
Eventually Linearizable Shared Objects

Marco Serafini,
∗

Dan Dobre, Matthias Majuntke, Péter Bokor and Neeraj Suri
CS Department, TU Darmstadt

Hochschulstr. 10
64289 Darmstadt, Germany

{marco, dan, majuntke, pbokor, suri}@cs.tu-darmstadt.de

ABSTRACT
Linearizability is the strongest known consistency property
of shared objects. In asynchronous message passing systems,
Linearizability can be achieved with 3S and a majority of
correct processes. In this paper we introduce the notion
of Eventual Linearizability, the strongest known consistency
property that can be attained with 3S and any number of
crashes. We show that linearizable shared object implemen-
tations can be augmented to support weak operations, which
need to be linearized only eventually. Unlike strong opera-
tions that require to be always linearized, weak operations
are live in worst case runs. However, there is a tradeoff be-
tween ensuring termination of weak and strong operations
when processes have only access to 3S. If weak operations
terminate in the worst case, then we show that strong op-
erations terminate only in the absence of concurrent weak
operations. Finally, we show that an implementation based
on 3P exists that guarantees termination of all operations.

Categories and Subject Descriptors
D.4.5 [Operating Systems]: Reliablity—Fault-tolerance;
D.4.7 [Operating Systems]: Organization and Design—
Distributed systems; F.2.m [Theory of Computation]:
Analisys of Algorithms and Problem Complexity

General Terms
Algorithms, Design, Reliability, Theory

Keywords
eventual linearizability, graceful degradation, availability

1. INTRODUCTION
Shared objects are a useful abstraction in the design of

concurrent systems. A concurrent system consists of a col-
lection of sequential processes communicating through shared

∗Marco Serafini is currently also with Yahoo! Research, Av.
Diagonal 177, 08018 Barcelona, Spain

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’10, July 25–28, 2010, Zurich, Switzerland.
Copyright 2010 ACM 978-1-60558-888-9/10/07 ...$10.00.

objects. A shared object can be made tolerant to process
failures by storing a copy of the shared object at each pro-
cess and by having the processes coordinate their actions to
implement a certain degree of consistency. The more con-
sistent the local copies are kept, the easier it is to design a
distributed application using the replicated object.

The strongest consistency property is Linearizability [13],
which provides the illusion that each operation applied to
the shared object takes effect instantaneously at some point
between its invocation and its response. In this way, the
processes have the impression of interacting with a “cen-
tralized” object that executes all operations in a sequential
order consistent with the real time ordering of operations.
Linearizability, however, can be achieved if and only if con-
sensus can be solved. In an asychronous message-passing
system, consensus can be solved assuming a failure detector
of class 3S, or the equivalent class Ω, and a majority of
correct processes [6]. If these conditions are not met, a lin-
earizable implementation blocks, becoming unavailable [5].

In many real world applications, availability is imperative,
and therefore blocking is often unacceptable [8, 9, 11]. In
practice, processes often issue operations that do not need
to be linearized. We call these operations weak as opposed
to strong operations that must be linearized. Ideally, weak
operations applied to a shared object should terminate ir-
respective of the failure detector output or the number of
faulty processes. However, it is acceptable that weak opera-
tions violate Linearizability only if the system deviates from
its “normal” behavior, and that such violations must cease
when the anomalies terminate [12, 1]. We call this property
Eventual Linearizability.

Shared objects with Eventual Linearizability can, for ex-
ample, be used for master-worker applications. Consider a
replicated real-time queue used to dispatch taxi requests to
taxi cabs [12]. Some degree of redundant work, such as hav-
ing multiple cabs respond to the same call, can be accepted
if this prevents the system from becoming unavailable, for
example by letting cabs dequeue requests even in presence of
anomalies. However, no redundant work should take place
when there is no anomaly.

In this paper we address the following question: Is it pos-
sible to achieve these desirable properties of weak operations
without sacrificing linearizability and termination of strong
operations? We answer this question in the negative. In
fact, combining Linearizability and Eventual Linearizability
requires using a stronger failure detector to complete strong
operations than the one sufficient for Consensus.

We introduce the notion of Eventual Linearizability for
weak operations, which is the strongest known consistency

property that can be attained with 3S despite any number
of crashes. Eventual Linearizability guarantees that Lin-
earizability is violated only for a finite time window. It satis-
fies the same locality and nonblocking properties as Lineariz-
ability. We show that Eventual Linearizability for weak op-
erations cannot be provided using existing notions of Even-
tual Consistency [20, 25, 10]. With Eventual Consistency,
in fact, Linearizability can be violated whenever multiple
operations are invoked concurrently. Therefore, Eventual
Consistency never ensures Linearizability.

We introduce a primitive, called Eventual Consensus, that
we prove to be necessary and sufficient to implement Even-
tual Linearizability. Eventual Consensus is strictly weaker
than consensus, since it can be implemented with 3S despite
any number of faulty processes. Inputs to Eventual Con-
sensus are operations proposed by processes, and outputs
are sequences of operations. Informally, Eventual Consen-
sus requires that after some unknown time t, all operations
proposed after t are totally ordered at each process before
being output.

Beyond introducing and formalizing Eventual Lineariz-
ability and Eventual Consensus, we study whether Consen-
sus implementations can be extended to provide Eventual
Consensus without degrading their properties.

We present a shared object implementation, called Au-
rora, which provides Linearizability for strong operations
and Eventual Linearizability for weak operations using the
Eventual Consensus primitive. For high availability, Aurora
ensures termination and Eventual Consistency for weak op-
erations in asynchronous runs. Aurora also preserves causal
consistency [14]. Unlike other weakly consistent implemen-
tations such as Lazy Replication [15] and Bayou [23], Aurora
additionally implements Eventual Linearizability for weak
operations in runs where processes have access to a failure
detector of class 3S. In this case, strong operations termi-
nate in the absence of concurrent weak operations. Finally, if
the processes have access to a failure detector D of class 3P,
then all operations terminate even in presence of concur-
rency. Aurora is a gracefully degrading algorithm because
it requires different degrees of synchrony to achieve different
consistency semantics. In particular, it ensures termination
of weak operations even in asynchronous runs by gracefully
degrading Eventual Linearizability to Eventual Consistency

It may seem unnecessary that Aurora requires a stronger
failure detector than a Consensus algorithm to terminate
strong operations. We show, perhaps unexpectedly, that this
reflects a fundamental tradeoff. Specifically, we show that
with 3S, it is impossible to ensure termination of strong
operations with a majority of correct processes and at the
same time to achieve Eventual Consensus and termination
of weak operations with a minority of correct processes.

Interestingly, at the heart of circumventing the impossi-
bility lies the ability to eventually tell if consensus will ter-
minate, which is possible with 3P but impossible with 3S.
This seems to be a fundamental and unexplored difference
between the two classes of failure detectors. On the other
hand, a strongly complete failure detector is sufficient to
eventually detect that consensus will not terminate.

Summary of contributions and outline.
We distinguish between strong operations, which must be

linearized, and weak operations, which need to be linearized
only eventually. For the latter, we introduce and formal-
ize the Eventual Linearizability correctness condition (Sec-

tion 3). We show that Eventual Linearizability is stronger
than Eventual Consistency but equivalent to Eventual Con-
sensus (introduced in Section 4). Next, we study the in-
herent tradeoffs of combining Linearizability and Eventual
Linearizability (Section 5). First we show an impossibil-
ity result that limits the design space of eventually lineariz-
able implementations (Section 5.1). Finally, we present a
shared object implementation called Aurora that combines
Linearizability and Eventual Linearizability (Section 5.2).
In asynchronous runs, Aurora gracefully degrades to Even-
tual Consistency. In this paper we present our main results,
referring the reader to [21] for further details and proofs.

2. RELATED WORK
Previous work has studied how to extend Linearizability

with weaker consistency properties. Eventual Serializability
requires that “strict” operations and all operations preced-
ing them be totally ordered at the time of their response,
while other operations may only be totally ordered after
their response [10]. Most existing systems implementing op-
timistic replication provide variations of this property, often
called Eventual Consistency [20, 25]. As we show, Eventual
Consistency is weaker than Eventual Linearizability. Timed
Consistency strengthens sequential consistency by setting a
real-time bound ∆ after which operations must be seen by
any other process [24]. If ∆ = 0 the specification is equiv-
alent to Linearizability. If not, Timed Consistency allows
completed operation to remain invisible to subsequent op-
erations, similar to Eventual Consistency. In this case, our
result can be easily extended to show that Timed Consis-
tency is not stronger than Eventual Linearizability. Like
Eventual Serializability, Hybrid Consistency requires strong
operations to be linearizable with each other but relaxes
the ordering between pairs of weak operations [2]. Zeno ex-
tends Byzantine-fault tolerant state machine replication to
guarantee availability and Eventual Consistency for weak
operations in presence of partitions [22]. Zeno appears to
achieve Eventual Consensus in some “good” runs. However,
Zeno relaxes Linearizability for strong operations. In fact,
processes invoking weak operations are allowed to observe
concurrent strong operations in different orders.

A number of distributed systems, including modern highly-
available data center services such as Amazon’s Dynamo [9],
the Google File System [11] and Yahoo’s PNUTS [8] allow
trading Linearizability for availability in presence of parti-
tions, which occur between geographically remote data cen-
ters as well as inside data centers [25]. A survey on many
practical weakly consistent systems is [20]. A drawback of
weakly consistent systems is that they are notoriously hard
to program and to understand [4]. Authors of [1] argue, with
motivations similar to ours, that many systems aim at being
“usually consistent”. They propose a quantitative measure,
called consistability, to study the tradeoffs between perfor-
mance, fault-tolerance and consistency.

There is a large body of work on weak consistency se-
mantics for distributed shared memories having read/write
semantics. For a survey we refer to [19]. Eventual Lineariz-
ability is an eventual safety property that can be combined
with any of these safety properties. For example, Aurora
has a causal consistency property that allows implement-
ing causal memories [14]. Refined specifications of graceful
degradation and corresponding implementations for trans-

actions taking snapshots of the state of multiple objects are
presented in [26].

3. DEFINITION OF EVENTUAL LINEARIZ-
ABILITY

In this section we first define a model of concurrent exe-
cutions. Next, we define Eventual Linearizability and show
that, like Linearizability, it is local and nonblocking.

3.1 Model of concurrent executions
We consider concurrent systems consisting of a set of pro-

cesses {pi | i ∈ [0, n − 1]} accessing a set of shared objects.
Processes interact with objects through operations. An exe-
cution is a history consisting of a finite sequence of operation
invocation and response events taking place at a process and
referring to an object. Invocations contain the arguments of
the operation, while responses contain the results of the op-
eration. All operations are unique and are ordered in the
history according to the time of their occurrence. We as-
sume the presence of a global clock providing a time refer-
ence for the whole system, which starts from 0 and is often
referred to as real-time order. Processes do not have access
to this clock. Given a history H and a process pj (resp. an
object x), we denote H|j (resp. H|x) as the restriction of H
to call and response events of pj (resp. on x).

A history is sequential if (i) the first event is an invoca-
tion, (ii) all invocation events, except possibly the last, are
immediately followed by the response event for the same op-
eration, and (iii) response events are immediately preceded
by the invocation event for the same operation. A sequential
history H is legal if, for each object x, H|x is correct accord-
ing to the sequential specification of x. We denote the order
of operations defined by a sequential history H as <H . A
sequential permutation of a history H is a sequential history
obtained by permuting the events of H. A history that is not
sequential is called concurrent. An operation is called com-
pleted if the history includes an invocation and a completion
event for it. For a history H, we denote completed(H) as
the subsequence of events in H related to all completed op-
erations. A history is well-formed if the subhistory of events
of each process is sequential. We assume all histories to be
well-formed.

3.2 Definition
Eventual linearizable implementations need to always en-

sure some minimal weak consistency property that rules out
arbitrary behaviors. For each history H, we require that the
response to every completed operation o of every process pi

is the result of a legal sequential history τ(i, o). The his-
tory τ(i, o) must terminate with o, it must consist only of
operations invoked in H before o is completed, and it must
include all operations observed by pi before o.

Formally, a history H is weakly consistent if, for every
process pi and operation o completed by pi in H, there exists
a legal sequential history τ(i, o) such that: (i) the last event
in τ(i, o) is a response event of o having the same result as
the response event of o in H, (ii) every operation invoked in
τ(i, o) is also invoked in H before o is completed, and (iii) for
each operation o′ invoked by pi before o, τ(i, o′) ⊆ τ(i, o).1

This definition of weak consistency is very generic. It al-
lows processes to ignore operations of other processes. Fur-

1We abuse the ⊆ notation to indicate that the set of opera-
tions of τ(i, o′) is included in the set of operations of τ(i, o).

thermore, subsequent serializations observed by a process
can reorder previously-observed operations. Eventual Lin-
earizability can be combined with stronger weak consistency
semantic than this. For example, in Section 5.2 we show that
it is possible to combine Eventual Linearizability with causal
consistency [14].

Eventual Linearizability requires all operations that are
invoked after a certain time t to be ordered with respect to
all other operations according to their real-time order. Pairs
of operations invoked before t can be ordered arbitrarily.
This requirement on the order is formalized by the following
relation. Let H be a history and t a value of the clock. We
define the irreflexive partial order<H,t as follows: o1 <H,t o2
iff o2 is invoked after t and the response event of o1 precedes
the invocation event of o2.

A t-permutation P of a history H is a legal sequential
history that orders operations of H according to <H,t. The
results of operations in P do not have to match with those of
the corresponding operations in H. Formally, the following
two properties must hold for a legal sequential history P to
be a t-permutation of H: (P1) an operation o is invoked in P
if and only if o is invoked in H; (P2) <H,t⊆<P . It is worth
noting that every well-formed history H has a t-permutation
P for each value of t because results of operations in H and
P do not need to match. However, not every well-formed
history has a linearization as defined in [13].

A t-linearization L of a historyH is defined as a t-permutation
where the results of all operations invoked after t are the
same as in H. Operations invoked before t may have ob-
served inconsistent histories that do not correspond to any
single legal sequential history. A history H is t-linearizable
if there exists a t-linearization of H. t-linearizability is a
property of histories that may initially be weakly consistent
but that eventually start behaving like in a linearization.

We can now define Eventual Linearizability as follows.

Eventual Linearizability: The implementation of a shared
object is eventually linearizable if all its histories are
weakly consistent and t-linearizable for some finite and
unknown time t.

Linearizability differs from Eventual Linearizability be-
cause the convergence time t is known and equal to zero.
In general, any form of t-linearizability where t is known
can be easily reduced to Linearizability in systems where
processors have access to a local clock with bounded drift.
This is why we consider more general scenarios where t ex-
ists but is unknown. It is worth noting that, different from
t-linearizability, Eventual Linearizability is a property of im-
plementations, not of histories. In fact, all finite histories
are trivially t-linearizable for some value of t larger than the
time of their last event. Showing Eventual Linearizability
on an implementation entails identifying a single value of t
for all histories.

We show that Eventual Linearizability has two fundamen-
tal properties of Linearizability. Locality implies that any
composition of eventually linearizable object implementa-
tions is eventually linearizable. Nonblocking requires that
there exist no history such that every extension of the his-
tory violates Eventual Linearizability.

Theorem 1. Eventual Linearizability satisfies locality and
nonblocking.

4. IMPLEMENTING EVENTUAL LINEARIZ-
ABILITY

Eventual Linearizability requires operations to be linearized
only eventually and can thus be implemented using primi-
tives that are weaker than Consensus. In this Section we
identify which properties must be satisfied by these prim-
itives. We focus on weak operations where Eventual Lin-
earizability is sufficient. Strong operations are introduced in
Section 5. Many weakly consistent implementations provide
properties such as Eventual Serializability [10] or Eventual
Consistency [20, 25]. We show that these properties are not
sufficient to implement Eventual Linearizability, and there-
fore define a stronger problem, called Eventual Consensus,
that is stronger than Eventual Consistency but weaker than
Consensus. We finally show that Eventual Consensus is nec-
essary and sufficient to implement Eventual Linearizability.

4.1 System model for implementations
In this section we consider shared object implementations

using an underlying consistency layer to keep replicas consis-
tent. If Linearizability is required for all operations then the
consistency layer implements Consensus. The specifications
defined in this section refer to properties of consistency lay-
ers, unlike Eventual Linearizability which is a property of
shared object implementations. For simplicity, we restrict
our discussion to implementations of a single shared object.

We model the interface of the consistency layer with two
types of events: submit events, which are input events in-
cluding as input value an operation on the shared objects,
and delivery events, which are output events returning a se-
quence of operations on the shared object. We denote as
S(i, t) the last sequence delivered to process pi at time t > 0
and define S(i, 0) to be equal to the empty sequence for each
i. We assume that the processes interacting with the shared
object can fail by crashing. If pi is crashed at time t, S(i, t)
is the last sequence delivered by pi before crashing. We say
that a submitted operation terminates when it is included
in a sequence that is delivered at each correct process.

The consistency layer itself is implemented on top of an
asynchronous message passing system with reliable channels.
Implementations can use failure detectors [6, 5]. A failure
detector D is a module running at each process that out-
puts at any time a set of process indices [6]. In this paper
we consider four classes of failure detectors. The class Ω in-
cludes all failure detectors that output at most one process
at each process pi, which is said to be trusted by pi, and en-
sures that eventually a single correct process is permanently
trusted by all correct processes [5]. The class of strongly
complete failure detectors, which we denote C, includes all
failure detectors that output a set of suspected processes and
that ensure strong completeness, i.e., eventually every pro-
cess that crashes is permanently suspected by every correct
process [6]. The classes of eventually strong (resp. even-
tually perfect) failure detectors 3S (resp. 3P) include all
strongly complete failure detectors having eventually weak
accuracy (resp. eventually strong accuracy), i.e., eventually
some correct process is (resp. all correct processes are) not
suspected by any correct process [6].

4.2 Eventual Consistency and Eventual Con-
sensus

Our formalization of Eventual Consistency builds upon
the properties of Eventual Serializability [10] and Eventual

Consistency [20] and is expressed in terms of a weakened
form of Consensus. Like Eventual Serializability, we allow
processes to temporarily diverge from each other on the or-
der of operations and to eventually converge to a total or-
der. Eventual Serializability supports defining precedence
relations with each operation to constraint their execution
order. These relations are typically used to specify causal
consistency [10, 15]. Since we focus here on Eventual Con-
sistency properties, these aspects are orthogonal to our dis-
cussion and are abstracted away.

Eventual Consistency: A consistency layer satisfies Even-
tual Consistency if the following properties hold.

Nontriviality: For any process pi and time t, every
operation in S(i, t) has been invoked at a time t′ ≤
t and appears only once in S(i, t);

Set stability: For any process pi, if t ≤ t′ then each
operation in S(i, t) is included in S(i, t′);

Prefix consistency: For any time t there exists a se-
quence of operations Pt such that:
(C1) For any correct process pi, Pt is a prefix of
S(i, t′) if t ≤ t′;
(C2) Pt is a prefix of Pt′ if t ≤ t′;
(C3) Every operation o submitted at time t′ by a
correct process is included in Pt′′ for some t′′ ≥ t′.

Note that property (C3) of prefix consistency implies Live-
ness, i.e., for any correct processes pi and pj and time t, ev-
ery operation submitted by pi at time t is included in S(j, tj)
for some tj ≥ t.

This definition of Eventual Consistency is a relaxation
of Consensus on sequences of operations [18].2 Consensus
requires the same nontriviality and liveness properties as
Eventual Consistency, but requires stronger stability and
consistency properties. Stability requires that for any pro-
cess pi, S(i, t) is a prefix of S(i, t′) if t < t′. Consistency
requires that for any processes pi and pj and time t, one of
S(i, t) and S(j, t) is a prefix of the other.

Set stability allows reordering the sequence of operations
returned as an output, provided that all operations returned
previously are included in the new sequence. Prefix consis-
tency allows replicas to temporarily diverge in a suffix of op-
erations. However, it requires eventual convergence among
all replicas on a common prefix Pt of operations. Prop-
erty (C1) of prefix consistency says that a common prefix Pt

of operations has been delivered by each replica; (C2) con-
straints this prefix to be monotonically increasing; (C3) en-
sures that all completed operations are eventually included
in the common prefix.

Eventual Consistency is not sufficient to implement Even-
tual Linearizability not even for simple read/write registers,
as shown in Theorem 2.

Theorem 2. An eventually linearizable implementation
of a single-writer, single-reader binary register cannot be
simulated using only an eventually consistent consistency
layer in a system with more than one process.

The intuition for this result can be given by a simple ex-
ample. Consider two processes p0 and p1 that share one
single-writer, single-reader binary register holding a current

2We consider here the case where all processes are proposers
and learners. We also trivially modify nontriviality to rule
out sequences with duplicates.

value 1 at a given time t. Assume that p0 is the writer of the
register and p1 is the reader. Process p0 invokes a write0(0)
operation after t. After this operation is completed, process
p1 invokes a read1() operation. Prefix consistency allows the
consistency layer to delay convergence to a common prefix
Pt for an arbitrarily long time. Before completing read1(), p1

may thus not distinguish this run from a run where write0(0)
was never invoked. Therefore, read1() returns the previous
value 1. A consistent ordering Pt of these two operations can
be delivered by the consistency layer of both processes after
both operations are completed. This is sufficient to satisfy
Eventual Consistency. Such a pattern can occur after any
finite time, making t-linearizability impossible for any t.

The key to achieve Eventual Linearizability is in strength-
ening stability. Assume in the previous example that the
consistency layer is not allowed to change the order of the
operations it has delivered after t. p0 can complete its opera-
tion only after the consistency layer delivers a sequence con-
taining write0(0). In order to prevent the consistency layer
of p0 from reordering its delivered sequence, the first non-
empty consistent prefix Pt′ must include write0(0). This im-
plies that the consistency layer of p1 has to deliver write0(0)
before read1() in order to preserve stability. p1 can thus ex-
ecute this sequence and return 0, respecting linearizability.
In other words, an Eventually Consistent consistency layer
satisfying eventual stability must eventually start to deliver
all operations in a total order before the operations are com-
pleted. This total order also includes all the operations that
have been submitted before t.

The previous example gives us the insight for the defini-
tion of Eventual Consensus. Different from Eventual Con-
sistency, the delivered sequences eventually stop reordering
operations that were previously delivered.

Eventual Consensus: A consistency layer satisfies Even-
tual Consistency if Eventual Consistency and the fol-
lowing additional property hold:

Eventual Stability: There exists a time t such that
for any times t′ and t′′ with t ≤ t′ ≤ t′′ and for
any process pi, S(i, t′) is a prefix of S(i, t′′).

Implementing Eventual Consensus is both necessary and
sufficient to achieve Eventual Linearizability for generic ob-
jects as shown in Theorem 3. This result reduces the prob-
lem of obtaining eventually linearizable shared object im-
plementations to the problem of implementing a consistency
layer satisfying Eventual Consensus.

Theorem 3. Eventual Consensus is a necessary and suf-
ficient property of a consistency layer to implement arbitrary
shared objects respecting Eventual Linearizability.

Algorithm 1 shows the sufficiency part of the result. When-
ever an operation is invoked, it is submitted to the consis-
tency layer. The operation is then completed as soon as a
sequence containing the operation is delivered. The returned
sequence is executed and the result is returned in a comple-
tion event. Before stability eventually holds, nontriviality
and set stability are sufficient to satisfy weak consistency. As
discussed in the previous register example, eventual stability
ensures that processes eventually start delivering operations
in the same total order, which is identified by the consistent
prefix Pt, before the operations are completed. This allows
implementing Eventual Linearizability.

Necessity is shown by Algorithm 2, which uses a shared
sequence having an append and a read operation. Whenever
an operation is submitted, it is appended onto the sequence.
The object is periodically read and its value is delivered.
The weak consistency property of the sequence is sufficient
to ensure nontriviality and set stability. When the object
starts to be eventually linearizable, all reads and appends
are totally ordered in a legal sequential history. This en-
sures that eventually all operations are included in the same
total order, as required by prefix consistency, and that read
sequences that are delivered are never reordered in the fu-
ture, as required by eventual stability.

5. COMBINING LINEARIZABILITY AND
EVENTUAL LINEARIZABILITY

We distinguish between strong operations that need to be
linearized and weak operations that require to be eventually
linearized. Strong operations are delivered only if Consensus
is reached on the prefix including them as last operation.
This is called a strong prefix. We extend the specification of
Eventual Consensus accordingly.

Strong prefix stability: For any process pi, time t, strong
operation s and sequence π, if π s is a prefix of S(i, t)
and t′ ≥ t then π s is a prefix of S(i, t′).

Strong prefix consistency: For any processes pi and pj,
time t, strong operations si and sj and prefixes πi and
πj, if πi si is a prefix of S(i, t) and πj sj is a prefix of
S(j, t) then one of πi si and πj sj is prefix of the other.

If all operations are strong, Eventual Consensus is equiv-
alent to Consensus. One would desire to achieve termina-
tion of weak operations in all runs together with termina-
tion of strong operations in runs where Linearizability can
be achieved. In this Section we discuss impossibility and
possibility results on this topic.

5.1 Impossibility in combining Linearizabil-
ity and Eventual Linearizability

In this section we show that even if a 3S failure detector is
given for termination of weak operations, strong operations
cannot terminate in runs where consensus can be solved (see
Theorem 4).

The intuition behind the impossibility lays in the concur-
rency between weak and strong operations. We construct
an infinite run where some strong operation s is never com-
pleted. For this, we consider an Eventual Consensus layer
ensuring stability after a time t in a run where all events
occur after the time t. Assume that a strong operation s is
submitted by a correct process and that the processes are
trying to reach consensus on a strong prefix π s. Let a submit
event for an operation w 6∈ π occur at a correct process pi

before consensus on π s is reached. Process pi cannot know
whether consensus will terminate or not, as it accesses only
failure detector 3S, but it must deliver weak operations in
either case. Therefore, pi cannot wait until consensus on π s
is reached before delivering w. pi is thus forced to deliver w
before consensus on π s is reached. When consensus on π s is
reached, eventual stability forbids pi to deliver π s because
w is not in π. Therefore, consensus needs to be reached on
a new strong prefix ϕs with w ∈ ϕ. However, a new weak
operation w′ may be submitted before consensus on ϕs is
reached. This pattern can be repeated forever. As a result,

execute(o, H): returns the result of executing the sequence H
up to and including the operation o;

upon invoke (o)
curr ← o;
submit(o);

upon deliver(H)
if curr 6= ⊥ ∧ curr ∈ H then

r ← execute(curr, H);
curr ← ⊥;
complete (o,r);

Algorithm 1: An eventually linearizable implementation of a
generic object using Eventual Consensus.

append(o): appends an operation o at the end of the sequence;
read(): returns the current value of the sequence;

upon submit (o)
append(o);

upon periodic tick
H ← read();
deliver (H);

Algorithm 2: Solving Eventual Consensus using an eventu-
ally linearizable implementation of an append/read sequence
object.

the strong operation s is never completed even if consensus
can be solved.

This result highlights an implicit tradeoff in implement-
ing Eventual Linearizability. As a consequence of our im-
possibility result, shared object implementations using 3S
can ensure Eventual Linearizability and give up termination
of strong operations in presence of concurrent weak oper-
ations. Alternatively, they can choose to violate Eventual
Linearizability in order to ensure termination of both weak
and strong operations. In the latter case, it follows from our
result that Eventual Linearizability can be violated when-
ever there are concurrent weak and strong operations.

In the proof of the following theorem we describe asyn-
chronous computations in terms of events as in [3]. Input
events submitting operation o at pi are denoted as submiti(o).
An output event occurs when a sequence π is delivered. An
operation is delivered when a sequence containing it is deliv-
ered. Message receipt events occur when a process receives
a message. The occurrence of these events at a process pi

might enable the occurrence of computation events at pi,
which might in turn result in pi sending new messages.3 We
say that a message m is causally dependent on an event e
if the computation event that generated m is causally de-
pendent on e according to the classical definition of Lam-
port [16].

Theorem 4. In a system with n ≥ 3 processes out of
which f can crash, it is impossible to implement a consis-
tency layer that satisfies the following properties using a fail-
ure detector 3S: (P1) termination of weak operations; (P2)
termination of strong operations if f < n/2; and (P3) Even-
tual Consensus if f < n/2.

Proof. Assume by contradiction that a consistency layer
satisfying properties (P1), (P2) and (P3) exists. Let pro-
cesses be partitioned into two sets, Πm of size b(n − 1)/2c
and ΠM of size d(n+ 1)/2e. Consider all runs where no pro-
cess fails and where the 3S modules of all processes suspect
ΠM . By (P3), there exists a time t after which eventual
stability holds for each of these runs. We build one such
run σ that begins with an event submith(s), with ph ∈ ΠM

occurring after time t, where s is a strong operation. σ is an
infinite and fair run that is built using an infinite number of
finite runs σk with k ≥ 0 in which s is never delivered by
any process, thus violating (P2). Each run σk with k > 0
is built by extending σk−1. The run σ is the result of an
infinite number of such extensions. Run σ is fair by con-
struction because all messages sent in σk−1 are received in
σk, and because all enabled computation events occur.
3If a process sends a message to itself, then the receipt of
this message is considered as a local computation event.

Let Mk be the set of messages that are sent, but not yet
received, in σk. For each σk, we show by induction on k
the following invariant (I): No process delivers s in σk or
in any extension of σk where (i) all processes in ΠM crash
immediately after σk, and (ii) all messages in Mk sent by
processes in ΠM are lost.

We first consider the case k = 0 and define σ0 is as fol-
lows. Let submith(s) be the first and only input event of
the system. Assume that no process crashes in σ0. Assume
also that no message is received in σ0 and that all enabled
computation events occur. Let M0 be set of initial messages
sent in σ0.

It is easy to see that (I) is satisfied in σ0. Since only
a strong operation has been submitted, delivering s entails
solving consensus on s by definition. Property (I) directly
follows from the facts that no message is received in σ0 and
that consensus cannot be solved using 3S in any extension
satisfying conditions (i) and (ii) since f ≥ dn/2e (see proof
in [6]).

We now define how σk is constructed for k > 0 by extend-
ing σk−1. Assume that no process crashes in σk and that
3S permanently suspects ΠM . Let an event submith(wk)
occur at a process pi ∈ Πm after σk−1, where wk is a weak
operation that has never been submitted earlier. Let pro-
cess pi eventually deliver a sequence ϕk at a time tk such
that wk ∈ ϕk and s 6∈ ϕk. Assume that no event occurs at
any process in ΠM after σk−1 and before tk. Assume that no
message in Mk−1 sent by processes in ΠM is received by pro-
cesses in Πm before tk. All remaining messages in Mk−1 are
received after tk in σk. Let all enabled computation events
occur. Finally, assume that all messages sent after σk−1 are
included in Mk and are not received in σk.

We first show that the construction of σk is valid by show-
ing that tk and ϕk exist. We construct an extension of σk−1

called σE1. Assume that in σE1 all processes in ΠM crash
immediately after σk−1 (i.e., before submiti(wk)) and 3S
suspects ΠM at all processes. Assume that all messages in
Mk−1 that are sent by processes in ΠM are lost. By prop-
erty (P1), and since 3S permanently satisfies weak accuracy,
process pi eventually delivers a sequence ϕk with wk ∈ ϕk

at time tk. Therefore, ϕk and tk exist. As σk−1 satisfies (I),
process pi cannot deliver s in σE1 because all messages in
Mk−1 sent by processes in ΠM are lost. This implies that
s 6∈ ϕk. Since process pi cannot distinguish σk and σE1 up
to tk, ϕk is delivered by pi at time tk in σk too.

We now show the inductive step, i.e., that σk satisfies
(I). Assume by contradiction that a sequence π s εd for some
sequences π and εd is delivered for the first time by a process
pd in σk or in an extension of σk respecting (i)-(ii). As s was

not delivered in σk−1, sequence π s εd is delivered after σk−1

and, by the argument above, also after tk.
Consider first the case pd ∈ Πm. Let σE21 be an extension

of σk where pd delivers π s εd and let t′k be the time when this
delivery occurs. Let all processes in ΠM crash immediately
after σk and let all the messages sent by processes in ΠM

sent after σk−1 to processes in Πm be lost. Finally, let 3S
return ΠM at all processes. From eventual stability and
since pi has already delivered at time tk < t′k a sequence ϕ
such that wk ∈ ϕ but s 6∈ ϕ, it follows wk ∈ π.

We now consider a run σE22 where the same events as in
σE21 occur until time t′k but no process crashes before t′k. All
processes in Πm crash immediately after t′k. All messages
sent from processes in Πm to processes in ΠM after σk−1 are
lost. Assume that after t′k, 3S eventually returns Πm at all
processes in ΠM . pd cannot distinguish σE21 and σE22 until
t′k, so it delivers π s εd at time t′k in σE22 too. By (P2), all
processes in ΠM are correct and must thus eventually deliver
a sequence containing s. From strong prefix consistency and
strong prefix stability, this sequence must have π s as prefix
with wk ∈ π.

Finally, consider a run σE23 that is similar to σE22 but
where the submiti(wk) event does not occur. Let all pro-
cesses in Πm crash at the same time as in σE22, and let all
messages sent by processes in Πm after σk−1 be lost. Assume
that no other process crashes. Let the outputs of 3S be at
any time the same as in σE21. Runs σE21 and σE22 are indis-
tinguishable for the processes in ΠM , which thus eventually
deliver a sequence having π s as a prefix with wk ∈ π. How-
ever, wk has never been submitted in σE23. This violates
nontriviality, showing that pd 6∈ Πm.

Next, consider the case pd ∈ ΠM . By definition of (I),
pd must deliver π s εd in σk. Consider an extension σE31 of
σk where no process crashes. By (P2), all processes must
eventually deliver a sequence containing s. By strong prefix
consistency, all processes must eventually deliver a sequence
having π s as prefix. By eventual stability, since pi has al-
ready delivered at time tk a sequence ϕk including wk and
not s, it must hold wk ∈ π. However, process pd cannot
distinguish σk from a similar run σE32 where submiti(wk)
does not occur. In fact, pd receives no message in σk that
is causally related with submiti(wk). Therefore, pd delivers
π s εd with wk ∈ π in σE32 too, a violation of nontriviality.
This ends our proof that σk satisfies (I).

The infinite run σ can be built iteratively by extending
σk as it has been done with σk−1. The resulting run is fair
by construction because all messages in Mk−1 are delivered
in σk and no computation event is enabled forever without
occurring. During the whole run no process crashes. Ac-
cording to (P2), s should be delivered in a finite prefix of
σ. By construction, however, each finite prefix τ of σ is also
prefix of a run σk′ for some k′. From the invariant (I), s is
never delivered in σk′ , a contradiction. 2

5.2 Aurora: A gracefully degrading implemen-
tation

In this section we introduce Aurora (Figure 1), an al-
gorithm implementing Eventual Consensus and thus, from
Theorem 3, Eventual Linearizability. Aurora shows that
Eventual Consensus can be implemented with 3S and any
number of correct processes, still ensuring termination of
weak operations and Eventual Consistency in worst-case asyn-
chronous runs. The algorithm also shows that causal con-
sistency can easily be combined with Eventual Consensus.

Failure detectors and communication primitives.
Aurora ensures termination of weak operations and Even-

tual Consistency in asynchronous runs. To this end, Aurora
uses a failure detector module D ∈ C, which outputs the
set of indices of the processes that have been suspected to
crash. Virtually all failure detector implementations are of
class C in asynchronous runs. The key property of Eventual
Consensus, eventual stability, is achieved by letting a leader
order all operations. For this we require that D ∈ 3S ⊆ C,
while for termination of strong operations we assume D ∈
3P ⊆ 3S. This models the fact that even if Aurora opti-
mistically relies on additional synchrony in order to achieve
Eventual Consensus, the algorithm falls back to Eventual
Consistency to ensure liveness of weak operations in asyn-
chronous runs. The use of 3P to complete strong operations
is a consequence of Theorem 4. For simplicity, we use ΩD to
denote a simulation of a leader election oracle ensuring the
properties of Ω on top of D in runs where D ∈ 3S similar
to [7]. The simulation ensures that the leader trusted by ΩD
is not suspected by D. We call the process that is perma-
nently trusted by D when D ∈ ΩD the permanent leader.

Processes use two communication primitives: a reliable
channel providing send and receive primitives, and a (uni-
form) FIFO atomic broadcast primitive providing abcast and
abdeliver primitives [3]. Implementing atomic broadcast is
equivalent to solving consensus [6]. We consider atomic
broadcast implementations that use a failure detector Ω and
a majority of correct processes for termination and that al-
ways respect their safety properties [17, 6]. The algorithm
assumes that a predefined deterministic total order relation-
ship <D exists. For simplicity, the algorithm sends and de-
livers whole histories although it is simple to optimize this
away [10]. Garbage collection can be executed by periodi-
cally issuing strong operations for this purpose [22].

Properties of the Aurora algorithm.
Similar to weakly consistent implementations such as [15,

23], Aurora ensures termination of weak operations, causal
consistency and Eventual Consistency if D ∈ C. If D ∈ 3S,
Eventual Consensus is implemented. Termination of strong
operations is ensured if D ∈ 3P or, in absence of concurrent
weak operations, if D ∈ 3S.

Checking if consensus will terminate.
A direct consequence of Theorem 4 is that if a leader pld

has started consensus on a strong prefix π s and it receives a
weak operation w afterwards, it needs to distinguish whether
consensus will terminate. If this is the case, w must wait
to be ordered after π s once consensus is reached. Else, w
must be immediately be delivered since consensus will not
terminate, and thus the strong operation will have to wait
before being completed. Consensus will terminate if eventu-
ally there exists a stable majority of correct processes per-
manently trusting pld.4

Aurora uses trust messages to let pld know which processes
trust it. Whenever ΩD outputs a new leader pj at a process
pi, pi sends a TRUST(j) message to all processes through
FIFO reliable channels. Each process pi keeps a trusted-by

4We call a stable majority a majority quorum that does
not change over time. The weakest failure detector to solve
consensus, which is Ω, requires that eventually all correct
processes permanently trust the same correct process pld.
We show, however, that Ω can be simulated if eventually a
stable majority of correct processes permanently trusts pld.

set TB including the indices of all the processes pj such that
TRUST(i) is the last trust message received by pi from pj .
This processing of trust messages is not included in Figure 1.

The leader uses the trusted-by set and a failure detec-
tor of class C to stop waiting for consensus unless consen-
sus terminates. When a consensus instance is started, the
leader remembers the subset T of TB that is composed only
by correct processes (according to D). Even in worst-case
runs where D ∈ C, T will eventually include only correct
processes. If T never changes and is a majority quorum,
then there exists a majority of correct processes permanently
trusting the leader. Consensus on π s will thus eventually
terminate, so the leader can wait to order and deliver w un-
til this happens. The wait-consensus predicate is defined to
reflect the aforementioned condition.

From Theorem 4, having a failure detector 3S, so a single
leader, and a majority of correct processes is not sufficient
to implement the properties of Aurora. The leader needs to
eventually detect that such majority exists, which is ensured
if D ∈ 3P. This eventually lets the predicate wait-consensus
be true whenever a consensus instance is ongoing, a sufficient
condition for termination of strong operations. In fact, T
will eventually be equal to the set of correct processes.

Note that if there is no concurrency between weak and
strong operations, termination can be guaranteed for all op-
erations without the need for distinguishing whether con-
sensus can terminate or not.

Processing weak operations.
The processing of weak operations is described by Algo-

rithm 3. When a weak operation o is submitted at a pro-
cess pi, pi sends it in a weak request message to the current
leader pld and waits for an answer from the leader. In order
to preserve causal consistency, a weak request of pi also con-
tains its current history H and an associated round counter
d which will be explained later. H contains all operations
causally preceding o. When a weak request message m is
received by pld, it merges its local history with the one re-
ceived in m before adding o to its local history. This is done
in order to preserve causal consistency. We will discuss the
details of the merge operation (see Algorithm 4) later on.

If the leader has proposed a strong prefix and is waiting to
deliver it, it might wait until consensus on it is completed.
This occurs if the leader thinks that consensus can be solved
and therefore wait-consensus is true. In this case, the leader
stores the request in the set W and waits until the strong
prefix is delivered or wait-consensus becomes false. When
pld processes the weak request, it sends a push message con-
taining its local history, including also o, back to pi. When
pi receives the push message, it merges the history of pld

with its own history to order o respecting the causal depen-
dencies of all the operations ordered by the leader before o.
The resulting history contains o and is now delivered by pi.

As previously discussed, wait-consensus eventually becomes
false unless consensus can be solved. Also, if pld is crashed,
the failure detector will eventually suspect it. In the lat-
ter case, process pi knows that no permanent leader is yet
elected so eventual stability cannot yet be achieved. There-
fore, pi locally appends o to its current local history and
delivers it without further waiting for a push message.

Processing strong operations - Overview.
The handling of strong operations is described by Algo-

rithm 5 and is more complex. For eventual stability, if there

is a permanent leader pld then strong operations should be
delivered according to the order indicated by pld. However,
we cannot rely on a leader to be permanent for strong prefix
stability and consistency.

The properties of strong operations imply that delivering
a strong prefix π s requires solving consensus on π s. Equiv-
alently, processes can propose strong prefixes by atomically
broadcasting them and using some deterministic decision cri-
teria to consistently choose one proposal. The main impli-
cation of Theorem 4, however, is that processes cannot just
deliver the first strong prefix π s proposed by a leader pld,
even if this pld uses atomic broadcast. In fact, as long as pld

believes that atomic broadcast will not terminate, it might
have delivered some weak operation w 6∈ π before being able
to abdeliver π s. In this case, pld cannot deliver π s for even-
tual stability and it needs to propose a new prefix for s.

Processes need to decide when a proposed strong prefix
can be delivered because it is stable, i.e. it has been ab-
delivered by atomic broadcast and no weak operation has
been delivered in the meanwhile. Establishing that a prefix
is stable is a local decision of a leader pld. The problem
now is how pld can communicate this local decision and let
other processes agree on its decision in presence of concur-
rent proposals from multiple leaders. If pld just atomically
broadcasts that a prefix is stable, this creates again the same
problem as before: all processes would have to wait that a
stability confirmation from the leader is successfully broad-
cast before delivering the strong prefix. In the meanwhile,
pld might locally store and deliver some new weak operation.

The problem of multiple concurrent leaders is solved in
Aurora by using rounds and identifying a single leader as
the winner of each round. Processes store the current round
k and deliver a single strong prefix at each round. Leader
processes that receive a new strong operation atomically
broadcast the strong operation in a proposal message for
the current round. The leader whose proposal is the first
one to be atomically delivered for a round is the winner of
that round. The winner of a round can propose multiple
new strong prefixes for the round. These are received in
the same order as they are abcast by the leader since the
broadcast primitive is FIFO.

Assume that a proposed strong prefix becomes stable at
the winner of the current round, that is, the winner abde-
livers the stable prefix and sees that it is consistent with its
current local history. The winner can now safely decide to
locally store the strong prefix in its local history, deliver it,
and stop sending proposals for the round. The winner ab-
casts in this case a close round message indicating that the
other processes can deliver its last proposed strong prefix for
the round. A process abdelivering a close round message m
for the current round delivers the last strong prefix proposed
by the winner for that round and abdelivered before m. To
ensure liveness in case a winner crashes, each process that
suspects the winner of the current round can send a close
round message.

Since proposal and close round messages are atomically
broadcast, it is evident that all processes that did not win
a round abdeliver the same strong prefix π for that round.
Consistency with a winner of a round that has delivered
a stable strong prefix based only on a local decision is en-
sured as follows. The prefix π is contained in the last pro-
posal message m abdelivered by the winner, and thus by any
other process, for the round, and it is not preceded by any
close round message for the same round. Even if the win-

upon submit (o) and o is weak
ld ← ΩD;
send WREQ(H, d op) to pld;

upon receive WREQ(H′, d′, op′) from j
if wait-consensus and (H′, d′, op′) 6∈ W then

add (H′, d′, op′) into W ;
else

(H, d) ← merge(H′, d′, H, d);
if op′ 6∈ H then append op′ onto H;
send PUSH(H, d) to pj ;

upon receive PUSH(H′, d′)
(H, d) ← merge(H′, d′, H, d);
deliver(H);

upon suspect-ld
append last locally submitted weak operation onto H;
deliver(H);

upon stop-waiting-consensus
foreach (H′, d′, op′) ∈ W do

(H, d) ← merge(H′, d′, H, d);
if op′ 6∈ H then append op′ onto H;
send PUSH(H, d) to pj ;
remove (H′, d′, op′) from W ;

Algorithm 3: Handling of weak operations

upon periodic tick
send PUSH(H, d) to all other processes;

function merge(H′, d′, H, d)
dnew ← max(d, d′);
if d = dnew then Hnew ← longest strong prefix of H;
else Hnew ← longest strong prefix of H′;
O ← set of weak operations in (H′ ∪H) \Hnew;
R ← order O according to <H ∪ <H′ and break cycles
according to <D;
append R onto Hnew in R order;
return (Hnew, dnew);

Algorithm 4: Background dissemination and merge

upon submit (o) and o is strong
send SREQ(H, d, op) to all processes;

upon receive SREQ(H′, d′, op) from j
(H, d) ← merge(H′, d′, H, d);
add op into N ;

upon must-propose-new-prefix
S ← N \H;
Q ← H;
T ← TB \ D;
abcast PROP(Q, S, k);

upon abdeliver PROP(H′, S, k′) from pj

if from-round-winner then
P ← (H′, S, k′, j);

if proposal-stable then
foreach op ∈ S in <D order do

append op onto H;
d ← k;
deliver(H);
abcast CLOSE-RND(k′);

upon suspect-round-winner
abcast CLOSE-RND(k′);

upon abdeliver CLOSE-RND(k′) from pj and P = (∗, ∗, k′, ∗)
P ← ⊥;
Q ← ⊥;
k ← k′ + 1;
let H′ and S′ be such that P = (H′, S′, k′, h);
Hnew ← H′;
foreach op ∈ S′ in <D order do

append op onto Hnew;
(H, d) ← merge(Hnew, k′, H, d);
deliver(H);

Algorithm 5: Handling of strong operations

wait-consensus
4
= Q 6= ⊥ and must-propose-new-prefix

4
= i = ΩD and N \H 6= ∅ and

T = TB \ D and |T | > n/2 (Q = ⊥ or H 6= Q)

suspect-ld
4
= ld 6= ΩD and last locally submitted from-round-winner

4
= (P = ⊥ and k′ = k) or P = (∗, ∗, k′, j)

weak operation is not in H proposal-stable
4
= j = i and P = (∗, ∗, k′, i) and

stop-waiting-consensus
4
= W 6= ∅ and ¬ wait-consensus H′ = H and k′ = k > d

suspect-round-winner
4
= P = (∗, ∗, k′, j) and j 6= ΩD

Figure 1: The Aurora algorithm for process pi.

ner crashes, all close round messages for the round will be
abdelivered after m, ensuring consistency with the winner.

Eventually, only the permanent leader sends proposal and
close round messages. This ensures that eventual stability is
reached. Furthermore, if a majority is present in the system
and D ∈ 3P, eventually wait-consensus will be true during
ongoing rounds of strong prefixes. This ensures that the
leader eventually only adds weak operations between two
rounds, ensuring termination of strong operations.

Processing strong operations - Detailed description.
In Algorithm 5, all processes keep two round counters: k

stores the last round number of a proposed strong prefix, or
the next round number if a prefix has just been delivered
for a round; d denotes the highest round number for which
a strong prefix has been stored in the local history. A sub-
mitted strong operation o is sent to all processes in a strong
request message. When a process receives such a message,
it adds o to the set N containing all strong operations that
have been received by the process.

If a process pi believes to be a leader, it can make a pro-

posal for a round if it has operations in N that have not yet
been locally delivered and thus not yet inserted in the local
history H. The sequence Q stores the last prefix that was
proposed by pi as a prefix of some new strong operation in
the current round. A proposal is done by pi only if pi has
not yet sent any proposal for the round, so Q = ⊥,5 or if
a prefix has been proposed by pi but some weak operations
has been added to the local history H in the meanwhile so
H 6= Q (must-propose-new-prefix predicate). The proposal
message contains H and the set S = N \ H of new strong
operations.

If a new proposal message from the round winner is ab-
delivered, it is stored in the record P . If the winner decides
that a proposal is stable, it stores it in H, delivers it, sends
a close round message to all, and updates d. A close round
message is also sent by any process that suspects the current
round winner to be faulty. Whenever a close round message
for the current round is received, the corresponding strong
prefix is delivered. Before delivering a strong prefix, this
is merged in the local history as described in Algorithm 4.

5The symbol ⊥ denotes the value “undefined”.

The merge operation gives as result a history containing the
strong prefix delivered in the largest round. All remaining
weak operations are ordered after this prefix.

Background dissemination and merge.
In order to eventually converge to the same history, pro-

cesses periodically send push messages to all other processes
(Algorithm 4). The push mechanism is not only used to
achieve Eventual Consistency. The permanent leader of a
run uses push messages to fetch the histories of all processes
and to aggregate them in a single consistent history. This
is the key to achieve eventual stability. Strong prefix con-
sistency and strong prefix stability are preserved by merges
because, by construction, the longest strong prefix stored in
a history H for round d is a prefix of the longest strong prefix
stored in a history H ′ for round d′ if d ≤ d′. Causal con-
sistency is preserved because all merged histories preserve it
by construction. The merge only reorders operations that
are ordered inconsistently in the two input histories. These
operations, however, cannot be causally dependent. Incon-
sistent orderings of operations are eventually propagated to
all processes and deterministically ordered using the <D re-
lation. This is the key to eventual stability and consistency.

6. CONCLUSIONS
In this paper, we have presented Eventual Linearizabil-

ity and a related problem, Eventual Consensus. We have
established that combining Eventual Consensus with Con-
sensus comes at the price of using a stronger failure detector
than 3S, which is sufficient for Consensus. Finally, we have
presented Aurora, a gracefully-degrading shared object im-
plementation extending Consensus with Eventual Consen-
sus. Aurora uses a failure detector of class 3P to tell if
Consensus will terminate, and one of class C to detect that
Consensus will not terminate.

Acknowledgments
The authors are very grateful for Fred Schneider’s critiques
that significantly helped shaping the paper. Christian Cachin,
Rachid Guerraoui and Rodrigo Rodriguez also helped with
useful discussions on the motivations of this paper.

7. REFERENCES
[1] A.S. Aiyer, E. Anderson, X. Li, M.A. Shah and

J.J. Wylie, “Consistability: Describing Usually
Consistent Systems,” Proc. of Fourth Workshop on Hot
Topics in System Dependability, 2008.

[2] H. Attiya and R. Friedman, “A Correctness Condition
for High-Performance Multiprocessors,” Proc.
twenty-fourth annual ACM symposium on Theory of
computing, pp. 679–690, 1992.

[3] H. Attiya and J. Welch, Distributed Computing:
Fundamentals, Simulations, and Advanced Topics.
J. Wiley & sons, 2004.

[4] K. Birman, G. Chockler and R. van Renesse, “Toward a
Cloud Computing Research Agenda,” ACM SIGACT
News, 40(2), pp. 68-80, Jun. 2009.

[5] T.D. Chandra, V. Hadzilacos and S. Toueg, “The
Weakest Failure Detector to Solve Consensus,” Journal
of the ACM, 43(4), pp. 685–722 , Jul. 1996.

[6] T.D. Chandra and S. Toueg, “Unreliable Failure
Detectors for Reliable Distributed Systems,” Journal of
the ACM, 43(2), pp. 225–267, Mar. 1996.

[7] F. Chu, “Reducing Ω to 3W,” Information Processing
Letters, 67, pp. 289–193, 1998.

[8] B.F. Cooper, R. Ramakrishnan, U. Srivastava,
A. Silberstein, P. Bohannon, H.-A. Jacobsen, N. Puz,
D. Weaver and R. Yerneni, “PNUTS: Yahoo!’s Hosted
Data Serving Platform,” Proc. of the VLDB
Endowment, 1(2), pp. 1277–1288, Aug. 2008.

[9] G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall and W. Vogels,
“Dynamo: Amazon’s Highly Available Key-value
Store,” Proc. of twenty-first ACM SIGOPS Symp. on
Operating Systems Principles, pp. 205–220, 2007.

[10] A. Fekete, D. Gupta, V. Luchangco, N. Lynch and
A. Shvartsman, “Eventually-Serializable Data Services,”
Proc. of the fifteenth annual ACM Symp. on Principles
of Distributed Computing, pp. 300-309, 1996.

[11] S. Ghemawat, H. Gobioff and S.T. Leung, “The Google
File System,” Proc. of the nineteenth ACM Symp. on
Operating Systems Principles, pp. 29–43, 2003.

[12] M. P. Herlihy and J. M. Wing, “Specifying Graceful
Degradation in Distributed Systems,” Proc. of the sixth
annual ACM Symp. on Principles of Distributed
Computing, pp. 167–177, 1987.

[13] M. P. Herlihy and J. M. Wing, “Linearizability: A
Correctness Condition for Concurrent Objects,” ACM
Trans. on Programming Languages and Systems , 12(3),
pp. 463–492, Jul. 1990.

[14] P. W. Hutto and M. Ahamad, “Slow Memory:
Weakening Consistency to Enhance Concurrency in
Distributed Shared Memory,” Proc. of the tenth IEEE
Int’l Conf. on Distributed Computing Systems, 1990.

[15] R. Ladin, B. Liskov, L. Shrira and S. Ghemawat,
“Lazy Replication: Exploiting the Semantic of
Distributed Services,” ACM Trans. on Computers,
10(4), pp. 360–391, Nov. 1992.

[16] L. Lamport, “Time, Clocks, and the Ordering of
Events in a Distributed System,” Comm. of the ACM,
21(7), pp. 558–565, Jul. 1978.

[17] L. Lamport, “The Part-time Parliament,” ACM Trans.
on Computers, 16(2), pp. 133–169, May 1998.

[18] L. Lamport, “Generalized Consensus and Paxos,”
Microsoft Research TR MSR-TR-2005-33.

[19] M. Raynal and A. Schiper, “A Suite of Formal
Definitions for Consistency Criteria in Distributed
Shared Memories,” IRISA TR. 968, 1995.

[20] Y. Saito and M. Shapiro, “Optimistic Replication,”
ACM Computing Surveys, 37(1), pp. 42–81, Mar. 2005.

[21] M. Serafini, D. Dobre, M. Majuntke, P. Bokor and
N. Suri, “Eventually Linearizable Shared Objects,”
TR-TUD-DEEDS-02-01-2010, 2010.

[22] A. Singh, P. Fonseca, P. Kouznetsov, R. Rodrigues
and P. Maniatis, “Zeno: Eventually Consistent
Byzantine-Fault Tolerance,” Proc. of the sixth USENIX
Symp. on Networked Systems Design and
Implementation, pp. 196–184, 2008.

[23] D. B. Terry, M. M. Theimer, K. Petersen,
A. J. Demers, M. J. Spreitzer and C. H. Hauser,
“Managing update conflicts in Bayou, a weakly
connected replicated storage system,” Proc. of the
fifteenth ACM Symp. on Operating Systems Principles,
pp 172–182, 1995.

[24] F.J. Torres-Rojas, M. Ahamad and M.Raynal, “Timed
Consistency for Shared Distributed Objects,” Proc. of
the eighteenth annual ACM Symp. on Principles of
Distributed Computing, pp. 163–172, 1999.

[25] W. Vogels, “Eventually consistent,” Comm. of the
ACM, 52(1), pp. 40–44, 2009.

[26] L. Zhou, V. Prabhakaran , V. Ramasubramanian,
R. Levin and C.A. Thekkath, “Graceful Degradation
via Versions: Specifications and Implementations,”
Proc. of the twenty-sixth annual ACM Symp. on
Principles of Distributed Computing, pp. 264–273, 2007.

