 0

Node 2 al dm2 1 - 0 0

Node 3 al dm3 ε ε - ε

Node 4 al dm4 ε ε ε -

Voted cons hv 1 1 0 0

and 4 are two (coincident) benign faulty senders in both the

diagnosed round and the dissemination round.

As faults can occur during the dissemination phase of the

protocol, the diagnostic matrices can contain incorrect or

incomplete information, and different nodes can form dif-

ferent diagnostic matrices due to asymmetric faults. How-

ever, a consistent global view on faults in the diagnosed

round can be obtained by combining different local views

using a hybrid voting function H-maj(V) (Eqn. 1) over the

columns V of the matrix. The opinion of a node about itself

is considered unreliable and discarded to tolerate asymmet-

ric faults (see Sec. 6). Thus, voting is executed over the

(N − 1)-tuple V of local syndromes representing the opin-

ions of the other nodes (lines 11-13). In order to tolerate

benign faults, a hybrid voting function excludes erroneous

votes ε from V (excl(V, ε)) before calculating the major-

ity [18] (see example in Table 1).

As for validity bits and local syndromes, the value 0 de-

notes a faulty node. In case no correct local syndrome is

available (|excl(V, ε)| = 0), the voting function can not

reach a decision. This can happen only if at least N − 1
nodes are not able to send their local syndrome and a node

is not able to determine whether it was faulty in the diag-

nosed round. In this case, the protocol cannot do anything

else than relying on the outcome of the collision detector in

the diagnosed round (line 14). The consistent health vector

cons hv is the outcome of the hybrid majority voting and

contains, at round k, the agreed view on the health of each

node at the diagnosed round, i.e., k−3 or k−2 (see Sec. 6).

H-maj(V) =

⊥ if |excl(V, ε)| = 0
v if v = maj(excl(V, ε))

and |excl(V, ε)| ≥ 1
1 else

(1)

Filtering unhealthy nodes. The consistent health vector

is given as an input (Alg. 1, line 15) to the penalty/reward

algorithm (Alg. 2), which is used to handle transient faults

and discriminate them from intermittent and permanent

faults. Each node keeps a penalty and a reward counter

for each node in the system in the vectors penalties and

rewards. They are both initially set to 0. Whenever the

node is detected as faulty, the corresponding penalty is in-

creased by each node depending on the criticality of the jobs

allocated on the node. Criticality levels for each node are

stored in the vector criticalities. We discuss the selection

Algorithm 1: Node i diagnostic job diagi

begin

// Phases 1 and 3 - Local detection and Aggregation

// (read alignment)

〈curr dm1, . . . , curr dmN 〉 ←1

read iface(dm1, . . . , dmN);

curr ls← read vbits(dm1, . . . , dmN);2

for j ← 1, . . . , li do3

al dmj ← prev dmj ; al ls[j]← prev ls[j];4

for j ← li + 1, . . . , N do5

al dmj ← curr dmj ; al ls[j]← curr ls[j];6

// Phase 2 - Dissemination

// (send alignment)

if ∀j : send curr roundj then write iface(al ls);7

else if send curr roundi then8

write iface(prev al ls);9

else write iface(al ls);10

// Phase 4 - Analysis

// (consistent location of benign faulty senders)

for j ← 1, . . . , N do11

diag ← H-maj〈al dm1[j], . . . , al dmj−1[j],12

al dmj+1[j], . . . , al dmN [j]〉;
if diag 6= ⊥ then cons hv[j]← diag;13

else cons hv[j]← coll-det(diagnosed round);14

// Phase 5 - Update counters

// (decision on node isolation)

active← active AND pen rew(cons hv);15

// (buffering for read and send alignment)
〈prev dm1, . . . , prev dmN 〉 ←16

〈curr dm1, . . . , curr dmN 〉;
prev ls← curr ls; prev al ls← al ls;17

end

of such criticality levels in Sec. 9. If no fault is successively

detected the reward is increased by one. The algorithm uses

two constants, a penalty threshold P and a reward thresh-

old R. After a bounded amount of time either of the two

thresholds is exceeded, resulting in isolation of the node or

reset of the counters respectively.

The two counters, and the corresponding thresholds,

represent two different kinds of information: the reward

counter (threshold) indicates the (minimum) number of

consecutive fault-free slots a node needs to display be-

fore the memory of its previous faults is reset; the penalty

counter (threshold) indicates the (maximum) number of

consecutive faulty slots a node is allowed to display before

isolation.

As the health assessment of the system stored in vector

cons hv is consistently calculated in Alg. 1, the penalty and

reward counters are always consistently updated, and isola-

tions are decided in the same round by all obedient nodes.

The vector active contains the status of activity of each

node and represents the internal output of the diagnostic

protocol (Alg. 1, line 15). Eventual traffic generated by

isolated nodes must be ignored by the communication con-

trollers of all other nodes. Upon reintegration of a node, the

value of the corresponding element is set back to the initial

Algorithm 2: The p/r algorithm

begin

for i← 1, . . . , N do
curr act[i]← 1;

if cons hv[i] = 0 then
penalties[i]← penalties[i] + criticalities[i];
rewards[i]← 0;

if penalties[i] ≥ P then curr act[i]← 0;

else

if penalties[i] > 0 then
rewards[i]← rewards[i] + 1;

if rewards[i] ≥ R then
penalties[i]← 0; rewards[i]← 0;

return curr act;
end

value 1 (up) and the traffic considered again. As the prob-

lem of reintegration is outside the scope of this paper, the

algorithm only sets activity bits to 0 (isolated).

6. Properties of the diagnostic protocol

In this section we prove the properties of the diagnostic

information stored in the consistent health vector cons hv.

We show the experimental evaluation used to practically

tune the parameters of the p/r algorithm in Sec. 9.

The properties of the consistent health vector are:

- Correctness: a correct sender is never diagnosed as

faulty by obedient nodes;

- Completeness: a benign faulty sender is always diag-

nosed as faulty by obedient nodes;

- Consistency: diagnosis is agreed by all obedient nodes.

Our protocol does not discriminate between node and

link faults. Transient external faults in the communication

network are filtered using the p/r algorithm. We remark that

in our extended fault model these properties hold for obedi-

ent nodes, i.e., both correct nodes and nodes encountering

omission faults, whereas for classical diagnostic protocols

they only hold for correct nodes. These properties imply

that an obedient node is able to diagnose itself.

We first prove that the diagnostic matrix used for the hy-

brid voting consists of validity bits of messages sent in the

same round. Next we study the conditions under which the

hybrid voting is able to calculate a consistent health vector

that provides for the three properties defined above.

Lemma 1 All local syndromes al dmj correctly received

and aggregated by the diagnostic jobs executed at round k
contain the value of the validity bits of the messages sent

in the same previous diagnosed round, which can be either

k − 3 or k − 2 depending on the schedule of nodes and on

the global communication schedule.

Proof Diagnostic messages are updated at every round.

Therefore, each diagnostic job at round k can read values

sent either in round k or k − 1. The read alignment done

in the aggregation phase ensures that all local syndromes

al dmj were sent in round k − 1. Such local syndromes

were formed either in the same round as they were sent or in

the previous, i.e., either in round k−1 or k−2. This depends

on the local schedule of diagnostic jobs with respect to the

global communication schedule, i.e., on the send alignment.

The local detection phase also uses read alignment to con-

sistently form local syndromes of validity bits referring to

messages sent in the previous round, i.e., either round k− 3
or k − 2. This round is therefore the diagnosed round. �

The aligned local syndromes formed at round k consti-

tute the diagnostic matrix for the diagnosed round k − 3 or

k − 2. Due to malicious faults during the dissemination,

local syndromes can contain incorrect information, and dif-

ferent diagnostic matrices can be formed at different nodes.

In the following, we prove that the hybrid voting function

H-maj(V) calculates a consistent health vector satisfying

correctness, completeness and consistency; a, s and b will

represent the number of asymmetric, symmetric malicious

and benign faulty nodes over one execution of the protocol.

Lemma 2 The consistent health vector calculated by each

obedient node at round k guarantees consistency, com-

pleteness and correctness for faults occurred at round k−3
or k − 2 as long as N > 2a + 2s + b + 1 and a ≤ 1.

Proof As proved in Lemma 1, the hybrid voting

H-maj(V) is executed over the local syndromes

of validity bits referring to the same diagnosed

round. Let us consider the N-1 tuple of values V =
〈al dm1[i], . . . , al dmi−1[i], al dmi+1[i], . . . , al dmN [i]〉
used by an obedient node to diagnose i. Among these val-

ues, up to b are erroneous (ε), the actual number depending

on the amount of benign faulty nodes failing during the

dissemination phase. The other N − b− 1 values are either

correct (and therefore symmetric) or malicious/asymmetric.

If the diagnosed sender was correct or benign faulty, all

correct votes will carry the same opinion to all obedient

nodes. As N−b−1 > 2(a+s), malicious and/or asymmet-

ric votes are a minority and are outvoted by correct values in

each obedient node. Thus, a consistent decision is reached

that ensures correctness and completeness.

If the diagnosed sender is not correct nor benign faulty

in the diagnosed round, the only property required is con-

sistency. If the sender had been symmetric malicious, it was

not detected as faulty by any node. Similar to the previous

case, there is a consistent majority of correct votes at each

obedient node saying that the sender was not faulty, and

therefore consistency is guaranteed.

If the diagnosed sender was asymmetric faulty, its vote

does not contribute to the diagnosis on its health, since the

opinion of a node on itself is ignored and excluded from the

vector V . As there can be at most one asymmetric sender

over one execution of the protocol, each obedient node re-

ceives the same set of votes and reaches a consistent diag-

nosis, which can assume any value. �

The condition N > 2a + 2s + b + 1 requires that, even

if there are no malicious faults, b < N − 1. In case of long

transient bursts in the communication bus, multiple (and

possibly all) subsequent slots in the round will be compro-

mised, resulting in a higher number of sender faults. The

protocol behaves correctly also under these conditions, as

proved by the following Lemma:

Lemma 3 If there are only benign faulty senders, the con-

sistent health vector calculated by each obedient node at

round k guarantees correct, complete and consistent diag-

nosis of the other nodes for faults occurred at round k − 3
or k− 2 if N − 1 ≤ b ≤ N . For correct, complete and con-

sistent self-diagnosis, the correctness of the local collision

detector is necessary.

Proof If there are only benign faulty nodes, all local syn-

dromes will be consistent and will reflect the state of the

system. An obedient node can thus correctly diagnose other

nodes even if it does not receive any external local syn-

drome. However, when the node has to diagnose itself and

no external local syndromes are available, it cannot distin-

guish whether it was able to correctly send its message or

not, unless it queries the local collision detector. Any de-

fault decision in this case could be incorrect and inconsis-

tent with the (correct) diagnosis of the other nodes. The

correctness of the local collision detector is therefore not

only sufficient but also necessary for self-diagnosis. �

Lemmas 1, 2 and 3 imply Theorem 1 as:

Theorem 1 The consistent health vector calculated by

each job at round k guarantees correctness, completeness

and consistency for faults occurred at round k − 3 or k − 2
if: N > 2a+2s+b+1 and a ≤ 1; or there are only benign

faults, N − 1 ≤ b ≤ N . In the latter case, local collision

detection is necessary for self-diagnosis. �

7. The membership protocol

A common approach to keep consistency in fault-tolerant

distributed systems is to use a group membership service.

When an asymmetric fault occurs, nodes are partitioned into

two sets, also called cliques, such that the members of one

clique received the message whereas the other did not. In

such case a membership service outputs a new view consist-

ing of the larger of these cliques. As all the members of a

clique have received the same set of messages, they have a

consistent state. The properties required for a group mem-

bership service are the following:

- Membership liveness: A new unique view is formed

whenever an obedient node receives a locally de-

tectable faulty message m;

- View synchrony: As a new view is formed, all obe-

dient nodes remaining across consecutive views have

received the same set of messages prior to, and includ-

ing, m.

If there is a benign fault, all receivers form a unique

clique and Alg. 1 detects sender faulty nodes correctly. In

case of asymmetric faults, however, two different cliques of

receivers are formed and the diagnostic protocol of Alg. 1

cannot detect them.

A modified diagnostic protocol can detect the presence

of disjoint cliques and allow the determination of views

according to the properties above. In Alg. 1, the analysis

phase must be executed before the dissemination phase; af-

ter the consistent health vector is calculated, the modified

algorithm accuses (as member of the minority clique) the

nodes that send local syndromes disagreeing with it. Such

accusations, called minority accusations, are added in the

current aligned local syndrome al ls and subsequently dis-

seminated. The protocol satisfies the desired properties as

shown in Theorem 2:

Theorem 2 If an obedient correct node receives a locally

incorrect message m and N > 2a+2s+b+1, a ≤ 1, a new

view is generated after two complete executions of the mod-

ified diagnostic protocol (membership liveness) containing

all nodes never deemed as faulty. Such a view satisfies view

synchrony for all messages prior to and including m.

Proof A locally detectable message can be received due to

either a benign or an asymmetric fault. If a benign fault

occurs, it is detected by the diagnostic protocol as shown in

Theorem 1. The sender is the only node which received the

message and will be excluded from the view.

If an asymmetric fault occurs during the broadcast of

message m, two cliques of obedient nodes are formed. The-

orem 1 guarantees that all obedient nodes calculate a con-

sistent health vector, which contains a consistent decision

(faulty/non faulty) on message m. During the dissemina-

tion phase of the diagnostic protocol, however, obedient

nodes of the minority cliques try to send local syndromes

disagreeing with the consistent decision. As a ≤ 1, such

nodes can either correctly broadcast it, and be accused by

all other obedient nodes (minority accusation), or be benign

faulty senders, and thus be accused by the local detection

mechanisms of all the other obedient nodes. In both cases

they will be consistently accused and diagnosed as faulty in

the next execution of the diagnostic protocol. �

8. Validation of the protocols

In this section we present the results of the experimental

validation of the diagnostic and membership protocols. We

used physical fault injection to validate the properties of the

protocol under different scenarios. We emphasize that all

parameters used in the validation (and tuning, see Sec. 9)

arise from actual automotive and aerospace applications.

Prototype setup. The validation setup consists of a set

of four nodes consisting of a host computer (Infineon Tri-

core 1796) and a communication controller (Xilinx Vertex

4 FPGA), which are interconnected via a redundant TT net-

work (layered TTP). Each host computer runs a TT operat-

ing system. A diagnostic job runs on each node as an add-on

application-level module sending one diagnostic message

per round. No constraint was imposed on the internal node

scheduling besides executing diagnostic jobs once every

round. The static node scheduling defined the constant in-

tegers l{1,..,N} and the predicates send curr round{1,..,N}

used by the protocol for the read and the send alignment op-

erations. Interface variables are automatically updated and

the validity bits of a message m can be read using the API

call tt Receiver Status. The bandwidth required for

each diagnostic message is N = 4 bits.

We also used an additional disturbance node, which is

able to emulate hardware faults in the communication net-

work. As the protocol does not discriminate between node

and link faults, a fault in a node can be emulated by corrupt-

ing or dropping a message it sends.

Injection cases. We selectively injected different classes

of physical faults on the bus (electrical spikes, random

noise, periods of silence) to simulate faults in a determin-

istic and reproducible manner. As we know which faults

are injected, we can experimentally evaluate whether the

diagnostic protocol is able to detect them. Each experiment

class was repeated 100 times for consistency. A total of

1500 fault injection experiments was conducted.

We injected bursty faults of increasing length: one slot,

two slots and two TDMA rounds. The first two cases fall

in the hypothesis of Lemma 2, the third in the hypothe-

sis of Lemma 3. In the latter case, all slots of a whole

TDMA round are lost, reproducing a communication black-

out where no nodes are able to send any messages (and

therefore no local syndromes are sent). In each of these

three cases, bursts can start in any of the 4 sending slots,

thus we considered 12 experiment classes.

Another experiment class aimed at validating the abil-

ity of the protocol to correctly update penalty and reward

counters for a given node. A fault is injected in the sending

slots of the node every second TDMA round for 20 TDMA

rounds. Hence, either the penalty or the reward counter

should be increased at every round.

The effect of one malicious node sending random local

syndromes was also considered. Its presence is not sup-

posed to induce the other nodes to diagnose correct nodes

as faulty. As any of the four nodes can be malicious, we

considered 4 experiment classes.

To validate the clique detection capabilities of the mem-

bership protocol, we placed the disturbance node between

Node 1 and the rest of the cluster and disconnected the bus

during the sending slot of at least another node to produce

(and detect) a minority clique formed by Node 1.

9. Practical tuning of the p/r algorithm

In order to correctly discriminate between healthy and

unhealthy nodes, the penalty and reward thresholds have to

be tuned together with the criticality levels for each node.

We now describe experiences on the tuning of our proto-

type for realistic automotive and aerospace settings. Table 2

summarizes the results of our tuning.

Characterizing intermittent faults. The first difficulty

faced during the practical tuning of the protocol is how to

characterize unhealthy nodes. The p/r algorithm resets the

penalty and reward counters for a node if it does not fail

for R consecutive rounds, where R is the reward thresh-

old. If a fault appears before R is reached, it is consid-

ered correlated with the previous fault. Therefore, R should

be large enough to correlate intermittent faults. The time

to reappearance of intermittent faults, however, depends on

the specific frequency of fault activation for each node (i.e.,

which hardware components of the node are damaged and

how often they are stimulated by the software) and is un-

known in most practical systems.

While setting R, designers must make a probabilistic

tradeoff between the capability of correlating intermittent

faults with a large time to reappearance and the avoidance

of incorrect correlation of independent and external tran-

sient faults. In Figure 3 we show such a tradeoff for our

automotive and aerospace settings, where the length of the

TDMA round is set to T = 2.5ms. Our practical choice

was to set R = 106 to correlate faults whose interarrival

time is within R × T ∼= 42min, which can be pragmati-

cally considered a reasonable value. After detecting a tran-

sient fault, the resulting probability of correlating a second

transient fault is less than 1% considering the rates of Fig. 3.

It must be noticed that a healthy node will be isolated only if

P subsequent transient faults are correlated, where P is the

penalty threshold [7]. In all our prototypes the probability

of isolation of a healthy node is thus negligible.

Tuning the diagnostic latency. To increase availabil-

ity and accumulate diagnostic data, the p/r algorithm delays

node isolation and increases the diagnostic latency. An ap-

plication can be prevented from correctly exchanging mes-

sages if some of its jobs are hosted on a faulty node that is

kept operative by the p/r algorithm. In such case the ap-

plication might experience an outage. Applications with

different criticality classes have different requirements on

 1e-010

 1e-009

 1e-008

 1e-007

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

10
7

10
6

10
5

10
4

10
3

10
210

 0

 1

 2

 3

 4

 5

 6

 7

P
ro

b
. c

o
rr

e
la

ti
o

n
 o

f
tr

a
n

si
e

n
t

fa
u

lt
s

M
a

x
 i

n
te

rr
a

rr
iv

a
l

ti
m

e

fo
r

c
o

rr
e

la
te

d
 f

a
u

lt
s

(h
o

u
rs

)

Reward threshold R

Transient rate = 10
-2

Transient rate = 10
-3

Transient rate = 10
-4

Figure 3: Setting R with rounds of 2.5ms

Table 2: Results of the experimental tuning of the p/r algorithm

Domain Criticality class Example Tolerated outage Crit. lvl. (si) P R TDMA

Safety Critical (SC) X-by-wire 20 − 50ms 40
Automotive Safety Relevant (SR) Stability control 100 − 200ms 6 197 106 2.5ms

Non Safety Relevant (NSR) Door control 500 − 1000ms 1

Aerospace Safety Critical (SC) High Lift, Landing Gear 50ms 1 17 106 2.5ms

the maximum tolerated transient outage time before a re-

covery action is activated in order to restore the availability

of the service or to reach a safe state. Such outage is the

sum of the diagnostic latency and the recovery time. Tol-

erated transient outages for different classes of automotive

and aerospace applications are shown in Table 2.

The automotive domain depicts a varied range of critical-

ity classes. Safety critical functionalities are necessary for

the physical control of the vehicle with strict reactivity con-

straints, e.g., X-by-wire. Recovery actions must preserve

the availability of the (possibly degraded) service. Safety

relevant functionalities support the driver, e.g., the Elec-

tronic Stability Control and the Driver Assistant Systems,

such as the collision warning and avoidance system. They

are not necessary for the control of the car but the driver

must know if they are unavailable. Finally, there are Non

Safety relevant functionalities such as comfort and enter-

tainment subsystems. In the aerospace domain, only safety

critical functionalities are connected to the backbone. The

High Lift System adds lift during the flight and is related to

the control of flaps. The Landing Gear System controls the

retractable wheels used for landing.

Both the diagnostic and the more complex membership

service are fast enough to satisfy the requirements of the

highest criticality class considered. However, we want to

delay the isolation of faulty nodes as much as possible to

maximize the availability in presence of transient faults.

The diagnostic latency can be tuned by setting the penalty

threshold and criticality levels according to the application

requirements. Hence, we injected continuous faulty bursts

and observed the value of the penalty counter reached when

the maximum diagnostic latency for each criticality class

was reached. We assumed that once a faulty node is isolated

by the diagnostic protocol, each obedient node can instan-

taneously apply the necessary recovery actions, discounting

further delays. Each experiment was repeated 100 times. If

classes c1, . . . , ci have corresponding penalties p1, . . . , pi,

we set P = max(p1, . . . , pi) and the criticality of each

class to si = ⌈P/pi⌉. To satisfy the requirements on the

diagnostic latency, the criticality increment for a node was

Table 3: Abnormal transient scenarios

Scenario Burst TTReapp. # Inj.

Auto (blinking light) 10ms 500ms 50

40ms 160ms 1
Aero (lightning bolt) 40ms 290ms 1

40ms 500ms 9

set as the maximum si of the applications it hosts. Critical-

ity levels are stored in the vector criticalities used by the

p/r algorithm. The penalty thresholds and criticality levels

for the automotive and aerospace setups are shown in Ta-

ble 2. We observed in both setups that even for Safety Crit-

ical applications it is possible to wait for some round before

isolating faulty nodes. This enhances the capability of the

system of not overreacting to transient faults.

Diagnosis under adverse external conditions. We have

shown how we tuned the parameters of the p/r algorithm

under normal external conditions. The next step was to

try to evaluate the capability of the algorithm to guarantee

node availability under adverse external conditions, charac-

terized by an abnormal rate of transient faults. For this pur-

pose we considered two unfavorable but common scenar-

ios in the automotive and aerospace settings where external

faults are highly frequent and will likely be considered as

intermittent faults. For the automotive setting we consid-

ered a blinking light causing periodic electrical instabilities

on the bus due to an open relay, while for aerospace we con-

sidered a lighting bolt producing a sequence of instabilities

with increasing time to reappearance. Systems are designed

and tested to tolerate such transient behaviors without tak-

ing specific recovery actions, therefore isolations should be

avoided. The length of the faulty bursts, the times to reap-

pearance and the number of instances of the burst are shown

in Table 3. We reproduced these scenarios in 100 exper-

iments and observed if and after how much time healthy

nodes were incorrectly isolated.

In both cases, different transient burst are considered as

correlated by the p/r algorithm. The results for the automo-

tive and aerospace setting are shown in Table 4. The func-

tionalities with lower criticalities can tolerate longer periods

of abnormal transient behavior. The use of a p/r algorithm

with varied criticality levels gives advantages in terms of

availability. In fact, if nodes were immediately isolated after

the first fault appearance, a single abnormal transient period

would result in the isolation of all the nodes in the system

and would entail a restart of the whole system. However,

even using our p/r algorithm, the availability of safety criti-

cal functionalities can be harmed by relatively short distur-

bances in both the experimental setting. From this data we

Table 4: Time to incorrect isolation

Setting Criticality class Time to isolation

Automotive SC / SR / NSR 0.518 / 4.595 / 24.475sec

Aerospace SC 0.205sec

can conclude that the detection of intermittent faults could

be sacrificed for the sake of availability for those nodes im-

plementing safety critical functions. For example, isolated

nodes could be kept under observation, collecting rewards if

a fault-free behavior is observed and reintegrating the node

if a specific reward threshold for reintegration is reached.

10. Portability Issues for Varied TT Platforms

One of our main design drivers was to define a diagnos-

tic/membership protocol that is a tunable and portable add-

on application level module, rather than a static and built-in

system level feature. Our experience has confirmed that this

approach is viable. Our protocol only uses detection capa-

bilities that are provided by any TT platform. The concept

of validity bit abstracts a number of platform specific error

detection mechanisms, whose outcome can normally be ac-

cessed by applications using the basic API provided by the

operating system of the host node (see Sec. 8).

Another important issue was not to require interactions

or to interfere with other applications. For this reason, local

detection of faults is implicitly performed by monitoring the

exchange of diagnostic messages among diagnostic jobs. To

ease the integration, the bandwidth requirement of the pro-

tocol is limited. In our prototype diagnostic messages were

as small as N bits.

Finally, we avoided imposing strong constraints on node

scheduling. The read and send alignments ensure that all

diagnostic jobs use consistent data for any schedule, pro-

vided that the diagnostic jobs are executed at every round.

To achieve that, they require the application to know some

parameters that are directly related to the node scheduling,

such as l{1,..,N} and send curr round{1,..,N} (see Sec. 5).

If a static scheduling policy is used, this information is con-

stant and known at design time. In case of dynamic schedul-

ing we require the OS to provide this information to the ap-

plication at run-time.

The relaxed constraints on the scheduling of the diagnos-

tic jobs lead to a detection latency, i.e., the time necessary

to consistently detect a faulty slot, of four TDMA rounds in

the worst case, which is suboptimal. However, if needed, it

is possible to trade off flexibility for a shorter latency. By

constraining the internal node scheduling, in fact, we can

reduce the detection latency down to one round for the di-

agnostic protocol and two rounds for the membership proto-

col. In this variant of the protocol, each node keeps sending

its local syndrome at each sending slot, but the analysis is

executed right after each slot and refers to a single previous

slot. After one round all local syndromes necessary to diag-

nose a slot are collected, and two diagnostic rounds would

be sufficient to execute two instances of the modified diag-

nostic protocol, i.e., one instance of the membership proto-

col. All the properties of the protocol are preserved in this

variant, at the price of making portability more complex.

11. Conclusions

We have presented a generic diagnostic protocol that can

be added on as a middleware layer on top of any TT plat-

form. It tolerates multiple benign and malicious faults and

aims to maximize node availability by using a p/r algorithm

even under abnormal transient disturbances. We have ex-

tended it to be usable as a membership protocol without

using additional resources. Both variants of the protocol

have been experimentally validated. We tuned the p/r al-

gorithm under realistic automotive and aerospace settings,

and addressed open issues of characterization of intermit-

tent faults, determination of the severity of faults and diag-

nosis under adverse external conditions.

References

[1] FlexRay Communication System, Protocol Specification v.

2.1. http://www.flexray.com/specification request v21.php
[2] H. Kopetz and G. Grunsteidl. TTP - A Protocol for Fault

Tolerant Real Time Systems. IEEE Computer, 27(1), pp. 14–

23, 1994.
[3] K. Hoyme and K. Driscoll. SAFEbus. IEEE Aerospace and

Electronic Systems Magazine, 8(3), pp. 34-39, 1993.
[4] C. Constantinescu. Impact of Deep Submicron Technology

on Dependability of VLSI Circuits. DSN, pp. 205–209, 2000.
[5] A. Bondavalli et al. Discriminating Fault Rate and Persistency

to Improve Fault Treatment. FTCS, pp. 354–362, 1997.
[6] A. Bondavalli et al. Threshold-Based Mechanisms to Dis-

criminate Transient from Intermittent Faults. IEEE Trans. on

Computers, 49(3), pp. 230–245, 2000.
[7] M. Serafini et al. On-line Diagnosis and Recovery: On the

Choice and Impact of Tuning Parameters. TR-TUD-DEEDS-

05-05-2006, 2006.
[8] F.P. Preparata at al. On the Connection Assignment Problem

of Diagnosable Systems. IEEE Trans. on Electronic Comput-

ers, 16(12), pp. 848-854, 1967.
[9] M. Malek. A Comparison Connection Assignment for Diag-

nosis of Multiprocessor Systems, ISCA, pp. 31–36, 1980.
[10] M. Barborak et.al, The Consensus Problem in Fault Tolerant

Computing, ACM Surveys, vol. 25, pp. 171–220, Jun. 1993.
[11] C. Walter et al. Formally Verified On-line Diagnosis. IEEE

TSE, 23(11), pp. 684–721, 1997.
[12] M.A. Hiltunen. Membership and System Diagnosis. SRDS,

pp. 208-217, 1995.
[13] F. Cristian. Reaching Agreement on Processor-group Mem-

bership in Synchronous Distributed Systems. Distributed

Computing, 4(4), pp. 175–187, 1991.
[14] G. Bauer and M. Paulitsch. An Investigation of Membership

and Clique Avoidance in TTP/C. SRDS, pp. 118–124, 2000.
[15] P.D. Ezhilchelvan and R. Lemos. A Robust Group Member-

ship Algorithm for Distributed Real Time Systems. RTSS, pp.

173-179, 1990.
[16] C. Walter et al. Continual On-line Diagnosis of Hybrid

Faults. DCCA, pp. 150-166, 1994.
[17] A. Ademaj et al. Evaluation of Fault Handling of the Time

Triggered Architecture with Bus and Star Topology. DSN, pp.

123-132, 2003.
[18] P. Lincoln and J. Rushby. A Formally Verified Algorithm for

Interactive Consistency under Hybrid Fault Models. FTCS,

pp. 402-411, 1993.

