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Abstract

Byzantine-Fault-Tolerant (BFT) state machine replica-
tion is an appealing technique to tolerate arbitrary fail-
ures. However, Byzantine agreement incurs a fundamen-
tal trade-off between being fast (i.e. optimal latency) and
achieving optimal resilience (i.e. 2f + b+1 replicas, where
f is the bound on failures and b the bound on Byzantine
failures [9]). Achieving fast Byzantine replication despite
f failures requires at least f + b − 2 additional repli-
cas [10, 6, 8]. In this paper we show, perhaps surpris-
ingly, that fast Byzantine agreement despite f failures is
practically attainable using only b − 1 additional replicas,
which is independent of the number of crashes tolerated.
This makes our approach particularly appealing for systems
that must tolerate many crashes (large f ) and few Byzan-
tine faults (small b). The core principle of our approach is
to have replicas agree on a quorum of responsive replicas
before agreeing on requests. This is key to circumventing
the resilience lower bound of fast Byzantine agreement [6].

1 Introduction
Byzantine Fault Tolerant (BFT) state machine replica-

tion [11] has the potential to become a generic solution
for reliable distributed computing. BFT replication can be
used to make any deterministic server application tolerant
to worst-case failures in eventually synchronous systems.
However, the potential for generality can be fully exploited
only if the performance overhead and replication costs of
BFT are minimized. This motivates much ongoing work
aimed at making BFT replication more efficient, from the
PBFT protocol [2], to quorum-based protocols [1, 5], to fast
BFT protocols exhibiting the optimal number of agreement
steps [10, 6, 8]. Table 1 compares the properties of rel-
evant primary-based BFT replication protocols and shows
how practical BFT replication [2] has evolved to more ad-
vanced solutions based on speculation like Zyzzyva [8].
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Speculative BFT protocols [8] and other fast Byzantine
agreement protocols such as FAB [10] and DGV [6] im-
prove the performance of BFT replication by trading op-
timal resilience for optimal performance (in terms of la-
tency and throughput) in presence of unresponsive replicas.
Replicas can be unresponsive if they are faulty or simply
slow relative to other replicas due to heavier workload or
poorer network connection. Fast BFT protocols can deliver
a reply to the client with optimal latency (three communica-
tion steps if the client is not a replica). In order to attain op-
timal latency in presence of f unresponsive replicas while
tolerating b = f Byzantine faults, these protocols need up to
2f additional replicas compared to the minimum of 3f + 1.

Lower bounds [10, 6] show that if only 3f+1 replicas are
used, no protocol can be fast in the presence of even a single
unresponsive replica. The Zyzzyva protocol, for example,
exhibits optimal resilience [9] as it requires 3f + 1 repli-
cas to tolerate f Byzantine faults. However, Zyzzyva re-
quires all replicas to respond to clients fast enough in order
to reach fast agreement and leverage speculation. If some
replica is slower or faulty, clients face a dilemma: either
they wait for the missing responses, which may never arrive
or may be indefinitely slow, or require replicas to execute
a slower explicit agreement. This dilemma is eliminated
in the Zyzzyva5 protocol by raising replication costs from
3f+1 to 5f+1, thus sacrificing minimum replication costs
in favor of better performance. Note that quorum-based pro-
tocols such as Q/U [1] and HQ [5] do not offer better per-
formance than Zyzzyva [8, 15].

Contributions In this paper we propose Scrooge, a new
BFT replication protocol which improves on the resilience
of fast Byzantine agreement in presence of unresponsive
replicas. Scrooge requires only N = 2f + 2b replicas to
tolerate f > 0 faults, out of which b > 0 are Byzantine,
and it is fast despite f unresponsive replicas. This is f − 1
less replicas than any existing fast Byzantine replication al-
gorithm [10, 6].

It is important to note that Scrooge does not contra-
dict the resilience lower bounds of fast byzantine agree-
ment [10, 6]. Scrooge attains fast Byzantine agreement only



under the additional condition that a set of N − f respon-
sive replicas is known in advance. However, this additional
requirement can be implemented and hence has little prac-
tical impact. Scrooge, in fact, ensures that under the same
assumptions required for speculation (i.e. primary is fault-
free, clients are honest and communication is timely) the
set of responsive replicas is eventually identified. Thus, fast
agreement is eventually provided for all requests.

All algorithms in Table 1 preserve safety in worst-case
scenarios but are designed to achieve high performance
only in more common scenarios with fault-free or unrespon-
sive replicas and clients. Achieving liveness in presence of
worst-case attacks requires using different techniques [4],
such as using specific network topologies, which are mostly
orthogonal to our work and go beyond the scope of this and
the other papers cited in Table 1. However we explicitly
consider the use of signatures for client requests, as indi-
cated in [4], because this impacts the design of our protocol.

We designed Scrooge to use few replicas when b is small.
In fact, Scrooge requires only b − 1 replicas more than
the optimal number of 2f + b + 1 [9]. Unlike any other
fast Byzantine agreement protocol, the replication overhead
incurred by Scrooge does not depend on f . This allows
Scrooge to scale with the number of unresponsive replicas
tolerated. Moreover, when a single Byzantine fault needs to
be tolerated, Scrooge achieves optimal resilience (2f + 2)
and requires only one additional replica compared to proto-
cols tolerating only crashes.

We analytically and experimentally evaluated Scrooge.
Scrooge performs as well as state-of-the-art fast BFT proto-
cols like Zyzzyva if all replicas are responsive. In scenarios
with at least one unresponsive replica we found that:

• The peak throughput advantage of Scrooge is more
than 1.3 over Zyzzyva. Scrooge also has lower latency
with high load.
• Scrooge reduces latency with low load by at least 20%

and up to 98% compared to Zyzzyva.
• Scrooge performs as well as Zyzzyva5, which uses f+

1 more replicas than Scrooge (with f = b).
• As the number of tolerated faults increases, the over-

head increases more slowly with Scrooge than with
PBFT, Zyzzyva or Zyzzyva5.

1.1 First technique: Replier quorums
Scrooge uses two novel techniques, replier quorums and

message histories, to reduce replication costs. The first
technique consists of having replicas agree on a set of repli-
cas, termed replier quorum, whose members are the only
ones responsible for sending replies to clients in normal
runs. A distinguished replica, called the primary, sends
messages to the other replicas that dictate the order of ex-
ecution of requests. Scrooge uses speculation so replicas

Replication Fast(?) with Fast(?) with
costs (min. no unrespon- f unrespon-

2f + b + 1 [9]) sive replica sive replicas
PBFT [2] 3f + 1 NO NO
Zyzzyva [8] 3f + 1 YES NO
Zyzzyva5 [8] 5f + 1 YES YES
DGV [6] 3f + 2b− 1(.) YES YES
Scrooge 2f + 2b YES YES

Table 1: Comparison of primary-based BFT replication pro-
tocols that tolerate f failures, including b Byzantine ones.
The first three protocols assume f = b. (?) A protocol is fast
if it has minimal best case latency to solve consensus [10, 6].
If the primary is faulty or the clients are Byzantine none of
these protocols is fast. Upon backup failure events, Scrooge
is fast after a finite time whereas Zyzzyva5 is always fast.
(.) Cost to be fast with f > 1 unresponsive replicas. For
f = 1 the corresponding cost is 2f + 2b + 1 replicas.

directly reply to the client without reaching agreement on
the execution order first (Fig. 1.a). This allows clients to
immediately deliver a reply if all the repliers are respon-
sive and correct. If a replier becomes unresponsive or starts
behaving incorrectly, this is indicated by clients to the repli-
cas, which then execute a reconfiguration to a new replier
quorum excluding the suspected replica.

During reconfigurations, explicit agreement is per-
formed by the replicas (Fig. 1.b). This is similar to PBFT,
but the agreed-upon value contains two types of informa-
tion: the execution order of client requests and the new
replier quorum. Agreeing on the order of requests ensures
that all client requests can complete even in presence of
faulty or unresponsive repliers. Agreeing on the new replier
quorum allows future requests to be efficiently completed
using speculation. Coupling these agreements reduces the
overhead incurred by reconfiguration. The goal of the first
explicit agreement in Fig. 1.b is just completing the ongo-
ing request from client i. When the request of client j is
received, the primary has a chance to propose a new replier
quorum and let all replicas explicitly agree on it. Specula-
tion is re-established as soon as this agreement is reached.

Scrooge requires clients to participate in the selection of
repliers. Giving more responsibility to clients is common
in many BFT replication protocols, such as Q/U, HQ and
Zyzzyva. This is reasonable as clients are ultimately en-
trusted not to corrupt the state of the replicated state ma-
chine with their requests. Scrooge protects the system from
Byzantine clients and ensures that they can not make replica
states diverge. However, Byzantine clients can reduce the
performance of the system by forcing it to perform frequent
reconfigurations and to use the communication pattern of
PBFT (like in the request of client j in Fig. 1.b), which any-
way allows achieving good performance, instead of using
speculation (like in Fig. 1.a). This kind of client attacks
can be easily addressed by simple heuristics, for example



by bounding the number of accusations a client can send in
a given unit of time. This reliance on clients to indicate sus-
pected replicas results from the use of speculation. Replicas
can not observe if other replicas prevent fast agreement by
not sending correct speculative replies.

Reconfigurations are avoided in existing speculative pro-
tocols such as Zyzzyva5 by using more replicas than
Scrooge. Replier quorums allow reducing the replication
costs to 4f + 1 replicas when f = b.

1.2 Second technique: Message histories

Scrooge leverages the Message Authentication Codes
(MACs) used in BFT replication protocols to implement
authenticated channels and to detect forged and corrupted
messages. The sender of a message generates an authenti-
cator, which is a vector of MACs with one entry for each
other receiver, and attaches it to the message. In current
primary-based protocols such as [2, 8], replicas store the
history of operations dictated by the primary but discard the
authenticator of the messages from the primary after their
authenticity has been verified. Scrooge lets replicas store
the entire content of these messages, including the authen-
ticator, in their message histories. This further reduces the
replication cost from 4f + 1 to 4f (again with f = b).

2 System and Fault Model
The system is composed of a finite set of clients and

replicas. At most f replicas can be faulty, out of which at
most b can be Byzantine (with 0 < b ≤ f ) while the others
can only crash. The system has N ≥ 2f + 2b replicas. Any
number of clients can be Byzantine. Clients and replicas
are connected via an unreliable asynchronous network. The
network has timely periods when all messages sent among
correct nodes are delivered within a bounded delay.

We assume the availability of computationally secure
symmetric key cryptography, to calculate MACs, and public
key cryptography, to sign messages. If message m is sent
by process i to process j and is authenticated using simple
MACs, this is denoted as 〈m〉µi,j . In case m is sent to all
replicas by process i, an authenticator consisting of a vector
of MACs with one entry per replica is sent with m and this
is denoted as 〈m〉µi . Ifm is signed by i using its private key
we denote it as 〈m〉σi . We also assume the availability of
a collision-resistant hash function H ensuring that for any
valuem is impossible, givenH(m), to find a valuem′ 6= m
such that H(m) = H(m′).

3 The Scrooge Protocol
Scrooge replicates deterministic applications, modeled

as state machines, over multiple servers. Clients use
Scrooge to interact with the replicated servers as if they
were interacting with a single reliable server. Beyond the
classic safety and liveness properties necessary for BFT
replication, in Scrooge clients eventually complete all their

Name Description Type
v current view timestamp
RQ replier quorum set of pids
n current seq. number timestamp
mh message history array of 〈req., RQ, auth.〉
h history digests array of digests
aw agreed watermark timestamp
cw commit watermark timestamp
SL suspect list set of f pids
v′ new view timestamp
ih initial history array of 〈m,RQ, auth.〉

view establishment set ofN − f signedE
certificate EST-VIEW messages

Table 2: Global Variables of a Replica

requests from speculative replies if the basic conditions for
speculation are satisfied (i.e. the primary is fault-free, the
clients are non-Byzantine and the system is timely) [14].

For easier understanding, we present a simplified version
of Scrooge which assumes that replicas process unbounded
histories. A complete description of the full Scrooge pro-
tocol with garbage collection, together with full correctness
proofs, can be found in [12].

3.1 Normal Execution

In normal executions where the system is timely, the pri-
mary is fault-free and the replier quorum is agreed by all
replicas and contains only fault-free replicas, Scrooge be-
haves as illustrated in Fig. 1.a and Alg. 1.1 Table 2 summa-
rizes the local variables used by the replicas. Replicas use
only MACs for normal runs and reconfigurations.

Scrooge runs proceed through a sequence of views. In
each view v, one replica, which is called the primary and
whose ID is p(v) = v mod N , is given the role of assigning
a total execution order to each request before executing it.
The other replicas, called backups, execute requests in the
order indicated by the primary.

Clients start the protocol for an operation o with local
timestamp t by sending a signed request message REQ to
the primary. Clients then start a timer and wait for specula-
tive replies (Lines 1.1 – 1.4). When the primary receives a
request for the first time (Lines 1.6 – 1.9) it assigns it a se-
quence number and sends an order request message ORD-
REQ to mandate the same assignment to all backups. The
primary also stores the request in its message history to-
gether with the current replier quorumRQp and the authen-
ticator µp of the ORD-REQ message.

When a replica receives order requests from the primary
of the current view (Lines 1.15 – 1.19), it checks that its
view number is the current one, that it contains the next se-
quence number not yet associated with a request in the mes-
sage history (predicate IN-HISTORY), and that the pri-

1Upon receiving a message, clients and replicas discard them if they
are not well-formed, i.e., if the signatures, MACs, message digests or cer-
tificates are not consistent with their definitions. We ignore such non well-
formed messages in the pseudocode.
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Figure 1: Communication patterns: (a) with speculation, during normal periods; (b) with explicit agreement, during transient recon-
figuration periods where two client requests are processed. Repliers are indicated with a thicker line.

Algorithm 1: Scrooge - Normal Execution
upon client invokes operation o1.1

t← t+ 1; SL← ⊥;1.2
sendm = 〈REQ, o, t, c, SL〉σc to the primary;1.3
start timer;1.4

1.5
upon primary p(v) receives REQ messagem from clientm.c or a replica1.6

if not IN-HISTORY(m, mh) then1.7
n← n+ 1; d← H(m); RQp ← replicas 6∈ SL;1.8
send (〈ORD-REQ, v, n, d,RQp〉µp ,m) to all replicas;1.9

else if not COMMITTED(m,mh, cw) then1.10
update(m.SL);1.11
agree(m);1.12

else reply-cache(m.c);1.13
1.14

upon replica i receives ORD-REQ message orq from primary p(v)1.15
if i = p(v) or (orq.v = v and orq.n = n+ 1 and1.16
p(v) ∈ orq.RQp) and not IN-HISTORY(orq.m, mh) then

n← n+ 1; h[n]← H(h[n− 1],mh[n]);1.17
mh[n]← 〈orq.m, orq.RQp, orq.µp〉;1.18
r ← execute(orq.m.o);1.19
if SPEC-RUN(i, orq.m, orq.RQp,RQ) then1.20

if i ∈ RQ then1.21
send 〈SPEC-REP, v, n, h[n],RQ, orq.m.c,1.22
orq.m.t, r, i〉µp,c to client orq.m.c;

else1.23
agree(orq.m);1.24
ifRQ 6= orq.RQp then RQ← ⊥;1.25

if AGREEMENT-STARTED(i, n, v) then agree(orq.m);1.26
1.27

upon client receives SPEC-REP message sp from replica sp.i1.28
if |sp.RQ| = N − f and client received speculative replies matching1.29
sp from all replicas in sp.RQ then

deliver (o, t, sp.r); stop timer ;1.30
1.31

mary has included itself in the replier quorum. If all these
checks are positive, the request is executed and the fields of
the ORD-REQ message are added to the message history.

Speculative runs where the pattern of Fig. 1.a is executed
are the common-case runs (Lines 1.20 – 1.22). A replica
checks the predicate SPEC-RUN to distinguish speculative
runs. The predicate is true unless (i) a client could not com-
plete the request out of speculative replies and has resent its
request to all replicas, including backups, or (ii) the primary
has proposed a new replier quorum which has not yet been
agreed upon. In speculative runs, replicas send a speculative
reply to the client if it is a replier. Beyond the reply r, the
view number v and the sequence number n associated to the

client request, speculative replies contain the digest of the
current history h[n] and the replier quorum RQ. The for-
mer allows clients to verify that the senders of speculative
replies have a consistent history; the latter to identify the
replicas in the current replier quorum. If a client receives
matching speculative replies from all the N − f replicas in
RQ, it delivers the reply (Lines 1.28 – 1.30).

3.2 Reconfiguration

If a replica in the replier quorum fails, the client can not
complete requests out of speculative replies. The replier
quorum is then reconfigured by eliminating faulty repliers
to re-establish the communication pattern of Fig. 1.a. Repli-
cas start a full three-phase agreement similar to PBFT by
calling the agree procedure, which takes the client request
as argument (see [12] for the full pseudocode). An example
of reconfiguration over two client requests is in Fig. 1.b.

Completion of client requests When clients cannot de-
liver speculative replies before the timer expires, they dou-
ble the timer, indicate the IDs of the repliers which have
failed to respond and require replicas to explicitly agree on
a common message history. Similar to client i in Fig. 1.b,
they do this by simply resending their requests, together
with the set SL of suspect replicas, to all replicas.

When the primary receives a request which is already
in its message history, it checks with the predicate COM-
MITTED if a three-phase agreement on the order of the
request has already been completed. If not, the primary
adds the suspect list provided by the client to its list of the
f most-recently suspected servers SL and starts agreement
(Lines 1.10 – 1.12). The backups similarly start agreement
because receiving the client request invalidates SPEC-
RUN. However, they need to receive the corresponding or-
dered request from the primary first (Lines 1.23 – 1.25). A
replica i also starts an agreement phase whenever another
replica previously sent it an agreement message (Line 1.26).

Replicas then execute the remaining two phases of agree-
ment, agree and commit, to converge to a consistent history
and send stable replies to the client. In each phase replicas
send an agree or a commit message and wait for N − f − 1



matching messages from the other replicas before complet-
ing the phase. The agree and commit watermarks aw and
cw mark the end of the history prefix which has been re-
spectively agreed and committed. Similar to PBFT, all cor-
rect replicas completing the agreement phase for sequence
number n′ have the same message history prefix up to n′.
When correct replicas complete the commit phase for n′,
they know that a sufficient number of correct replicas have
completed agreement on the history prefix up to n′ to en-
sure that the prefix will be recovered during view change.
Replicas thus send stable reply messages to the client. Sta-
ble replies differ from speculative replies as they indicate
that the history prefix up to the replied request can be recov-
ered. Clients can deliver after receiving a stable reply from
at least one correct replica, that is, after receiving match-
ing stable replies from any set of b + 1 replicas. Replicas
cache the replies to committed requests to respond to clients
re-sending their requests (Line 1.13).

Agreement on a new replier quorum The classic three-
phases agreement is also executed for all subsequent re-
quests until a new replier quorum is agreed, as in case of the
request of client j in Fig. 1.b. The primary computes a new
replier quorum RQp from the suspect list SL in Line 1.8.
It then proposes RQp along with the next request which is
ordered. Proposing a new replier quorum invalidates the
SPEC-RUN predicate for all backups and lets them start
agreement (Lines 1.23 – 1.25). Replicas register ongoing
reconfigurations by setting RQ to ⊥ until a reconfiguration
is completed. They then start the successive two phases of
agreement. Explicit agreement on RQp lets replicas con-
verge not only on a common history but also on a new
replier quorum. When a replica commits, it sets RQ to the
new replier quorum proposed by the primary so that SPEC-
RUN holds again for future requests and speculation is re-
established. The commit on the new replier quorum ensures
that it will be recovered if view changes take place.

4 Scrooge View Change
If backups receive requests from the clients and see that

the system is not able to commit them, they start a view
change to replace the current primary. In contrast to PBFT,
we can only expect replicas to have explicitly agreed on
a prefix of the request history completed by clients. Also,
different from existing fast protocols allowing speculation
in presence of unresponsive replicas, Scrooge uses a lower
number of replicas. We developed a novel view change pro-
tocol (see Alg. 2) to achieve these challenging goals. As
customary, replicas now use signed messages.

4.1 Communication Pattern

View change to a new view v′ tries to build an initial
history ih for v′, which is then adopted as new message
history when v′ is started. When a replica initiates view

Algorithm 2: Scrooge - View change

procedure view-change(nv)2.1
stop executing request processing;2.2
v′ ← nv;2.3
send 〈VIEW-CHANGE, v′, v,mh, aw,E, i〉σi to all replicas;2.4
start timer;2.5

2.6
upon replica i receives VIEW-CHANGE message vc from replica vc.i2.7

if vc.v′ > v and not yet received a VIEW-CHANGE message vc for2.8
view nv = vc.v′ from vc.i then

k ← n′ + 1 : ∀ev ∈ vc.E, cv.n = n′;2.9
whilemh[k] 6= ⊥ do2.10

res[k]← verify(vc.v, k, vc.mh[k]);2.11
k ← k + 1;2.12

d← H(vc); j ← vc.i; vj ← vc.v;2.13
send 〈CHECK, j, vj , d, res, i〉σi to p(vc.v′);2.14
if received b+ 1 vc msgs with vc.v′ > v′ then2.15

view-change(vc.v′);2.16
if i = p(v′) and vc.v′ = v′ and recover-prim() then2.17

send 〈NEW-VIEW, v′, V C, CH , i〉µi to all replicas;2.18
2.19

upon replica i receives a CHECK message ch2.20
if i = p(v′) and ch.vj = v′ and recover-prim() then2.21

send 〈NEW-VIEW, v′, V C, CH , i〉µi to all replicas;2.22
2.23

upon replica i receives a NEW-VIEW message nv2.24
if not yet received nv with nv.v′ = v′ from p(v′) and2.25
recover(nv.V C, nv.CH) then

h← H(ih);2.26
n← length(ih);2.27
send 〈EST-VIEW, v′, n, h, i〉σi to all replicas;2.28

2.29
upon replica i receives an EST-VIEW message ev2.30

if received setEv′ ofN − f − 1 ev msgs: ev.v′ = v′ and2.31
ev.h = H(ih) and ev.n = length(ih) then

mh← ih; v ← v′; E ← Ev′ ;2.32
aw, cw ← max{k : mh[k] 6= ⊥};RQ← mh[cw].RQ;2.33
start executing request processing;2.34

2.35

change from the current view v to view v′, it stops pro-
cessing requests, starts a timer, and sends a view change
message VIEW-CHANGE to all replicas (see Fig. 2(a) and
Lines 2.1 – 2.5). A view change can also be initiated when
a replica receives b + 1 view change message for a newer
view (Lines 2.15 – 2.16).

A view change message contains the new view v′ that the
replica wants to establish, the old view v, its message his-
torymh, the view establishment certificateE and the agree-
ment watermark aw. The message history mh contains, as
prefix, the initial history ihv of v, which was stored at the
end of the view change to the current view v. By induc-
tion on the correctness of the view change subprotocol for a
given view, ihv contains every operation completed by any
client in the views prior to v. The view establishment cer-
tificate E contains the EST-VIEW messages received at the
end of the view change to view v and proves the correctness
of ihv . The remaining suffix ofmh contains the ORD-REQ
messages received by i from the primary of view v. These
requests need to be recovered by the view change if they
have been observed by any client.

A novelty of Scrooge is that each replica which receives
the view change message from i checks if the messages in



the history mh has been actually sent by the primary of
view v (see Fig. 2(b)). Let vc.v be the value of the cur-
rent view field v contained in a view change message vc
sent by replica i to replica j. Scrooge executes one addi-
tional step during view change to validate that all history
elements in vc, except those in the initial history of view
vc.v, have been built from original order request messages
from the primary of view vc.v (Lines 2.7 – 2.14). When j
receives vc, it first verifies that the new view field vc.v′ is
higher than the current view v of j and that i has not al-
ready sent to j a view change message for the same view.
Next, j checks if the elements in the message history of i
are “authentic”. For each element with sequence number k,
j calls the verify function (see Alg. 3) which first rebuilds
the order request message sent by the primary of view vc.v
to i for sequence number k, and then verifies the authenti-
cator of the message. Message histories make the first op-
eration possible because they contain sufficient information
to rebuild the original order request messages, including the
message authenticator µp(vc.v) used by the primary of view
vc.v. Replica j verifies the authenticator by calculating the
MAC of the rebuilt order request message and by returning
true if and only if this MAC is equal with the entry of j in
µp(vc.v). The results of the verification of each element in
the message history of vc is stored in a vector res, which is
sent to the primary of the new view v′ in a CHECK message
together with additional information to associate the check
message to vc.

Different from existing algorithms, the new primary only
recovers from stable view change messages that are con-
sistently checked by at least b + 1 replicas (Fig. 2(c)). If
these messages claim that the message history is authentic
we call the history verified. The purpose of the additional
check step will become clearer at the end of this section,
when we discuss the details of recovery. For the moment,
we just note that all view change messages eventually be-
come stable in timely periods and that the goal of this step
is ensuring that if the primary of the old view v is non-
Byzantine and i stores correct ORD-REQ messages in its
history, then: (P1) the message history becomes verified be-
cause it receives positive CHECK messages from all correct
replicas, which are at least b+1, and (P2) no forged, incon-
sistent history can receive a positive CHECK message by
any correct replica and thus become verified.

The primary of a new view v′ calls the recover function

Sender replica i

Primary of the new view v’

VIEW-CHANGE CHECK

(a) (b)

(c)

...

NEW-VIEW EST-VIEW

(d)

Same pattern
for other sender replicas

Figure 2: Scrooge view change subprotocol.

(see Alg. 3) to try to recover the initial history ih whenever
it receives a view change message (Lines 2.17 – 2.18) or
a check message (Lines 2.20 – 2.22) for v′. Recovery ex-
amines only stable VIEW-CHANGE message for the new
view. The procedure returns true only if it is able to suc-
cessfully recover all operations completed by any client in
all views prior to v′. In this case, the resulting history forms
the initial history of v′ and is stored in ih. We now continue
illustrating the communication pattern and argue about the
correctness of the recover function in the next subsection.

If history ih is recovered, the primary sends a new view
message to all other replicas with the sets of view change
and check messages V C andCH used for the recovery (see
Fig. 2(d)). When a backup receives a new view message for
the view it is trying to establish (Lines 2.24 – 2.28) it exe-
cutes the same deterministic recover function as the primary
does on the same set of view change and check messages to
build the same initial history. If the backup recovers an ini-
tial history ih for a new view v′, it sends an establish view
message to all other replicas in order to agree on ih. If it
later receives N − f − 1 establish view messages for v′

consistent with ih, it forms a view establishment certificate
for ih, sets v′ as its current view and ih as its agreed history
prefix, and updates the watermarks (Lines 2.30 – 2.34). The
replica then starts processing messages in the new view.

If the replica timer expires before the new view is estab-
lished, a view change to a successive new view v′ + 1 is
started, the timer is doubled and all messages related to the
view change to v′ are discarded.

4.2 The recover function

The recover function (see Alg. 3) is a critical compo-
nent because it guarantees that safety is preserved and that
each history prefix observed by any correct client in pre-
vious views is also a prefix of the initial history ih of the
next view. In order to allow the expert reader to verify all
the nuances of the algorithm, and in particular of recovery,
Table 3 lists the predicates used in the pseudocode.

Before starting recovery, a replica i makes sure that it
has received a set V Cs of at leastN −f stable view change
messages for the new view v′. A view change message vc
is stable if each element in the corresponding message his-
tory vc.mh is consistently verified by at least b + 1 check
messages received by the new primary (Lines 3.9 – 3.10). In
timely periods each view change message vc sent by correct
replicas eventually become stable as all N − f ≥ f + 2b >
2b correct replicas send CHECK messages containing bi-
nary vectors res for vc.mh.

Recovery starts by selecting an initial prefix for the initial
history ih (Lines 3.11 – 3.15). The highest current viewmv
included in a view change message in V Cs is either the last
view lv < v′ where some client has completed a request, or
a successive view where all requests completed in lv have



Algorithm 3: Scrooge - View change procedures

function verify(v, n, e)3.1
d← H(e.m); or ← (ORD-REQ, v, n, d, e.RQ);3.2
µ← calculate-MAC(or, p);3.3
if µ = e.µp[i] then return true;3.4
else return false;3.5

3.6
function recover(V C, CH)3.7

recovered← false;3.8
V Cs ← V C \ {vc ∈ V C : ¬STABLE(vc, CH) ∨ vc.v′ 6= v′};3.9
if |V Cs| ≥ N − f then3.10

mv ← max{v : ∃vc ∈ V Cs with vc.v = v};3.11
vcmv ← vc ∈ V Cs with vc.v = mv;3.12
nmv ← n : ∀ev ∈ vc.E, ev.nv = n;3.13
ih← {vcmv.mh[k] : (k ≤ nmv)};3.14
RQmv ← vcmv.mh[nmv ].RQ;3.15
k ← nmv + 1; loop← true; recovered← true;3.16
while loop do3.17

A←{e : AGREED-CAND(e, k,mv, V Cs, ih)};3.18
O ←{e : ORDERED-CAND(e, k,mv, V Cs,RQk−1,3.19
ih)};
if WAIT-AGR(A, k,mv, V Cs) or3.20
WAIT-ORD(A,O, k,mv, V Cs) then

loop, recovered← false;3.21
else3.22

if ∃e ∈ A then3.23
ih[k]← e;3.24

else if ∃e ∈ O : VERIFIED(e, V Cs, CH) then3.25
ih[k]← e;3.26

else if ∃e ∈ O then3.27
ih[k]← e;3.28

else loop← false;3.29
RQk ← ih[k].RQ;3.30

k ← k + 1;3.31
return recovered;3.32

3.33
function recover-prim()3.34

V C ← set of received view change messages for view v′;3.35
CH ← set of received check messages for view v′;3.36
return recover(V C,CH);3.37

3.38

been recovered. This is because at least N − f − b ≥ f + b
correct replicas must have established lv and at least b > 0
of them have sent a message included in V Cs. Scrooge first
recovers the initial history ih of mv from any view change
message containing a message history formv. View change
messages include a view establishment certificate E com-
posed of N − f signed messages all containing the same
length nmv of the initial history of mv and the same cor-
responding history digest. The certificate ensures that the
initial history ih recovered from the view change message
vcmv is the correct initial history for mv and is not forged
by a Byzantine replica. Together with the initial history also
the initial recovery quorum RQmv is recovered.

The next step is recovering the history elements observed
by clients during view mv for sequence numbers k > nmv
(Lines 3.16 – 3.31). If a request has been completed by a
client from b + 1 stable replies, at least one correct replica
has committed the entire history prefix up to that request
(Lines 3.23 – 3.24). Committed histories are recovered like
in PBFT (see predicates AGREED-CAND and WAIT-
AGR). Therefore, our discussion will focus on recovering
histories completed by clients through speculative replies.

IN-HISTORY(m,mh)
4
= ∃k : mh[k].m.c = m.c ∧

mh[k].m.t ≥ m.t
COMMITTED(m,mh, cw)

4
= ∃k ≤ cw :mh[k].m.c = m.c ∧

mh[k].m.t ≥ m.t
NEXT(mh, k)

4
= (∀k′ < k,mh[k′] 6= ⊥) ∧mh[k] = ⊥

SPEC-RUN(i,m,RQp,RQ)
4
= RQ 6= ⊥ ∧RQp = RQ ∧

i is backup and has never received a message
with timestamp≥ m.t fromm.c

AGREEMENT-STARTED(i, n, v)
4
= i has received

an agree message ag with ag.n = n and ag.v = v in view v

STABLE(vc, CH)
4
= ∃bool : ∀k : vc.mh[k] 6= ⊥,

∃(b+ 1) ch ∈ CH : ch.vj = vc.v ∧ ch.j = vc.i ∧
ch.d = digest(vc) ∧ ch.res[k] = bool

AGREED-CAND(e, k, v, V C, ih)
4
=

not IN-HISTORY(e, ih) ∧`
∃ (b+ 1) vc′ ∈ V C : vc′.v = v ∧ vc′.mh[k] = e

´
∧`

∃(|V C| − f − b) vc ∈ V C :
e = vc.mh[k] ∧ vc.v = v ∧ vc.aw ≥ k

´
ORDERED-CAND(e, k, v,RQ, V C, ih)

4
=

not IN-HISTORY(e, ih) ∧
∃(|V C| − f − b) vc ∈ V C :
e = vc.mh[k] ∧ vc.v = v ∧ vc.i ∈ RQ ∧ vc.aw < k

WAIT-AGR(A, k, v, V C)
4
= ∃e ∈ A :

6̀ ∃ (b+ 1) vc ∈ V C : vc.v = v ∧ vc.mh[k] = e)
´
∧

6̀ ∃ (f + b+ 1) vc′ ∈ V C :
(vc′.v 6= v) ∨ (vc′.v = v ∧ vc′.mh[k] 6= e

´
WAIT-ORD(A,O, k, v, V C)

4
= |A ∪O| > 1 ∧ |V C| ≤ N − f ∧

(∃ vc ∈ V C : vc.i = p(v) ∧ vc.v = v)

VERIFIED(e, V C, CH)
4
= ∃k, vc ∈ V C : e = vc.mh[k] ∧

(∃(b+ 1) ch ∈ CH : ch.vj = vc.v ∧ ch.j = vc.i
∧ ch.d = digest(vc) ∧ ch.res[k] = true)

Table 3: Predicates needed for view change

Why are replier quorums useful? If a reply is delivered
by clients in a fast manner, i.e., out of speculative replies
(Lines 1.28 – 1.30), then recovering it requires a higher re-
dundancy than the minimum. Scrooge reduces these ad-
ditional costs. By recovering agreed history elements, a
replica also recovers the replier quorum which has been up-
dated when the element has been committed. Recovering
the replier quorum RQn committed for sequence number
n allows to clearly identify the set of repliers for sequence
numbers greater than n and thus to reduce the number of
required replicas to 2f +2b+1. To see that, consider a sys-
tem havingN = 2f+2b+1 replicas where replier quorums
consist of N − f replicas. Assume that a client completes
a request in a view v for sequence number n′ > n after
receiving matching speculative replies from all repliers, at
least N − f − b of which are correct, and assume that RQn
is the last recovered replier quorum for sequence numbers
smaller than n′.

If the primary fails, the history prefix up to n′ must be
recovered to ensure safety. To this end, all replicas share
their history, but only the histories of repliers in the replier
quorum need to be considered. During view change up to f
of the N − f − b correct repliers might be slow and might
fail to send a stable VIEW-CHANGE message. Due to the
asynchrony of the system, the primary can not indefinitely
wait for these messages because it can not distinguish if the



replicas are faulty or simply slow. Despite this, the new
primary can always receive view change messages from at
least N − 2f − b = b+ 1 correct repliers reporting the his-
tory prefix observed by the client. As the primary knows the
identity of the repliers and as only b Byzantine repliers can
report incorrect histories, the observed prefix can be recov-
ered by selecting a history reported in the VIEW-CHANGE
message of at least b+ 1 repliers.

Why are message histories useful? Scrooge further re-
duces the replication costs to N = 2f + 2b replicas by
using message histories and the check messages. Assume
that a client has delivered a reply to a request m after re-
ceiving matching speculative replies from all repliers for a
sequence number n′. During view change, as we use one
replica less than the previous case, the history observed by
the client is reported in the VIEW-CHANGE message of at
least N − 2f − b = b repliers. Let |V Cs| ≥ N − f be
the number of stable view change messages received by the
primary of the new view. We call a history element reported
by |V Cs| − f − b repliers an ordered candidate. The set of
ordered candidates is defined by the predicate ORDERED-
CAND. It follows from this definition that two different or-
dered candidates may be reported for sequence number n′

and view v by two sets Q and Q′ of |V Cs| − f − b = b
repliers each, where Q contains correct repliers and Q′ the
Byzantine ones. The problem is distinguishing the candi-
date containing m from other candidates.

If two sets of b replicas claim to have two inconsistent
histories for the same view v and the old primary p of view
v is in one of these sets, then either p is Byzantine and has
sent inconsistent order requests to the backups, or b backups
are Byzantine and are reporting a forged history. There-
fore, at least one Byzantine replier is contained in one of
these two sets and it is thus live to wait for the view change
message from one additional correct replier as indicated
by the predicate WAIT-ORD. After the additional VIEW-
CHANGE message has been received and has become sta-
ble, |V Cs| > N −f . As only the correct history is reported
by at least |V Cs| − f − b > b repliers, it is recovered as the
only remaining ordered candidate (Lines 3.27 – 3.28).

If there are two different candidates reported by b repli-
cas each and the primary is none of these sets we distinguish
two cases. If p is not Byzantine, but potentially faulty, it
might be impossible to wait until only one ordered candi-
date remains. In this case the predicate WAIT-ORD is false
and a verified candidate is recovered if present (Lines 3.25 –
3.26). Message histories and the novel check phase allow
to identify in these cases the history prefix observed by the
client. In fact, recovery uses stable view change messages
whose history elements are verified by b+1 check messages
inCH with consistent positive outcomes (Lines 3.9 – 3.10).
Clients only deliver a speculative reply if all the repliers,
including the non-Byzantine primary, have the same mes-

sage history of ORD-REQ messages. This and the proper-
ties (P1) and (P2) of the check phase ensure that the history
element observed by the client is verified and recovered.

The second case is when the old primary p is Byzantine.
This implies that at most b − 1 Byzantine repliers are in-
cluded in the two sets reporting the two different ordered
candidates. Two correct repliers have thus received incon-
sistent histories from the primary. This inconsistency is de-
tected by the client by checking the history digest of the
SPEC-REP messages. Therefore the client does not deliver
the reply, a contradiction.

Validity Unlike other protocols, Scrooge allows a request
to be included into ih even if it is only reported by b Byzan-
tine replicas. As client requests are signed, no request in
ih is fabricated on behalf of correct clients, as commonly
required for Validity by BFT replication protocols, e.g. [7].

5 Evaluation and Comparison
We conduct a comparative evaluation of Scrooge with

other existing protocols: the standard PBFT protocol and
two state-of-the-art fast protocols with publicly-available
implementation, Zyzzyva and Zyzzyva5. The goal of
the evaluation is to show that, during normal executions,
Scrooge does not introduce significant additional overheads
in the critical path compared to other speculative protocols
such as Zyzzyva and Zyzzyva5. We also show that Scrooge
improves over the performance of Zyzzyva in presence of
unresponsive replicas, reaching the same performance as
Zyzzyva5 but with less replicas. Scrooge adds two types
of overhead in the critical path. First, it uses larger his-
tory elements which include authenticators. This increases
the overhead of calculating the history digests included in
the speculative replies. Second, speculative replies must in-
clude a bitmap representing the current replier quorum. Our
evaluation shows that these overheads are negligible.

We refer to [15] for a comparison between quorum- and
primary-based algorithms. As a reference, however, we
scale the performance figures of Q/U [1] to our setting.

Optimizations Scrooge uses optimizations similar to
PBFT and Zyzzyva to improve the performance of the pro-
tocol. The main difference between Zyzzyva and Scrooge is
the read-only optimization. This lets clients send read-only
requests directly to the replicas, which immediately reply to
the request without having the primary order them. If this
does not succeed, the client sends the read as a regular re-
quest [2, 8]. In Scrooge, the optimization succeeds if clients
receive N − f consistent replies from replicas in the same
replier quorum. In Zyzzyva, all replicas need to send con-
sistent replies for the read optimization to succeed. Also,
the Zyzzyva library uses a commit optimization to avoid ex-
cessive performance degradation with unresponsive repli-
cas. If clients cannot receive speculative replies from all
replicas, the protocol stops using speculation for successive
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Figure 3: Throughput for 0/0 microbenchmark without
batching and with f = 1.

requests and use one all-to-all agreement round instead [8].
Batching improves the performance of BFT algorithms

under high load by letting replicas execute the protocol on
groups of client requests [2]. Using batching similarly im-
pacts all evaluated algorithms, making it more difficult to
compare their performance under high load [15].

PBFT, Zyzzyva and Zyzzyva5 use MACs for client re-
quests but this makes them vulnerable to client attacks [4].
Scrooge tolerates such attacks by using signed client re-
quests. For fairness and consistency with previously pub-
lished results, our comparison lets all algorithms use MACs.

Evaluation setup Our setting tolerates a single fault (f =
b = 1). PBFT, Zyzzyva and Scrooge use four replicas
while Zyzzyva5 uses six. All machines in the experiments
have Intel Core2DUO 6400 2.1GHz processors, 4 GB of
memory and Intel E1000 network cards, and are connected
through a Gigabit switched star network. All servers are
single-threaded processes. Nodes run Fedora Linux 8 with
kernel version 2.6.23. We use MD5 to compute MACs and
the AdHash library for incremental hashes as in [2, 8]. For
performance stability, measurements are initiated after the
execution of the first 10,000 operations, and are stopped af-
ter the successive 10,000 operations. We use the same X/Y
micro-benchmark used by the authors of PBFT [2], where
X and Y are the size (in KB) of client requests and replica
replies respectively. We consider scenarios where all repli-
cas are responsive and where one replica is initially crashed.

Throughput We first examine the throughput of Scrooge.
Fig. 3 shows the throughput achieved by the 0/0 micro-
benchmark without batching. Scrooge is the protocol which
achieves the highest throughput with the lowest, and in this
case minimal, number of replicas. Zyzzyva5 displays simi-
lar trends but a slightly lower peak throughput. This is prob-
ably due to the use of a larger number of replicas, which
forces the primary to calculate a higher number of MACs
(40% more than Scrooge) to authenticate order request mes-
sages. Zyzzyva can perform as well as Scrooge only in runs
with all responsive replicas because it cannot otherwise use
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Figure 4: Latency for different benchmarks with a single
client and no batching.

speculation. In runs with one unresponsive replica, the peak
throughput improvement of Scrooge over Zyzzyva is more
than one third. PBFT has lower peak throughput because it
calculates at least twice as many MACs as Scrooge and has
quadratic message complexity.

If we consider read-only requests with one unresponsive
replica the difference becomes even more evident because
Zyzzyva is not able to use the read optimization, as previ-
ously discussed. Even if we use batches of size 10, Zyzzyva
achieves 52 kops/s peak throughput in presence of read-only
workloads, whereas Scrooge achieves a peak of 85 kops/s.

Latency The latency of different protocols using different
micro-benchmarks is shown in Fig. 4. Scrooge performs in
line with Zyzzyva5 with all micro-benchmarks. PBFT has
approximately 40% higher latency than Scrooge for write
requests and similar latency as Scrooge for read-only re-
quests. Zyzzyva suffers a significant performance degra-
dation in runs with unresponsive replicas. In case of write
requests the difference with Scrooge ranges between 14%
for the 0/4 case to 22% for the 0/0 case. The difference
becomes much higher for read-only operations because un-
responsive replicas disable the read-only optimization. The
time a client needs to wait when it tries to use the read op-
timization without success depends on the timer settings of
the client and is hard to evaluate. Fig. 4 only considers for
Zyzzyva the optimistic latency given by processing read re-
quests upfront as normal writes. Even in this scenario, the
latency of Zyzzyva compared to Scrooge is 29% higher in
the 0/0 case and up to 98% higher for the 4/0 case.

Fig. 5 illustrates how latency scales with the throughput
when batching is not used. Scrooge is the protocol achiev-
ing the best latency at lowest, and in this case minimal, cost.
Scrooge and Zyzzyva5 have almost equal measurement re-
sults. Zyzzyva displays higher latency (∼ 0.9 kops/sec) in
runs with unresponsive replicas and 10 clients.

Fault scalability A fault scalable replication protocol
keeps costs low when the number of replicas, and thus
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of tolerated faults, grows [1]. Scrooge is the most fault-
scalable primary-based protocol in presence of unrespon-
sive replicas. In Scrooge a primary computes 2+(4f−1)/s
MACs operations per request if b = f and s is the size of
a batch. This is also the number of messages sent and re-
ceived by the primary. Zyzzyva has a slightly lower over-
head in fault-free runs, 2 + 3f/s. Scrooge is more scalable
than PBFT (2 + 8f/s), Zyzzyva5 (2 + 5f/s) and Zyzzyva
with one unresponsive replica (2 + 5f/s). In Q/U the bot-
tleneck replica makes only 2 MACs operations per request.

Scrooge uses 1 + 3f + (4f − 1)/s messages per re-
quest, similar to Zyzzyva in fault-free runs (2+3f+3f/s),
Zyzzyva5 (2 + 4f + 5f/s) and, with s = 1, Q/U (2 + 8f ).
With unresponsive replicas, PBFT and Zyzzyva with com-
mit optimization have quadratic complexity. Without com-
mit optimization, Zyzzyva has lower message complexity
but also significantly lower performance [8].

6 Related Work
We have provided a comparison of Scrooge with

PBFT [2], Zyzzyva [8] and DGV [6] throughout this paper.
In [7] a framework is proposed where different BFT pro-

tocols can be combined to react to different systems condi-
tions and requirements. Two protocols for fault-free runs,
one optimized for latency in runs with no concurrency and
another with high throughput but high latency, are intro-
duced. In presence of unresponsive replicas, these protocols
switch to a backup protocol such as PBFT.

Protocols like Q/U [1] and HQ [5] let clients directly in-
teract with the replicas to establish an execution order. This
reduces latency in some case but is more expensive in terms
of number of calculated MACs [8, 15].

Preferred quorums is an optimization used by clients in
some quorum-based BFT replication protocol, mainly to
reduce cryptographic overhead [5, 1]. Preferred quorums
are not agreed-upon using reconfigurations and are not used
during view change. This technique is thus fundamentally
different from replier quorums because using (or not using)

it has no effect on the replication cost of the protocol.
The redundancy costs of BFT replication in asyn-

chronous networks with eventual timely periods can also be
reduced by using trusted components as shown in [13, 3].

7 Conclusions
BFT state machine replication requires making a trade-

off between optimal performance and replication costs.
Scrooge mitigates this tradeoff through two novel tech-
niques: replier quorums and message histories. Compared
with Scrooge, PBFT is less performant, Zyzzyva matches
its performance only in fault-free runs, and Zyzzyva5 has
similar performance but higher replication costs. In sys-
tems where tolerating any number of crashes but only one
Byzantine failure is sufficient, Scrooge is the best choice as
it is always fast and uses a minimal number of replicas.
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